JP2007051028A - Method of forming plate glass - Google Patents

Method of forming plate glass Download PDF

Info

Publication number
JP2007051028A
JP2007051028A JP2005237721A JP2005237721A JP2007051028A JP 2007051028 A JP2007051028 A JP 2007051028A JP 2005237721 A JP2005237721 A JP 2005237721A JP 2005237721 A JP2005237721 A JP 2005237721A JP 2007051028 A JP2007051028 A JP 2007051028A
Authority
JP
Japan
Prior art keywords
glass
sheet
roller
plate glass
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005237721A
Other languages
Japanese (ja)
Other versions
JP4753067B2 (en
Inventor
Tomonori Kano
智典 加埜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2005237721A priority Critical patent/JP4753067B2/en
Publication of JP2007051028A publication Critical patent/JP2007051028A/en
Application granted granted Critical
Publication of JP4753067B2 publication Critical patent/JP4753067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/067Forming glass sheets combined with thermal conditioning of the sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/068Means for providing the drawing force, e.g. traction or draw rollers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forming high quality plate glass by avoiding problems of occurrence of warpage and difficulty of the improvement of productivity arising accompanied with the plate glass made thin/large-sized. <P>SOLUTION: In the forming method, the plate glass 8 is formed by providing a plurality of cooling rollers 4, 5 for clamping both width directional end parts of the plate glass G and cooling the plate glass in a vertical direction between a foamed body 2 having a wedge-like cross-sectional shape and a tension roller 3 and giving rotary drive force only to the uppermost cooling roller 4. The distance between the cooling rollers 4, 5 adjacent to each other in a vertical direction in the plurality of the cooling rollers is preferably ≤300 mm and the ratio B/A of the peripheral velocity B of the tension roller 3 to the the peripheral velocity A of the uppermost cooling roller 4 is preferably 3.5-20. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、各種電子機器用基板、具体的には、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、プラズマディスプレイ、フィールドエミッションディスプレイ等のフラットパネルディスプレイやセンサの基板、固体撮像素子やレーザーダイオード等の半導体パッケージ用カバーガラスとして使用できる板ガラスの成形方法に関する。   The present invention relates to a substrate for various electronic devices, specifically, a flat panel display such as a liquid crystal display, an electroluminescence display, a plasma display, and a field emission display, a sensor substrate, and a semiconductor package cover such as a solid-state imaging device and a laser diode. The present invention relates to a method for forming plate glass that can be used as glass.

近年、電子機器産業の発達に伴って、各種電子機器、とりわけ液晶ディスプレイ、エレクトロルミネッセンスディスプレイ及びプラズマディスプレイ等のフラットパネルディスプレイの基板、或いは固体撮像素子等のカバーガラスとして、肉厚0.3〜3.0mmの板ガラスが多量に用いられるに至っている。これらの板ガラスは、オーバーフローダウンドロー法、スロットダウンドロー法及びフロート法に代表される各種の方法で成形されているのが実情であるが、これらの中でも、特にオーバーフローダウンドロー法は、表面のうねりや粗さが小さく且つ表面品位に優れた板ガラスを得ることができる成形方法として知られている。   In recent years, with the development of the electronic equipment industry, various electronic equipment, especially as flat glass display substrates such as liquid crystal displays, electroluminescence displays and plasma displays, or as cover glass for solid-state image sensors, etc., have a thickness of 0.3 to 3 A large amount of .0 mm plate glass has been used. These plate glasses are actually formed by various methods represented by the overflow downdraw method, the slot downdraw method and the float method. Among these, the overflow downdraw method is particularly swelled on the surface. It is known as a molding method capable of obtaining a sheet glass having a small roughness and excellent surface quality.

詳述すれば、オーバーフローダウンドロー法は、くさび状の断面形状を有する成形体に連続的に供給される溶融ガラスを、成形体の頂部から両側面に沿って流下させることにより、成形体の下端部で融合させて一枚の板状形態にし、この形態になった板状ガラスを、引張りローラで挟持しつつ下方に引き抜くことによって、最終的に固化された板ガラスを成形する方法である。この場合、引張りローラは、板状ガラスの幅方向両端部のみを挟持するのが通例であるため、その僅かな挟持部位(有効面を逸脱する部位)を除外すれば、何ものにも触れられていない表面を持つ板ガラスを成形することが可能となり、これにより表面品位に優れた板ガラスが得られることになる。そのため、この成形方法によれば、コスト高の原因となる研磨工程が不要になるが、その一方で、液晶ディスプレイ等に用いられるような大型で薄肉の板ガラスを成形する場合には、反りが大きくなる傾向にある。   More specifically, the overflow downdraw method is a method in which molten glass continuously supplied to a molded body having a wedge-shaped cross-sectional shape is caused to flow down along the both sides from the top of the molded body. This is a method of forming a sheet glass that has been finally solidified by fusing at a portion to form a single sheet, and pulling the sheet glass in this form downward while being held by a pulling roller. In this case, since the pulling roller usually holds only both end portions in the width direction of the plate-like glass, anything can be touched except for a slight holding portion (a portion deviating from the effective surface). It is possible to form a sheet glass having an unfinished surface, whereby a sheet glass having excellent surface quality can be obtained. Therefore, this molding method eliminates the need for a polishing process that causes high costs. On the other hand, when molding a large and thin plate glass used for a liquid crystal display or the like, warping is large. Tend to be.

このような傾向に則して、液晶ディスプレイ用のガラス基板の反りが大きいと、その上に薄膜電気回路を形成する際に、露光距離が設計通りにならなくなったり、液晶を挟む二枚の板ガラス(基板)間のギャップにムラが生じて表示性能が損なわれるという問題が生じる。特に、テレビ用の液晶ディスプレイの場合には、薄膜電気回路が複雑であり、また高い表示性能が要求されるため、基板に対する反りの要求が非常に厳しくなる。尚、板ガラスを成形した後、それを定盤上に載置した状態で熱処理を施すことによって、反りを改善することは可能であるが、熱処理工程が加わると、コスト高となるため好ましくない。   In accordance with this trend, if the glass substrate for a liquid crystal display has a large warp, when forming a thin film electrical circuit on it, the exposure distance will not be as designed, or two sheets of glass sandwiching the liquid crystal There arises a problem that unevenness occurs in the gap between the (substrates) and the display performance is impaired. In particular, in the case of a liquid crystal display for a television, a thin film electric circuit is complicated and a high display performance is required, so that the demand for warping of the substrate becomes very severe. Although it is possible to improve the warpage by forming a plate glass and then performing a heat treatment in a state where it is placed on a surface plate, adding a heat treatment step is not preferable because it increases costs.

このような背景から、オーバーフローダウンドロー法で反りの小さい板ガラスを成形する技術が各種提案されている(例えば、特許文献1、2参照)。   From such a background, various techniques for forming a sheet glass with a small warp by the overflow downdraw method have been proposed (see, for example, Patent Documents 1 and 2).

特開平5−163032号公報JP-A-5-163032 特開平10−291826号公報JP-A-10-291826

ところで、上記の特許文献1に開示されたオーバーフローダウンドロー法による板ガラスの製造装置によれば、成形体の下方での融合直後の板状ガラスに表裏両側から接近する中空遮断板を設けることによって、板ガラスの反りや肉厚ムラを小さくする手段が採られている。   By the way, according to the apparatus for producing sheet glass by the overflow downdraw method disclosed in the above-mentioned Patent Document 1, by providing a hollow blocking plate approaching from both the front and back sides to the sheet glass immediately after fusion under the molded body, Means have been taken to reduce warpage and thickness unevenness of the plate glass.

しかしながら、このような手段では、成形体から下方に離れた板状ガラスが引張りローラの引張り力のみで引き抜かれるため、薄肉で大型の板ガラスを成形する場合には、板状ガラスの横方向(幅方向)と縦方向とに十分な張力が付与されず、反りが発生し易くなる。   However, in such a means, since the sheet glass that is separated downward from the molded body is pulled out only by the pulling force of the pulling roller, when forming a thin and large sheet glass, the lateral direction (width) of the sheet glass Direction) and the longitudinal direction are not sufficiently tensioned, and warping is likely to occur.

しかも、近年においては、板ガラスの薄肉・大型化に加えて、生産性が重視されていることから、上記のように成形体と引張りローラとの間に中空遮断板を介在させていても、極めて短時間で中空遮断板の間を板ガラスが通過してしまったのでは、中空遮断板を配置したことによる効果を十分に得ることができず、設備に無駄が生じる。   Moreover, in recent years, in addition to the thin and large plate glass, productivity has been emphasized, so even if a hollow blocking plate is interposed between the molded body and the pulling roller as described above, If the plate glass has passed between the hollow blocking plates in a short time, the effect of arranging the hollow blocking plates cannot be sufficiently obtained, and the equipment is wasted.

一方、上記の特許文献2に開示されたオーバーフローダウンドロー法による板ガラスの製造装置によれば、成形体の下方に板状ガラスの両端部を挟持する一対の冷却ローラを設け、冷却ローラの周速度を引張りローラの周速度よりも小さくすることによって、板ガラスの反りを改善する手段が採られている。この手段によれば、冷却ローラと引張りローラとの相互作用によって、板状ガラスの横方向と縦方向とに張力を加えることが可能となり、反りの低減が期待できる。   On the other hand, according to the apparatus for producing sheet glass by the overflow downdraw method disclosed in Patent Document 2, a pair of cooling rollers that sandwich both ends of the sheet glass are provided below the molded body, and the peripheral speed of the cooling roller is provided. A means for improving the warpage of the plate glass is adopted by making the diameter smaller than the peripheral speed of the pulling roller. According to this means, it becomes possible to apply tension in the horizontal direction and the vertical direction of the sheet glass by the interaction between the cooling roller and the pulling roller, and a reduction in warpage can be expected.

しかしながら、この特許文献2に開示の手段によるにしても、近年において、板ガラスの薄肉・大型化に伴って、反りの発生が顕著化した点と、生産性の向上を図ることが困難になった点とを勘案すれば、未だ解決すべき問題が残存している。   However, even with the means disclosed in Patent Document 2, in recent years, with the thin and large plate glass, the occurrence of warpage has become prominent, and it has become difficult to improve productivity. Considering this point, there are still problems to be solved.

