JP2007059243A - 有機エレクトロルミネッセンス素子、表示装置及び照明装置 - Google Patents

有機エレクトロルミネッセンス素子、表示装置及び照明装置 Download PDF

Info

Publication number
JP2007059243A
JP2007059243A JP2005244202A JP2005244202A JP2007059243A JP 2007059243 A JP2007059243 A JP 2007059243A JP 2005244202 A JP2005244202 A JP 2005244202A JP 2005244202 A JP2005244202 A JP 2005244202A JP 2007059243 A JP2007059243 A JP 2007059243A
Authority
JP
Japan
Prior art keywords
organic
layer
compound
organic electroluminescence
electroluminescence device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005244202A
Other languages
English (en)
Inventor
Shuichi Sugita
修一 杉田
Hiroshi Kita
弘志 北
Shunichi Iwamaru
俊一 岩丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2005244202A priority Critical patent/JP2007059243A/ja
Publication of JP2007059243A publication Critical patent/JP2007059243A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

【課題】 良好な発光輝度、低駆動電圧を示し、定電流駆動したときの電圧上昇、ダークスポットが少なく、さらに高温、高湿下での経時安定性が高い有機EL素子、及びそれを用いた表示装置、照明装置を提供することである。
【解決手段】 基板上に電極と少なくとも1層以上の有機層を有する有機エレクトロルミネッセンス素子において、該有機層の少なくとも1層はドーパント及びホスト化合物を含有する発光層であり、該有機層の少なくとも1層は電子輸送材料及びドナー性化合物を含有する電子輸送層であり、該有機層の少なくとも一層の膜密度が1.10〜1.25g/cm3であることを特徴とする有機エレクトロルミネッセンス素子。
【選択図】 なし

