WO2014185127A1 - Method for molding glass plate, device for manufacturing glass plate, and method for manufacturing glass plate - Google Patents

Method for molding glass plate, device for manufacturing glass plate, and method for manufacturing glass plate Download PDF

Info

Publication number
WO2014185127A1
WO2014185127A1 PCT/JP2014/056036 JP2014056036W WO2014185127A1 WO 2014185127 A1 WO2014185127 A1 WO 2014185127A1 JP 2014056036 W JP2014056036 W JP 2014056036W WO 2014185127 A1 WO2014185127 A1 WO 2014185127A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating member
glass plate
glass
glass ribbon
mass
Prior art date
Application number
PCT/JP2014/056036
Other languages
French (fr)
Japanese (ja)
Inventor
海 郡司
信之 伴
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2014185127A1 publication Critical patent/WO2014185127A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/04Changing or regulating the dimensions of the molten glass ribbon
    • C03B18/06Changing or regulating the dimensions of the molten glass ribbon using mechanical means, e.g. restrictor bars, edge rollers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Definitions

  • the present invention relates to a glass plate forming method, a glass plate manufacturing apparatus, and a glass plate manufacturing method.
  • the glass ribbon in a state thinner than the equilibrium thickness tends to shrink in the width direction. If the glass ribbon shrinks in the width direction, the thickness of the glass plate as a product becomes thicker than the target thickness. This problem becomes more prominent as the target thickness decreases.
  • a method for forming a glass plate comprising a step of suppressing the shrinkage in the width direction of a belt-like glass ribbon, A support roll for supporting the glass ribbon in a viscosity range of 10 6.7 to 10 7.65 dPa ⁇ s is provided; The support roll has a rotating member in contact with the glass ribbon at the tip, There is provided a method for forming a glass plate, in which the rotating member does not have a coolant channel inside and is formed of ceramics.
  • the glass plate forming apparatus 10 includes a support roll 40 that supports the glass ribbon G in order to suppress the glass ribbon G in the float bath 20 from shrinking in the width direction.
  • a support roll 40 that supports the glass ribbon G in order to suppress the glass ribbon G in the float bath 20 from shrinking in the width direction.
  • a plurality of pairs of support rolls 40 are arranged on both sides in the width direction of the glass ribbon G, and tension is applied to the glass ribbon G in the width direction (Y direction in the figure).
  • the support roll 40 has a rotating member 50 in contact with the glass ribbon G at the tip.
  • the rotating member 50 supports the end of the glass ribbon G in the width direction so that the glass ribbon G does not contract in the width direction by biting into or contacting the upper surface of the glass ribbon G. As the rotating member 50 rotates, the glass ribbon G is sent out in a predetermined direction.
  • FIG. 3 is a front view showing a support roll according to an embodiment of the present invention.
  • 4 is a partial cross-sectional view taken along line IV-IV in FIG.
  • the support roll 40 is mainly composed of a rotating member 50, an attaching member 60 to which the rotating member 50 is attached, and a shaft member 70 integrated with the attaching member 60.
  • a rotating member 50 an attaching member 60 to which the rotating member 50 is attached
  • a shaft member 70 integrated with the attaching member 60.
  • the shaft member 70 has a coolant channel inside, is cooled by the coolant flowing through the coolant channel, and may be formed of a metal material such as steel or a heat-resistant alloy. A heat insulating material (not shown) or the like may be wound around the outer periphery of the shaft member 70.
  • the attachment member 60 includes a shaft portion 62 that is integrated with the shaft member 70, an annular flange portion 63 that protrudes radially outward from the tip portion of the shaft portion 62, and a tip portion of the shaft portion 62.
  • the shaft portion 62 and the rod portion 64 extending coaxially are integrally provided.
  • the flange portion 63 protrudes outward in the radial direction of the shaft portion 62 from the tip end portion (the end portion opposite to the shaft member 70) of the shaft portion 62.
  • the flange portion 63 may be provided with a coolant channel (not shown) that communicates with the coolant channel of the shaft member 70.
  • the rod portion 64 extends coaxially with the shaft portion 62 from the tip portion of the shaft portion 62.
  • the rod portion 64 may be provided with a coolant channel (not shown) that communicates with the coolant channel of the shaft member 70.
  • the rod portion 64 penetrates the rotating member 50 and has a male screw portion at the tip. The movement of the rotating member 50 in the axial direction is restricted by the nut 41 screwed to the male screw portion and the flange portion 63. By removing the nut 41 from the male screw portion, the rotating member 50 can be removed.
  • the rotating member 50 has a disk shape, and the central axis of the rotating member 50 and the central axis of the shaft member 70 are on the same straight line.
  • the rotating member 50 contacts the surface of the glass ribbon G (the upper surface in the present embodiment) at the outer peripheral portion 51. As the rotating member 50 rotates, the glass ribbon G is sent out in a predetermined direction.
  • Rotating member 50 has gear-like irregularities 52 on outer peripheral portion 51, for example, as shown in FIG.
  • the unevenness 52 makes it easy for the rotating member 50 to bite into the glass ribbon G.
  • corrugation 52 is not specifically limited, For example, as shown in FIG. 3, you may form in a taper shape (for example, square pyramid shape).
  • the gear-shaped irregularities 52 are formed in a row in the thickness direction (Y direction in FIG. 1) of the outer peripheral portion 51 of the rotating member 50, but may be formed in a plurality of rows.
  • Rotating member 50 does not have a refrigerant flow path inside. Since the rod portion 64 inserted into the through hole of the rotating member 50 is a member different from the rotating member 50, the refrigerant flow path formed in the rod portion 64 is a refrigerant flow formed outside the rotating member 50. Road.
  • the rotating member 50 is formed of ceramics. Ceramics has a high temperature strength higher than that of conventional metals such as steel and heat-resistant alloys, so that the conventionally required refrigerant flow path is not required. Therefore, since the refrigerant does not flow inside the rotating member 50, the glass ribbon G is not easily cooled in the vicinity of the rotating member 50. As a result, the temperature of the glass ribbon G, and hence the thickness of the glass ribbon G, is stabilized, so that the flatness of the glass plate as a product is improved. Further, since the glass ribbon G is not easily cooled and hardened in the vicinity of the rotating member 50, the rotating member 50 is easy to bite into the glass ribbon G, and the grip property of the rotating member 50 to the glass ribbon G is improved.
  • the rotating member 50 can Grip can be achieved, and the occurrence of wave-like deformation of the glass ribbon G can be reduced. Therefore, the flatness of the glass plate can be improved.
  • the glass ribbon G is supported in the second low temperature range B ′ (range of 937 ° C. or more and less than 946 ° C. in the case of non-alkali glass) having a viscosity range of more than 10 7.5 to 10 7.65 dPa ⁇ s. It is preferably supported by the roll 40.
  • the glass ribbon G in the present embodiment in the region viscosity is less than 10 6.7 dPa ⁇ s of the glass ribbon G, but is supported by the supporting roll 40 may be supported by a conventional support roll. In a region where the viscosity of the glass ribbon G is less than 10 6.7 dPa ⁇ s, the glass ribbon G can be gripped by a conventional rotating member.
  • the ceramic rotary member 50 is not particularly limited, for example, silicon carbide (SiC) quality ceramics, silicon nitride (Si 3 N 4) such quality ceramics are used. Silicon carbide and silicon nitride have high resistance to the splash of molten tin S and the vapor of molten tin S, and are excellent in high temperature strength and creep characteristics.
  • the ceramic type of the rotating member 50 is selected according to the type of glass plate (ie, glass ribbon G) that is the product.
  • glass plate ie, glass ribbon G
  • silicon nitride ceramics excellent in thermal shock resistance are suitable.
  • the temperature in the float bath 20 tends to be high, so that the higher the thermal shock resistance, the higher the degree of freedom of operation.
  • the higher the temperature the more likely the reactivity with the glass ribbon G and the molten tin S becomes a problem, but the silicon nitride ceramic tends to have a low reactivity.
  • the glass plate is soda lime glass, silicon carbide ceramics or alumina ceramics can be used in addition to silicon nitride ceramics.
  • the kind of glass plate which is a product is not particularly limited.
  • the composition of the glass plate is, for example, expressed as mass% on the basis of oxide, SiO 2 : 50 to 75%, Al 2 O 3 : 0.1 to 24%, B 2 O 3 : 0 to 12%, MgO: 0 ⁇ 10%, CaO: 0-14.5%, SrO: 0-24%, BaO: 0-13.5%, Na 2 O: 0-20%, K 2 O: 0-20%, ZrO 2 : 0 to 5%, MgO + CaO + SrO + BaO: 5 to 29.5%, Na 2 O + K 2 O: 0 to 20%.
  • the alkali-free glass is, for example, expressed in terms of mass percentage based on oxide, SiO 2 : 50 to 70%, preferably 50 to 66%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0 to 12%, MgO: 0 to 10%, preferably 0 to 8%, CaO: 0 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, ZrO 2 : 0 to 5% MgO + CaO + SrO + BaO: 8 to 29.5%, preferably 9 to 29.5%.
  • the alkali-free glass is preferably expressed in terms of mass percentage based on oxide, SiO 2 : 54 to 73%, Al 2 O 3 : 10.5 to 22.5%, B 2 O 3 : 0 to 5.5%, MgO: 0 to 10%, CaO: 0 to 9%, SrO: 0 to 16%, BaO: 0 to 2.5%, MgO + CaO + SrO + BaO: 8 to 26% is there.
  • the rotating member 50 that contacts the glass ribbon G may be silicon nitride ceramics, and the entire rotating member 50 is not silicon nitride ceramics. Also good.
  • a silicon nitride ceramic layer may be formed on a base material made of metal, carbon or other ceramics by film formation, bonding or fitting.
  • different types of ceramics may be used for each part of the rotating member 50.
  • the entire rotating member 50 is formed of silicon nitride ceramics.
  • the silicon nitride ceramic has an aluminum (Al) content of 0.1% by mass or less, preferably less than 1% by mass, and a magnesium (Mg) content of 0.7% by mass or less, preferably 0.7% by mass.
  • the titanium (Ti) content is 0.9 mass% or less, preferably less than 0.9 mass%.
  • the silicon nitride ceramic has a zirconium (Zr) content of 3.5% by mass or less, preferably less than 3.5% by mass, and a yttrium (Y) content of 0.5% by mass or more, preferably 0.5%. It is preferable to be more than 10% by mass, more preferably less than 10% by mass.
  • Zr and Y are components that are less likely to interdiffuse with the glass ribbon G as compared with Al, Mg, and Ti, and thus may be contained in the above range. By containing in the above range, sintering of the silicon nitride powder can be promoted.
  • Zr is an optional component, and the Zr content may be 0% by mass.
  • a circular hole is formed through the center of the rotating member 50.
  • the rod portion 64 is inserted through the circular hole.
  • the inner diameter of the circular hole is larger than the outer diameter of the rod portion 64.
  • the insertion hole is formed through the rotating member 50.
  • the shaft portions 67 and 68 are inserted through the insertion holes.
  • the inner diameter of each insertion hole is larger than the outer diameter of the corresponding shaft portions 67 and 68.
  • FIG. 5 is a front view showing a modified example (1) of the rotating member.
  • FIG. 6 is an example of a cross-sectional view taken along the line VI-VI in FIG.
  • FIG. 7 is a first diagram showing dimensions of the convex shape of the rotating member of FIG. 6.
  • FIG. 8 is a second diagram illustrating the dimensions of the convex shape of the rotating member in FIG. 6.
  • the outer peripheral surface 56 ⁇ / b> A of the rotating member 50 ⁇ / b> A of the modification (1) has a curved shape with a cross-sectional shape that protrudes radially outward over the entire circumference.
  • the central portion in the axial direction protrudes radially outward from both end portions in the axial direction.
  • the outer peripheral surface 56A of the rotating member 50A has the same cross-sectional shape over the entire circumference.
  • the rotating member 50A does not have gear-like irregularities on the outer peripheral surface 56A.
  • the convex curved radius of curvature Ra is preferably R1 to R100 mm, more preferably R3 to R50 mm, and even more preferably R5 to R30 mm in consideration of gripping force with the glass ribbon G.
  • R10 to R20 mm are particularly preferable.
  • a curvature radius Rb at the central portion in the axial direction and a curvature radius Rc at both end portions in the axial direction may be a composite R.
  • the radii of curvature Rb and Rc are preferably R1 to R100 mm, more preferably R3 to R50 mm, still more preferably R5 to R30 mm, and particularly preferably R10 to R20 mm.
  • the convex curve may have a flat portion in part, but it is preferable not to have a flat portion because the grip force with the glass ribbon G is stable.
  • the radial width d of the rotating member 50A in the convex curved shape shown in FIG. 7 is preferably 0.5 mm or more, more preferably 1 mm or more, and further preferably 2 mm or more. Similarly, the radial width d of the rotating member 50A in the convex curved shape is preferably 5 mm or less, and more preferably 4 mm or less.
  • the radius r of the rotating member 50A shown in FIG. 7 is preferably 100 mm or more, more preferably 150 mm or more, and still more preferably 180 mm or more in consideration of prevention of contact between the mounting member 60 and the glass ribbon G and the horizontality of the shaft member 70.
  • 350 mm or less is preferable, 300 mm or less is more preferable, and 270 mm or less is more preferable.
  • the thickness w of the rotating member 50A is preferably 5 mm or more, more preferably 10 mm or more, further preferably 15 mm or more, particularly preferably 30 mm or more, and the flatness of the glass ribbon G is improved in consideration of the grip force with the glass ribbon G. In view of preventing unnecessary increase in grip width, it is preferably 120 mm or less, more preferably 100 mm or less, further preferably 80 mm or less, still more preferably 60 mm or less, and particularly preferably 40 mm or less.
  • the outer peripheral surface 56A of the rotating member 50A is a curved shape whose cross-sectional shape is radially outward and has no gear-like unevenness, as shown in FIGS. It is hard to break and the molding and processing costs are reduced. 6 to 8 is preferable because the glass ribbon G can be stably formed into a sheet glass.
  • the cross-sectional shape of the outer peripheral surface 56A of the rotating member 50A of the modified example (1) is a curved shape convex outward in the radial direction, but may be flat. In this case, the rotating member is between the outer peripheral surface and the side surface.
  • the cross-sectional shape may have a rounded boundary.
  • a plurality of protrusions having a height of 0.1 to 10 mm may be provided on the outer peripheral surface of the rotating member, or a plurality of grooves having a depth of 0.1 to 10 mm may be provided on the outer peripheral surface of the rotating member. .
  • the height of the protrusion and the depth of the groove are measured using the outer peripheral surface of the rotating member as a reference surface.
  • the height of the protrusion and the depth of the groove are smaller than the radius r shown in FIG. 7, the curvature radius Ra shown in FIG. 7, and the curvature radii Rb and Rc shown in FIG.
  • FIG. 9 to 12 are front views showing modified examples (2) to (5) of the rotating member.
  • the rotating members 50B to 50E are provided with notches 57B or through holes 58C, 58D, and 59E in order to relieve stress caused by a temperature gradient in the rotating members 50B to 50E. Is formed.
  • a conventional metal rotating member has a cooling flow path therein, and thus it is difficult to provide the notch and the through hole.
  • the rotating member of this modification does not require cooling, and there is no need to provide a cooling channel.
  • the notch and the through hole can be easily and arbitrarily provided. When the notch or the through hole is provided in the rotating member, the stress of the rotating member can be relieved, and further, residual stress at the time of manufacturing the rotating member is also relieved, and distortion and breakage of the rotating member can be prevented. .
  • the rotating member 50B shown in FIG. 9 is used in place of the rotating member 50 shown in FIG.
  • the rotating member 50B of the modified example (2) includes a circular hole 53B through which the rod portion 64 (see FIG. 4) is inserted, and insertion holes 54B and 55B through which the shaft portions 67 and 68 (see FIG. 4) are inserted.
  • a plurality of arc-shaped cutouts 57B are formed at intervals along the inner periphery of the circular hole 53B.
  • a rotating member 50D shown in FIG. 11 is used in place of the rotating member 50 shown in FIG.
  • the rotating member 50D of the modified example (4) has a circular hole 53D through which the rod portion 64 (see FIG. 4) is inserted and insertion holes 54D and 55D through which the shaft portions 67 and 68 (see FIG. 4) are inserted.
  • a plurality of arc-shaped through holes 58D that are long in the circumferential direction are formed.
  • the rotating member 50E shown in FIG. 12 is used in place of the rotating member 50 shown in FIG.
  • the rotating member 50E of the modified example (5) includes a circular hole 53E through which the rod portion 64 (see FIG. 4) is inserted, and insertion holes 54E and 55E through which the shaft portions 67 and 68 (see FIG. 4) are inserted.
  • a plurality of circular through holes 59E are formed.
  • the dimensional shape and arrangement position of the notch 57B and the through holes 58C, 58D, and 59E are obtained by, for example, stress analysis such as a finite element method.
  • test piece and the test plate for evaluation were produced by processing a sintered body of silicon nitride (Si 3 N 4 ) -based ceramics that differs for each example.
  • the wettability of the sintered body with respect to the molten glass was measured with a high temperature wettability tester (manufactured by ULVAC-RIKO, WET1200). Specifically, a square glass piece of alkali-free glass (manufactured by Asahi Glass Co., Ltd., AN100) was placed on a test plate processed to a thickness of 1 mm, heated in a nitrogen atmosphere to 1150 ° C. in 10 minutes, and 1150 ° C. Was maintained for 10 minutes to form a molten glass, and the temperature was lowered from 1150 ° C. to 1050 ° C. in 90 seconds and maintained at 1050 ° C., and the contact angle of the droplet was measured.
  • a high temperature wettability tester manufactured by ULVAC-RIKO, WET1200. Specifically, a square glass piece of alkali-free glass (manufactured by Asahi Glass Co., Ltd., AN100) was placed on a test plate processed to
  • the support roll 40 of the above embodiment is used in the float method, but may be used in other forming methods, for example, the fusion method.
  • the support rolls are columnar or cylindrical, and are used in pairs so as to sandwich the glass ribbon from the front side and the back side, and the support roll group consisting of the two support rolls is a glass ribbon. Plural pairs are arranged on both sides in the width direction.