すなわち、オーバーフローダウンドロー法で、板ガラスの肉厚を小さくする要請に応じるには、引張りローラの周速度を大きくせねばならないことに加えて、板ガラスの生産性を高める要請に応じる場合にも、成形体に供給する溶融ガラスを増量しながら、引張りローラの周速度を大きくせねばならない。   In other words, in order to respond to a request to reduce the thickness of the sheet glass by the overflow down draw method, in addition to having to increase the peripheral speed of the pulling roller, it is also possible to meet the request to increase the productivity of the sheet glass. The peripheral speed of the pulling roller must be increased while increasing the amount of molten glass supplied to the body.

それにも拘らず、特許文献2には、引張りローラの周速度を大きくすると、板状ガラスと冷却ローラとの間でスリップが生じるという事項、詳しくは冷却ローラの周速度が引張りローラの周速度の30%よりも小さいとスリップが生じるという事項が記載されている。然るに、このようなスリップが生じると、板状ガラスの移動速度が不安定となって、横方向に収縮が生じ、或いは縦横方向に十分な張力が付与されず、反りが発生し易くなることから、近年における板ガラスの薄肉・大型化や生産性向上の要請に適切に応じつつ、高品質の板ガラスを成形することが困難となる。   Nevertheless, Patent Document 2 discloses that when the tension roller is increased in peripheral speed, slip occurs between the glass sheet and the cooling roller. Specifically, the peripheral speed of the cooling roller is equal to the peripheral speed of the tension roller. There is a description that slipping occurs when it is less than 30%. However, when such a slip occurs, the moving speed of the sheet glass becomes unstable, and the shrinkage occurs in the horizontal direction, or sufficient tension is not applied in the vertical and horizontal directions, and warping is likely to occur. However, it becomes difficult to form high-quality plate glass while appropriately responding to recent demands for thin and large plate glass and productivity improvement.

本発明は、上記事情に鑑みてなされたものであり、板ガラスの薄肉・大型化に伴う反りの発生の顕著化及び生産性向上の困難化の問題を回避して、高品質の板ガラスを製造することを技術的課題とする。   The present invention has been made in view of the above circumstances, and manufactures high-quality plate glass by avoiding the problems of the occurrence of warpage and difficulty in improving productivity due to the thinness and size of the plate glass. This is a technical issue.

本発明者は、鋭意研究を重ねた結果、薄肉・大型の板ガラス、例えば、厚みが0.7mm以下で且つ有効幅が1200mm以上の板ガラスをオーバーフローダウンドロー法で効率良く生産するに当たり、引張りローラの周速度を大きくしつつ、板状ガラスの幅方向の収縮を抑え、反りの低減を図るためには、冷却ローラの配設状態並びにそれらの駆動形態を改善する必要があることを見出した。   As a result of intensive research, the inventor of the present invention has succeeded in efficiently producing thin and large plate glass, for example, plate glass having a thickness of 0.7 mm or less and an effective width of 1200 mm or more by an overflow down draw method. In order to suppress the shrinkage of the sheet glass in the width direction and reduce the warp while increasing the peripheral speed, it has been found that it is necessary to improve the arrangement state of the cooling roller and the driving form thereof.

本発明は、このような知見に基づいて完成されたものであり、くさび状の断面形状を有する成形体の頂部から両側面に沿って溶融ガラスを流下させることにより、前記成形体の下端部で融合して板状になった板状ガラスを、引張りローラで挟持しつつ下方に引き抜く板ガラスの成形方法において、前記成形体と引張りローラとの間に、前記板状ガラスの幅方向両端部を挟持して冷却するための冷却ローラを上下方向に複数個設け、最上部の冷却ローラのみに回転駆動力を付与することを要旨とする。   The present invention has been completed based on such knowledge, and by letting molten glass flow down along the both sides from the top of the molded body having a wedge-shaped cross-sectional shape, In a method for forming a sheet glass that is pulled out downward while sandwiching a sheet glass that has been fused into a sheet shape, both ends in the width direction of the sheet glass are sandwiched between the molded body and the tension roller. The gist of the invention is to provide a plurality of cooling rollers for cooling in the vertical direction and to apply a rotational driving force only to the uppermost cooling roller.

このような成形方法によれば、板状ガラスの幅方向両端部が、上下方向の二箇所以上で冷却ローラにより挟持されて冷却されるため、板状ガラスの幅方向の収縮が最小限に抑えられる。詳述すると、オーバーフローダウンドロー法で板ガラスを成形する場合、成形体から離れた板状ガラスは、下方に引張られるに伴って徐々に板幅が収縮しようとするが、これに対しては、先ず成形体から離れた直後であって未だ軟化変形し易い状態にある板状ガラスの幅方向両端部を、最上部の冷却ローラ(主冷却ローラ)で挟持するようにすれば、上述の板幅の収縮を抑えることができる。加えて、板状ガラスは、主冷却ローラで挟持して冷却した後においても、その下方で更に幅方向に収縮しようとするが、これに対しては、主冷却ローラの下方に配設した別の冷却ローラ(補助冷却ローラ)が、板状ガラスの幅方向両端部を挟持するため、板状ガラスが主冷却ローラを離れた後における上述の幅方向の収縮を抑えることができる。しかも、この補助冷却ローラは、回転駆動力が付与されない非駆動ローラであるため、板状ガラスの移動速度(流下速度)に合った状態で補助冷却ローラが回転することになり、これにより両者の間にスリップは生じ難くなる。従って、薄肉・大型の板ガラスを効率良く生産する目的で、引張りローラの周速度を大きくした場合であっても、板状ガラスと冷却ローラとの間で不当なスリップを生じさせることなく、板状ガラスの幅方向両端部を安定して冷却し、幅方向の収縮を抑えることが可能となる。また、このような状態で板状ガラスが下方に引張られ、横方向(幅方向)と縦方向とに張力が働いた状態で固化することになるため、薄肉・大型で反りの小さい板ガラスを容易に成形することが可能となる。尚、冷却ローラは、上下方向における個数が増加するに連れて、板状ガラスの幅方向の収縮を抑える効果が大きくなるが、製造条件やコストを考慮すると、上下方向に2〜5個(対)の冷却ローラを配設することが妥当である。   According to such a forming method, both end portions in the width direction of the glass sheet are cooled by being sandwiched by the cooling rollers at two or more locations in the vertical direction, so that contraction in the width direction of the glass sheet is minimized. It is done. More specifically, when a sheet glass is formed by the overflow downdraw method, the sheet glass that is separated from the formed body tends to shrink gradually as it is pulled downward. If the both ends in the width direction of the glass sheet that has just been separated from the molded body and is still easily softened and deformed are sandwiched between the uppermost cooling rollers (main cooling rollers), Shrinkage can be suppressed. In addition, even after the glass sheet is cooled by being sandwiched by the main cooling roller, it tends to shrink further in the width direction below the glass sheet. Since the cooling roller (auxiliary cooling roller) sandwiches both ends in the width direction of the sheet glass, the contraction in the width direction after the sheet glass leaves the main cooling roller can be suppressed. In addition, since this auxiliary cooling roller is a non-driving roller to which no rotational driving force is applied, the auxiliary cooling roller rotates in a state that matches the moving speed (flowing speed) of the sheet glass. Slip is less likely to occur between them. Therefore, even if the peripheral speed of the pulling roller is increased for the purpose of efficiently producing thin-walled and large-sized plate glass, the plate-like shape does not cause an undue slip between the plate-like glass and the cooling roller. It is possible to stably cool both ends of the glass in the width direction and suppress shrinkage in the width direction. In this state, the flat glass is pulled downward and solidifies in a state where tension is applied in the horizontal direction (width direction) and the vertical direction. It becomes possible to mold into. As the number of cooling rollers increases in the vertical direction, the effect of suppressing the shrinkage in the width direction of the sheet glass increases. However, in consideration of manufacturing conditions and costs, 2-5 ( It is appropriate to provide a cooling roller).

この場合において、前記複数個の冷却ローラにおける上下に隣り合う冷却ローラの相互間距離は、300mm以下であることが好ましい。   In this case, it is preferable that the distance between the cooling rollers that are adjacent to each other in the plurality of cooling rollers is 300 mm or less.

すなわち、複数個の冷却ローラのうち、最上部の主冷却ローラ以外の補助冷却ローラについては、回転駆動力を付与するための駆動手段が必要でないため、上下に隣り合う冷却ローラの全ての相互間距離(中心軸間の距離)を上述のように300mm以下と短くしても、取付スペース面での問題を生じることなく、適正に複数個の冷却ローラを配置することができる。この場合、例えば最上部の主冷却ローラと、その直下の補助冷却ローラとの相互間距離が300mmを超えると、既述の板状ガラスの収縮を抑える効果が小さくなるという不具合を招くが、両者の相互間距離が300mm以下であれば、板状ガラスの収縮を十分に抑えることが可能となる。これらの事項を総合的に勘案すれば、各冷却ローラの相互間距離は、好ましくは250mm以下、より好ましくは200mm以下とすることもできる。   That is, among the plurality of cooling rollers, the auxiliary cooling rollers other than the uppermost main cooling roller do not require a driving means for applying a rotational driving force, and therefore, between all the cooling rollers adjacent to each other in the vertical direction. Even if the distance (distance between the central axes) is shortened to 300 mm or less as described above, a plurality of cooling rollers can be properly arranged without causing a problem in the mounting space. In this case, for example, if the distance between the uppermost main cooling roller and the auxiliary cooling roller directly below it exceeds 300 mm, there is a problem that the effect of suppressing the shrinkage of the sheet glass described above is reduced. If the distance between each other is 300 mm or less, it is possible to sufficiently suppress the shrinkage of the sheet glass. Considering these matters comprehensively, the distance between the cooling rollers can be preferably 250 mm or less, more preferably 200 mm or less.

また、前記最上部の冷却ローラの周速度Aと、前記引張りローラの周速度Bとの比率B/Aは、3.5〜20にすることが好ましい。   The ratio B / A between the peripheral speed A of the uppermost cooling roller and the peripheral speed B of the pulling roller is preferably 3.5 to 20.