Description

本発明は、有機エレクトロルミネッセンス素子、及び該有機エレクトロルミネッセンス素子を用いた表示装置、照明装置に関する。
従来、発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(ELD)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)が挙げられる。
有機EL素子は発光する化合物を含有する発光層を、陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・燐光)を利用して発光する素子であり、数V〜数十V程度の電圧で発光が可能であり、さらに自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。
近年プリンストン大より、励起三重項からの燐光発光を用いる有機EL素子の報告(非特許文献1参照。)がされ、室温で燐光を示す材料の研究が活発になってきている(非特許文献2及び特許文献1参照。)。励起三重項を使用すると、内部量子効率の上限が100%となるため、励起一重項の場合に比べて原理的に発光効率が4倍となり、冷陰極管とほぼ同等の性能が得られ照明用にも応用可能であり注目されている。例えば、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検討がなされている(非特許文献3参照。)。
現在、この燐光発光を用いた有機EL素子のさらなる発光の高効率化、長寿命化及び低消費電力化が検討されている。高い発光効率を得るために、発光層の最適化(特許文献2参照。)、ホールブロック層の導入(特許文献3参照。)が検討されている。さらに、電子輸送層中にドナー化合物をドープし、また正孔輸送層中にアクセプター性化合物をドープすることにより、正孔輸送層内のキャリア濃度を上げ、有機層の導電率を向上される方法が提案されている(特許文献4参照。)。緑色発光については理論限界である20%近くの外部取り出し効率が達成されているものの、その他の色の発光についてはまだ十分な効率が得られておらず改良が必要であった。特に青色発光で高効率に発光する素子が求められていた。
一方、有機発光素子において高輝度発光を実現しているものは有機物質を真空蒸着によって積層している素子であるが、製造工程の簡略化、加工性、大面積化等の観点から塗布方式による素子作製も開示されている(特許文献5参照。)。しかしながら、従来の有機EL素子は、定電圧駆動したときの電圧上昇、ダークスポットの発生、さらに高温、高湿下での経時安定性についての改良が望まれている。また、発光輝度のさらなる改良も望まれている。
米国特許第6,097,147号明細書 特開2002−151267号公報 特開2002−100476号公報 特開2000−196140号公報 特開2002−299061号公報 M.A.Baldo et al.,nature、395巻、151−154ページ(1998年) M.A.Baldo et al.,nature、403巻、17号、750−753ページ(2000年) S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304ページ(2001年)
本発明は、上記課題に鑑みなされたものであり、その目的は、良好な発光輝度、低駆動電圧を示し、定電流駆動したときの電圧上昇、ダークスポットが少なく、さらに高温、高湿下での経時安定性が高い有機EL素子、及びそれを用いた表示装置、照明装置を提供することである。
本発明の上記課題は、以下の構成により達成される。
1.基板上に電極と少なくとも1層以上の有機層を有する有機エレクトロルミネッセンス素子において、該有機層の少なくとも1層はドーパント及びホスト化合物を含有する発光層であり、該有機層の少なくとも1層は電子輸送材料及びドナー性化合物を含有する電子輸送層であり、該有機層の少なくとも一層の膜密度が1.10〜1.25g/cm3であることを特徴とする有機エレクトロルミネッセンス素子。
2.前記ドナー性化合物がアルカリ金属、アルカリ土類金属またはそれらの塩であることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。
3.基板上に電極と少なくとも1層以上の有機層を有する有機エレクトロルミネッセンス素子において、該有機層の少なくとも1層はドーパント及びホスト化合物を含有する発光層であり、該有機層の少なくとも1層は正孔輸送材料及びアクセプター性化合物を含有する正孔輸送層であり、該有機層の少なくとも一層の膜密度が1.10〜1.25g/cm3であることを特徴とする有機エレクトロルミネッセンス素子。
4.前記アクセプター性化合物がAu、Pt、W、Ir、POCl3、AsF6、Cl、Br、I、TCNQ、TCNQF4、TCNE、HCNB、DDQ、TNF、DNF、フルオラニル、クロラニルまたはブロマニルであることを特徴とする前記3に記載の有機エレクトロルミネッセンス素子。
5.基板上に電極と少なくとも1層以上の有機層を有する有機エレクトロルミネッセンス素子において、該有機層の少なくとも1層はドーパント及びホスト化合物を含有する発光層であり、該有機層の少なくとも1層は電子輸送材料及びドナー性化合物を含有する電子輸送層を有し、さらに正孔輸送材料及びアクセプター性化合物を含有する正孔輸送層を有し、該有機層の少なくとも一層の膜密度が1.10〜1.25g/cm3であることを特徴とする有機エレクトロルミネッセンス素子。
6.前記ドナー性化合物がアルカリ金属、アルカリ土類金属またはそれらの塩であることを特徴とする前記5に記載の有機エレクトロルミネッセンス素子。
7.前記アクセプター性化合物がAu、Pt、W、Ir、POCl3、AsF6、Cl、Br、I、TCNQ、TCNQF4、TCNE、HCNB、DDQ、TNF、DNF、フルオラニル、クロラニルまたはブロマニルであることを特徴とする前記5または6に記載の有機エレクトロルミネッセンス素子。
8.前記ドーパントが燐光性化合物であることを特徴とする前記1〜7のいずれか1項に記載の有機エレクトロルミネッセンス素子。
9.前記有機層の少なくとも一層の膜密度が1.20〜1.25g/cm3であることを特徴とする前記1〜8のいずれか1項に記載の有機エレクトロルミネッセンス素子。
10.前記ホスト化合物の分子量が400〜2000であることを特徴とする前記9に記載の有機エレクトロルミネッセンス素子。
11.前記有機層の少なくとも一層の膜密度が1.10〜1.15g/cm3であることを特徴とする前記1〜8のいずれか1項に記載の有機エレクトロルミネッセンス素子。
12.前記ホスト化合物の分子量が5000〜1000000であることを特徴とする前記11に記載の有機エレクトロルミネッセンス素子。
13.前記有機層は有機溶媒を10-2〜103ppm含有することを特徴とする前記1〜12のいずれか1項に記載の有機エレクトロルミネッセンス素子。
14.前記基板がガスバリア層を有することを特徴とする前記1〜13のいずれか1項に記載の有機エレクトロルミネッセンス素子。
15.発光が赤色であることを特徴とする前記1〜14のいずれか1項に記載の有機エレクトロルミネッセンス素子。
16.発光が緑色であることを特徴とする前記1〜14のいずれか1項に記載の有機エレクトロルミネッセンス素子。
17.発光が青色であることを特徴とする前記1〜14のいずれか1項に記載の有機エレクトロルミネッセンス素子。
18.発光が白色であることを特徴とする前記1〜14のいずれか1項に記載の有機エレクトロルミネッセンス素子。
19.前記1〜18のいずれか1項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする表示装置。
20.前記1〜18のいずれか1項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする照明装置。
21.前記20に記載の照明装置と表示手段としての液晶素子を有することを特徴とする表示装置。
本発明によれば、良好な発光輝度、低駆動電圧を示し、定電流駆動したときの電圧上昇、ダークスポットが少なく、さらに高温、高湿下での経時安定性が高い有機EL素子、及びそれを用いた表示装置、照明装置を提供することができる。
本発明者は、基板上に電極と少なくとも1層以上の有機層を有する有機エレクトロルミネッセンス素子において、有機層の少なくとも1層は燐光性化合物を含有する発光層であり、該有機層の少なくとも1層が電子輸送材料及びドナー性化合物、または正孔輸送材料及びアクセプター性化合物を含有する正孔輸送層を有すると共に、前記有機層の少なくとも一層の膜密度が1.10〜1.25g/cm3であることにより、良好な発光輝度、低駆動電圧を示し、かつ、定電流駆動したときの電圧上昇、ダークスポットが少なく、かつ、高温、高湿下での経時安定性が高い有機エレクトロルミネッセンス素子が得られることを見出した。
以下、本発明の各構成要件について詳細に説明する。
(膜密度)
本発明で用いられる膜密度の測定方法について説明する。
本発明の膜密度はX線反射率測定法により求めることができる。極低角度、例えば0.2度から2度の範囲の反射率を測定し、得られた反射率曲線をフレネルの式より求められる多層膜試料の反射率の式に、フィッティングすることにより求められる。フィッティングの方法については、L.G.Parratt,Phis.Rev.,95 359(1954年)を参考にすることができる。
具体的には、X線発生源は、銅をターゲットとし、50kV−300mAで作動させる。多層膜ミラーとGe(111)チャンネルカットモノクロメーターにて単色化したX線を使用する。測定は、ソフトウェアーATX−Crystal Guide Ver.6.5.3.4を用い、半割、アライメント調整後、2θ/ω=0度から1度を0.002度/stepで0.05度/min.で走査する。上記の測定条件で反射率曲線を測定した後、株式会社リガク製GXRR Ver.2.1.0.0解析ソフトウェアーを用いて測定を行うことができる。
本発明に係る有機層の少なくとも一層の膜密度は1.10〜1.25g/cm3であり、これにより定電流駆動したときの電圧上昇、ダークスポット、及び高温、高湿下での経時安定性の改良効果を有する。
(有機溶媒含有量)
次に、本発明で用いられる有機溶媒含有量の測定方法について説明する。
本発明に係る有機層中に残留している有機溶媒は、パージ&トラップサンプラーを取り付けたガスクロマトグラフィー質量分析法(PT−GC/MS)で測定することができる。具体的には10cm×10cm四方の有機EL素子を作製し、ガス回収用のチャンバーと有機ガス吸着管(TENAX GR)に残留有機溶媒を吸着させ、PT−GC/MS測定を行うことができる。溶媒濃度は濃度既知の基準試料を用いて作成した検量線より求める。
本発明に係る有機層は有機溶媒を10-2〜103ppm含有する。好ましくは有機溶媒を0.1〜100ppm含有し、これにより定電流駆動したときの電圧上昇、ダークスポット、及び高温、高湿下での経時安定性のより一層の改良効果を有する。
本発明に係る有機溶媒として特に制限はないが、例えば、アルコール類(メタノール、エタノール等)、カルボン酸エステル類(酢酸エチル、酢酸プロピル等)、ニトリル類(アセトニトリル等)、エーテル類(イソプロピルエーテル、THF等)、芳香族炭化水素類(シクロヘキシルベンゼン、トルエン、キシレン等)、ハロゲン化アルキル類(塩化メチレン等)、飽和炭化水素類等(ヘプタン等)が挙げられる。この中で好ましいものはカルボン酸エステル類、ニトリル類、エーテル類、芳香族炭化水素類、ハロゲン化アルキル類、飽和炭化水素類であり、さらに好ましくはカルボン酸エステル類、エーテル類、芳香族炭化水素類である。
本発明に用いられる有機溶媒の沸点は200℃以下が好ましく、さらに好ましくは150℃以下である。
本発明に係る有機層は蒸着法、塗布法で形成されるが、塗布法に関しては、スピンコート、ディップコート、ロールコート、バーコート、フレキソ印刷、スクリーン印刷、オフセット印刷、インクジェット法があり、好ましくはインクジェット法である。
(電子輸送材料)
次に、本発明で用いられる電子輸送材料について説明する。
本発明で用いられる電子輸送材料としては、例えばカルバゾール誘導体、アザカルバゾール誘導体、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェナントロリン誘導体、オキサゾール誘導体、フルオレノン誘導体、ヒドラゾン誘導体、有機金属化合物、アリールメタン誘導体、ホウ素化合物等が挙げられる。
これらのうちで好ましいものは、アザカルバゾール誘導体、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、有機金属化合物、ホウ素化合物であり、さらに好ましいものとしては以下の構造で示した化合物である。
Figure 2007059243
式中、R1、R2は水素原子、置換基を表す。R3、R4は置換基を表す。n1及びn2は0〜3の整数を表す。A1及びA2は複素環基または下記一般式(2)で表される化合物を表す。
Figure 2007059243
式中、Z1は置換基を有してもよい芳香族複素環を表し、Z2は置換基を有してもよい芳香族複素環または芳香族炭化水素環を表し、Z3は2価の連結基または単なる結合手を表す。L1は2価の連結基または単なる結合手を表す。
Figure 2007059243