Abstract

Provided is a method for molding a glass plate that includes a step in which contraction in the width direction of a strip-shaped glass ribbon is minimized, and wherein: a support roller is provided that supports a glass ribbon in an area in which the glass ribbon has a viscosity in the range of 10.6.7-107.65 dPa·s; the support roller comprises a rotating member on the tip section thereof that comes into contact with the glass ribbon; and the rotating member does not comprise a refrigerant flow path in the interior thereof and is formed from ceramic.

Description

ガラス板の成形方法、ガラス板の製造装置、およびガラス板の製造方法Glass plate forming method, glass plate manufacturing apparatus, and glass plate manufacturing method
 本発明は、ガラス板の成形方法、ガラス板の製造装置、およびガラス板の製造方法に関する。 The present invention relates to a glass plate forming method, a glass plate manufacturing apparatus, and a glass plate manufacturing method.
 ガラス板の成形方法として、フロート法が広く用いられている。フロート法は、浴槽内に収容される溶融金属(例えば、溶融スズ)上に導入された溶融ガラスを所定方向に流動させ、帯板状のガラスリボンとする方法である。ガラスリボンは、水平方向に流動する過程で徐々に冷却された後、リフトアウトロールによって溶融金属から引き上げられ、徐冷炉内で徐冷され板状ガラスとなる。板状ガラスは、徐冷炉から搬出された後、切断機によって所定の寸法形状に切断され製品であるガラス板となる。 The float method is widely used as a glass plate forming method. The float method is a method in which molten glass introduced on a molten metal (for example, molten tin) accommodated in a bathtub is caused to flow in a predetermined direction to form a strip-shaped glass ribbon. The glass ribbon is gradually cooled in the process of flowing in the horizontal direction, then pulled up from the molten metal by a lift-out roll, and gradually cooled in a slow cooling furnace to become a sheet glass. The plate glass is unloaded from the slow cooling furnace, and then cut into a predetermined size and shape by a cutting machine to become a product glass plate.
 また、別の成形方法として、フュージョン法も知られている。フュージョン法は、樋状部材の左右両側の上縁から溢れ出した溶融ガラスを、樋状部材の左右両側面に沿って流下させ、左右両側面が交わる下縁で合わせることにより、帯板状のガラスリボンとする方法である。ガラスリボンは、鉛直方向下方に移動しながら徐冷され板状ガラスとなる。板状ガラスは、切断機によって所定の寸法形状に切断され、製品であるガラス板となる。 Also, as another molding method, a fusion method is also known. In the fusion method, the molten glass overflowing from the upper edges of the left and right sides of the bowl-shaped member is allowed to flow along the left and right sides of the bowl-shaped member, and is joined at the lower edge where the left and right sides meet. This is a method of making a glass ribbon. The glass ribbon is gradually cooled while moving downward in the vertical direction to form a sheet glass. The plate-like glass is cut into a predetermined dimensional shape by a cutting machine to become a glass plate as a product.
 ところで、平衡厚さより薄い状態にあるガラスリボンは、幅方向に収縮しようとする。仮に、ガラスリボンが幅方向に収縮すると、製品であるガラス板の厚さが目標の厚さよりも厚くなってしまう。この問題は、目標の厚さが薄くなるほど顕著である。 By the way, the glass ribbon in a state thinner than the equilibrium thickness tends to shrink in the width direction. If the glass ribbon shrinks in the width direction, the thickness of the glass plate as a product becomes thicker than the target thickness. This problem becomes more prominent as the target thickness decreases.
 そこで、従来から、ガラスリボンの幅方向の収縮を抑制するため、ガラスリボンを支持する支持ロールが用いられている(例えば、特許文献1参照)。支持ロールは、ガラスリボンの幅方向両側に複数対配置され、ガラスリボンに対し幅方向に張力を加える。支持ロールは、ガラスリボンの表面と接触する回転部材を先端部に有する。回転部材が回転することによって、ガラスリボンが所定方向に送り出される。ガラスリボンは所定方向に移動しながら、徐々に冷却され固くなる。 Therefore, conventionally, in order to suppress shrinkage in the width direction of the glass ribbon, a support roll for supporting the glass ribbon has been used (for example, see Patent Document 1). A plurality of pairs of support rolls are arranged on both sides of the glass ribbon in the width direction, and tension is applied to the glass ribbon in the width direction. The support roll has a rotating member in contact with the surface of the glass ribbon at the tip. As the rotating member rotates, the glass ribbon is sent out in a predetermined direction. The glass ribbon is gradually cooled and hardened while moving in a predetermined direction.
 支持ロールの回転部材は、鋼や耐熱合金などの金属材料で円盤状に形成され、回転部材のガラスリボンと接触する部分には、クロムめっき層などが施される場合もある。回転部材は、ガラスリボンを支持しやすいように、ガラスリボンと接触する外周部に、歯車状の凹凸を有している。 The rotating member of the support roll is formed in a disk shape with a metal material such as steel or a heat-resistant alloy, and a chromium plating layer or the like may be applied to the portion of the rotating member that contacts the glass ribbon. The rotating member has gear-shaped irregularities on the outer peripheral portion in contact with the glass ribbon so that the glass ribbon is easily supported.
特開2011-225386号公報JP 2011-225386 A
 支持ロールは、フロートバスの成形域(例えば、ガラスリボンが104.5~107.5dPa・sの粘度範囲の領域)に設けられている。近年、ガラス板、特にディスプレイ基板用ガラス板は、高品質化が求められている。また、ディスプレイ基板用ガラス板は、薄板化(例えば厚さ0.5mm以下)も求められている。 The support roll is provided in a float bath forming region (for example, a region where the glass ribbon has a viscosity range of 10 4.5 to 10 7.5 dPa · s). In recent years, glass plates, particularly glass plates for display substrates, are required to have high quality. Moreover, the glass plate for display substrates is also required to be thin (for example, a thickness of 0.5 mm or less).
 従来の回転部材は、金属の熱変形を抑制するため、内部に冷媒流路を有していた。冷媒が回転部材の内部を流れるので、回転部材の近傍においてガラスリボンが強く冷却され固くなる。そのため、フロートバスの低温域(ガラスリボンが106.7~107.65dPa・sの粘度範囲の領域)でガラスリボンを回転部材でグリップすることが難しかった。そのため、ガラスリボンが幅方向に縮み、ガラスリボンに波状の変形が発生することがあった。 The conventional rotating member has a refrigerant flow path inside to suppress thermal deformation of the metal. Since the refrigerant flows inside the rotating member, the glass ribbon is strongly cooled and hardened in the vicinity of the rotating member. Therefore, it was difficult to grip the glass ribbon with the rotating member in the low temperature region of the float bath (the region where the glass ribbon has a viscosity range of 10 6.7 to 10 7.65 dPa · s). For this reason, the glass ribbon may shrink in the width direction, and a wavy deformation may occur in the glass ribbon.
 本発明は、上記課題に鑑みてなされたものであって、ガラスリボンの波状の変形を改善できる、ガラス板の成形方法の提供を目的とする。 This invention was made in view of the said subject, Comprising: It aims at provision of the shaping | molding method of a glass plate which can improve the wavy deformation | transformation of a glass ribbon.
 上記課題を解決するため、本発明の一態様によれば、
 帯板状のガラスリボンの幅方向の収縮を抑制する工程を有する、ガラス板の成形方法であって、
 前記ガラスリボンが106.7~107.65dPa・sの粘度範囲の領域で前記ガラスリボンを支持する支持ロールが設けられ、
 該支持ロールは、前記ガラスリボンと接触する回転部材を先端部に有し、
 該回転部材が、内部に冷媒流路を有しておらず、セラミックスで形成される、ガラス板の成形方法が提供される。
In order to solve the above problems, according to one aspect of the present invention,
A method for forming a glass plate, comprising a step of suppressing the shrinkage in the width direction of a belt-like glass ribbon,
A support roll for supporting the glass ribbon in a viscosity range of 10 6.7 to 10 7.65 dPa · s is provided;
The support roll has a rotating member in contact with the glass ribbon at the tip,
There is provided a method for forming a glass plate, in which the rotating member does not have a coolant channel inside and is formed of ceramics.
 本発明の一態様によれば、ガラスリボンの波状の変形を改善できる、ガラス板の成形方法が提供できる。 According to one aspect of the present invention, a glass plate forming method that can improve the wave-like deformation of the glass ribbon can be provided.
本発明の一実施形態によるガラス板の成形装置を示す一部断面図である。1 is a partial cross-sectional view showing a glass sheet forming apparatus according to an embodiment of the present invention. 図1のII-II線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 本発明の一実施形態による支持ロールを示す正面図である。It is a front view which shows the support roll by one Embodiment of this invention. 図3のIV-IV線に沿った一部断面図である。FIG. 4 is a partial cross-sectional view taken along line IV-IV in FIG. 3. 回転部材の変形例(1)を示す正面図である。It is a front view which shows the modification (1) of a rotating member. 図5のVI-VI線に沿った断面図である。FIG. 6 is a sectional view taken along line VI-VI in FIG. 5. 図6の回転部材の凸形状の寸法を示す図その1である。FIG. 7 is a first diagram illustrating dimensions of a convex shape of the rotating member of FIG. 6. 図6の回転部材の凸形状の寸法を示す図その2である。FIG. 7 is a second diagram illustrating dimensions of a convex shape of the rotating member of FIG. 6. 回転部材の変形例(2)を示す正面図である。It is a front view which shows the modification (2) of a rotating member. 回転部材の変形例(3)を示す正面図である。It is a front view which shows the modification (3) of a rotating member. 回転部材の変形例(4)を示す正面図である。It is a front view which shows the modification (4) of a rotation member. 回転部材の変形例(5)を示す正面図である。It is a front view which shows the modification (5) of a rotation member. 例1~例4による窒化ケイ素質セラミックスの焼結体に対する溶融ガラスの濡れ性の時間変化を示すグラフである。6 is a graph showing the change over time of the wettability of molten glass with respect to sintered silicon nitride ceramics according to Examples 1 to 4.
 以下、本発明の一実施形態について、図面を参照して説明する。以下の図面において、同一のまたは対応する構成には、同一のまたは対応する符号を付して、説明を省略する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof is omitted.
 (ガラス板の成形装置および成形方法)
 図1は、本発明の一実施形態によるガラス板の成形装置を示す一部断面図である。図2は、図1のII-II線に沿った断面図である。図2において、フロートバス20の成形域(ガラスリボンGが104.5~107.5dPa・sの粘度範囲の領域)をA、フロートバス20の第1低温域(ガラスリボンGが106.7~107.65dPa・s)をB、フロートバス20の第2低温域(ガラスリボンGが107.5超~107.65dPa・sの粘度範囲の領域)をB´で示す。成形域Aと第1低温域Bとは一部重なる。第2低温域B´は、第1低温域Bに含まれるが、成形域Aとは重ならない。
(Glass plate molding apparatus and molding method)
FIG. 1 is a partial cross-sectional view showing a glass sheet forming apparatus according to an embodiment of the present invention. FIG. 2 is a sectional view taken along line II-II in FIG. In FIG. 2, the forming area of the float bath 20 (the glass ribbon G has a viscosity range of 10 4.5 to 10 7.5 dPa · s) is A, and the first low temperature area of the float bath 20 (the glass ribbon G is 10). 6.7 to 10 7.65 dPa · s) and B ′ is the second low temperature region of the float bath 20 (the glass ribbon G has a viscosity range of more than 10 7.5 to 10 7.65 dPa · s). It shows with. The molding area A and the first low temperature area B partially overlap. The second low temperature region B ′ is included in the first low temperature region B, but does not overlap with the molding region A.
 ガラス板の成形装置10は、フロートバス20を有する。フロートバス20は、溶融金属(例えば、溶融スズ)Sを収容する浴槽22、浴槽22の外周上縁に沿って設置される側壁24、および側壁24に連結され、浴槽22の上方を覆う天井26などで構成される。天井26には、浴槽22と天井26との間に形成される空間28に、還元性ガスを供給するガス供給路30が設けられている。また、ガス供給路30には、加熱源としてのヒータ32が挿通されており、ヒータ32の発熱部32aが溶融スズSおよびガラスリボンG上方に配置されている。 The glass plate forming apparatus 10 has a float bath 20. The float bath 20 is connected to the bathtub 22 that houses the molten metal (for example, molten tin) S, the side wall 24 that is installed along the outer peripheral upper edge of the bathtub 22, and the ceiling 26 that covers the upper side of the bathtub 22. Etc. The ceiling 26 is provided with a gas supply path 30 for supplying a reducing gas in a space 28 formed between the bathtub 22 and the ceiling 26. Further, a heater 32 as a heating source is inserted into the gas supply path 30, and a heat generating part 32 a of the heater 32 is disposed above the molten tin S and the glass ribbon G.