すなわち、オーバーフローダウンドロー法で板ガラスを成形する場合、薄肉で大型の板ガラスを効率良く生産しようとすると、引張りローラの周速度を大きくする必要があるのに対して、板状ガラスの幅方向両端部を適切に冷却しようとすると、冷却ローラ、特に最上部の主冷却ローラの周速度を小さくする必要がある。その場合、主冷却ローラの周速度Aと、引張りローラの周速度Bとの差が小さいと、換言すれば上記の比率B/Aが小さいと、引張りローラの周速度を大きくして生産性を高めるような条件とすることが困難になるばかりでなく、主冷却ローラにより板状ガラスを適正に冷却した上で、板状ガラスの安定した移動速度を確保できるような条件とすることが困難になる。そのため、薄肉・大型の板ガラスを成形するに際して、生産性を高めた上で、反りを小さくできるような成形条件とすることは極めて困難となる。しかしながら、この成形方法では、主冷却ローラの周速度Aと引張りローラの周速度Bとが適正に充分相違するような設定、具体的には上記の比率B/Aが3.5以上とされているので、薄肉・大型の板ガラスの生産性の向上を図りつつ、反りを小さくすることが可能となる。一方、冷却ローラの周速度Aと引張りローラの周速度Bとの差が不当に大きいと(上記の比率B/Aが不当に大きいと)、成形条件が不安定となり、所望の形状の板ガラスが安定して得られ難くなる。そこで、この成形方法では、上記の比率B/Aを20以下としている。尚、以上の事項を総合的に勘案すれば、上記の比率B/Aにおける下限は4であることがより好ましく、その上限は15であることがより好ましい。   In other words, when forming sheet glass by the overflow down draw method, it is necessary to increase the peripheral speed of the pulling roller in order to efficiently produce a thin and large sheet glass. In order to properly cool the cooling roller, it is necessary to reduce the peripheral speed of the cooling roller, particularly the uppermost main cooling roller. In that case, if the difference between the peripheral speed A of the main cooling roller and the peripheral speed B of the pulling roller is small, in other words, if the ratio B / A is small, the peripheral speed of the pulling roller is increased to increase productivity. Not only is it difficult to increase the conditions, but it is also difficult to ensure that a stable movement speed of the glass sheet is secured after the glass sheet is properly cooled by the main cooling roller. Become. For this reason, when forming a thin and large plate glass, it is extremely difficult to achieve a molding condition that can reduce warpage while enhancing productivity. However, in this molding method, the peripheral speed A of the main cooling roller and the peripheral speed B of the pulling roller are set to be sufficiently different from each other, specifically, the ratio B / A is set to 3.5 or more. Therefore, it is possible to reduce the warpage while improving the productivity of the thin and large plate glass. On the other hand, if the difference between the circumferential speed A of the cooling roller and the circumferential speed B of the pulling roller is unreasonably large (if the ratio B / A is unreasonably large), the molding conditions become unstable, and a plate glass having a desired shape is obtained. It becomes difficult to obtain stably. Therefore, in this molding method, the ratio B / A is set to 20 or less. In consideration of the above matters comprehensively, the lower limit of the ratio B / A is more preferably 4, and the upper limit is more preferably 15.

更に、前記複数個の冷却ローラは、内部が中空であり、その中空部を流通する冷媒としては、気体や液体を使用することができる。   Further, the plurality of cooling rollers are hollow inside, and a gas or a liquid can be used as the refrigerant flowing through the hollow portion.

以上の成形方法によると、板状ガラスが引張りローラの下流側で固化することにより、厚みが0.7mm以下で且つ有効幅が1200mm以上(好ましくは1500mm以上、より好ましくは2000mm以上)の板ガラスを得ることができ、更には、反り率が0.03%以下の板ガラスを得ることができる。ここで、「反り率が0.03%以下」とは、理想平面(具体的には精密定盤の上面)に板ガラスを表面が上向きとなる状態で載置した場合に、長辺に沿う方向における理想平面と板ガラスの裏面との間の最大離反距離(反り量)を長辺の全長で除算して得られる第1の反り率と、短辺に沿う方向における理想平面と板ガラスの裏面との間の最大離反距離(反り量)を短辺の全長で除算して得られる第2の反り率と、理想平面に板ガラスを表面が下向きとなる状態で載置した場合に、長辺に沿う方向における理想平面と板ガラスの表面との間の最大離反距離(反り量)を長辺の全長で除算して得られる第3の反り率と、短辺に沿う方向における理想平面と板ガラスの表面との間の最大離反距離(反り量)を短辺の全長で除算して得られる第4の反り率とのうち、最も値の大きい反り率が0.03%以下であることを意味する。   According to the above forming method, the plate glass is solidified on the downstream side of the pulling roller, whereby a plate glass having a thickness of 0.7 mm or less and an effective width of 1200 mm or more (preferably 1500 mm or more, more preferably 2000 mm or more) is obtained. Further, a plate glass having a warpage rate of 0.03% or less can be obtained. Here, “the warpage rate is 0.03% or less” is a direction along the long side when the glass sheet is placed on the ideal plane (specifically, the upper surface of the precision surface plate) with the surface facing upward. The first warpage rate obtained by dividing the maximum separation distance (warpage amount) between the ideal plane and the back surface of the glass sheet by the total length of the long side, and the ideal plane and the back surface of the glass sheet along the short side The second warp rate obtained by dividing the maximum separation distance (warp amount) by the total length of the short side, and the direction along the long side when the plate glass is placed on the ideal plane with the surface facing downward The third warpage rate obtained by dividing the maximum separation distance (warpage amount) between the ideal plane and the surface of the glass sheet by the total length of the long side, and the ideal plane and the surface of the glass sheet in the direction along the short side A fourth distance obtained by dividing the maximum separation distance (warpage amount) by the total length of the short side. Of the rate Ri, a large warping ratio of most value means that 0.03% or less.

また、以上の成形方法により成形される板ガラスは、ディスプレイ用基板に適しており、特に液晶ディスプレイ用基板として好適である。   Moreover, the plate glass shape | molded by the above shaping | molding method is suitable for a display substrate, and is especially suitable as a liquid crystal display substrate.

すなわち、オーバーフローダウンドロー法で成形されてなる両面が無研磨面であって、厚みが0.7mm以下、短辺の長さが1000mm以上、長辺の長さが1200mm以上、反り率が0.03%以下の板ガラスを、特に液晶ディスプレイ用基板として使用すると、その基板上に薄膜電気回路を形成する際に、露光距離が設計通りにならなくなったり、液晶を挟む二枚の板ガラス(基板)間のギャップにムラが生じて表示性能が損なわれる等の問題を解消することができる。   That is, both surfaces formed by the overflow down draw method are non-polished surfaces, the thickness is 0.7 mm or less, the short side length is 1000 mm or more, the long side length is 1200 mm or more, and the warp rate is 0. When a glass sheet of less than 03% is used as a substrate for a liquid crystal display in particular, when forming a thin film electric circuit on the substrate, the exposure distance is not as designed, or between two glass plates (substrates) sandwiching the liquid crystal It is possible to solve problems such as unevenness in the gap and display performance being impaired.

以上のように本発明によれば、薄肉・大型の板ガラスを効率良く生産する目的で、引張りローラの周速度を大きくした場合であっても、板状ガラスと冷却ローラとの間で不当なスリップを生じさせることなく、板状ガラスの幅方向両端部を安定して冷却し、幅方向の収縮を抑えることが可能となるとなるばかりでなく、このような状態で板状ガラスが下方に引張られ、横方向(幅方向)と縦方向とに張力が働いた状態で固化することになるため、薄肉・大型で反りの小さい板ガラスを容易に成形することが可能となる。   As described above, according to the present invention, in order to efficiently produce a thin and large plate glass, even if the peripheral speed of the pulling roller is increased, an inappropriate slip between the plate glass and the cooling roller. In addition to being able to stably cool both ends in the width direction of the sheet glass without causing any shrinkage and to suppress shrinkage in the width direction, the sheet glass is pulled downward in this state. Since it is solidified in a state where tension is applied in the lateral direction (width direction) and the longitudinal direction, it is possible to easily form a thin, large and small warped plate glass.

以下、本発明の実施形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、板ガラスの成形方法の実施状況を示す概略側面図、図2は、その概略正面図である。ここでは、板ガラスの成形方法の説明に先立ち、図1及び図2に基づいて、板ガラスの成形方法の実施に用いられる成型装置の構成を説明する。この成形装置1の基本的構成は、縦断面形状がくさび状をなし且つ頂部にオーバーフロー溝2aが形成された成形体2と、成形体2の頂部から溢れ出た溶融ガラスYを板状ガラスGとして引き抜く引張りローラ3と、成形体2の下端部2bから引張りローラ3に至るガラス成形経路の途中に配置された上側の主冷却ローラ4及び下側の補助冷却ローラ5とを備えている。これらの各構成要素2、3、4、5は、耐火煉瓦からなる炉壁6により取り囲まれている。また、成形体2の側面2cの周辺、この実施形態では炉壁6の側壁部内面には、成形体2の側面2cを流下するガラス(溶融ガラス)を縦横方向にゾーン加熱することが可能な複数のヒータ7が成形体2の両側方にそれぞれ配設されている。   FIG. 1 is a schematic side view showing an implementation status of a method for forming a sheet glass, and FIG. 2 is a schematic front view thereof. Here, prior to the description of the sheet glass forming method, the structure of a forming apparatus used for carrying out the sheet glass forming method will be described with reference to FIGS. 1 and 2. The basic configuration of the molding apparatus 1 is that a molded body 2 having a wedge-shaped longitudinal cross-section and an overflow groove 2a formed at the top, and a molten glass Y overflowing from the top of the molded body 2 is formed into a sheet glass G. And the upper main cooling roller 4 and the lower auxiliary cooling roller 5 arranged in the middle of the glass forming path from the lower end 2b of the molded body 2 to the pulling roller 3. Each of these components 2, 3, 4, 5 is surrounded by a furnace wall 6 made of refractory bricks. Further, the glass (molten glass) flowing down the side surface 2c of the molded body 2 can be zone-heated in the vertical and horizontal directions around the side surface 2c of the molded body 2, in this embodiment, on the inner surface of the side wall portion of the furnace wall 6. A plurality of heaters 7 are respectively disposed on both sides of the molded body 2.