式中、R11は置換基を表す。n11は0〜4の整数を表す。A11及びA12は複素環基または上記一般式(2)で表される化合物を表す。
Figure 2007059243
式中、R21及びR22は置換基を表す。n21及びn22は0〜3の整数を表す。A21及びA22は複素環基または上記一般式(2)で表される化合物を表す。Lは2価の連結基を表す。
前記一般式(1)におけるR1〜R4、前記一般式(3)におけるR11及び前記一般式(4)におけるR21、R22が表す置換基としては、例えば、アルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えば、メチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシル等)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えば、ビニル、アリル、2−ブテニル、3−ペンテニル等)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えば、プロパルギル、3−ペンチニル等)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えば、フェニル、p−メチルフェニル、ナフチル等)、アミノ基(好ましくは炭素数0〜20であり、例えば、アミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、フェニルナフチルアミノ等)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えば、メトキシ、エトキシ、ブトキシ等)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えば、フェニルオキシ、2−ナフチルオキシ等)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、アセチル、ベンゾイル、ホルミル、ピバロイル等。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えば、メトキシカルボニル、エトキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えば、フェニルオキシカルボニル等)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えば、アセトキシ、ベンゾイルオキシ等)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えば、メトキシカルボニルアミノ等)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えば、フェニルオキシカルボニルアミノ等)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、メタンスルホニルアミノ、ベンゼンスルホニルアミノ等)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えば、スルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイル等)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、カルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイル等)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、メチルチオ、エチルチオ等)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えば、フェニルチオ等)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、メシル、トシル等)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、メタンスルフィニル、ベンゼンスルフィニル等)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、ウレイド、メチルウレイド、フェニルウレイド等)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、ジエチルリン酸アミド、フェニルリン酸アミド等)、ヒドロキシル基、メルカプト基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(ヘテロ原子として、例えば、窒素原子、酸素原子、硫黄原子、セレン原子等を含む、好ましくは炭素数1〜30、より好ましくは炭素数1〜20の、例えば、イミダゾリル、ピリジル、フリル、ピペリジル、モルホリノ等)等が挙げられる。これらの置換基はさらに置換されてもよい。また、可能な場合には連結して環を形成してもよい。
これらのうち好ましいものはアルキル基及びアリール基である。
2価の連結基としては、アルキレン、アルケニレン、アルキニレン、アリーレン等の炭化水素基のほか、ヘテロ原子を含むものであってもよく、また、チオフェン−2,5−ジイル基や、ピラジン−2,3−ジイル基のような、芳香族複素環を有する化合物(ヘテロ芳香族化合物ともいう)に由来する2価の連結基であってもよいし、酸素や硫黄等のカルコゲン原子であってもよい。また、イミノ基、ジアルキルシランジイル基やジアリールゲルマンジイル基のような、ヘテロ原子を介して連結する基でもよい。
本発明で用いられる電子輸送材料としては、低分子化合物、高分子化合物いずれも使用することが可能である。
高分子化合物とは重合性基を少なくとも一つ有する化合物(重合性化合物)が重合したものであり、重合性基としては、例えば、ビニル基、エポキシ基、オキセタン基、イソシアネート基、チオイソシアネート基等が挙げられる。これらのうちで好ましいものはビニル基である。本発明に係る前記一般式(1)、一般式(3)、一般式(4)で表される有機化合物はこれらの重合性基を分子内のいずれかの位置に有してもよい。
重合性化合物の重合反応について説明する。重合が形成される時期として、予め重合した高分子を用いてもよいし、また素子作製前の溶液中でも、素子作製時でも重合してよい。また素子作製後に結合を形成してもよい。重合反応を起こす場合、外部からのエネルギー(熱・光・超音波等)供給を行ってもよいし、重合開始剤、酸触媒または塩基触媒を添加し反応を起こしてもよい。あるいは本発明に係る化合物を発光素子に含有したときに重合反応を起こす場合、発光素子の駆動時に供給される電流や発生する光や熱によって反応が起こってもよい。また、2つ以上の重合性化合物を重合させ、共重合体を形成してもよい。
重合した高分子化合物は5000〜1000000の重量平均分子量が好ましく、さらに好ましくは5000〜200000である。
ラジカル重合開始剤としては、例えば、2,2′−アゾビスブチロニトリル、2,2′−アゾビスシクロヘキサンカルボニトリル、1,1′−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2′−アゾビス(2−メチルブチロニトリル)、2,2′−アゾビス(2,4−ジメチルバレロニトリル)、2,2′−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、4,4′−アゾビス(4−シアノ吉草酸)、2,2′−アゾビスイソ酪酸ジメチル、2,2′−アゾビス(2−メチルプロピオンアミドキシム)、2,2′−アゾビス(2−(2−イミダゾリン−2−イル)プロパン)、2,2′−アゾビス(2,4,4−トリメチルペンタン)等のアゾ系開始剤、過酸化ベンゾイル、過酸化ジ−t−ブチル、t−ブチルヒドロペルオキシド、クメンヒドロペルオキシド等の過酸化物系開始剤、ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、ベンジルジメチルケタール、ベンジル−β−メトキシエチルアセタール、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、1−ヒドロキシシクロヘキシルフェニルケトン、4−フェノキシジクロロアセトフェノン、4−t−ブチルジクロロアセトフェノン、4−t−ブチルトリクロロアセトフェノン、1−(4−ドデシルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン等の芳香族カルボニル系開始剤等が挙げられる。また、テトラエチルチイラムジスルフィド等のジスルフィド系開始剤、2,2,6,6−テトラメチルピペリジン−1−オキシル等のニトロキシル開始剤、4,4′−ジ−t−ブチル−2,2′−ビピリジン銅錯体−トリクロロ酢酸メチル複合体等のリビングラジカル重合開始剤を用いることもできる。
酸触媒としては、活性白土、酸性白土等の白土類、硫酸、塩酸等の鉱酸類、p−トルエンスルホン酸、トリフルオロ酢酸等の有機酸、塩化アルミニウム、塩化第二鉄、塩化第二スズ、三塩化チタン、四塩化チタン、三フッ化硼素、フッ化水素、三臭化硼素、臭化アルミニウム、塩化ガリウム、臭化ガリウム等のルイス酸、さらに固体酸、例えば、ゼオライト、シリカ、アルミナ、シリカ・アルミナ、カチオン交換樹脂、ヘテロポリ酸(例えば、リンタングステン酸、リンモリブデン酸、ケイタングステン酸、ケイモリブデン酸)等各種のものが使用できる。
本発明で用いられる塩基性触媒としては、Li2CO3、Na2CO3、K2CO3等のアルカリ金属炭酸塩、BaCO3、CaCO3等のアルカリ土類金属炭酸塩、Li2O、Na2O、K2O等のアルカリ金属酸化物、BaO、CaO等のアルカリ土類金属酸化物、Na、K等のアルカリ金属、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、あるいはナトリウム、カリウム、ルビジウム、セシウム等のアルコキシド等を挙げることができる。
以下に本発明に係る電子輸送層に用いられる電子輸送材料及び重合性化合物の具体的な例を挙げるが、本発明はこれらに限定されるものではない。
Figure 2007059243
Figure 2007059243
Figure 2007059243
(ドナー化合物)
本発明に係る電子輸送層に用いられるドナー化合物としては、アルカリ金属及びアルカリ土類金属として周期表のものが挙げられ、それらの塩としては、例えば、カルボン酸塩(酢酸塩等)、スルホン酸塩(メタンスルホン酸塩、トシル酸塩等)、ハロゲン化物(フッ化物、塩化物、臭化物及びヨウ化物)、水酸化物、炭酸塩、硝酸塩及び硫酸塩等が挙げられる。この中で、セシウム及びその塩(例えば、フッ化セシウム、塩化セシウム、臭化セシウム、ヨウ化セシウム、酢酸セシウム、炭酸セシウム)がより好ましい。
電子輸送材料に対するドナーの添加割合は、1〜100質量%であることが好ましい。
(正孔輸送材料)
次に、本発明で用いられる正孔輸送材料について説明する。
その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、有機物、無機物のいずれであってもよい。例えばトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
これらのうちで好ましいものは、ポルフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物であり、さらに芳香族第三級アミン化合物が好ましい。
これらのうちで、さらに好ましいものとしては以下の構造で表される化合物である。
Figure 2007059243
式中、R1、R2は置換基を表す。n1及びn2は0〜3の整数を表す。A1及びA2はアリールアミノ基を表す。
Figure 2007059243
式中、R11は置換基を表す。n11は0〜4の整数を表す。A11及びA12はアリールアミノ基を表す。
Figure 2007059243
式中、R21及びR22は置換基を表す。n21及びn22は0〜3の整数を表す。A21及びA22はアリールアミノ基を表す。Lは2価の連結基を表す。
前記一般式(5)におけるR1、R2、前記一般式(6)におけるR11、前記一般式(7)におけるR21、R22が表す置換基としては、電子輸送材料で挙げた一般式の置換基と同様の基を表す。
前記一般式(7)におけるLで表される2価の連結基としては、アルキレン、アルケニレン、アルキニレン、アリーレン等の炭化水素基のほか、ヘテロ原子を含むものであってもよく、また、チオフェン−2,5−ジイル基や、ピラジン−2,3−ジイル基のような、芳香族複素環を有する化合物(ヘテロ芳香族化合物ともいう)に由来する2価の連結基であってもよいし、酸素や硫黄等のカルコゲン原子であってもよい。また、イミノ基、ジアルキルシランジイル基やジアリールゲルマンジイル基のような、ヘテロ原子を介して連結する基でもよい。
一般式(5)におけるA1及びA2、一般式(6)におけるA11及び一般式(7)におけるA21及びA22で表されるアリールアミノ基としては、例えばジフェニルアミノ基、フェニルー(1−ナフチル)アミノ基、フェニルー(3−メチル)アミノ基等が挙げられる。
本発明で用いられる正孔輸送材料としては、低分子化合物、重合性化合物いずれも使用することが可能である。