 上記成形装置10を用いた成形方法は、溶融金属(例えば、溶融スズ)S上に導入された溶融ガラスを所定方向に流動させることにより、帯板状のガラスリボンGとする方法である。ガラスリボンGは、所定方向(図2中、X方向)に流動する過程で冷却された後、リフトアウトロールによって溶融スズSから引き上げられ、徐冷炉内で徐冷され、板状ガラスとなる。板状ガラスは、徐冷炉から搬出された後、切断機によって所定の寸法形状に切断され、製品であるガラス板となる。 The forming method using the forming apparatus 10 is a method for forming a ribbon glass ribbon G by causing molten glass introduced on a molten metal (for example, molten tin) S to flow in a predetermined direction. The glass ribbon G is cooled in the process of flowing in a predetermined direction (X direction in FIG. 2), then pulled up from the molten tin S by a lift-out roll, and gradually cooled in a slow cooling furnace to become a sheet glass. The plate-like glass is unloaded from the slow cooling furnace and then cut into a predetermined size and shape by a cutting machine to become a glass plate as a product.
 フロートバス20内の空間28は、溶融スズSの酸化を防止するため、ガス供給路30から供給される還元性ガスで満たされている。還元性ガスは、例えば、水素ガスを1~15体積%、窒素ガスを85~99体積%含んでいる。フロートバス20内の空間28は、側壁24の隙間などから大気が混入するのを防止するため、大気圧よりも高い気圧に設定されている。 The space 28 in the float bath 20 is filled with a reducing gas supplied from the gas supply path 30 in order to prevent the molten tin S from being oxidized. The reducing gas contains, for example, 1 to 15% by volume of hydrogen gas and 85 to 99% by volume of nitrogen gas. The space 28 in the float bath 20 is set to a pressure higher than the atmospheric pressure in order to prevent air from entering through the gaps between the side walls 24 and the like.
 フロートバス20内の温度分布を調節するため、ヒータ32は、例えば、ガラスリボンGの流動方向(X方向)および幅方向(Y方向)に間隔をおいて複数設けられ、マトリックス状に配置されている。ヒータ32の出力は、ガラスリボンGの流動方向(X方向)上流側ほど、ガラスリボンGの温度が高くなるように制御される。また、ヒータ32の出力は、ガラスリボンGの厚さが幅方向(Y方向)に均一になるように制御される。 In order to adjust the temperature distribution in the float bath 20, a plurality of heaters 32 are provided at intervals in the flow direction (X direction) and the width direction (Y direction) of the glass ribbon G, for example, and arranged in a matrix. Yes. The output of the heater 32 is controlled so that the temperature of the glass ribbon G becomes higher toward the upstream side in the flow direction (X direction) of the glass ribbon G. The output of the heater 32 is controlled so that the thickness of the glass ribbon G is uniform in the width direction (Y direction).
 また、ガラス板の成形装置10は、フロートバス20内のガラスリボンGが幅方向に収縮するのを抑制するため、ガラスリボンGを支持する支持ロール40を有する。支持ロール40は、図2に示すように、ガラスリボンGの幅方向両側に複数対配置され、ガラスリボンGに対し幅方向(図中、Y方向)に張力を加える。 Also, the glass plate forming apparatus 10 includes a support roll 40 that supports the glass ribbon G in order to suppress the glass ribbon G in the float bath 20 from shrinking in the width direction. As shown in FIG. 2, a plurality of pairs of support rolls 40 are arranged on both sides in the width direction of the glass ribbon G, and tension is applied to the glass ribbon G in the width direction (Y direction in the figure).
 支持ロール40は、ガラスリボンGと接触する回転部材50を先端部に有する。回転部材50は、ガラスリボンGの上面に食い込むあるいは接触することにより、ガラスリボンGが幅方向に収縮しないように、ガラスリボンGの幅方向端部を支持する。回転部材50が回転することによって、ガラスリボンGが所定方向に送り出される。 The support roll 40 has a rotating member 50 in contact with the glass ribbon G at the tip. The rotating member 50 supports the end of the glass ribbon G in the width direction so that the glass ribbon G does not contract in the width direction by biting into or contacting the upper surface of the glass ribbon G. As the rotating member 50 rotates, the glass ribbon G is sent out in a predetermined direction.
 (支持ロール)
 図3は、本発明の一実施形態による支持ロールを示す正面図である。図4は、図3のIV-IV線に沿った一部断面図である。
(Support roll)
FIG. 3 is a front view showing a support roll according to an embodiment of the present invention. 4 is a partial cross-sectional view taken along line IV-IV in FIG.
 支持ロール40は、主に、回転部材50と、回転部材50が取り付けられる取り付け部材60と、取り付け部材60と一体化された軸部材70とで構成される。以下、回転部材50、取り付け部材60、および軸部材70の構成について説明するが、説明の都合上、軸部材70、取り付け部材60、回転部材50の順で説明する。 The support roll 40 is mainly composed of a rotating member 50, an attaching member 60 to which the rotating member 50 is attached, and a shaft member 70 integrated with the attaching member 60. Hereinafter, although the structure of the rotation member 50, the attachment member 60, and the shaft member 70 is demonstrated, it demonstrates in order of the shaft member 70, the attachment member 60, and the rotation member 50 for convenience of explanation.
 (軸部材)
 軸部材70は、冷媒流路を内部に有し、冷媒流路を流れる冷媒によって冷却され、鋼や耐熱合金などの金属材料で形成されてよい。軸部材70の外周には、不図示の断熱材等を巻き付けてもよい。
(Shaft member)
The shaft member 70 has a coolant channel inside, is cooled by the coolant flowing through the coolant channel, and may be formed of a metal material such as steel or a heat-resistant alloy. A heat insulating material (not shown) or the like may be wound around the outer periphery of the shaft member 70.
 軸部材70は、例えば、2重管であって、内管および外管で構成される。内管の内側空間と、内管の外周面と外管の内周面との間に形成される空間とで冷媒流路が構成される。 The shaft member 70 is, for example, a double pipe, and includes an inner pipe and an outer pipe. A refrigerant flow path is constituted by the inner space of the inner tube and the space formed between the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube.
 冷媒としては、水などの液体、または、空気などの気体が用いられる。冷媒は、例えば、内管の内側空間を通り、取り付け部材60の内側空間に供給された後、内管の外周面と外管の内周面との間に形成される空間を通り、外部に排出される。外部に排出された冷媒は、冷却器で冷却され、再び、内管の内側空間に還流されてもよい。なお、冷媒の流れ方向は逆方向であってもよい。 As the refrigerant, a liquid such as water or a gas such as air is used. For example, after the refrigerant passes through the inner space of the inner pipe and is supplied to the inner space of the mounting member 60, the refrigerant passes through the space formed between the outer peripheral surface of the inner pipe and the inner peripheral surface of the outer pipe, Discharged. The refrigerant discharged to the outside may be cooled by a cooler and returned to the inner space of the inner pipe again. Note that the flow direction of the refrigerant may be in the opposite direction.
 軸部材70は、図1に示すように、側壁24を貫通しており、フロートバス20の外部において、モータや減速機などで構成される駆動装置34に接続されている。駆動装置34が作動することによって、軸部材70の中心軸線を中心に、軸部材70、取り付け部材60、および回転部材50が一体的に回転する。 As shown in FIG. 1, the shaft member 70 passes through the side wall 24, and is connected to a drive device 34 constituted by a motor, a speed reducer, and the like outside the float bath 20. When the driving device 34 is operated, the shaft member 70, the attachment member 60, and the rotation member 50 are integrally rotated around the central axis of the shaft member 70.
 (取り付け部材)
 取り付け部材60は、図4に示すように、軸部材70と一体化されており、軸部材70の冷媒流路と連通する不図示の内側空間を内部に有してよい。内側空間には冷媒が流れるので、取り付け部材60は鋼や耐熱合金などの金属材料で形成されてよい。取り付け部材60には、回転部材50が取り外し可能に取り付けられる。
(Mounting member)
As shown in FIG. 4, the attachment member 60 is integrated with the shaft member 70, and may have an inner space (not shown) that communicates with the refrigerant flow path of the shaft member 70. Since the coolant flows in the inner space, the attachment member 60 may be formed of a metal material such as steel or a heat-resistant alloy. The rotation member 50 is detachably attached to the attachment member 60.
 取り付け部材60は、軸部材70と一体化されるシャフト部62と、シャフト部62の先端部から、シャフト部62の径方向外方に突出する環状のフランジ部63と、シャフト部62の先端部から、シャフト部62と同軸的に延びるロッド部64とを一体的に有する。 The attachment member 60 includes a shaft portion 62 that is integrated with the shaft member 70, an annular flange portion 63 that protrudes radially outward from the tip portion of the shaft portion 62, and a tip portion of the shaft portion 62. The shaft portion 62 and the rod portion 64 extending coaxially are integrally provided.
 シャフト部62は、軸部材70と突き合わされ、例えば溶接によって一体化されている。シャフト部62には、軸部材70の冷媒流路と連通する不図示の冷媒流路が設けられてよい。 The shaft portion 62 is abutted against the shaft member 70 and integrated by welding, for example. The shaft portion 62 may be provided with a coolant channel (not shown) that communicates with the coolant channel of the shaft member 70.
 フランジ部63は、シャフト部62の先端部(軸部材70と反対側の端部)から、シャフト部62の径方向外方に突出している。フランジ部63には、軸部材70の冷媒流路と連通する不図示の冷媒流路が設けられてよい。 The flange portion 63 protrudes outward in the radial direction of the shaft portion 62 from the tip end portion (the end portion opposite to the shaft member 70) of the shaft portion 62. The flange portion 63 may be provided with a coolant channel (not shown) that communicates with the coolant channel of the shaft member 70.
 ロッド部64は、シャフト部62の先端部から、シャフト部62と同軸的に延びている。ロッド部64には、軸部材70の冷媒流路と連通する不図示の冷媒流路が設けられてよい。ロッド部64は、図4に示すように、回転部材50を貫通しており、先端部に雄ネジ部を有している。雄ネジ部にネジ止めされるナット41と、フランジ部63とによって、回転部材50の軸方向の移動が制限される。ナット41を雄ネジ部から取り外すことにより、回転部材50の取り外しが可能となる。 The rod portion 64 extends coaxially with the shaft portion 62 from the tip portion of the shaft portion 62. The rod portion 64 may be provided with a coolant channel (not shown) that communicates with the coolant channel of the shaft member 70. As shown in FIG. 4, the rod portion 64 penetrates the rotating member 50 and has a male screw portion at the tip. The movement of the rotating member 50 in the axial direction is restricted by the nut 41 screwed to the male screw portion and the flange portion 63. By removing the nut 41 from the male screw portion, the rotating member 50 can be removed.
 取り付け部材60は、フランジ部63の先端側の面に固定され、ロッド部64の中心軸線と平行な軸部67、68を有している。軸部67、68と、ロッド部64とによって取り付け部材60と回転部材50が一体的に回転可能となる。 The mounting member 60 is fixed to the surface on the tip end side of the flange portion 63 and has shaft portions 67 and 68 parallel to the central axis of the rod portion 64. The attachment members 60 and the rotation member 50 can be rotated integrally by the shaft portions 67 and 68 and the rod portion 64.
 軸部67、68は、図4に示すように、それぞれ、回転部材50を貫通しており、先端部に雄ネジ部を有している。雄ネジ部にネジ止めされるナット42、43と、フランジ部63とによって、回転部材50の軸方向の移動が制限される。ナット42、43を雄ネジ部から取り外すことにより、回転部材50の取り外しが可能となる。 As shown in FIG. 4, each of the shaft portions 67 and 68 penetrates the rotating member 50 and has a male screw portion at the tip. The nuts 42 and 43 screwed to the male screw portion and the flange portion 63 restrict the movement of the rotating member 50 in the axial direction. The rotating member 50 can be removed by removing the nuts 42 and 43 from the male screw portion.
 (回転部材)
 回転部材50は、円盤状であって、回転部材50の中心軸線と軸部材70の中心軸線とは同一直線上にある。回転部材50は、外周部51にて、ガラスリボンGの表面(本実施形態では、上面)と接触する。回転部材50が回転することによって、ガラスリボンGが所定方向に送り出される。
(Rotating member)