引張りローラ3は、板状ガラスGの幅方向両端部のみを挟持するものであって、それぞれの端部に一対ずつ計四個を備えている。そして、板状ガラスGの表側に存する二個の引張りローラ3は、軸部材3aで連結されて一体回転可能とされると共に、その裏側に存する二個の引張りローラ3も軸部材3aで連結されて一体回転可能とされ、これらの引張りローラ3には、回転駆動力が付与されるようになっている。また、主冷却ローラ4も、板状ガラスGの幅方向両端部のみを挟持するものであり、それぞれの端部に一対ずつ計四個を備えているが、板状ガラスGの表側に存する二個の主冷却ローラ4は分離され、それらが独立して回転可能とされると共に、その裏側に存する二個の主冷却ローラ4も分離され、それらが独立して回転可能とされている(補助冷却ローラ5も同様)。そして、主冷却ローラ4は、回転駆動力が付与される駆動ローラとされているのに対して、補助冷却ローラ5は回転駆動力が付与されずに空転する非駆動ローラとされている。   The pulling rollers 3 sandwich only both ends in the width direction of the plate glass G, and a total of four pulling rollers 3 are provided at each end. The two pulling rollers 3 existing on the front side of the glass sheet G are connected by a shaft member 3a so as to be integrally rotatable, and the two pulling rollers 3 existing on the back side are also connected by a shaft member 3a. These pulling rollers 3 are provided with a rotational driving force. Further, the main cooling roller 4 also sandwiches both ends in the width direction of the plate glass G, and a total of four pieces are provided at each end portion, but there are two on the front side of the plate glass G. The main cooling rollers 4 are separated so that they can rotate independently, and the two main cooling rollers 4 on the back side of the main cooling rollers 4 are also separated so that they can rotate independently (auxiliary The same applies to the cooling roller 5). The main cooling roller 4 is a driving roller to which a rotational driving force is applied, whereas the auxiliary cooling roller 5 is a non-driving roller that rotates idly without being applied with a rotational driving force.

引張りローラ3、主冷却ローラ4及び補助冷却ローラ5は、ステンレスまたは耐熱鋼もしくはセラミックス等で形成される。更に、これらのローラ4、5は、内部が中空となっており、その中空部を通じて軸方向先端部付近まで冷媒が流通可能とされている。この場合、冷媒としては、気体や液体を使用することができる。   The pulling roller 3, the main cooling roller 4, and the auxiliary cooling roller 5 are made of stainless steel, heat resistant steel, ceramics, or the like. Further, these rollers 4 and 5 are hollow inside, and the refrigerant can flow through the hollow portion to the vicinity of the tip in the axial direction. In this case, gas or liquid can be used as the refrigerant.

そして、主冷却ローラ4は、成形体2の頂部から両側面2cに沿って溶融ガラスYが流下して、成形体2の下端部2bで融合することにより、一枚の板状となった直後の板状ガラスGを挟持して冷却し得る位置に配設されている。詳述すると、この主冷却ローラ4は、板状ガラスGの幅方向両端部における粘度が、105.2〜108.6dPa・sの時、より好ましくは105.7〜107.5dPa・s(更に好ましくは106.0〜107.0dPa・s)の時に、その両端部を挟持する位置に保持されている。そして、このような条件を満たすべく、成形体2の下端部2bから主冷却ローラ4の中心軸までの距離aは、30〜200mm、より好ましくは30〜100mmに設定されている。この場合、主冷却ローラ4と補助冷却ローラ5との相互間距離b、つまり主冷却ローラ4の中心軸と補助冷却ローラ5の中心軸との距離bは、300mm以下、好ましくは250mm以下、より好ましくは200mm以下に設定され、何れの場合も下限値は50mmであることが好ましい。 The main cooling roller 4 is immediately after the molten glass Y flows down from the top of the molded body 2 along both side surfaces 2c and is fused at the lower end 2b of the molded body 2 to form a single plate. It arrange | positions in the position which can clamp and cool the plate glass G of this. More specifically, the main cooling roller 4 has a viscosity of 10 5.2 to 10 8.6 dPa · s, more preferably 10 5.7 to 10 7.5 dPa · s (more preferably, at both ends in the width direction of the glass sheet G. 10 6.0 to 10 7.0 dPa · s), the both end portions are held in a sandwiched position. And in order to satisfy | fill such conditions, the distance a from the lower end part 2b of the molded object 2 to the central axis of the main cooling roller 4 is set to 30-200 mm, More preferably, it is 30-100 mm. In this case, the distance b between the main cooling roller 4 and the auxiliary cooling roller 5, that is, the distance b between the central axis of the main cooling roller 4 and the central axis of the auxiliary cooling roller 5, is 300 mm or less, preferably 250 mm or less. It is preferably set to 200 mm or less, and in any case, the lower limit is preferably 50 mm.

また、主冷却ローラ4の周速度と引張りローラ3の周速度との比は、1:3.5〜1:20、より好ましくは1:4〜1:15に設定されている。加えて、補助冷却ローラ5の周速度は、主冷却ローラ4の周速度以上の範囲内で、引張りローラ3の周速度の80%未満となるような位置に設けられる。これは、補助冷却ローラ5の周速度が引張りローラ3の周速度の80%を超えると、板状ガラスGに対する冷却作用が著しく低下して、幅方向の収縮を効率良く抑えることが困難となることに由来する。このような観点から、補助冷却ローラ5の周速度は、引張りローラ3の周速度の70%未満となるような位置に設けることがより好ましい。   The ratio between the peripheral speed of the main cooling roller 4 and the peripheral speed of the pulling roller 3 is set to 1: 3.5 to 1:20, more preferably 1: 4 to 1:15. In addition, the peripheral speed of the auxiliary cooling roller 5 is provided at a position that is less than 80% of the peripheral speed of the pulling roller 3 within a range equal to or higher than the peripheral speed of the main cooling roller 4. This is because when the peripheral speed of the auxiliary cooling roller 5 exceeds 80% of the peripheral speed of the pulling roller 3, the cooling action on the sheet glass G is remarkably reduced, and it is difficult to efficiently suppress the shrinkage in the width direction. It comes from that. From such a viewpoint, it is more preferable that the peripheral speed of the auxiliary cooling roller 5 is provided at a position that is less than 70% of the peripheral speed of the pulling roller 3.

以上のような構成を備えた成形装置1によれば、成形体2に供給されてその頂部から側面2cに沿って流下する溶融ガラスYは、ヒータ7により粘度を調整されつつ、成形体2の下端部2bで融合して一枚の板状となり、この板状ガラスGが引張りローラ3により挟持されて下方に引き抜かれていく。この引張りローラ3による引き抜きが行われる初期段階においては、成形体2から離れた直後で未だ軟化変形し易い状態の板状ガラスGの幅方向両端部を主冷却ローラ4が挟持しているので、この挟持によって主冷却ローラ4の配設位置における板状ガラスGの幅方向の収縮が抑制される。また、板状ガラスGは、主冷却ローラ4で挟持して冷却した後であっても、その下方で更に幅方向に収縮しようとするため、補助冷却ローラ5が仮に存在しないとしたならば、図2に鎖線(符号X)で示すように板状ガラスGが幅方向に収縮して、最終的に幅の広い板ガラスを得ることが出来なくなるが、この実施形態のように補助冷却ローラ5を配設しておけば、板状ガラスGの幅方向の収縮を適切に抑制することができる。この事を勘案すれば、補助冷却ローラ5は、最上段の主冷却ローラ4と最下段の引張りローラ3との間に、複数段(例えば2段から4段)に配設されていることが好ましい。   According to the molding apparatus 1 having the above-described configuration, the molten glass Y that is supplied to the molded body 2 and flows down from the top along the side surface 2 c is adjusted in viscosity by the heater 7, while the viscosity of the molded body 2 is adjusted. The sheet is fused at the lower end 2b to form a single sheet, and the sheet glass G is sandwiched between the pulling rollers 3 and drawn downward. In the initial stage where the pulling by the pulling roller 3 is performed, the main cooling roller 4 sandwiches both ends in the width direction of the sheet glass G that is still in a state of being easily softened and deformed immediately after leaving the molded body 2. By this clamping, contraction in the width direction of the glass sheet G at the position where the main cooling roller 4 is disposed is suppressed. Further, even after the glass sheet G is sandwiched by the main cooling roller 4 and cooled, if it is assumed that the auxiliary cooling roller 5 does not exist in order to further shrink in the width direction below, As shown by the chain line (reference numeral X) in FIG. 2, the sheet glass G shrinks in the width direction, and it becomes impossible to finally obtain a wide sheet glass. However, the auxiliary cooling roller 5 is used as in this embodiment. If it arrange | positions, the shrinkage | contraction of the width direction of the sheet glass G can be suppressed appropriately. Considering this, the auxiliary cooling roller 5 may be arranged in a plurality of stages (for example, 2 to 4 stages) between the uppermost main cooling roller 4 and the lowermost pulling roller 3. preferable.

一方、主冷却ローラ4は、板状ガラスGの幅方向両端部に接触して、その接触部周辺を適度に冷却するが、板状ガラスGにおける主冷却ローラ4との接触部の粘度は、既述のように適度に低いため、生産性を高めるべく引張りローラ3の周速度を大きくしても、板状ガラスGと主冷却ローラ4との間でスリップは生じ難くなる。しかも、成形体2の下端部2bから主冷却ローラ4の中心軸までの距離は、既述のように適度に短くされているため、板状ガラスGにおける主冷却ローラ4との接触部の粘度を効果的に低くすることができる。更に、引張りローラ3の周速度は、主冷却ローラ4の周速度に比して、既述のように適度に大きくされているので、板状ガラスGの移動阻害を阻止した上で、生産性を大幅に高めることが可能となる。   On the other hand, the main cooling roller 4 is in contact with both end portions in the width direction of the plate glass G, and appropriately cools the periphery of the contact portion, but the viscosity of the contact portion with the main cooling roller 4 in the plate glass G is: Since it is moderately low as described above, even if the peripheral speed of the pulling roller 3 is increased in order to increase productivity, slip is unlikely to occur between the glass sheet G and the main cooling roller 4. Moreover, since the distance from the lower end 2b of the molded body 2 to the central axis of the main cooling roller 4 is appropriately shortened as described above, the viscosity of the contact portion of the sheet glass G with the main cooling roller 4 is low. Can be effectively reduced. Further, since the peripheral speed of the pulling roller 3 is appropriately increased as described above compared to the peripheral speed of the main cooling roller 4, the productivity of the sheet glass G is prevented from being hindered. Can be greatly increased.

このようにして、板状ガラスGが下方に引き抜かれていく途中においては、補助冷却ローラ5によっても板状ガラスGの幅方向両端部が挟持されて補助的に冷却が行われるが、補助冷却ローラ5は、板状ガラスGの移動速度(流下速度)に合わせて回転するため、補助冷却ローラ5と板状ガラスGとの間でスリップが生じ難くなる。このため、薄肉・大型の板ガラスを効率良く生産する目的で、引張りローラ3の周速度を大きくしても、板状ガラスGと両冷却ローラ4、5との間で不当なスリップが生じなくなり、板状ガラスGの幅方向両端部を安定して冷却しつつ、幅方向の収縮を的確に抑えることが可能となる。しかも、このような状態で板状ガラスGが下方に引張られ、横方向と縦方向とに張力が働いた状態で固化することになるため、薄肉・大型で且つ反り率の小さい板ガラスを容易に成形することが可能となる。   In this way, while the sheet glass G is being drawn downward, both ends in the width direction of the sheet glass G are also sandwiched by the auxiliary cooling roller 5 to perform auxiliary cooling. Since the roller 5 rotates in accordance with the moving speed (flowing speed) of the sheet glass G, slip is unlikely to occur between the auxiliary cooling roller 5 and the sheet glass G. For this reason, even if the peripheral speed of the pulling roller 3 is increased for the purpose of efficiently producing a thin and large plate glass, no undue slip occurs between the plate glass G and the cooling rollers 4 and 5, It is possible to accurately suppress shrinkage in the width direction while stably cooling both ends in the width direction of the glass sheet G. Moreover, since the glass sheet G is pulled downward in such a state and solidifies in a state where tension is applied in the horizontal direction and the vertical direction, it is easy to form a thin glass sheet having a large size and a low warpage rate. It becomes possible to mold.