重合性化合物とは重合性基を少なくとも一つ有する化合物であり、重合性基としては、例えば、ビニル基、エポキシ基、オキセタン基、イソシアネート基、チオイソシアネート基等が挙げられる。これらのうちで好ましいものはビニル基である。
重合性化合物の重合方法に関しては、前記電子輸送材料の重合方法と同様である。
本発明の一般式(5)〜一般式(7)で表される有機化合物はこれらの重合性基を分子内のいずれかの位置に有してもよい。
以下に本発明に係る正孔輸送材料及び重合性化合物の具体的な例を挙げるが、本発明はこれらに限定されるものではない。
Figure 2007059243
Figure 2007059243
Figure 2007059243
Figure 2007059243
(アクセプター化合物)
本発明に係る正孔輸送層に用いられるアクセプター化合物としては、Au、Pt、W,Ir、POCl3、AsF6、Cl、Br、I等の無機材料、TCNQ(7,7,8,8,−テトラシアノキノジメタン)、TCNQF4(テトラフルオロテトラシアノキノジメタン)等のキノジメタン誘導体、TCNE(テトラシアノエチレン)、HCNB(ヘキサシアノブタジエン)等のエチレン誘導体、DDQ(ジシクロジシアノベンゾキノン)等のシアノ基を有する化合物、TNF(トリニトロフルオレノン)、DNF(ジニトロフルオレノン)等のニトロ基を有する化合物、フルオラニル、クロラニル、ブロマニル等の有機材料が挙げられる。この内、TCNQ、TCNQF4、TCNE、HCNB、DDQ等のシアノ基を有する化合物がより好ましい。
なお、正孔輸送材料に対するアクセプターの添加割合は、1〜100質量%であることが好ましい。
(ドーパント)
次に本発明に用いられるドーパントについて説明する。
本発明で用いられるドーパントは蛍光化合物もしくは燐光性化合物であり、特に燐光化合物が好ましい。
本発明における燐光性化合物とは、励起三重項からの発光が観測される化合物であり、燐光量子収率が25℃において0.001以上の化合物である。燐光量子収率は好ましくは0.01以上、さらに好ましくは0.1以上である。上記燐光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中での燐光量子収率は種々の溶媒を用いて測定できるが、本発明に用いられる燐光性化合物は、任意の溶媒の何れかにおいて上記燐光量子収率が達成されればよい。
本発明で用いられる燐光性化合物としては、好ましくは元素の周期表でVIII属の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)であり、中でも最も好ましいのはイリジウム化合物である。
以下に、本発明で用いられる燐光性化合物の具体例を示すが、これらに限定されるものではない。これらの化合物は、例えば、Inorg.Chem.40巻、1704〜1711に記載の方法等により合成できる。なお含有する蛍光性化合物及び燐光性化合物は、重合性基または反応性基を有していてもいなくてもよい。
Figure 2007059243
Figure 2007059243
Figure 2007059243
Figure 2007059243
Figure 2007059243
本発明で用いられる燐光性化合物は、他の燐光性化合物または蛍光性化合物と併用してもよい。
本発明で用いられる蛍光性化合物とは、蛍光化合物を含有することにより、含有しない場合と異なる極大発光波長の蛍光発光が得られる化合物であり、好ましいものは、溶液状態で蛍光量子収率が高いものである。ここで蛍光量子収率は10%以上、特に30%以上が好ましい。具体的な蛍光性化合物は、例えばクマリン系色素、アントラセン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。ここでの蛍光量子収率は、第4版実験化学講座7の分光IIの362頁(1992年版、丸善)に記載の方法により測定することができる。
以下に本発明に係る蛍光化合物の具体例を示すが本発明はこれらに限定されない。
Figure 2007059243
《有機EL素子の層構成》
本発明の有機EL素子の層構成について説明する。
本発明の有機EL素子は、基板上に電極(陰極と陽極)と少なくとも2層以上の有機層を有し、有機層の少なくとも1層は燐光性化合物を含有する発光層である。
本発明に係る発光層は、広義の意味では陰極と陽極からなる電極に電流を流した際に発光する層のことであり、具体的には陰極と陽極からなる電極に電流を流した際に発光する化合物を含有する層のことを指す。
本発明に係る有機層は、発光層、正孔輸送層または電子輸送層の他に必要に応じ正孔輸送層、電子輸送層、陽極バッファー層及び陰極バッファー層等を有してもよく、陰極と陽極で挟持された構造をとる。有機EL素子を構成する、電極(陽極及び陰極)間に挟持された複数層のうち、有機層は2層以上であることが好ましく、さらに好ましくは3層以上である。
《発光層》
本発明の有機EL素子の発光層には、ホスト化合物と燐光性化合物(燐光発光性化合物ともいう)が含有されることが好ましい。これにより、より一層発光効率を高くすることができる。
本発明においてホスト化合物とは、発光層に含有される化合物のうちで室温(25℃)において燐光発光の燐光量子収率が、0.01未満の化合物と定義される。
さらに、ホスト化合物を複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、燐光性化合物を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。燐光性化合物の種類、ドープ量を調整することで白色発光が可能であり、照明、バックライトへの応用もできる。
本発明に係るホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。ホスト化合物としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、例えばカルバゾール誘導体、アザカルバゾール誘導体、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、フェナントロリン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、有機金属化合物、アリールメタン誘導体等が挙げられる。
これらのうち、カルバゾール誘導体、アザカルバゾール誘導体を用いることが好ましい。
このようにして形成された発光層の膜厚については特に制限はなく、状況に応じて適宜選択することができるが、5nm〜5μmの範囲に調整することが好ましい。
ホスト化合物としては、低分子化合物、高分子化合物いずれも使用することが可能である。
低分子化合物では、有機層の少なくとも1層の膜密度が1.20〜1.25g/cm3であり、分子量が400〜2000であることがより一層好ましく、これにより、さらに定電流駆動したときの電圧上昇及び高温、高湿下での経時安定性の改良効果を有する。
高分子化合物は5000〜1000000の重量平均分子量が好ましく、さらに好ましくは5000〜200000である。
また膜密度が1.10〜1.15g/cm3であり、分子量が5000〜1000000であることがより一層好ましく、これにより、さらに定電流駆動したときの電圧上昇、ダークスポット、及び高温、高湿下での経時安定性の改良効果を有する。
《正孔注入層、正孔輸送層、電子注入層、電子輸送層》
本発明に用いられる正孔注入層、正孔輸送層は、陽極より注入された正孔を発光層に伝達する機能を有し、この正孔注入層、正孔輸送層を陽極と発光層の間に介在させることにより、より低い電界で多くの正孔が発光層に注入され、その上、発光層に陰極、電子注入層、または電子輸送層より注入された電子は、発光層と正孔注入層もしくは正孔輸送層の界面に存在する電子の障壁により、発光層内の界面に累積され発光効率が向上する等発光性能の優れた素子となる。
《正孔注入材料、正孔輸送材料》
この正孔注入層、正孔輸送層の材料(以下、正孔注入材料、正孔輸送材料という)については、前記の陽極より注入された正孔を発光層に伝達する機能を有する性質を有するものであれば特に制限はなく、従来、光導伝性材料において、正孔の電荷注入輸送材料として慣用されているものや、有機EL素子の正孔注入層、正孔輸送層に使用される公知のものの中から任意のものを選択して用いることができる。
上記正孔注入材料、正孔輸送材料は正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。この正孔注入材料、正孔輸送材料としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、または導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
正孔注入材料、正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物、特に芳香族第三級アミン化合物を用いることが好ましい。
上記芳香族第三級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、さらに米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(α−NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
またはp型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。この正孔注入層、正孔輸送層は上記正孔注入材料、正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法等の公知の方法により、薄膜化することにより形成することができる。
(正孔注入層の膜厚、正孔輸送層の膜厚)
正孔注入層、正孔輸送層の膜厚については特に制限はないが、5nm〜5μm程度での範囲に調整することが好ましい。この正孔注入層、正孔輸送層は上記材料の一種または二種以上からなる一層構造であってもよく、同一組成または異種組成の複数層からなる積層構造であってもよい。
《電子輸送層、電子輸送材料》
本発明に係る電子輸送層は、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができる。
この電子輸送層に用いられる材料(以下、電子輸送材料という)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体、有機金属錯体等が挙げられる。さらに上記オキサジアゾール誘導体において、オキサジアール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
または8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
その他、メタルフリーまたはメタルフタロシアニン、さらにはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。または発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。
(電子輸送層の膜厚)
電子輸送層の膜厚は特に制限はないが、5nm〜5μmの範囲に調整することが好ましい。この電子輸送層は、これらの電子輸送材料一種または二種以上からなる一層構造であってもよいし、あるいは同一組成または異種組成の複数層からなる積層構造であってもよい。
さらに本発明においては、陽極と発光層または正孔注入層の間、及び陰極と発光層または電子注入層との間にはバッファー層(電極界面層)を存在させてもよい。
バッファー層とは、駆動電圧低下や発光効率向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、陽極バッファー層と陰極バッファー層とがある。
陽極バッファー層は特開平9−45479号、同9−260062号、同8−288069号の各公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
陰極バッファー層は特開平6−325871号、同9−17574号、同10−74586号の各公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウム、酸化リチウムに代表される酸化物バッファー層等が挙げられる。
上記バッファー層はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1〜100nmの範囲が好ましい。
さらに上記基本構成層の他に必要に応じてその他の機能を有する層を積層してもよく、例えば、特開平11−204258号、同11−204359号の各公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層等のような機能層を有していてもよい。
本発明の有機層は塗布で形成するのが好ましい。塗布方法としては、スピンコート、ディップコート、ロールコート、バーコート、フレキソ印刷、スクリーン印刷、オフセット印刷、インクジェット法があり、好ましくはインクジェット法である。
《電極》
次に有機EL素子の電極について説明する。有機EL素子の電極は陰極と陽極からなる。この有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。