The rotating member 50 has a disk shape, and the central axis of the rotating member 50 and the central axis of the shaft member 70 are on the same straight line. The rotating member 50 contacts the surface of the glass ribbon G (the upper surface in the present embodiment) at the outer peripheral portion 51. As the rotating member 50 rotates, the glass ribbon G is sent out in a predetermined direction.
 回転部材50は、例えば図3に示すように、外周部51に、歯車状の凹凸52を有する。凹凸52によって、回転部材50がガラスリボンGに食い込みやすくなる。凹凸52の凸部52aの形状は、特に限定されないが、例えば図3に示すように、先細り状(例えば、四角錐状)に形成されてよい。歯車状の凹凸52は、図4に示すように、回転部材50の外周部51の厚さ方向(図1のY方向)に一列形成されているが、複数列形成されてもよい。 Rotating member 50 has gear-like irregularities 52 on outer peripheral portion 51, for example, as shown in FIG. The unevenness 52 makes it easy for the rotating member 50 to bite into the glass ribbon G. Although the shape of the convex part 52a of the unevenness | corrugation 52 is not specifically limited, For example, as shown in FIG. 3, you may form in a taper shape (for example, square pyramid shape). As shown in FIG. 4, the gear-shaped irregularities 52 are formed in a row in the thickness direction (Y direction in FIG. 1) of the outer peripheral portion 51 of the rotating member 50, but may be formed in a plurality of rows.
 回転部材50は、内部に冷媒流路を有していない。尚、回転部材50の貫通孔に挿通されるロッド部64は回転部材50とは別の部材であるので、ロッド部64に形成される冷媒流路は回転部材50の外部に形成される冷媒流路である。 Rotating member 50 does not have a refrigerant flow path inside. Since the rod portion 64 inserted into the through hole of the rotating member 50 is a member different from the rotating member 50, the refrigerant flow path formed in the rod portion 64 is a refrigerant flow formed outside the rotating member 50. Road.
 回転部材50は、セラミックスで形成される。セラミックスは、従来の鋼や耐熱合金などの金属に比べて高温強度が高いので、従来必要であった冷媒流路が不要になる。よって、冷媒が回転部材50の内部を流れないので、回転部材50の近傍において、ガラスリボンGが強く冷却され難い。その結果、ガラスリボンGの温度、ひいては、ガラスリボンGの厚さが安定化するので、製品であるガラス板の平坦性が向上する。また、回転部材50の近傍において、ガラスリボンGが強く冷却され難く、固くなり難いので、回転部材50がガラスリボンGに食い込み易く、回転部材50のガラスリボンGに対するグリップ性が向上する。従来グリップすることが困難であったフロートバス20の第1低温域B(ガラスリボンGが106.7~107.65dPa・sの粘度範囲の領域)でガラスリボンGを回転部材50がグリップでき、ガラスリボンGの波状の変形の発生が低減できる。よって、ガラス板の平坦度が改善できる。 The rotating member 50 is formed of ceramics. Ceramics has a high temperature strength higher than that of conventional metals such as steel and heat-resistant alloys, so that the conventionally required refrigerant flow path is not required. Therefore, since the refrigerant does not flow inside the rotating member 50, the glass ribbon G is not easily cooled in the vicinity of the rotating member 50. As a result, the temperature of the glass ribbon G, and hence the thickness of the glass ribbon G, is stabilized, so that the flatness of the glass plate as a product is improved. Further, since the glass ribbon G is not easily cooled and hardened in the vicinity of the rotating member 50, the rotating member 50 is easy to bite into the glass ribbon G, and the grip property of the rotating member 50 to the glass ribbon G is improved. In the first low temperature region B of the float bath 20 that has been difficult to grip in the past (the glass ribbon G has a viscosity range of 10 6.7 to 10 7.65 dPa · s), the rotating member 50 can Grip can be achieved, and the occurrence of wave-like deformation of the glass ribbon G can be reduced. Therefore, the flatness of the glass plate can be improved.
 ここで、ガラスリボンGの温度は、ガラスリボンGの幅方向中央の温度で代表する。ガラスリボンGの温度は、例えば放射温度計により測定する。ガラスの種類が無アルカリガラスの場合、106.7~107.65dPa・sの粘度範囲に相当する温度範囲は937℃~1000℃である。 Here, the temperature of the glass ribbon G is represented by the temperature at the center in the width direction of the glass ribbon G. The temperature of the glass ribbon G is measured by, for example, a radiation thermometer. When the glass type is alkali-free glass, the temperature range corresponding to a viscosity range of 10 6.7 to 10.7.65 dPa · s is 937 ° C. to 1000 ° C.
 ガラスリボンGは、107.5超~107.65dPa・sの粘度範囲の第2低温域B´(無アルカリガラスの場合、937℃以上946℃未満の温度範囲の領域)で、支持ロール40によって支持されることが好ましい。 The glass ribbon G is supported in the second low temperature range B ′ (range of 937 ° C. or more and less than 946 ° C. in the case of non-alkali glass) having a viscosity range of more than 10 7.5 to 10 7.65 dPa · s. It is preferably supported by the roll 40.
 尚、本実施形態のガラスリボンGは、ガラスリボンGの粘度が106.7dPa・s未満の領域において、支持ロール40で支持されるが、従来の支持ロールによって支持されてもよい。ガラスリボンGの粘度が106.7dPa・s未満の領域では、従来の回転部材でガラスリボンGをグリップできる。 The glass ribbon G in the present embodiment, in the region viscosity is less than 10 6.7 dPa · s of the glass ribbon G, but is supported by the supporting roll 40 may be supported by a conventional support roll. In a region where the viscosity of the glass ribbon G is less than 10 6.7 dPa · s, the glass ribbon G can be gripped by a conventional rotating member.
 回転部材50のセラミックスとしては、特に限定されないが、例えば、炭化ケイ素(SiC)質セラミックス、窒化ケイ素(Si)質セラミックスなどが用いられる。炭化ケイ素や窒化ケイ素は、溶融スズSの飛沫や溶融スズSの蒸気に対する耐性が高く、また、高温強度やクリープ特性に優れている。 The ceramic rotary member 50 is not particularly limited, for example, silicon carbide (SiC) quality ceramics, silicon nitride (Si 3 N 4) such quality ceramics are used. Silicon carbide and silicon nitride have high resistance to the splash of molten tin S and the vapor of molten tin S, and are excellent in high temperature strength and creep characteristics.
 回転部材50のセラミックスの種類は、製品であるガラス板(即ち、ガラスリボンG)の種類などに応じて選定される。例えば、ガラス板が無アルカリガラスの場合、耐熱衝撃性に優れた窒化ケイ素質セラミックスが好適である。無アルカリガラスの場合、フロートバス20内の温度が高い傾向にあるので、耐熱衝撃性が高い方が操業操作の自由度が高くなるからである。さらに、高温であるほど、ガラスリボンGや溶融スズSとの反応性が問題となりやすいが、窒化ケイ素質セラミックスは反応性についても低い傾向にあるからである。また、ガラス板の種類がソーダライムガラスの場合、窒化ケイ素質セラミックスの他、炭化ケイ素質セラミックスやアルミナ系セラミックスを用いることができる。 The ceramic type of the rotating member 50 is selected according to the type of glass plate (ie, glass ribbon G) that is the product. For example, when the glass plate is alkali-free glass, silicon nitride ceramics excellent in thermal shock resistance are suitable. In the case of non-alkali glass, the temperature in the float bath 20 tends to be high, so that the higher the thermal shock resistance, the higher the degree of freedom of operation. Furthermore, the higher the temperature, the more likely the reactivity with the glass ribbon G and the molten tin S becomes a problem, but the silicon nitride ceramic tends to have a low reactivity. When the glass plate is soda lime glass, silicon carbide ceramics or alumina ceramics can be used in addition to silicon nitride ceramics.
 製品であるガラス板は、特に限定されないが、例えば液晶ディスプレイ(LCD)やプラズマディスプレイ(PDP)、有機ELディスプレイなどのフラットパネルディスプレイ(FPD)用であってよい。近年、FPDの薄型化が進行しており、FPD用のガラス板の薄板化が進行している。特にディスプレイ基板用ガラス板の場合、好ましくは0.7mm以下、より好ましくは0.3mm以下、さらに好ましくは0.2mm以下、特に好ましくは0.1mm以下のガラス板が要望されている。そのため、ガラスリボンGの厚さが薄くなっており、ガラスリボンGの幅方向の収縮力が強くなると共に、ガラスリボンGの成形温度が高くなっている。本実施形態の支持ロール40は、上述の如く、ガラスリボンGが強く冷却され難いので、FPD用のガラス板の成形に適している。 The glass plate as a product is not particularly limited, but may be for a flat panel display (FPD) such as a liquid crystal display (LCD), a plasma display (PDP), or an organic EL display. In recent years, thinning of FPDs has progressed, and thinning of glass plates for FPDs has progressed. In particular, in the case of a glass plate for a display substrate, a glass plate of 0.7 mm or less, more preferably 0.3 mm or less, more preferably 0.2 mm or less, particularly preferably 0.1 mm or less is desired. Therefore, the thickness of the glass ribbon G is reduced, the shrinkage force in the width direction of the glass ribbon G is increased, and the molding temperature of the glass ribbon G is increased. As described above, the support roll 40 according to the present embodiment is suitable for forming a glass plate for FPD because the glass ribbon G is not easily cooled.
 製品であるガラス板の種類は、特に限定されない。ガラス板の組成は、例えば、酸化物基準の質量%表示で、SiO:50~75%、Al:0.1~24%、B:0~12%、MgO:0~10%、CaO:0~14.5%、SrO:0~24%、BaO:0~13.5%、NaO:0~20%、KO:0~20%、ZrO:0~5%、MgO+CaO+SrO+BaO:5~29.5%、NaO+KO:0~20%を含有する。 The kind of glass plate which is a product is not particularly limited. The composition of the glass plate is, for example, expressed as mass% on the basis of oxide, SiO 2 : 50 to 75%, Al 2 O 3 : 0.1 to 24%, B 2 O 3 : 0 to 12%, MgO: 0 ~ 10%, CaO: 0-14.5%, SrO: 0-24%, BaO: 0-13.5%, Na 2 O: 0-20%, K 2 O: 0-20%, ZrO 2 : 0 to 5%, MgO + CaO + SrO + BaO: 5 to 29.5%, Na 2 O + K 2 O: 0 to 20%.
 ガラス板の組成は、例えば、無アルカリガラスで形成されてよい。無アルカリガラスは、アルカリ金属酸化物(NaO、KO、LiO)を実質的に含有しないガラスである。無アルカリガラス中のアルカリ金属酸化物の含有量の合量(NaO+KO+LiO)は、例えば0.1%以下であってよい。 The composition of the glass plate may be formed of non-alkali glass, for example. The alkali-free glass is a glass that does not substantially contain an alkali metal oxide (Na 2 O, K 2 O, Li 2 O). The total content (Na 2 O + K 2 O + Li 2 O) of the alkali metal oxide content in the alkali-free glass may be, for example, 0.1% or less.
 無アルカリガラスは、例えば、酸化物基準の質量百分率表示で、SiO:50~70%、好ましくは50~66%、Al:10.5~24%、B:0~12%、MgO:0~10%、好ましくは0~8%、CaO:0~14.5%、SrO:0~24%、BaO:0~13.5%、ZrO:0~5%を含有し、MgO+CaO+SrO+BaO:8~29.5%、好ましくは9~29.5%を含有するものである。 The alkali-free glass is, for example, expressed in terms of mass percentage based on oxide, SiO 2 : 50 to 70%, preferably 50 to 66%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0 to 12%, MgO: 0 to 10%, preferably 0 to 8%, CaO: 0 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, ZrO 2 : 0 to 5% MgO + CaO + SrO + BaO: 8 to 29.5%, preferably 9 to 29.5%.
 無アルカリガラスは、歪点が高く溶解性を考慮する場合は好ましくは、酸化物基準の質量百分率表示で、SiO:58~66%、Al:15~22%、B:5~12%、MgO:0~8%、CaO:0~9%、SrO:3~12.5%、BaO:0~2%を含有し、MgO+CaO+SrO+BaO:9~18%を含有するものである。 The alkali-free glass has a high strain point, and when considering the solubility, it is preferably expressed in terms of mass percentage based on oxide, SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O 3 : 5 to 12%, MgO: 0 to 8%, CaO: 0 to 9%, SrO: 3 to 12.5%, BaO: 0 to 2%, MgO + CaO + SrO + BaO: 9 to 18% is there.
 無アルカリガラスは、高歪点を考慮する場合は好ましくは、酸化物基準の質量百分率表示で、SiO:54~73%、Al:10.5~22.5%、B:0~5.5%、MgO:0~10%、CaO:0~9%、SrO:0~16%、BaO:0~2.5%、MgO+CaO+SrO+BaO:8~26%を含有するものである。 When considering the high strain point, the alkali-free glass is preferably expressed in terms of mass percentage based on oxide, SiO 2 : 54 to 73%, Al 2 O 3 : 10.5 to 22.5%, B 2 O 3 : 0 to 5.5%, MgO: 0 to 10%, CaO: 0 to 9%, SrO: 0 to 16%, BaO: 0 to 2.5%, MgO + CaO + SrO + BaO: 8 to 26% is there.