上記の成形方法によると、薄肉で大型の板ガラスを製造する場合でも、反りの極めて小さい板ガラスを成形することができる。図3は、上記の成形方法を用いて最終的に得られた板ガラスを誇張して示す概略断面図である。同図に示すように、この板ガラス8は、表面及び裏面の両面が無研磨面である矩形をなし、厚みtが0.7mm以下、短辺の長さL1が1000mm以上、長辺の長さ(L2)が1200mm以上、反り率が0.03%以下である。ここで、反り率とは、精密定盤の上面Jに板ガラス8を載置して、長辺に沿う方向における精密定盤の上面Jと板ガラス8の下面との間の最大離反距離(反り量)S1を長辺の全長L1で除算して得られる長辺側の反り率{(S1/L1)×100}と、短辺に沿う方向における精密定盤の上面Jと板ガラス8の下面との間の最大離反距離(反り量)S2を短辺の全長L2で除算して得られる短辺側の反り率{(S2/L2)×100}との両者を含む。そして、上述の「反り率が0.03%以下」とは、精密定盤の上面Jに板ガラス8を表面が上向きの状態で載置した場合における長辺側の反り率と短辺側の反り率、及び、精密定盤の上面Jに板ガラス8を表面が下向きの状態で載置した場合における長辺側の反り率と短辺側の反り率との計四つの反り率のうち、最も値の大きい反り率が、0.03%以下であることを意味する(下記の「0.02%以下」及び「0.01%以下」についても同様)。   According to the above forming method, even when a thin and large plate glass is manufactured, a plate glass with extremely small warpage can be formed. FIG. 3 is a schematic cross-sectional view exaggeratingly showing the plate glass finally obtained by using the above-described forming method. As shown in the figure, the glass plate 8 has a rectangular shape in which both the front surface and the back surface are non-polished surfaces, the thickness t is 0.7 mm or less, the short side length L1 is 1000 mm or more, and the long side length. (L2) is 1200 mm or more and the warpage rate is 0.03% or less. Here, the warpage rate is the maximum separation distance between the upper surface J of the precision surface plate and the lower surface of the plate glass 8 in the direction along the long side (the amount of warpage). ) The warp ratio {(S1 / L1) × 100} on the long side obtained by dividing S1 by the total length L1 of the long side, and the upper surface J of the precision surface plate in the direction along the short side and the lower surface of the plate glass 8 And the warp rate {(S2 / L2) × 100} on the short side obtained by dividing the maximum separation distance (warp amount) S2 by the total length L2 of the short side. The above-mentioned “warp rate is 0.03% or less” means that the warp rate on the long side and the warp on the short side when the plate glass 8 is placed on the upper surface J of the precision surface plate with the surface facing upward. And the highest value among the four warpage rates of the long side and the short side when the plate glass 8 is placed on the upper surface J of the precision surface plate with the surface facing downward. This means that a large warpage ratio is 0.03% or less (the same applies to “0.02% or less” and “0.01% or less” below).

この場合、板ガラス8の反り率は、0.02%以下、更には0.01%以下にすることも可能である。また、板ガラス8の有効幅を長くすることにより、短辺の長さL1及び長辺の長さL2を、何れも1500mm以上、更には2000mm以上にすることも可能である。更に、板ガラス8の厚みtは、0.65mm以下、更には0.60mm以下にすることも可能である。ただし、板ガラス8の厚みtが薄すぎると、強度が著しく低下して成形性が低下するため、この厚みtは、0.03mm以上、更には少なくとも0.1mm以上であることが好ましい。   In this case, the warpage rate of the plate glass 8 can be 0.02% or less, and further 0.01% or less. Further, by increasing the effective width of the plate glass 8, both the short side length L1 and the long side length L2 can be 1500 mm or more, and further 2000 mm or more. Furthermore, the thickness t of the plate glass 8 can be 0.65 mm or less, and further 0.60 mm or less. However, if the thickness t of the plate glass 8 is too thin, the strength is remarkably lowered and the formability is lowered. Therefore, the thickness t is preferably 0.03 mm or more, and more preferably at least 0.1 mm or more.

また、この板ガラス8は、歪点が630℃以上、30〜380℃における熱膨張係数が28〜40×10-7/℃、密度が2.60g/cm3以下、液相温度における粘度が105.8dPa・s以上であって、耐薬品性(耐バッファードフッ酸性や耐塩酸性)に優れていることが好ましい。このような特性を有する板ガラス8は、液晶ディスプレイ基板として用いる場合に特に好適である。この場合、液相温度における粘度が上記のように105.8dPa・s以上であれば、比較的低い温度で板状ガラスを成形しても、ガラス中に失透物が発生せず、成形性が向上するために好ましく、この事を勘案すれば、105.9dPa・s以上であることがより好ましい。 The plate glass 8 has a strain point of 630 ° C. or higher, a thermal expansion coefficient of 28 to 40 × 10 −7 / ° C. at 30 to 380 ° C., a density of 2.60 g / cm 3 or less, and a viscosity at a liquidus temperature of 10 It is preferably 5.8 dPa · s or more and excellent in chemical resistance (buffered hydrofluoric acid resistance and hydrochloric acid resistance). The plate glass 8 having such characteristics is particularly suitable when used as a liquid crystal display substrate. In this case, as long as the viscosity at the liquidus temperature is 10 5.8 dPa · s or more as described above, even if the glass sheet is molded at a relatively low temperature, devitrification is not generated in the glass, and the moldability In view of this, it is more preferably 10 5.9 dPa · s or more.

更に、この板ガラス8の組成は、質量%で、SiO2 55〜70%、Al23 12〜22%、B23 3〜15%、アルカリ土類金属酸化物 2〜20%を含有し、アルカリ金属酸化物を実質的に含有していない(換言すれば、アルカリ金属酸化物は質量%で、0.1%以下である)。板ガラス8が、このような組成であると、特に液晶ディスプレイ用基板として好適であり、また、このような組成範囲内で、各構成成分の含有量を適宜組み合わせることにより、上述のような特性を備えた板ガラス8が得られる。 Further, the composition of the plate glass 8 is, by mass%, SiO 2 55 to 70%, Al 2 O 3 12 to 22%, B 2 O 3 3 to 15%, alkaline earth metal oxide 2 to 20%. However, the alkali metal oxide is not substantially contained (in other words, the alkali metal oxide is% by mass and 0.1% or less). When the plate glass 8 has such a composition, it is particularly suitable as a substrate for a liquid crystal display, and within the composition range, the above-described characteristics can be obtained by appropriately combining the content of each component. The provided plate glass 8 is obtained.

上記のガラス組成範囲の限定理由は、以下に示す通りである。即ち、第1に、SiO2が少なくなり過ぎると、ガラスの耐薬品性が低下し易くなり、これとは逆に、多くなり過ぎると、ガラスの溶融性が悪化すると共に、ガラス中に失透異物(クリストバライト)が生じ易くなる。従って、SiO2の含有量は、50〜70%が妥当であり、好ましくは55〜68%である。第2に、Al23が少なくなり過ぎると、液相温度が上昇し、ガラス中に失透異物(クリストバライト)が生じ易くなると共に、ガラスの歪点が低下し、これとは逆に、多くなり過ぎると、ガラスの耐バッファードフッ酸性が低下すると共に、失透性が低下し、ガラス中にムライトや長石系の失透異物が発生し易くなる。従って、Al23の含有量は、10〜19%が妥当であり、好ましくは11〜18%である。第3に、B23は、融剤として働き、ガラスの高温粘性を下げ、溶融性を改善する成分であって、このB23が少なくなり過ぎると、融剤としての働きが不十分になると共に、ガラスの耐バッファードフッ酸性が低下し、これとは逆に、多くなり過ぎると、ガラスの歪点が低下し、耐熱性が悪化すると共に、耐酸性が悪化する。従って、B23の含有量は、5〜15%が妥当であり、好ましくは7〜14%である。第4に、アルカリ土類金属酸化物(MgO+CaO+SrO+BaO)が少なくなり過ぎると、ガラスの溶融性が悪化したり、液相温度が上昇し易くなり、これとは逆に、多くなり過ぎると、ガラスの密度が大きくなり易くなる。従って、アルカリ土類金属酸化物の含有量は、5〜20%が妥当であり、好ましくは7〜18%である。以上の成分の他に、溶融性、耐失透性、耐酸性の改善や熱膨張係数の調整を行うため、ZnO、P25、ZrO2、Y23、Nb23、La23、TiO2等の成分を、各々5%以下で含有させてもよく、また清澄剤であるAs23、Sb23、Cl、F、SO3等の成分を各々2%まで含有させてもよい。但し、ガラス中にアルカリ金属酸化物(Li2O、Na2O、K2O)を含有すると、これらの成分が、基板上に形成される半導体素子に拡散し、半導体素子に悪影響を与えるため、実質的に含有しないことが望まれる。従って、これらの成分の含有量は、0.1%以下に抑えるべきである。 The reasons for limiting the glass composition range are as follows. That is, first, if SiO 2 becomes too small, the chemical resistance of the glass tends to decrease. Conversely, if too much, the melting property of the glass deteriorates and devitrification occurs in the glass. Foreign matter (cristobalite) is likely to occur. Therefore, the content of SiO 2 is reasonable from 50 to 70%, preferably from 55 to 68%. Secondly, if the Al 2 O 3 content becomes too small, the liquidus temperature rises, and devitrified foreign matter (cristobalite) is likely to be generated in the glass, and the strain point of the glass is lowered. When the amount is too large, the buffered hydrofluoric acid resistance of the glass is lowered and the devitrification property is lowered, and mullite and feldspar-based devitrified foreign substances are easily generated in the glass. Therefore, the content of Al 2 O 3 is reasonable from 10 to 19%, preferably from 11 to 18%. Third, B 2 O 3 is a component that acts as a flux, lowers the high-temperature viscosity of the glass, and improves the meltability. If this B 2 O 3 is too small, the function as a flux is ineffective. In addition to this, the buffered hydrofluoric acid resistance of the glass decreases, and conversely, if it increases too much, the strain point of the glass decreases, the heat resistance deteriorates, and the acid resistance deteriorates. Therefore, the content of B 2 O 3 is reasonable from 5 to 15%, preferably from 7 to 14%. Fourthly, if the alkaline earth metal oxide (MgO + CaO + SrO + BaO) becomes too small, the meltability of the glass deteriorates or the liquidus temperature tends to rise. On the contrary, if it becomes too much, The density tends to increase. Therefore, the content of the alkaline earth metal oxide is reasonable from 5 to 20%, preferably from 7 to 18%. In addition to the above components, ZnO, P 2 O 5 , ZrO 2 , Y 2 O 3 , Nb 2 O 3 , La are used for improving the meltability, devitrification resistance, acid resistance and adjusting the thermal expansion coefficient. Components such as 2 O 3 and TiO 2 may be contained at 5% or less, and components such as clarifiers such as As 2 O 3 , Sb 2 O 3 , Cl, F and SO 3 are each 2%. You may make it contain. However, if alkali metal oxides (Li 2 O, Na 2 O, K 2 O) are contained in the glass, these components diffuse into the semiconductor element formed on the substrate and adversely affect the semiconductor element. , It is desirable that it does not contain substantially. Therefore, the content of these components should be suppressed to 0.1% or less.