上記陽極は蒸着やスパッタリング等の方法により、これらの電極物質の薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合(100μm以上程度)は、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、または陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10nm〜1μm、好ましくは10〜200nmの範囲で選ばれる。
一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物等が好適である。
上記陰極は、これらの電極物質を蒸着やスパッタリング等の方法で薄膜を形成させることにより作製することができる。または陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜1μm、好ましくは50〜200nmの範囲で選ばれる。なお発光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば、発光効率が向上するので好都合である。
《基材》
本発明の有機EL素子は、基材(以下、基板、基体、支持体、フィルム等ともいう)上に形成されているのが好ましい。
本発明の有機EL素子に用いることのできる基材としては、ガラス、プラスチック等の種類には特に限定はなく、また、透明のものであれば特に制限はないが、好ましく用いられる基材としては例えばガラス、石英、透明フィルムを挙げることができる。特に好ましい基材は、有機EL素子にフレキシブル性を与えることが可能な透明フィルムである。
具体的にはエチレン、ポリプロピレン、ブテン等の単独重合体または共重合体、または共重合体等のポリオレフィン(PO)樹脂、環状ポリオレフィン等の非晶質ポリオレフィン樹脂(APO)、ポリエチレンテレフタレート(PET)、ポリエチレン2,6−ナフタレート(PEN)等のポリエステル系樹脂、ナイロン6、ナイロン12、共重合ナイロン等のポリアミド系(PA)樹脂、ポリビニルアルコール(PVA)樹脂、エチレン−ビニルアルコール共重合体(EVOH)等のポリビニルアルコール系樹脂、ポリイミド(PI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリサルホン(PS)樹脂、ポリエーテルサルホン(PES)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリカーボネート(PC)樹脂、ポリビニルブチラート(PVB)樹脂、ポリアリレート(PAR)樹脂、エチレン−四フッ化エチレン共重合体(ETFE)、三フッ化塩化エチレン(PFA)、四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合体(FEP)、フッ化ビニリデン(PVDF)、フッ化ビニル(PVF)、パーフルオロエチレン−パーフロロプロピレン−パーフロロビニルエーテル−共重合体(EPA)等のフッ素系樹脂等を用いることができる。
また、上記に挙げた樹脂以外にも、ラジカル反応性不飽和化合物を有するアクリレート化合物によりなる樹脂組成物や、上記アクリルレート化合物とチオール基を有するメルカプト化合物よりなる樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエーテルアクリレート、ポリエーテルアクリレート等のオリゴマーを多官能アクリレートモノマーに溶解せしめた樹脂組成物等の光硬化性樹脂及びこれらの混合物等を用いることも可能である。さらに、これらの樹脂の1または2種以上をラミネート、コーティング等の手段によって積層させたものを基材フィルムとして用いることも可能である。
これらの素材は単独であるいは適宜混合されて使用することもできる。中でもゼオネックスやゼオノア(日本ゼオン(株)製)、非晶質シクロポリオレフィン樹脂フィルムのARTON(ジェイエスアール(株)製)、ポリカーボネートフィルムのピュアエース(帝人(株)製)、セルローストリアセテートフィルムのコニカタックKC4UX、KC8UX(コニカミノルタオプト(株)製)等の市販品を好ましく使用することができる。
また、上記に挙げた樹脂等を用いた本発明に係る基材は、未延伸フィルムでもよく、延伸フィルムでもよい。
本発明に係る基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向及び横軸方向にそれぞれ2〜10倍が好ましい。
また、本発明に係る基材においては、蒸着膜を形成する前にコロナ処理、火炎処理、プラズマ処理、グロー放電処理、粗面化処理、薬品処理等の表面処理を行ってもよい。
さらに本発明に係る基材表面には、蒸着膜との密着性の向上を目的としてアンカーコート剤層を形成してもよい。このアンカーコート剤層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、及びアルキルチタネート等を、1または2種以上併せて使用することができる。これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤はロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により基材上にコーティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1〜5g/m2(乾燥状態)程度が好ましい。
基材はロール状に巻き上げられた長尺品が便利である。基材の厚さは得られるフィルムの用途によって異なるので一概には規定できないが、フィルムを包装用途とする場合には、特に制限を受けるものではなく、包装材料としての適性から、3〜400μm、中でも6〜30μmの範囲内とすることが好ましい。
また、本発明に用いられる基材は、フィルム形状のものの膜厚としては10〜200μmが好ましく、より好ましくは50〜100μmである。
《表示装置》
本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。または異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
《光取り出し技術》
本発明の有機EL素子は、発光層から放射された光の取り出し効率を向上させるため、基板の表面にプリズムやレンズ状の加工を施す、もしくは基板の表面にプリズムシートやレンズシートを貼りつけてもよい。
本発明の有機EL素子は、電極と基板の間に低屈折率層を有してもよい。低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。
基板の屈折率は一般に1.5〜1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。またさらに1.35以下であることが好ましい。また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
本発明の有機EL素子はいずれかの層間、もしくは媒質中(透明基板内や透明電極内)に回折格子を有してもよい。導入する回折格子は二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。回折格子を導入する位置としては前述のとおり、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は媒質中の光の波長の約1/2〜3倍程度が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。
本発明に係る基材は、ガスバリア層を有することが好ましい。これによりダークスポット及び高温、高湿下での経時安定性のより一層の改良効果を有する。
《ガスバリア層》
本発明に係るガスバリア層とは、酸素及び水蒸気の透過を阻止する層であれば、その組成等は特に限定されるものではない。酸素の透過度が23℃、0%RHにおいて0.005ml/m2/day以下が好ましく、また、JIS K7129 B法に従って測定した水蒸気透過度が0.1g/m2/day以下が好ましい。本発明に係るガスバリア層を構成する材料として、具体的には無機酸化物が好ましく、酸化珪素、酸化アルミニウム、酸化窒化珪素、酸化窒化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ等を挙げることができる。
また、本発明におけるガスバリア層の厚さは用いられる材料の種類、構成により最適条件が異なり、適宜選択されるが、5〜2000nmの範囲内であることが好ましい。ガスバリア層の厚さが上記の範囲より薄い場合には、均一な膜が得られず、ガスに対するバリア性を得ることが困難であるからである。またガスバリア層の厚さが上記の範囲より厚い場合には、ガスバリア性フィルムにフレキシビリティを保持させることが困難であり、成膜後に折り曲げ、引っ張り等の外的要因により、ガスバリア性フィルムに亀裂が生じる等のおそれがあるからである。
本発明に係るガスバリア層は、後述する原材料をスプレー法、スピンコート法、スパッタリング法、イオンアシスト法、後述するプラズマCVD法、後述する大気圧または大気圧近傍の圧力下でのプラズマCVD法等を適用して形成することができる。
図1は、本発明に係るガスバリア層を有する基材の構成を示す一例である。
本発明に係るガスバリア層を有する基材の構成とその密度について説明する。
本発明に係るガスバリア層21は、基材22上に密度の異なる層を積層しており、密着膜23、セラミック膜24、保護膜25及びセラミック膜24を積層した構成を1ユニットとし、図1においては2ユニットを積層した例を示してある。各層内における密度分布は均一とし、セラミック膜の密度をその上下に位置する密着膜及び保護膜のそれぞれの密度よりも高く設定している。なお、図1においては各層を1層として示したが、必要に応じてそれぞれ2層以上の構成をとってもよい。
基材上に密着膜、セラミック膜及び保護膜を形成する方法としては、スプレー法、スピンコート法、スパッタリング法、イオンアシスト法、後述するプラズマCVD法、後述する大気圧または大気圧近傍の圧力下でのプラズマCVD法等を適用して形成することができる。
以下、本発明について実施例をもって説明するが、本発明はこれに限定されるものではない。なお、特に断りない限り、実施例中の「%」は「質量%」を表す。
実施例1
基材として、厚さ100μmのポリエチレンナフタレートフィルム(帝人・デユポン社製フィルム、以下PENと略記する)上に、下記の大気圧プラズマ放電処理装置及び放電条件で、図1記載プロファイル構成でバリア層を有する基材1を作製した。
(大気圧プラズマ放電処理装置)
図2の大気圧プラズマ放電処理装置を用い、誘電体で被覆したロール電極及び複数の角筒型電極のセットを以下のように作製した。
第1電極となるロール電極は、冷却水による冷却手段を有するチタン合金T64製ジャケットロール金属質母材に対して、大気プラズマ法により高密度、高密着性のアルミナ溶射膜を被覆し、ロール径1000mmφとなるようにした。一方、第2電極の角筒型電極は、中空の角筒型のチタン合金T64に対し、上記同様の誘電体を同条件にて方肉で1mm被覆し、対向する角筒型固定電極群とした。
この角筒型電極をロール回転電極のまわりに、対向電極間隙を1mmとして10本配置した。角筒型固定電極群の放電総面積は、150cm(幅手方向の長さ)×4cm(搬送方向の長さ)×10本(電極の数)=6000cm2であった。なお、何れもフィルターは適切なものを設置した。
プラズマ放電中、第1電極(ロール回転電極)は120℃及び第2電極(角筒型固定電極群)は80℃になるように調節保温し、ロール回転電極はドライブで回転させて薄膜形成を行った。上記10本の角筒型固定電極中、上流側より2本を下記第1層(密着層)の製膜用に、次の6本を下記第2層(セラミック層)の製膜用に、次の2本を第3層(保護層)の製膜用に使用し、各条件を設定して1パスで3層を積層した。
(第1層:密着層)
下記の条件で、プラズマ放電を行って、厚さ約50nmの密着層を形成した。
〈ガス条件〉
放電ガス:窒素ガス 94.5体積%
薄膜形成性ガス:ヘキサメチルジシロキサン(リンテック社製気化器にて窒素ガスに混合して気化) 0.5体積%
添加ガス:酸素ガス 5.0体積%
〈電源条件:第1電極側の電源のみを使用した〉
第1電極側 電源種類 応用電機社製高周波電源
周波数 80kHz
出力密度 10W/cm2
上記形成した第1層(密着層)の密度は、前述のマックサイエンス社製MXP21を用いたX線反射率法で測定した結果、1.90であった。
(第2層:セラミック層)
下記の条件で、プラズマ放電を行って、厚さ約30nmのセラミック層を形成した。
〈ガス条件〉
放電ガス:窒素ガス 94.9体積%
薄膜形成性ガス:ヘキサメチルジシロキサン(リンテック社製気化器にて窒素ガスに混合して気化) 0.1体積%
添加ガス:酸素ガス 5.0体積%
〈電源条件〉
第1電極側 電源種類 応用電機社製高周波電源
周波数 80kHz
出力密度 10W/cm2
第2電極側 電源種類 パール工業社製高周波電源
周波数 13.56MHz
出力密度 10W/cm2
上記形成した第2層(セラミック層)の密度は、前述のマックサイエンス社製MXP21を用いたX線反射率法で測定した結果、2.20であった。
(第3層:保護層)
下記の条件で、プラズマ放電を行って、厚さ約200nmの保護層を形成した。
〈ガス条件〉
放電ガス:窒素ガス 93.0体積%