 ガラス板の種類が無アルカリガラスの場合、回転部材50のうち、少なくとも、ガラスリボンGと接触する部分が、窒化ケイ素質セラミックスであってよく、回転部材50の全体が窒化ケイ素質セラミックスでなくてもよい。例えば、金属、カーボンまたは他のセラミックスからなる基材上に、窒化ケイ素質セラミックスの層が成膜、接合または嵌合等によって形成されていてもよい。このように、回転部材50の部位毎に、異なる種類のセラミックスが用いられてもよい。なお、本実施形態では、回転部材50の全体が窒化ケイ素質セラミックスで形成されている。 When the type of the glass plate is non-alkali glass, at least a portion of the rotating member 50 that contacts the glass ribbon G may be silicon nitride ceramics, and the entire rotating member 50 is not silicon nitride ceramics. Also good. For example, a silicon nitride ceramic layer may be formed on a base material made of metal, carbon or other ceramics by film formation, bonding or fitting. Thus, different types of ceramics may be used for each part of the rotating member 50. In the present embodiment, the entire rotating member 50 is formed of silicon nitride ceramics.
 窒化ケイ素質セラミックスは、窒化ケイ素の粉末と、焼結助剤の粉末とを含む混合粉末で作製した成形体を焼結した焼結体であってよい。焼結方法としては、常圧焼結法、加圧焼結法(ホットプレス焼結、ガス圧焼結を含む)などがある。焼結助剤としては、例えば、アルミナ(Al)、マグネシア(MgO)、チタニア(TiO)、ジルコニア(ZrO)、およびイットリア(Y)から選ばれる少なくとも1種類が用いられる。 The silicon nitride ceramics may be a sintered body obtained by sintering a molded body made of a mixed powder containing silicon nitride powder and sintering aid powder. As the sintering method, there are an atmospheric pressure sintering method, a pressure sintering method (including hot press sintering, gas pressure sintering) and the like. As the sintering aid, for example, at least one selected from alumina (Al 2 O 3 ), magnesia (MgO), titania (TiO 2 ), zirconia (ZrO 2 ), and yttria (Y 2 O 3 ) is used. It is done.
 窒化ケイ素質セラミックスは、アルミニウム(Al)の含有量が0.1質量%以下、好ましくは1質量%未満、マグネシウム(Mg)の含有量が0.7質量%以下、好ましくは0.7質量%未満、チタン(Ti)の含有量が0.9質量%以下、好ましくは0.9質量%未満であることが好ましい。Al含有量、Mg含有量、およびTi含有量が上記の範囲であると、ガラスリボンGと反応し難く、また、ガラスリボンGが付着し難いので、良好な耐久性が得られる。なお、Al含有量、Mg含有量、およびTi含有量は、それぞれ、0質量%であってもよい。 The silicon nitride ceramic has an aluminum (Al) content of 0.1% by mass or less, preferably less than 1% by mass, and a magnesium (Mg) content of 0.7% by mass or less, preferably 0.7% by mass. The titanium (Ti) content is 0.9 mass% or less, preferably less than 0.9 mass%. When the Al content, the Mg content, and the Ti content are in the above ranges, it is difficult to react with the glass ribbon G, and the glass ribbon G is difficult to adhere, so that good durability is obtained. In addition, 0 mass% may be sufficient as Al content, Mg content, and Ti content, respectively.
 窒化ケイ素質セラミックスは、ジルコニウム(Zr)の含有量が3.5質量%以下、好ましくは3.5質量%未満、イットリウム(Y)の含有量が0.5質量%以上、好ましくは0.5質量%超、10質量%以下、好ましくは10質量%未満であることが好ましい。ZrやYは、AlやMg、Tiに比べて、ガラスリボンGと相互拡散し難い成分であるので、上記の範囲で含有されてよい。上記の範囲で含有されることによって、窒化ケイ素粉末の焼結を促進することができる。なお、Zrは任意成分であって、Zr含有量は0質量%であってもよい。 The silicon nitride ceramic has a zirconium (Zr) content of 3.5% by mass or less, preferably less than 3.5% by mass, and a yttrium (Y) content of 0.5% by mass or more, preferably 0.5%. It is preferable to be more than 10% by mass, more preferably less than 10% by mass. Zr and Y are components that are less likely to interdiffuse with the glass ribbon G as compared with Al, Mg, and Ti, and thus may be contained in the above range. By containing in the above range, sintering of the silicon nitride powder can be promoted. Zr is an optional component, and the Zr content may be 0% by mass.
 尚、本実施形態の窒化ケイ素質セラミックスは、常圧焼結法または加圧焼結法により得られる焼結体であるとしたが、反応焼結法により得られる焼結体であってもよい。反応焼結法は、金属ケイ素(Si)の粉末で成形された成形体を窒素雰囲気中で加熱する方法である。反応焼結法は、焼結助剤を使用しないので、高純度の焼結体が得られ、焼結体のガラスリボンGに対する耐久性を向上できる。 The silicon nitride ceramic of the present embodiment is a sintered body obtained by a normal pressure sintering method or a pressure sintering method, but may be a sintered body obtained by a reactive sintering method. . The reaction sintering method is a method in which a molded body formed of metal silicon (Si) powder is heated in a nitrogen atmosphere. Since the reaction sintering method does not use a sintering aid, a high-purity sintered body can be obtained, and the durability of the sintered body with respect to the glass ribbon G can be improved.
 回転部材50の中心には、円孔が貫通形成されている。円孔には、ロッド部64が挿通される。円孔の内径は、ロッド部64の外径よりも大きい。 A circular hole is formed through the center of the rotating member 50. The rod portion 64 is inserted through the circular hole. The inner diameter of the circular hole is larger than the outer diameter of the rod portion 64.
 回転部材50には、挿通孔が貫通形成されている。挿通孔には、軸部67、68が挿通される。各挿通孔の内径は、対応する軸部67、68の外径よりも大きい。 The insertion hole is formed through the rotating member 50. The shaft portions 67 and 68 are inserted through the insertion holes. The inner diameter of each insertion hole is larger than the outer diameter of the corresponding shaft portions 67 and 68.
 図5は、回転部材の変形例(1)を示す正面図である。図6は、図5のVI-VI線に沿った断面図の例である。図7は、図6の回転部材の凸形状の寸法を示す図その1である。図8は、図6の回転部材の凸形状の寸法を示す図その2である。 FIG. 5 is a front view showing a modified example (1) of the rotating member. FIG. 6 is an example of a cross-sectional view taken along the line VI-VI in FIG. FIG. 7 is a first diagram showing dimensions of the convex shape of the rotating member of FIG. 6. FIG. 8 is a second diagram illustrating the dimensions of the convex shape of the rotating member in FIG. 6.
 図5等に示す回転部材50Aは、図3等に示す回転部材50に代えて用いられる。変形例(1)の回転部材50Aの外周面56Aは、例えば図6に示すように、全周にわたって、断面形状が径方向外方に凸の湾曲状である。回転部材50Aの外周面56Aは、軸方向中央部が軸方向両端部よりも径方向外方に突出する。回転部材50Aの外周面56Aは、全周にわたって同じ断面形状を有する。回転部材50Aは外周面56Aに歯車状の凹凸を有さない。歯車状の凹凸がなくても、回転部材50Aは、ガラスリボンGに食い込むことができる。回転部材50Aの内部に冷媒が流れていないので、回転部材50Aの近傍において、ガラスリボンGが強く冷却されず、固くなり難いからである。 5A or the like is used in place of the rotating member 50 shown in FIG. For example, as shown in FIG. 6, the outer peripheral surface 56 </ b> A of the rotating member 50 </ b> A of the modification (1) has a curved shape with a cross-sectional shape that protrudes radially outward over the entire circumference. In the outer peripheral surface 56A of the rotating member 50A, the central portion in the axial direction protrudes radially outward from both end portions in the axial direction. The outer peripheral surface 56A of the rotating member 50A has the same cross-sectional shape over the entire circumference. The rotating member 50A does not have gear-like irregularities on the outer peripheral surface 56A. The rotating member 50A can bite into the glass ribbon G even if there are no gear-like irregularities. This is because the refrigerant does not flow inside the rotating member 50A, so that the glass ribbon G is not cooled strongly in the vicinity of the rotating member 50A and is not easily hardened.
 例えば、図7に示すように、前記凸の湾曲状の曲率半径Raは、ガラスリボンGとのグリップ力を考慮すると、R1~R100mmが好ましく、R3~R50mmがより好ましく、R5~R30mmがさらに好ましく、R10~R20mmが特に好ましい。前記凸の湾曲状において、例えば図8に示すように、前記軸方向中央部の曲率半径Rbと前記軸方向両端部の曲率半径Rcとが複合Rであってもよい。このとき曲率半径Rb、RcともR1~R100mmが好ましく、R3~R50mmがより好ましく、R5~R30mmがさらに好ましく、R10~R20mmが特に好ましい。前記凸の湾曲状において、一部に平坦部を有していてもよいが、平坦部を有していない方がガラスリボンGとのグリップ力が安定するので好ましい。 For example, as shown in FIG. 7, the convex curved radius of curvature Ra is preferably R1 to R100 mm, more preferably R3 to R50 mm, and even more preferably R5 to R30 mm in consideration of gripping force with the glass ribbon G. R10 to R20 mm are particularly preferable. In the convex curved shape, for example, as shown in FIG. 8, a curvature radius Rb at the central portion in the axial direction and a curvature radius Rc at both end portions in the axial direction may be a composite R. At this time, the radii of curvature Rb and Rc are preferably R1 to R100 mm, more preferably R3 to R50 mm, still more preferably R5 to R30 mm, and particularly preferably R10 to R20 mm. The convex curve may have a flat portion in part, but it is preferable not to have a flat portion because the grip force with the glass ribbon G is stable.
 ガラスリボンGとのグリップ力を考慮すると、図7に示す前記凸の湾曲状における回転部材50Aの半径方向の幅dは、0.5mm以上が好ましく、1mm以上がより好ましく、2mm以上がさらに好ましい。同様に、前記凸の湾曲状における回転部材50Aの半径方向の幅dは、5mm以下が好ましく、4mm以下がより好ましい。 In consideration of the grip force with the glass ribbon G, the radial width d of the rotating member 50A in the convex curved shape shown in FIG. 7 is preferably 0.5 mm or more, more preferably 1 mm or more, and further preferably 2 mm or more. . Similarly, the radial width d of the rotating member 50A in the convex curved shape is preferably 5 mm or less, and more preferably 4 mm or less.
 図7に示す回転部材50Aの半径rは、取り付け部材60とガラスリボンGとの接触防止や軸部材70の水平性を考慮すると、100mm以上が好ましく、150mm以上がより好ましく、180mm以上がさらに好ましく、回転部材50AとガラスリボンGとの位置調整や回転部材50Aの回転速度の微調整を考慮すると350mm以下が好ましく、300mm以下がより好ましく、270mm以下がさらに好ましい。 The radius r of the rotating member 50A shown in FIG. 7 is preferably 100 mm or more, more preferably 150 mm or more, and still more preferably 180 mm or more in consideration of prevention of contact between the mounting member 60 and the glass ribbon G and the horizontality of the shaft member 70. Considering the positional adjustment between the rotating member 50A and the glass ribbon G and the fine adjustment of the rotational speed of the rotating member 50A, 350 mm or less is preferable, 300 mm or less is more preferable, and 270 mm or less is more preferable.
 回転部材50Aの厚さwは、ガラスリボンGとのグリップ力を考慮すると、5mm以上が好ましく、10mm以上がより好ましく、15mm以上がさらに好ましく、30mm以上が特に好ましく、ガラスリボンGの平坦性向上や不要なグリップ幅の拡大防止を考慮すると120mm以下が好ましく、100mm以下がより好ましく、80mm以下がさらに好ましく、60mm以下がよりさらに好ましく、40mm以下が特に好ましい。 The thickness w of the rotating member 50A is preferably 5 mm or more, more preferably 10 mm or more, further preferably 15 mm or more, particularly preferably 30 mm or more, and the flatness of the glass ribbon G is improved in consideration of the grip force with the glass ribbon G. In view of preventing unnecessary increase in grip width, it is preferably 120 mm or less, more preferably 100 mm or less, further preferably 80 mm or less, still more preferably 60 mm or less, and particularly preferably 40 mm or less.
 このように、回転部材50Aの外周面56Aは、図6~図8に示すように、全周にわたって、断面形状が径方向外方に凸の湾曲状であり、歯車状の凹凸がないので、破損し難く、成形や加工コストが低減される。また図6~図8のような構造の場合、ガラスリボンGを安定して板状ガラスに成形できるため好ましい。 Thus, as shown in FIGS. 6 to 8, the outer peripheral surface 56A of the rotating member 50A is a curved shape whose cross-sectional shape is radially outward and has no gear-like unevenness, as shown in FIGS. It is hard to break and the molding and processing costs are reduced. 6 to 8 is preferable because the glass ribbon G can be stably formed into a sheet glass.