本発明の実施例1として、図1及び図2に示す成形装置1と基本的構成が同一の装置を用いて、質量%で、SiO2 60%、Al23 15%、B23 10%、CaO 6%、SrO 6%、BaO 2%、清澄剤 1%の組成を有する板ガラス(日本電気硝子株式会社製OA−10)を成形した。この装置における成形体2の幅方向の長さは2500mm、成形体2の下端部2bから主冷却ローラ4の中心軸までの距離aは100mm、主冷却ローラ4と補助冷却ローラ5との相互間距離bは200mmである。尚、主冷却ローラ4及び補助冷却ローラ5の冷媒は、何れも空気である。この成形に際しては、ヒータ7によって、成形体2の両側面2cに沿って流下する溶融ガラスYや、成形体2の下端部2bと主冷却ローラ4との間の板状ガラスGを加熱し、板状ガラスGの幅方向両端部の粘度が106.9dPa・sの時に、当該端部を主冷却ローラ4で挟持するようにした。また、引張りローラ3の周速度を200cm/分、主冷却ローラ4の周速度を40cm/分、補助冷却ローラ5の周速度を140cm/分とした。 As Example 1 of the present invention, by using an apparatus having the same basic configuration as that of the molding apparatus 1 shown in FIGS. 1 and 2, in terms of mass%, SiO 2 60%, Al 2 O 3 15%, B 2 O 3 A plate glass (OA-10 manufactured by Nippon Electric Glass Co., Ltd.) having a composition of 10%, CaO 6%, SrO 6%, BaO 2%, and refining agent 1% was molded. The length in the width direction of the molded body 2 in this apparatus is 2500 mm, the distance a from the lower end 2b of the molded body 2 to the central axis of the main cooling roller 4 is 100 mm, and the distance between the main cooling roller 4 and the auxiliary cooling roller 5 is The distance b is 200 mm. The refrigerant of the main cooling roller 4 and the auxiliary cooling roller 5 is air. In this molding, the heater 7 heats the molten glass Y flowing down along the both side surfaces 2c of the molded body 2 and the sheet glass G between the lower end 2b of the molded body 2 and the main cooling roller 4, When the viscosity of both end portions in the width direction of the glass sheet G is 10 6.9 dPa · s, the end portions are held between the main cooling rollers 4. The peripheral speed of the pulling roller 3 was 200 cm / min, the peripheral speed of the main cooling roller 4 was 40 cm / min, and the peripheral speed of the auxiliary cooling roller 5 was 140 cm / min.

このような条件の下で成形された板ガラスは、板幅が2200mm、幅方向中央部の厚みが0.7mmであって、厚みが0.7mm±0.05mmの範囲に収まる有効幅は、1900mm以上であった。この板ガラスを、短辺が1870mm、長辺が2200mmの寸法になるように切断加工し、その反り率を算出したところ、短辺側と長辺側との双方共に0.01%以下であった。また、この板ガラスは、歪点が660℃、30〜380℃における熱膨張係数が37×10-7/℃、密度が2.49g/cm3、液相温度における粘度が106dPa・s以上であり、耐バッファードフッ酸性と耐塩酸性にも優れていた。尚、歪点は、ASTM C336−71の方法に基づいて測定し、熱膨張係数は、押棒式熱膨張測定装置によって測定し、密度は、周知のアルキメデス法に基づいて測定した。板ガラスの液相温度における粘度は、先ず粒径300〜500μmに粉砕したガラスを白金ボートに充填し、温度勾配炉内に8時間保持し、顕微鏡を用いて内部に結晶が析出した最も高い温度を求め、その温度を液相温度とし、周知の白金球引き上げ法により、液相温度に対応する粘度を測定することによって求めた。耐バッファードフッ酸性は、ガラス表面を光学研磨した後、20℃に保持された38.7質量%フッ化アンモニウム、1.6質量%フッ酸からなるバッファードフッ酸溶液に30分間浸漬した後、その表面状態を観察することによって評価し、また耐塩酸性は、ガラス表面を光学研磨してから、80℃に保持された10質量%塩酸水溶液に24時間浸漬した後、その表面状態を観察することによって評価した。上記の板ガラスは、表面の変化が認められず、耐薬品性に優れていた。 The plate glass formed under such conditions has a plate width of 2200 mm, a thickness in the center in the width direction of 0.7 mm, and an effective width within a range of 0.7 mm ± 0.05 mm is 1900 mm. That was all. The plate glass was cut to have a short side of 1870 mm and a long side of 2200 mm, and the warpage rate was calculated. Both the short side and the long side were 0.01% or less. . In addition, this plate glass has a strain point of 660 ° C., a thermal expansion coefficient of 37 × 10 −7 / ° C. at 30 to 380 ° C., a density of 2.49 g / cm 3 , and a viscosity at a liquidus temperature of 10 6 dPa · s or more. It was also excellent in buffered hydrofluoric acid resistance and hydrochloric acid resistance. The strain point was measured based on the method of ASTM C336-71, the thermal expansion coefficient was measured by a push rod type thermal expansion measuring device, and the density was measured based on the well-known Archimedes method. The viscosity of the plate glass at the liquidus temperature is the highest temperature at which crystals are first crushed to a particle size of 300 to 500 μm in a platinum boat, held in a temperature gradient furnace for 8 hours, and crystals are precipitated inside using a microscope. The temperature was determined as the liquidus temperature, and the viscosity corresponding to the liquidus temperature was measured by a well-known platinum ball pulling method. Buffered hydrofluoric acid resistance is obtained by optically polishing a glass surface and then immersing in a buffered hydrofluoric acid solution composed of 38.7% by mass ammonium fluoride and 1.6% by mass hydrofluoric acid maintained at 20 ° C. for 30 minutes. The surface resistance is evaluated by observing the surface state, and the hydrochloric acid resistance is optically polished on the glass surface, immersed in a 10% by mass hydrochloric acid aqueous solution maintained at 80 ° C. for 24 hours, and then the surface state is observed. Was evaluated by The above plate glass was excellent in chemical resistance with no change in the surface.

本発明の実施例2として、引張りローラ3の周速度を220cm/分、主冷却ローラ4の周速度を33cm/分、補助冷却ローラ5の周速度を155cm/分としたこと以外は、全て上記の実施例1と同様にして板ガラスを製造した。   As Example 2 of the present invention, all the above except that the peripheral speed of the tension roller 3 was 220 cm / min, the peripheral speed of the main cooling roller 4 was 33 cm / min, and the peripheral speed of the auxiliary cooling roller 5 was 155 cm / min. A plate glass was produced in the same manner as in Example 1.

このようにして得られた板ガラスは、板幅が2250mm、幅方向中央部の厚みが0.63mmであって、厚みが0.63mm±0.05mmの範囲に収まる有効幅は、1950mm以上であった。この板ガラスを、短辺が1950mm、長辺が2200mmの寸法になるように切断加工し、その反り率を算出したところ、短辺側と長辺側との双方共に0.01%以下であった。   The plate glass thus obtained has a plate width of 2250 mm, a thickness in the center in the width direction of 0.63 mm, and an effective width within a range of 0.63 mm ± 0.05 mm is 1950 mm or more. It was. When this flat glass was cut to have a short side of 1950 mm and a long side of 2200 mm and the warpage rate was calculated, both the short side and the long side were 0.01% or less. .

本発明の実施例3として、成形体2の幅方向長さを2000mmとし、引張りローラ3の周速度を500cm/分、主冷却ローラ4の周速度を40cm/分、補助冷却ローラ5の周速度を300cm/分としたこと以外は、全て上記の実施例1と同様にして板ガラスを製造した。   As Example 3 of the present invention, the length in the width direction of the compact 2 is 2000 mm, the peripheral speed of the pulling roller 3 is 500 cm / min, the peripheral speed of the main cooling roller 4 is 40 cm / min, and the peripheral speed of the auxiliary cooling roller 5 A plate glass was produced in the same manner as in Example 1 except that the thickness was 300 cm / min.

このようにして得られた板ガラスは、板幅が1600mm、幅方向中央部の厚みが0.2mmであって、厚みが0.2mm±0.05mmの範囲内に収まる有効幅は、1200mm以上であった。そして、この板ガラスを、短辺が1200mm、長辺が1400mmの寸法となるように切断加工し、その反り率を算出したところ、短辺側と長辺側との双方共に0.02%以下であった。   The plate glass thus obtained has a plate width of 1600 mm, a thickness in the center in the width direction of 0.2 mm, and an effective width that falls within the range of 0.2 mm ± 0.05 mm is 1200 mm or more. there were. And when this flat glass was cut and processed so that the short side had a dimension of 1200 mm and the long side was 1400 mm, and the warpage rate was calculated, both the short side and the long side were 0.02% or less. there were.