薄膜形成性ガス:ヘキサメチルジシロキサン(リンテック社製気化器にて窒素ガスに混合して気化) 2.0体積%
添加ガス:酸素ガス 5.0体積%
〈電源条件:第1電極側の電源のみを使用した〉
第1電極側 電源種類 応用電機社製高周波電源
周波数 80kHz
出力密度 10W/cm2
上記形成した第3層(保護層)の密度は、前述のマックサイエンス社製MXP21を用いたX線反射率法で測定した結果、1.95であった。
JIS−K−7129Bに準拠した方法により水蒸気透過率を測定した結果、10-3g/m2/day以下であった。JIS−K−7126Bに準拠した方法により酸素透過率を測定した結果、10-3g/m2/day以下であった。
次いで、ガスバリア層を有する基材1上にITO(インジウムチンオキシド)を120nm成膜した基板にパターニングを行った後、このITO透明電極を付けた基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。市販の真空蒸着装置の基板ホルダーに固定し、真空度4×10-4Paまで減圧し、ITO基板100を作製した。
〈有機EL素子1−1の作製〉
次に、図3に示すように、市販のインクジェット式ヘッド10(コニカミノルタ製KM512S非水系ヘッド)を用いて、正孔輸送材料として例示化合物B15の重合体、TNF(質量比100:50)及びTHFを含む流動体D1を、ITO基板100上に吐出させ、100℃、60分の条件にて、膜厚50nmの正孔輸送層111を形成した。
次に、インクジェット式ヘッド10を用いて、ホストとしてM1の重合体、燐光性化合物Ir−1(質量比100:5)及びTHFを含む流動体D2を、正孔輸送層111上に吐出させ、100℃、60分の条件にて、膜厚50nmの発光層112を形成した。
次に、電子輸送層112の上に厚さ200nmのアルミニウム113(陰極)を蒸着形成した。さらに、発光層111と電子輸送層112の有機溶媒含有量が表1に示す値になるように乾燥条件の調整を行った。さらにその上にガスバリア層を有する基材1を貼りつけて、有機EL素子1−1を作製した。
(例示化合物M1の重合体の合成)
反応容器に例示化合物M1 1.34g(2.5mmol)、2,2′−アゾビス(イソブチロニトリル)(AIBN)0.010g(0.061mmol)、酢酸ブチル30mlを入れて窒素置換を行った後、80℃で10時間反応させた。反応後、アセトンに投入して再沈殿を行い、濾過によりポリマーを回収した。回収したポリマーのクロロホルム溶液をメタノール中に投入して再沈殿させることをさらに2回行うことにより精製し、回収後真空乾燥して、目的とする例示化合物A4の重合体1.20gを粉末として得た。この共重合体の重量平均分子量はポリスチレン換算で15000(HFIP(ヘキサフルオロイソプロパノル)を溶離液に用いたGPC測定による)であった。
同様の方法で例示化合物B15の重合体を合成した。この共重合体の重量平均分子量はポリスチレン換算で16000であった。
〈有機EL素子1−2〜1−4の作製〉
有機EL素子1−1の製造方法において、各層の材料を下記表1に示す材料に替えた以外は同様にして、有機EL素子1−2〜1−4を作製した。
〈有機EL素子1−5の作製〉
インジウムチンオキシド透明電極(ITO電極)を有するガラス基板上に、正孔輸送層としてA3を50nm膜厚で定法に従い蒸着成膜した後に、発光層としてCBP、燐光性化合物Ir−1(質量比100:5)を50nm膜厚で蒸着成膜し、次いで、Alを膜厚200nmで蒸着して陰極を形成した。さらに、発光層と正孔輸送層の有機溶媒含有量が表1に示す値になるように乾燥条件の調整を行った。さらにその上に、ガスバリア層を有する基材1を貼り合わせて、有機EL素子1−5を作製した。
〈有機EL素子1−6の作製〉
有機EL素子1−1の作製において、各層の材料を下記表1に示す材料に替え、かつインジウムチンオキシド透明電極(ITO電極)を有するガラス基板に替えた以外は、同様にして、有機EL素子1−6を作製した。
作製した有機EL素子1−1〜1−9の発光層の膜密度及び有機層の有機溶媒含有量を前述した方法にて測定した。その結果を表1に示す。
Figure 2007059243
Figure 2007059243
〈有機EL素子の評価〉
以下のようにして得られた有機EL素子の評価を行い、その結果を表2に示す。
(発光輝度)
有機EL素子の温度23℃、10V直流電圧を印加した時の発光輝度(cd/m2)を測定した。発光輝度は有機EL素子1−4を100とする相対値で表した。発光輝度については、分光放射輝度計CS−1000(コニカミノルタセンシング社製)を用いて測定した。
(駆動電圧)
有機EL素子を温度23℃、乾燥窒素ガス雰囲気下で直流電流で駆動し、1000cd/m2の輝度で発光した時の電圧を測定した。駆動電圧は有機EL素子1−4を100とする相対値で表した。輝度の測定には、同様に分光放射輝度計CS−1000(コニカミノルタセンシング社製)を用いた。
(電圧上昇率)
10mA/cm2の一定電流で駆動したときに、初期電圧と100時間後の電圧を測定した。初期電圧に対する100時間後の電圧の相対値を電圧上昇率とした。
(経時安定性)
有機EL素子を60℃、70%Rhの条件で一ヶ月保存後、上記方法で発光輝度(cd/m2)を測定した。経時安定性は保存前の発光輝度測定値に対して相対値で表した。
(ダークスポット)
また15mA/cm2の一定電流で30時間駆動させた後に、2mm×2mm四方の範囲での目視で確認できる非発光点(ダークスポット)の数を測定した。
Figure 2007059243
表2から明らかなように、本発明の有機EL素子ではダークスポット、電圧上昇率が大幅に減少し、経時安定性が向上し、さらに発光輝度の向上及び駆動電圧の低下も認められた。
実施例2
実施例1の有機EL素子1−1の作製において、流動体D1に替えて、例示化合物M1の重合体、燐光性化合物Ir−1(質量比100:5)及びTHFを含む流動体D3を用い、流動体D2に替えて、例示化合物A10の重合体(重量平均分子量16000)、セシウム(質量比100:30)及びTHFを含む流動体D4を用いた以外は、同様にして有機EL素子2−1を作製した。
〈有機EL素子2−2〜2−5の作製〉
有機EL素子2−1の作製において、各層の材料を下記表3に示す材料に替えた以外は同様にして、有機EL素子2−2〜2−5を作製した。
〈有機EL素子2−6の作製〉
有機EL素子1−5の作製において、各層の材料を下記表3に示す材料に替えた以外は同様にして、有機EL素子2−6を作製した。
〈有機EL素子2−7の作製〉
有機EL素子1−6の作製において、各層の材料を下記表3に示す材料に替えた以外は同様にして、有機EL素子2−7を作製した。
有機2−1〜2−7の発光層の膜密度及び有機層の有機溶媒含有量を実施例1と同じ測定方法で測定した。その結果を表3に示す。
Figure 2007059243
(有機EL素子の評価)
作製した有機EL素子について、実施例1と同じ評価方法で評価を行った。その結果を表4に示す。なお、発光輝度及び駆動電圧は有機EL素子2−5を100とする相対値で表した。
Figure 2007059243
表4から明らかなように、本発明に係る方法を用いた有機EL素子ではダークスポット、電圧上昇率が大幅に減少し、経時安定性が向上し、さらに発光輝度の向上及び駆動電圧の低下も認められた。
実施例3
〈有機EL素子3−1の作製〉
実施例1と同様に市販のインクジェット式ヘッド10を用いて、例示化合物B22の重合体及びTHFを含む流動体をITO基板100上に吐出させ、100℃、60分の条件にて、膜厚50nmの正孔輸送層を形成した。
次に、ホストとして例示化合物M1の重合体、燐光性化合物Ir−12(質量比100:4)及びTHFを含む流動体を正孔輸送層上に吐出させ、100℃、60分の条件にて、膜厚50nmの発光層を形成した。
次に、例示化合物A9の重合体及びTHFを含む流動体を、発光層に吐出させ、100℃、60分の条件にて、膜厚50nmの電子輸送層を形成した。次に、電子輸送層の上に厚さ200nmのアルミニウム113(陰極)を蒸着形成した。
さらに、有機層の有機溶媒含有量が表5に示す値になるように乾燥条件の調整を行った。さらにその上にガスバリア層を有する基材1を貼りつけて、有機EL素子3−1を作製した。
〈有機EL素子3−2〜3−7の作製〉
実施例1の有機EL素子1−1の作製において、各層の材料を下記表5に示す材料に替えた以外は同様にして、有機EL素子3−2〜3−6を作製した。さらに、実施例1の有機EL素子1−5の作製において、各層の材料を下記表5に示す材料に替えた以外は、同様にして、有機EL素子3−7を作製した。
有機3−1〜3−7の発光層の膜密度及び有機層の有機溶媒含有量を実施例1と同じ測定方法で測定した。その結果を表5に示す。
Figure 2007059243
(有機EL素子の評価)
作製した有機EL素子について、実施例1と同じ評価方法で評価を行った。その結果を表6に示す。なお、発光輝度及び駆動電圧は有機EL素子3−6を100とする相対値で表した。
Figure 2007059243
表6の結果から明らかなように、本発明の有機EL素子は発光輝度、駆動電圧特性が良好であり、定電流駆動したときの電圧上昇、ダークスポットが少なく、さらに高温、高湿下での経時安定性が高い素子であることが分かった。特に、燐光化合物と組み合わせた場合、それらの改良効果が顕著であった。
実施例4
実施例3で作製した本発明の有機EL素子3−5と、実施例2で作製した本発明の有機EL素子3−5の燐光性化合物をIr−1に替えた以外は同様にして作製した緑色発光有機EL素子と、本発明の有機EL素子3−5の燐光性化合物をIr−9に置き換えた以外は同様にして作製した赤色発光有機EL素子を同一基板上に並置し、第4図に示すアクティブマトリックス方式フルカラー表示装置を作製した。第5図には作製したフルカラー表示装置の表示部Aの模式図のみを示した。即ち同一基板上に、複数の走査線5及びデータ線6を含む配線部と、並置した複数の画素3(発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示せず)。前記複数の画素3は、それぞれの発光色に対応した有機EL素子、アクティブ素子であるスイッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリックス方式で駆動されており、走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。このように各赤、緑、青の画素を適宜、並置することによって、フルカラー表示が可能となる。
フルカラー表示装置を駆動することにより、鮮明なフルカラー動画表示が得られた。
実施例5
《照明装置の作製》
実施例4で作製した青色発光、緑色発光及び赤色発光の有機EL素子各々の非発光面をガラスケースで覆い、照明装置とした。照明装置は発光効率が高く、発光寿命の長い白色光を発する薄型の照明装置として使用することができた。図6は照明装置の概略図で、図7は照明装置の断面図である。有機EL素子101をガラスカバー102で覆った。105は陰極で106は有機EL層、107は透明電極付きガラス基板である。なおガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
実施例6
〈有機EL素子6−1の作製〉
実施例1の有機EL素子1−3を作製した条件と同じ条件で、下記表7に示す材料及び膜厚構成の有機EL素子6−1を作製した。表7中の%は質量比(%)を表す。
Figure 2007059243
発光層1、2及び3の膜密度はそれぞれ1.22、1.21及び1.22g/cm3であった。また、有機層の溶媒含有量は22ppmとなるよう乾燥条件を調整した。
次いで、その上に厚さ200nmのアルミニウムを蒸着した。
封止にあたっては、有機EL素子1−1と同様にガスバリア層を有する基材1を貼りつけた。
得られた有機EL素子6−1を実施例5と同様に図5に示すような照明装置とした。照明装置は発光効率が高く、発光寿命の長い白色光を発する薄型の照明装置として使用することができた。
次いで、ディスプレイ用として市販されているカラーフィルターを組み合わせた際の色再現域を評価した。有機EL素子6−1とカラーフィルターの組み合わせにおいて、色再現域が広く、色再現性において優れた性能を有することが確認された。
本発明に係る透明ガスバリアフィルムの層構成とその密度プロファイルの一例を示す模式図である。 本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。 有機EL素子1−1の吐出及び成膜工程を示す図である。 アクティブマトリックス方式フルカラー表示装置を示す図である。 フルカラー表示装置の表示部Aの模式図である。 照明装置の概略図である。 照明装置の断面図である。
符号の説明
1 ディスプレイ
3 画素
5 走査線
6 データ線
10 インクジェット式ヘッド
21 ガスバリア層
22 基材
23 密着膜
24 セラミック膜
25 保護膜
30 プラズマ放電処理室
35 ロール電極
36 電極
41、42 電源
51 ガス供給装置
55 電極冷却ユニット
100 ITO基板
101 有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス108
109 捕水剤109
111 正孔輸送層
112 電子輸送層
113 陰極
114 ガスバリア膜
A 表示部
B 制御部
D 液滴