 尚、変形例(1)の回転部材50Aの外周面56Aの断面形状は、径方向外方に凸の湾曲状であるが、平坦でもよく、この場合、回転部材は外周面と側面との間に断面形状が丸みを帯びた境界部を有してよい。これらの変形例において、回転部材の外周面に高さ0.1~10mmの突起を複数設けてもよいし、回転部材の外周面に深さ0.1~10mmの溝を複数設けてもよい。また、回転部材の外周面に突起と溝の両方を設けてもよい。突起の高さや溝の深さは、回転部材の外周面を基準面として計測される。突起の高さや溝の深さは、図7に示す半径r、図7に示す曲率半径Ra、および図8に示す曲率半径Rb、Rcにくらべて小さい。 The cross-sectional shape of the outer peripheral surface 56A of the rotating member 50A of the modified example (1) is a curved shape convex outward in the radial direction, but may be flat. In this case, the rotating member is between the outer peripheral surface and the side surface. The cross-sectional shape may have a rounded boundary. In these modifications, a plurality of protrusions having a height of 0.1 to 10 mm may be provided on the outer peripheral surface of the rotating member, or a plurality of grooves having a depth of 0.1 to 10 mm may be provided on the outer peripheral surface of the rotating member. . Moreover, you may provide both a processus | protrusion and a groove | channel on the outer peripheral surface of a rotation member. The height of the protrusion and the depth of the groove are measured using the outer peripheral surface of the rotating member as a reference surface. The height of the protrusion and the depth of the groove are smaller than the radius r shown in FIG. 7, the curvature radius Ra shown in FIG. 7, and the curvature radii Rb and Rc shown in FIG.
 図9~12は、回転部材の変形例(2)~(5)を示す正面図である。変形例(2)~(5)において、回転部材50B~50Eには、回転部材50B~50Eにおける温度勾配等に起因する応力を緩和するため、切り欠き57B、または貫通孔58C、58D、59Eが形成されている。従来の金属製の回転部材は内部に冷却流路を有し、そのため前記切り欠きや貫通孔を設けることが困難であった。本変形例の回転部材は冷却が不要であり、冷却流路を設ける必要はない。さらに前記切り欠きや貫通孔を容易に任意に設けることができる。回転部材に前記切り欠きや貫通孔が設けられていると、回転部材の前記応力が緩和でき、さらには回転部材の製作時の残留応力も緩和され、回転部材のひずみや破損が防止できるため好ましい。 9 to 12 are front views showing modified examples (2) to (5) of the rotating member. In the modified examples (2) to (5), the rotating members 50B to 50E are provided with notches 57B or through holes 58C, 58D, and 59E in order to relieve stress caused by a temperature gradient in the rotating members 50B to 50E. Is formed. A conventional metal rotating member has a cooling flow path therein, and thus it is difficult to provide the notch and the through hole. The rotating member of this modification does not require cooling, and there is no need to provide a cooling channel. Furthermore, the notch and the through hole can be easily and arbitrarily provided. When the notch or the through hole is provided in the rotating member, the stress of the rotating member can be relieved, and further, residual stress at the time of manufacturing the rotating member is also relieved, and distortion and breakage of the rotating member can be prevented. .
 図9に示す回転部材50Bは図3等に示す回転部材50に代えて用いられる。変形例(2)の回転部材50Bには、ロッド部64(図4参照)が挿通される円孔53B、および、軸部67、68(図4参照)が挿通される挿通孔54B、55Bの他に、円孔53Bの内周に沿って、間隔をおいて、複数の円弧状の切り欠き57Bが形成されている。 The rotating member 50B shown in FIG. 9 is used in place of the rotating member 50 shown in FIG. The rotating member 50B of the modified example (2) includes a circular hole 53B through which the rod portion 64 (see FIG. 4) is inserted, and insertion holes 54B and 55B through which the shaft portions 67 and 68 (see FIG. 4) are inserted. In addition, a plurality of arc-shaped cutouts 57B are formed at intervals along the inner periphery of the circular hole 53B.
 図10に示す回転部材50Cは図3等に示す回転部材50に代えて用いられる。変形例(3)の回転部材50Cには、ロッド部64(図4参照)が挿通される円孔53C、および、軸部67、68(図4参照)が挿通される挿通孔54C、55Cの他に、径方向に長い貫通孔58Cが、放射状に、複数形成されている。 A rotating member 50C shown in FIG. 10 is used in place of the rotating member 50 shown in FIG. The rotating member 50C of the modified example (3) includes a circular hole 53C through which the rod portion 64 (see FIG. 4) is inserted, and insertion holes 54C and 55C through which the shaft portions 67 and 68 (see FIG. 4) are inserted. In addition, a plurality of radial through holes 58C are radially formed.
 図11に示す回転部材50Dは図3等に示す回転部材50に代えて用いられる。変形例(4)の回転部材50Dには、ロッド部64(図4参照)が挿通される円孔53D、および、軸部67、68(図4参照)が挿通される挿通孔54D、55Dの他に、周方向に長い円弧状の貫通孔58Dが、複数形成されている。 A rotating member 50D shown in FIG. 11 is used in place of the rotating member 50 shown in FIG. The rotating member 50D of the modified example (4) has a circular hole 53D through which the rod portion 64 (see FIG. 4) is inserted and insertion holes 54D and 55D through which the shaft portions 67 and 68 (see FIG. 4) are inserted. In addition, a plurality of arc-shaped through holes 58D that are long in the circumferential direction are formed.
 図12に示す回転部材50Eは、図3等に示す回転部材50に代えて用いられる。変形例(5)の回転部材50Eには、ロッド部64(図4参照)が挿通される円孔53E、および、軸部67、68(図4参照)が挿通される挿通孔54E、55Eの他に、円状の貫通孔59Eが、複数形成されている。 The rotating member 50E shown in FIG. 12 is used in place of the rotating member 50 shown in FIG. The rotating member 50E of the modified example (5) includes a circular hole 53E through which the rod portion 64 (see FIG. 4) is inserted, and insertion holes 54E and 55E through which the shaft portions 67 and 68 (see FIG. 4) are inserted. In addition, a plurality of circular through holes 59E are formed.
 切り欠き57B、貫通孔58C、58D、59Eの寸法形状、配置位置は、例えば、有限要素法などの応力解析によって求められる。 The dimensional shape and arrangement position of the notch 57B and the through holes 58C, 58D, and 59E are obtained by, for example, stress analysis such as a finite element method.
 例1~4では、溶融ガラスに対する焼結体の濡れ性と、焼結体中に含まれる不純物との関係について調べた。 In Examples 1 to 4, the relationship between the wettability of the sintered body with respect to the molten glass and the impurities contained in the sintered body was examined.
 評価用の試験片および試験板は、例毎に異なる窒化ケイ素(Si)質セラミックスの焼結体を加工して作製した。 The test piece and the test plate for evaluation were produced by processing a sintered body of silicon nitride (Si 3 N 4 ) -based ceramics that differs for each example.
 焼結体中の不純物の含有量は、焼結体から角状に切り出した試験片をグロー放電質量分析法で分析して測定した。測定の対象とした不純物は、焼結助剤として含まれるものであって、アルミニウム(Al)、マグネシウム(Mg)、チタン(Ti)、ジルコニウム(Zr)、イットリウム(Y)である。 The content of impurities in the sintered body was measured by analyzing a test piece cut into a square shape from the sintered body by glow discharge mass spectrometry. Impurities to be measured are included as sintering aids, and are aluminum (Al), magnesium (Mg), titanium (Ti), zirconium (Zr), and yttrium (Y).
 溶融ガラスに対する焼結体の濡れ性は、高温濡れ性試験機(アルバック理工社製、WET1200)により測定した。具体的には無アルカリガラス(旭硝子社製、AN100)の角状ガラス片を厚さ1mmに加工した試験板上に載置し、窒素雰囲気中、1150℃まで10分で昇温し、1150℃で10分間保持して溶融ガラスを生成した後、温度を1150℃から1050℃に90秒で降下し1050℃で維持して、液滴の接触角を測定した。測定は、1050℃に降下した時点、およびその時点から2時間後、4時間後、6時間後、8時間後に行った。接触角が大きいほど、溶融ガラスが焼結体に濡れ難いことを意味するので、溶融ガラスと焼結体の反応性が低いことを示すことになる。また、接触角の時間変化が少ないほど、濡れ難さが持続しやすいことを意味する。 The wettability of the sintered body with respect to the molten glass was measured with a high temperature wettability tester (manufactured by ULVAC-RIKO, WET1200). Specifically, a square glass piece of alkali-free glass (manufactured by Asahi Glass Co., Ltd., AN100) was placed on a test plate processed to a thickness of 1 mm, heated in a nitrogen atmosphere to 1150 ° C. in 10 minutes, and 1150 ° C. Was maintained for 10 minutes to form a molten glass, and the temperature was lowered from 1150 ° C. to 1050 ° C. in 90 seconds and maintained at 1050 ° C., and the contact angle of the droplet was measured. The measurement was performed when the temperature dropped to 1050 ° C., and after 2 hours, 4 hours, 6 hours, and 8 hours from that point. A larger contact angle means that the molten glass is less likely to get wet with the sintered body, and therefore indicates that the reactivity between the molten glass and the sintered body is low. In addition, the smaller the change in the contact angle with time, the easier the wettability is sustained.
 評価の結果を、表1および図13に示す。図13中、縦軸は接触角(°)、横軸は経過時間(h:hours)を示す。尚、10000質量ppmは1質量%である。 Evaluation results are shown in Table 1 and FIG. In FIG. 13, the vertical axis represents the contact angle (°), and the horizontal axis represents the elapsed time (h: hours). In addition, 10000 mass ppm is 1 mass%.
Figure JPOXMLDOC01-appb-T000001
 表1および図13から明らかなように、Al含有量が0.1質量%以下、好ましくは0.1質量%未満、Mg含有量が0.7質量%以下、好ましくは0.7質量%未満、Ti含有量が0.9質量%以下、好ましくは0.9質量%未満、Zr含有量が3.5質量%以下、好ましくは3.5質量%未満、Y含有量が0.5質量%以上、10質量%以下、好ましくは0.5質量%超、10質量%未満であれば、接触角の時間変化が少なく、8時間経過後の接触角が大きいので、良好な耐久性が得られることが分かる。
Figure JPOXMLDOC01-appb-T000001
As apparent from Table 1 and FIG. 13, the Al content is 0.1% by mass or less, preferably less than 0.1% by mass, and the Mg content is 0.7% by mass or less, preferably less than 0.7% by mass. Ti content is 0.9 mass% or less, preferably less than 0.9 mass%, Zr content is 3.5 mass% or less, preferably less than 3.5 mass%, and Y content is 0.5 mass%. More than 10% by mass, preferably more than 0.5% by mass and less than 10% by mass, there is little change in the contact angle over time, and the contact angle after 8 hours is large, so that good durability can be obtained. I understand that.
 以上、ガラス板の製造方法およびガラス板の製造装置の実施形態等を説明したが、本発明は上記実施形態に限定されない。本発明は、特許請求の範囲に記載された趣旨の範囲で変形や改良が可能である。 As mentioned above, although embodiment of the manufacturing method of a glass plate and the manufacturing apparatus of a glass plate was demonstrated, this invention is not limited to the said embodiment. The present invention can be modified and improved within the scope of the gist of the claims.
 例えば、上記実施形態の支持ロール40は、フロート法で用いられるが、他の成形方法で用いられてもよく、例えばフュージョン法で用いられてもよい。 For example, the support roll 40 of the above embodiment is used in the float method, but may be used in other forming methods, for example, the fusion method.
 フュージョン法の場合、支持ロールは、円柱状または円筒状であって、ガラスリボンを表側および裏側から挟持するように2つ1組で用いられ、2つの支持ロールからなる支持ロール群がガラスリボンの幅方向両側に複数対配置される。 In the case of the fusion method, the support rolls are columnar or cylindrical, and are used in pairs so as to sandwich the glass ribbon from the front side and the back side, and the support roll group consisting of the two support rolls is a glass ribbon. Plural pairs are arranged on both sides in the width direction.
 フュージョン法の場合、ガラス板の成形装置は、溶融ガラスが連続的に供給される樋状部材を有する。樋状部材の左右両側の上縁から溢れ出した溶融ガラスは、樋状部材の左右両側面に沿って流下し、左右両側面が交わる下縁で合流し、一体化することにより、ガラスリボンとなる。ガラスリボンは、複数対の支持ロール群によって支持されながら、下方に送り出される。 In the case of the fusion method, the glass plate forming apparatus has a bowl-shaped member to which molten glass is continuously supplied. The molten glass overflowing from the upper edges of the left and right sides of the bowl-shaped member flows down along the left and right sides of the bowl-shaped member, and merges at the lower edge where the left and right sides meet, and is integrated with the glass ribbon. Become. The glass ribbon is fed downward while being supported by a plurality of pairs of support rolls.
 本出願は、2013年5月16日に日本国特許庁に出願された特願2013-104379号に基づく優先権を主張するものであり、特願2013-104379号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2013-104379 filed with the Japan Patent Office on May 16, 2013. The entire contents of Japanese Patent Application No. 2013-104379 are incorporated herein by reference. To do.
10 ガラス板の成形装置
20 フロートバス
40 支持ロール
50 回転部材
51 外周部
52 凹凸
56A 外周面
G  ガラスリボン
DESCRIPTION OF SYMBOLS 10 Glass plate forming apparatus 20 Float bath 40 Support roll 50 Rotating member 51 Outer peripheral part 52 Concavity and convexity 56A Outer peripheral surface G Glass ribbon