本発明の実施形態に係る板ガラスの成形方法を実施するための成形装置の要部を示す概略側面図である。It is a schematic side view which shows the principal part of the shaping | molding apparatus for enforcing the shaping | molding method of the plate glass which concerns on embodiment of this invention. 前記成形装置の要部を示す概略正面図である。It is a schematic front view which shows the principal part of the said shaping | molding apparatus. 前記成形装置を用いてなる成形方法により得られた板ガラスを誇張して示す概略断面図である。It is a schematic sectional drawing which exaggerates and shows the plate glass obtained by the shaping | molding method which uses the said shaping | molding apparatus.

符号の説明Explanation of symbols

1 成形装置
2 成形体
2b 成形体の下端部
2c 成形体の側面部
3 引張りローラ
4 冷却ローラ
5 補助冷却ローラ
7 ヒータ
8 板ガラス
Y 溶融ガラス
G 板状ガラス
a 成形体の下端部から冷却ローラの中心軸までの距離
b 複数の冷却ローラの相互間距離
DESCRIPTION OF SYMBOLS 1 Molding apparatus 2 Molded body 2b Lower end 2c of molded body Side surface 3 of molded body 3 Pulling roller 4 Cooling roller 5 Auxiliary cooling roller 7 Heater 8 Sheet glass Y Molten glass G Sheet glass a Center of cooling roller from lower end of molded body Distance to shaft b Distance between multiple cooling rollers

Claims (8)

くさび状の断面形状を有する成形体の頂部から両側面に沿って溶融ガラスを流下させることにより、前記成形体の下端部で融合して板状になった板状ガラスを、引張りローラで挟持しつつ下方に引き抜く板ガラスの成形方法において、
前記成形体と引張りローラとの間に、前記板状ガラスの幅方向両端部を挟持して冷却するための冷却ローラを上下方向に複数個設け、最上部の冷却ローラのみに回転駆動力を付与することを特徴とする板ガラスの成形方法。
By letting the molten glass flow down along the both sides from the top of the molded body having a wedge-shaped cross-sectional shape, the glass sheet fused into a plate shape at the lower end of the molded body is sandwiched between tension rollers. In the molding method of the plate glass that is pulled out downward,
A plurality of cooling rollers are provided in the vertical direction between the molded body and the pulling rollers to cool both ends of the sheet glass in the width direction, and a rotational driving force is applied only to the uppermost cooling roller. A method for forming a glass sheet, comprising:
前記複数個の冷却ローラにおける上下に隣り合う冷却ローラの相互間距離が300mm以下であることを特徴とする請求項1に記載の板ガラスの成形方法。   The method for forming a sheet glass according to claim 1, wherein a distance between cooling rollers adjacent to each other in the upper and lower sides of the plurality of cooling rollers is 300 mm or less. 前記最上部の冷却ローラの周速度Aと、前記引張りローラの周速度Bとの比率B/Aを、3.5〜20にすることを特徴とする請求項1または2に記載の板ガラスの成形方法。   3. The sheet glass molding according to claim 1, wherein a ratio B / A between a peripheral speed A of the uppermost cooling roller and a peripheral speed B of the pulling roller is set to 3.5 to 20. 5. Method. 前記複数個の冷却ローラは、内部が中空であり、その中空部を流通する冷媒が、気体であることを特徴とする請求項1〜3の何れかに記載の板ガラスの成形方法。   The method for forming a plate glass according to any one of claims 1 to 3, wherein the plurality of cooling rollers are hollow inside, and the refrigerant flowing through the hollow portion is a gas. 前記引張りローラよりも下流側で固化してなる板ガラスの厚みが0.7mm以下で且つ有効幅が1200mm以上であることを特徴とする請求項1〜4の何れかに記載の板ガラスの成形方法。   The method for forming a sheet glass according to any one of claims 1 to 4, wherein the thickness of the sheet glass solidified downstream of the pulling roller is 0.7 mm or less and the effective width is 1200 mm or more. 前記引張りローラよりも下流側で固化してなる板ガラスの反り率が0.03%以下であることを特徴とする請求項1〜5の何れかに記載の板ガラスの成形方法。   The method for forming a plate glass according to any one of claims 1 to 5, wherein a warp rate of the plate glass solidified downstream of the pulling roller is 0.03% or less. ディスプレイ用基板として使用される板ガラスを成形することを特徴とする請求項1〜6の何れかに記載の板ガラスの成形方法。   The glass sheet forming method according to any one of claims 1 to 6, wherein a glass sheet used as a display substrate is formed. 前記ディスプレイ用基板が、液晶ディスプレイ用基板であることを特徴とする請求項7に記載の板ガラスの成形方法。   The method for forming a glass sheet according to claim 7, wherein the display substrate is a liquid crystal display substrate.
JP2005237721A 2005-08-18 2005-08-18 Sheet glass forming method Active JP4753067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005237721A JP4753067B2 (en) 2005-08-18 2005-08-18 Sheet glass forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005237721A JP4753067B2 (en) 2005-08-18 2005-08-18 Sheet glass forming method

Publications (2)

Publication Number Publication Date
JP2007051028A true JP2007051028A (en) 2007-03-01
JP4753067B2 JP4753067B2 (en) 2011-08-17

Family

ID=37915739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005237721A Active JP4753067B2 (en) 2005-08-18 2005-08-18 Sheet glass forming method

Country Status (1)

Country Link
JP (1) JP4753067B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009058293A1 (en) * 2007-10-29 2009-05-07 Corning Incorporated Pull roll apparatus and method for controlling glass sheet tension
JP2010215428A (en) * 2009-03-13 2010-09-30 Avanstrate Inc Method and apparatus for manufacturing glass plate
WO2011007617A1 (en) * 2009-07-13 2011-01-20 旭硝子株式会社 Glass plate manufacturing method and manufacturing device
JP2011195419A (en) * 2010-03-23 2011-10-06 Nippon Electric Glass Co Ltd Thin glass plate manufacturing device and method for manufacturing the same
US20110239708A1 (en) * 2008-12-19 2011-10-06 Noritomo Nishiura Apparatus for manufacturing glass sheet
WO2011146368A2 (en) * 2010-05-20 2011-11-24 Corning Incorporated Fusion draw method ribbon position control scheme
US8146388B2 (en) 2009-10-29 2012-04-03 Corning Incorporated Low friction edge roll to minimize force cycling
WO2012133842A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Method for manufacturing glass substrate and apparatus for manufacturing glass substrate
CN102822105A (en) * 2011-03-28 2012-12-12 安瀚视特控股株式会社 Production method for glass plate and glass plate production device
WO2013073353A1 (en) * 2011-11-17 2013-05-23 旭硝子株式会社 Support roll, molding device for plate glass having support roll, and molding method for plate glass using support roll
CN103183464A (en) * 2011-03-30 2013-07-03 安瀚视特控股株式会社 Production method for glass sheet and glass sheet production device
CN103204619A (en) * 2011-11-29 2013-07-17 康宁股份有限公司 Glass manufacturing apparatus and methods
WO2013130686A1 (en) * 2012-02-29 2013-09-06 Corning Incorporated Glass manufacturing apparatus and methods
WO2013181184A1 (en) * 2012-05-31 2013-12-05 Corning Incorporated Glass manufacturing apparatus and methods for manufacturing a glass ribbon
CN103842304A (en) * 2012-09-28 2014-06-04 安瀚视特控股株式会社 Process for manufacturing glass substrate and apparatus for manufacturing glass substrate
WO2014185129A1 (en) * 2013-05-16 2014-11-20 旭硝子株式会社 Method for molding glass plate, device for manufacturing glass plate, and method for manufacturing glass plate
WO2014185127A1 (en) * 2013-05-16 2014-11-20 旭硝子株式会社 Method for molding glass plate, device for manufacturing glass plate, and method for manufacturing glass plate
JP2015051882A (en) * 2012-08-09 2015-03-19 日本電気硝子株式会社 Method for producing tempered glass and tempered glass substrate
WO2015050843A1 (en) * 2013-10-04 2015-04-09 Corning Incorporated Glass manufacturing apparatus and method for manufacturing glass sheet
US9212079B2 (en) 2006-06-30 2015-12-15 Corning Incorporated Methods and apparatus for reducing stress variations in glass sheets produced from a glass ribbon
JP2016088786A (en) * 2014-10-31 2016-05-23 AvanStrate株式会社 Manufacturing method for glass plate and manufacturing device for glass plate
KR101680962B1 (en) 2014-03-31 2016-11-29 아반스트레이트 가부시키가이샤 Method and apparatus for making glass substrate
JP2019064903A (en) * 2017-09-29 2019-04-25 AvanStrate株式会社 Method for manufacturing glass plate
WO2019124271A1 (en) * 2017-12-20 2019-06-27 日本電気硝子株式会社 Method for producing glass plate
CN111186988A (en) * 2019-12-30 2020-05-22 彩虹显示器件股份有限公司 Method and system for controlling angular speed of short roller

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10392288B2 (en) 2014-10-03 2019-08-27 Corning Incorporated Method and apparatus for reducing sheet width attenuation of sheet glass
KR20170132048A (en) * 2016-05-23 2017-12-01 코닝정밀소재 주식회사 Glass manufacturing apparatus and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05124826A (en) * 1991-10-31 1993-05-21 Hoya Corp Device for producing glass plate
JPH10291826A (en) * 1997-04-16 1998-11-04 Hoya Corp Production of glass pane and apparatus for production therefor
JP2007051027A (en) * 2005-08-18 2007-03-01 Nippon Electric Glass Co Ltd Glass plate and its forming method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05124826A (en) * 1991-10-31 1993-05-21 Hoya Corp Device for producing glass plate
JPH10291826A (en) * 1997-04-16 1998-11-04 Hoya Corp Production of glass pane and apparatus for production therefor
JP2007051027A (en) * 2005-08-18 2007-03-01 Nippon Electric Glass Co Ltd Glass plate and its forming method