Claims (21)

  1. 基板上に電極と少なくとも1層以上の有機層を有する有機エレクトロルミネッセンス素子において、該有機層の少なくとも1層はドーパント及びホスト化合物を含有する発光層であり、該有機層の少なくとも1層は電子輸送材料及びドナー性化合物を含有する電子輸送層であり、該有機層の少なくとも一層の膜密度が1.10〜1.25g/cm3であることを特徴とする有機エレクトロルミネッセンス素子。
  2. 前記ドナー性化合物がアルカリ金属、アルカリ土類金属またはそれらの塩であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  3. 基板上に電極と少なくとも1層以上の有機層を有する有機エレクトロルミネッセンス素子において、該有機層の少なくとも1層はドーパント及びホスト化合物を含有する発光層であり、該有機層の少なくとも1層は正孔輸送材料及びアクセプター性化合物を含有する正孔輸送層であり、該有機層の少なくとも一層の膜密度が1.10〜1.25g/cm3であることを特徴とする有機エレクトロルミネッセンス素子。
  4. 前記アクセプター性化合物がAu、Pt、W、Ir、POCl3、AsF6、Cl、Br、I、TCNQ、TCNQF4、TCNE、HCNB、DDQ、TNF、DNF、フルオラニル、クロラニルまたはブロマニルであることを特徴とする請求項3に記載の有機エレクトロルミネッセンス素子。
  5. 基板上に電極と少なくとも1層以上の有機層を有する有機エレクトロルミネッセンス素子において、該有機層の少なくとも1層はドーパント及びホスト化合物を含有する発光層であり、該有機層の少なくとも1層は電子輸送材料及びドナー性化合物を含有する電子輸送層を有し、さらに正孔輸送材料及びアクセプター性化合物を含有する正孔輸送層を有し、該有機層の少なくとも一層の膜密度が1.10〜1.25g/cm3であることを特徴とする有機エレクトロルミネッセンス素子。
  6. 前記ドナー性化合物がアルカリ金属、アルカリ土類金属またはそれらの塩であることを特徴とする請求項5に記載の有機エレクトロルミネッセンス素子。
  7. 前記アクセプター性化合物がAu、Pt、W、Ir、POCl3、AsF6、Cl、Br、I、TCNQ、TCNQF4、TCNE、HCNB、DDQ、TNF、DNF、フルオラニル、クロラニルまたはブロマニルであることを特徴とする請求項5または6に記載の有機エレクトロルミネッセンス素子。
  8. 前記ドーパントが燐光性化合物であることを特徴とする請求項1〜7のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  9. 前記有機層の少なくとも一層の膜密度が1.20〜1.25g/cm3であることを特徴とする請求項1〜8のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  10. 前記ホスト化合物の分子量が400〜2000であることを特徴とする請求項9に記載の有機エレクトロルミネッセンス素子。
  11. 前記有機層の少なくとも一層の膜密度が1.10〜1.15g/cm3であることを特徴とする請求項1〜8のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  12. 前記ホスト化合物の分子量が5000〜1000000であることを特徴とする請求項11に記載の有機エレクトロルミネッセンス素子。
  13. 前記有機層は有機溶媒を10-2〜103ppm含有することを特徴とする請求項1〜12のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  14. 前記基板がガスバリア層を有することを特徴とする請求項1〜13のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  15. 発光が赤色であることを特徴とする請求項1〜14のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  16. 発光が緑色であることを特徴とする請求項1〜14のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  17. 発光が青色であることを特徴とする請求項1〜14のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  18. 発光が白色であることを特徴とする請求項1〜14のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  19. 請求項1〜18のいずれか1項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする表示装置。
  20. 請求項1〜18のいずれか1項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする照明装置。
  21. 請求項20に記載の照明装置と表示手段としての液晶素子を有することを特徴とする表示装置。
JP2005244202A 2005-08-25 2005-08-25 有機エレクトロルミネッセンス素子、表示装置及び照明装置 Pending JP2007059243A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005244202A JP2007059243A (ja) 2005-08-25 2005-08-25 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005244202A JP2007059243A (ja) 2005-08-25 2005-08-25 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Publications (1)