Claims (13)

  1.  帯板状のガラスリボンの幅方向の収縮を抑制する工程を有する、ガラス板の成形方法であって、
     前記ガラスリボンが106.7~107.65dPa・sの粘度範囲の領域で前記ガラスリボンを支持する支持ロールが設けられ、
     該支持ロールは、前記ガラスリボンと接触する回転部材を先端部に有し、
     該回転部材が、内部に冷媒流路を有しておらず、セラミックスで形成される、ガラス板の成形方法。
    A method for forming a glass plate, comprising a step of suppressing the shrinkage in the width direction of a belt-like glass ribbon,
    A support roll for supporting the glass ribbon in a viscosity range of 10 6.7 to 10 7.65 dPa · s is provided;
    The support roll has a rotating member in contact with the glass ribbon at the tip,
    A method for forming a glass plate, wherein the rotating member does not have a coolant channel inside and is formed of ceramics.
  2.  前記回転部材のうち少なくとも前記ガラスリボンと接触する部分が、窒化ケイ素質セラミックスで形成される、請求項1に記載のガラス板の成形方法。 The method for forming a glass plate according to claim 1, wherein at least a portion of the rotating member that comes into contact with the glass ribbon is formed of silicon nitride ceramics.
  3.  前記窒化ケイ素質セラミックスは、焼結体であって、アルミニウム(Al)の含有量が0.1質量%以下、マグネシウム(Mg)の含有量が0.7質量%以下、チタン(Ti)の含有量が0.9質量%以下である、請求項2に記載のガラス板の成形方法。 The silicon nitride ceramic is a sintered body having an aluminum (Al) content of 0.1% by mass or less, a magnesium (Mg) content of 0.7% by mass or less, and a titanium (Ti) content. The method for forming a glass plate according to claim 2, wherein the amount is 0.9 mass% or less.
  4.  前記窒化ケイ素質セラミックスは、ジルコニウム(Zr)の含有量が3.5質量%以下、イットリウム(Y)の含有量が0.5質量%以上、10質量%以下である、請求項3に記載のガラス板の成形方法。 4. The silicon nitride ceramic according to claim 3, wherein the content of zirconium (Zr) is 3.5 mass% or less and the content of yttrium (Y) is 0.5 mass% or more and 10 mass% or less. Glass plate forming method.
  5.  前記回転部材の外周面が、全周にわたって、断面形状が径方向外方に凸の湾曲状に形成されている、請求項1~4のいずれか一項に記載のガラス板の成形方法。 The method for forming a glass plate according to any one of claims 1 to 4, wherein the outer peripheral surface of the rotating member is formed in a curved shape having a cross-sectional shape protruding radially outward over the entire periphery.
  6.  前記回転部材は、外周に、歯車状の凹凸を有する、請求項1~4のいずれか一項に記載のガラス板の成形方法。 The method for forming a glass plate according to any one of claims 1 to 4, wherein the rotating member has gear-like irregularities on an outer periphery.
  7.  帯板状のガラスリボンが106.7~107.65dPa・sの粘度範囲の領域で前記ガラスリボンを支持する支持ロールを備え、
     該支持ロールは、前記ガラスリボンと接触する回転部材を先端部に有し、
     該回転部材が、内部に冷媒流路を有しておらず、セラミックスで形成される、ガラス板の成形装置。
    A belt-shaped glass ribbon comprising a support roll that supports the glass ribbon in a viscosity range of 10 6.7 to 10 7.65 dPa · s;
    The support roll has a rotating member in contact with the glass ribbon at the tip,
    An apparatus for forming a glass plate, wherein the rotating member does not have a coolant channel inside and is formed of ceramics.
  8.  前記回転部材のうち少なくとも前記ガラスリボンと接触する部分が、窒化ケイ素質セラミックスで形成される、請求項7に記載のガラス板の成形装置。 The glass plate forming apparatus according to claim 7, wherein at least a portion of the rotating member that comes into contact with the glass ribbon is formed of silicon nitride ceramics.
  9.  前記窒化ケイ素質セラミックスは、焼結体であって、アルミニウム(Al)の含有量が0.1質量%以下、マグネシウム(Mg)の含有量が0.7質量%以下、チタン(Ti)の含有量が0.9質量%以下である、請求項8に記載のガラス板の成形装置。 The silicon nitride ceramic is a sintered body having an aluminum (Al) content of 0.1% by mass or less, a magnesium (Mg) content of 0.7% by mass or less, and a titanium (Ti) content. The apparatus for forming a glass sheet according to claim 8, wherein the amount is 0.9 mass% or less.
  10.  前記窒化ケイ素質セラミックスは、ジルコニウム(Zr)の含有量が3.5質量%以下、イットリウム(Y)の含有量が0.5質量%以上、10質量%以下である、請求項9に記載のガラス板の成形装置。 10. The silicon nitride ceramic according to claim 9, wherein the content of zirconium (Zr) is 3.5 mass% or less and the content of yttrium (Y) is 0.5 mass% or more and 10 mass% or less. Glass plate forming equipment.
  11.  前記回転部材の外周面が、全周にわたって、断面形状が径方向外方に凸の湾曲状に形成されている、請求項7~10のいずれか一項に記載のガラス板の成形装置。 The glass plate forming apparatus according to any one of claims 7 to 10, wherein an outer peripheral surface of the rotating member is formed in a curved shape having a cross-sectional shape projecting radially outward over the entire circumference.
  12.  前記回転部材は、外周に、歯車状の凹凸を有する、請求項7~10のいずれか一項に記載のガラス板の成形装置。 The glass plate forming apparatus according to any one of claims 7 to 10, wherein the rotating member has gear-like irregularities on an outer periphery.
  13.  請求項1~6のいずれか一項に記載のガラス板の成形方法により得られる帯状のガラスリボンを徐冷し、切断する工程を有する、ガラス板の製造方法。 A method for producing a glass plate, comprising a step of gradually cooling and cutting a band-shaped glass ribbon obtained by the method for forming a glass plate according to any one of claims 1 to 6.
PCT/JP2014/056036 2013-05-16 2014-03-07 Method for molding glass plate, device for manufacturing glass plate, and method for manufacturing glass plate WO2014185127A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-104379 2013-05-16
JP2013104379A JP2016135715A (en) 2013-05-16 2013-05-16 Molding method of plate glass, and manufacturing apparatus of plate glass