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212079B2 (en) 2006-06-30 2015-12-15 Corning Incorporated Methods and apparatus for reducing stress variations in glass sheets produced from a glass ribbon
WO2009058293A1 (en) * 2007-10-29 2009-05-07 Corning Incorporated Pull roll apparatus and method for controlling glass sheet tension
US8627684B2 (en) 2007-10-29 2014-01-14 Corning Incorporated Pull roll apparatus and method for controlling glass sheet tension
TWI427043B (en) * 2007-10-29 2014-02-21 Corning Inc Pull roll apparatus and method for controlling glass sheet tension
US9061932B2 (en) 2007-10-29 2015-06-23 Corning Incorporated Pull roll apparatus for controlling glass sheet tension
KR101710500B1 (en) * 2008-12-19 2017-02-27 니폰 덴키 가라스 가부시키가이샤 Device and method for producing glass sheet
US20110239708A1 (en) * 2008-12-19 2011-10-06 Noritomo Nishiura Apparatus for manufacturing glass sheet
KR101609206B1 (en) * 2008-12-19 2016-04-05 니폰 덴키 가라스 가부시키가이샤 Device and method for producing glass sheet
KR20160018821A (en) 2008-12-19 2016-02-17 니폰 덴키 가라스 가부시키가이샤 Device and method for producing glass sheet
JP2010215428A (en) * 2009-03-13 2010-09-30 Avanstrate Inc Method and apparatus for manufacturing glass plate
JP5648635B2 (en) * 2009-07-13 2015-01-07 旭硝子株式会社 Glass plate manufacturing method and manufacturing apparatus
EP2455346A1 (en) * 2009-07-13 2012-05-23 Asahi Glass Company, Limited Glass plate manufacturing method and manufacturing device
WO2011007617A1 (en) * 2009-07-13 2011-01-20 旭硝子株式会社 Glass plate manufacturing method and manufacturing device
EP2455346B1 (en) * 2009-07-13 2016-01-13 Asahi Glass Company, Limited Glass plate manufacturing method
US8453478B2 (en) 2009-07-13 2013-06-04 Asahi Glass Company, Limited Glass plate manufacturing method and manufacturing device
KR101751082B1 (en) * 2009-07-13 2017-06-26 아사히 가라스 가부시키가이샤 Glass plate manufacturing method and manufacturing device
US8146388B2 (en) 2009-10-29 2012-04-03 Corning Incorporated Low friction edge roll to minimize force cycling
JP2011195419A (en) * 2010-03-23 2011-10-06 Nippon Electric Glass Co Ltd Thin glass plate manufacturing device and method for manufacturing the same
WO2011146368A3 (en) * 2010-05-20 2012-04-05 Corning Incorporated Fusion draw method ribbon position control scheme
CN102906035A (en) * 2010-05-20 2013-01-30 康宁股份有限公司 Fusion draw method ribbon position control scheme
WO2011146368A2 (en) * 2010-05-20 2011-11-24 Corning Incorporated Fusion draw method ribbon position control scheme
KR101811900B1 (en) 2010-05-20 2017-12-22 코닝 인코포레이티드 Fusion draw method ribbon position control scheme
CN102822105B (en) * 2011-03-28 2015-03-25 安瀚视特控股株式会社 Production method for glass plate and glass plate production device
CN102822105A (en) * 2011-03-28 2012-12-12 安瀚视特控股株式会社 Production method for glass plate and glass plate production device
KR101300858B1 (en) * 2011-03-30 2013-08-27 아반스트레이트코리아 주식회사 Method and apparatus for making glass sheet
CN103183464A (en) * 2011-03-30 2013-07-03 安瀚视特控股株式会社 Production method for glass sheet and glass sheet production device
TWI552969B (en) * 2011-03-30 2016-10-11 Avanstrate Inc Glass plate manufacturing method and glass plate manufacturing apparatus
KR101497251B1 (en) * 2011-03-30 2015-02-27 아반스트레이트 가부시키가이샤 Method and apparatus for making glass sheet
CN103183464B (en) * 2011-03-30 2016-08-03 安瀚视特控股株式会社 The manufacture method of glass plate and device for producing glass sheet
WO2012133842A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Method for manufacturing glass substrate and apparatus for manufacturing glass substrate
CN103183463B (en) * 2011-03-31 2017-08-01 安瀚视特控股株式会社 The manufacture method of glass substrate and the manufacture device of glass substrate
KR101907227B1 (en) * 2011-03-31 2018-10-11 아반스트레이트 가부시키가이샤 Method for manufacturing glass substrate
JP2013212987A (en) * 2011-03-31 2013-10-17 Avanstrate Inc Method for manufacturing glass substrate and device for manufacturing glass substrate
KR101319204B1 (en) * 2011-03-31 2013-10-16 아반스트레이트 가부시키가이샤 Method for manufacturing glass substrate and apparatus for manufacturing glass substrate
TWI409229B (en) * 2011-03-31 2013-09-21 Avanstrate Inc A method for manufacturing a glass substrate, and a manufacturing apparatus for a glass substrate
CN103183463A (en) * 2011-03-31 2013-07-03 安瀚视特控股株式会社 Glass-substrate manufacturing method and glass-substrate manufacturing device
JP5154713B2 (en) * 2011-03-31 2013-02-27 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
US9108873B2 (en) 2011-03-31 2015-08-18 Avanstrate Inc. Glass-substrate manufacturing method and glass-substrate manufacturing device
JP2013018707A (en) * 2011-03-31 2013-01-31 Avanstrate Inc Method and apparatus for manufacturing glass substrate
JPWO2013073353A1 (en) * 2011-11-17 2015-04-02 旭硝子株式会社 Support roll, plate glass forming apparatus having support roll, and plate glass forming method using support roll
WO2013073353A1 (en) * 2011-11-17 2013-05-23 旭硝子株式会社 Support roll, molding device for plate glass having support roll, and molding method for plate glass using support roll
US9670086B2 (en) 2011-11-29 2017-06-06 Corning Incorporated Glass manufacturing apparatus and methods
CN103204619A (en) * 2011-11-29 2013-07-17 康宁股份有限公司 Glass manufacturing apparatus and methods
JP2015512850A (en) * 2012-02-29 2015-04-30 コーニング インコーポレイテッド Glass manufacturing apparatus and method
US9139462B2 (en) 2012-02-29 2015-09-22 Corning Incorporated Glass manufacturing apparatus and methods
KR20140134302A (en) * 2012-02-29 2014-11-21 코닝 인코포레이티드 Glass manufacturing apparatus and methods
KR102087459B1 (en) 2012-02-29 2020-03-10 코닝 인코포레이티드 Glass manufacturing apparatus and methods
WO2013130686A1 (en) * 2012-02-29 2013-09-06 Corning Incorporated Glass manufacturing apparatus and methods
KR20150022928A (en) * 2012-05-31 2015-03-04 코닝 인코포레이티드 Glass manufacturing apparatus and methods for manufacturing a glass ribbon
WO2013181184A1 (en) * 2012-05-31 2013-12-05 Corning Incorporated Glass manufacturing apparatus and methods for manufacturing a glass ribbon
US9388065B2 (en) 2012-05-31 2016-07-12 Corning Incorporated Glass manufacturing apparatus and methods for manufacturing a glass ribbon
KR102067045B1 (en) 2012-05-31 2020-01-16 코닝 인코포레이티드 Glass manufacturing apparatus and methods for manufacturing a glass ribbon
CN104540789A (en) * 2012-05-31 2015-04-22 康宁股份有限公司 Glass manufacturing apparatus and methods for manufacturing a glass ribbon
TWI570075B (en) * 2012-05-31 2017-02-11 康寧公司 Glass manufacturing apparatus and methods for manufacturing a glass ribbon
JP2015051882A (en) * 2012-08-09 2015-03-19 日本電気硝子株式会社 Method for producing tempered glass and tempered glass substrate
CN103842304A (en) * 2012-09-28 2014-06-04 安瀚视特控股株式会社 Process for manufacturing glass substrate and apparatus for manufacturing glass substrate
CN103842304B (en) * 2012-09-28 2016-10-19 安瀚视特控股株式会社 The manufacture method of glass substrate and glass substrate manufacture device
WO2014185127A1 (en) * 2013-05-16 2014-11-20 旭硝子株式会社 Method for molding glass plate, device for manufacturing glass plate, and method for manufacturing glass plate
WO2014185129A1 (en) * 2013-05-16 2014-11-20 旭硝子株式会社 Method for molding glass plate, device for manufacturing glass plate, and method for manufacturing glass plate
US9593033B2 (en) 2013-10-04 2017-03-14 Corning Incorporated Glass manufacturing apparatus and method for manufacturing glass sheet
WO2015050843A1 (en) * 2013-10-04 2015-04-09 Corning Incorporated Glass manufacturing apparatus and method for manufacturing glass sheet
KR101680962B1 (en) 2014-03-31 2016-11-29 아반스트레이트 가부시키가이샤 Method and apparatus for making glass substrate
JP2016088786A (en) * 2014-10-31 2016-05-23 AvanStrate株式会社 Manufacturing method for glass plate and manufacturing device for glass plate
JP2019064903A (en) * 2017-09-29 2019-04-25 AvanStrate株式会社 Method for manufacturing glass plate
WO2019124271A1 (en) * 2017-12-20 2019-06-27 日本電気硝子株式会社 Method for producing glass plate
KR20200100600A (en) * 2017-12-20 2020-08-26 니폰 덴키 가라스 가부시키가이샤 Glass plate manufacturing method
JPWO2019124271A1 (en) * 2017-12-20 2020-12-10 日本電気硝子株式会社 Manufacturing method of glass plate
JP7197835B2 (en) 2017-12-20 2022-12-28 日本電気硝子株式会社 Glass plate manufacturing method
KR102569274B1 (en) 2017-12-20 2023-08-22 니폰 덴키 가라스 가부시키가이샤 Manufacturing method of glass plate
CN111186988A (en) * 2019-12-30 2020-05-22 彩虹显示器件股份有限公司 Method and system for controlling angular speed of short roller

Also Published As

Publication number Publication date
JP4753067B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4753067B2 (en) Sheet glass forming method
JP4826722B2 (en) Sheet glass forming method
JP5375385B2 (en) Manufacturing method of glass substrate
JP5733639B2 (en) Glass substrate
JP5477782B2 (en) Alkali-free glass substrate
JP6593669B2 (en) Support glass substrate and carrier using the same
JP6516085B2 (en) Light guide plate
JP5428287B2 (en) Glass plate manufacturing method and manufacturing equipment
JP5224096B2 (en) Manufacturing method of glass substrate for display
WO2007069739A1 (en) Non-alkali glass substrate and method for producing same
JP2011148685A (en) Tempered glass and method for manufacturing the same
TWI543953B (en) Alkali-free glass
JP6067778B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP5353963B2 (en) Sheet glass and method for forming the same
JP2010215463A (en) Alkali-free glass
JP6380101B2 (en) Glass substrate and slow cooling method thereof
WO2007080924A1 (en) Alkali-free glass substrate
KR102297729B1 (en) Glass production method and glass
JP5729653B2 (en) Sheet glass
JP5071880B2 (en) Method for producing alkali-free glass substrate
JP5071878B2 (en) Alkali-free glass and alkali-free glass substrate using the same
TWI450870B (en) E-glass substrate and its manufacturing method
JP2014231438A (en) Strengthened glass and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4753067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150