Publication Number Publication Date
JP2007059243A true JP2007059243A (ja) 2007-03-08

Family

ID=37922539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005244202A Pending JP2007059243A (ja) 2005-08-25 2005-08-25 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Country Status (1)

Country Link
JP (1) JP2007059243A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124468A (ja) * 2009-12-14 2011-06-23 Konica Minolta Holdings Inc 有機薄膜型太陽電池及びその製造方法
US9040112B2 (en) 2007-09-24 2015-05-26 Osram Opto Semiconductors Gmbh Solution-processed organic electronic structural element with improved electrode layer
WO2021079449A1 (ja) * 2019-10-24 2021-04-29 シャープ株式会社 表示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284248A (ja) * 1997-04-03 1998-10-23 Toyota Motor Corp 有機el素子の製造方法
JP2005508515A (ja) * 2001-10-30 2005-03-31 コヴィオン・オーガニック・セミコンダクターズ・ゲーエムベーハー Ir/nir放射を使用して有機半導体、有機導電体または有機カラーフィルターの層を乾燥する方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284248A (ja) * 1997-04-03 1998-10-23 Toyota Motor Corp 有機el素子の製造方法
JP2005508515A (ja) * 2001-10-30 2005-03-31 コヴィオン・オーガニック・セミコンダクターズ・ゲーエムベーハー Ir/nir放射を使用して有機半導体、有機導電体または有機カラーフィルターの層を乾燥する方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040112B2 (en) 2007-09-24 2015-05-26 Osram Opto Semiconductors Gmbh Solution-processed organic electronic structural element with improved electrode layer
JP2011124468A (ja) * 2009-12-14 2011-06-23 Konica Minolta Holdings Inc 有機薄膜型太陽電池及びその製造方法
WO2021079449A1 (ja) * 2019-10-24 2021-04-29 シャープ株式会社 表示装置

Similar Documents

Publication Publication Date Title
JP4893627B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JPWO2007020718A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4225043B2 (ja) 有機エレクトロルミネッセンス素子、その製造方法、表示装置、照明装置及び光源
JP2010126511A (ja) ペリレン化合物及びこれを用いた有機発光素子
JP2013093593A (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP2007059244A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007042316A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5724979B2 (ja) 有機エレクトロルミネッセンス素子
JP4801907B2 (ja) 有機エレクトロルミネッセンス素子用透明電極、有機エレクトロルミネッセンス素子及びその製造方法
JP5192127B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5546088B2 (ja) 有機エレクトロルミネッセンス素子
JP2007059687A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007042728A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007059243A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007053044A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007012984A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007042726A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007048732A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007026978A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5226187B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007035678A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5286788B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007049117A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007234934A (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子の製造方法
JP5716759B2 (ja) 有機エレクトロルミネッセンス素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110105

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605