Publications (1)

Publication Number Publication Date
WO2014185127A1 true WO2014185127A1 (en) 2014-11-20

Family

ID=51898113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056036 WO2014185127A1 (en) 2013-05-16 2014-03-07 Method for molding glass plate, device for manufacturing glass plate, and method for manufacturing glass plate

Country Status (2)

Country Link
JP (1) JP2016135715A (en)
WO (1) WO2014185127A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110312687A (en) * 2016-12-22 2019-10-08 肖特股份有限公司 Thin glass substrate and its manufacturing method and equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645921A (en) * 1987-06-30 1989-01-10 Asahi Glass Co Ltd Production of plate glass
JPH01219029A (en) * 1988-02-29 1989-09-01 Hoya Corp Formation of thin sheet glass
JP2007051028A (en) * 2005-08-18 2007-03-01 Nippon Electric Glass Co Ltd Method of forming plate glass
JP2011098884A (en) * 2009-10-29 2011-05-19 Corning Inc Low friction edge roller to minimize force cycling
WO2011098423A1 (en) * 2010-02-10 2011-08-18 Fives Stein Belgium S.A. Device for handling the edge of a ribbon of float glass, including a thumbwheel, and equipment comprising such a device
WO2013073352A1 (en) * 2011-11-17 2013-05-23 旭硝子株式会社 Support roll, molding device for plate glass having support roll, and molding method for plate glass using support roll

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645921A (en) * 1987-06-30 1989-01-10 Asahi Glass Co Ltd Production of plate glass
JPH01219029A (en) * 1988-02-29 1989-09-01 Hoya Corp Formation of thin sheet glass
JP2007051028A (en) * 2005-08-18 2007-03-01 Nippon Electric Glass Co Ltd Method of forming plate glass
JP2011098884A (en) * 2009-10-29 2011-05-19 Corning Inc Low friction edge roller to minimize force cycling
WO2011098423A1 (en) * 2010-02-10 2011-08-18 Fives Stein Belgium S.A. Device for handling the edge of a ribbon of float glass, including a thumbwheel, and equipment comprising such a device
WO2013073352A1 (en) * 2011-11-17 2013-05-23 旭硝子株式会社 Support roll, molding device for plate glass having support roll, and molding method for plate glass using support roll

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110312687A (en) * 2016-12-22 2019-10-08 肖特股份有限公司 Thin glass substrate and its manufacturing method and equipment
JP2020514219A (en) * 2016-12-22 2020-05-21 ショット アクチエンゲゼルシャフトSchott AG Thin glass substrate, manufacturing method and manufacturing apparatus thereof
JP7208141B2 (en) 2016-12-22 2023-01-18 ショット アクチエンゲゼルシャフト Thin glass substrate, manufacturing method and manufacturing apparatus thereof
US11745459B2 (en) * 2016-12-22 2023-09-05 Schott Ag Thin glass substrate, in particular a borosilicate glass thin glass substrate, method and apparatus for its production
US11890844B2 (en) * 2016-12-22 2024-02-06 Schott Ag Thin glass substrate, method and apparatus for its production

Also Published As

Publication number Publication date
JP2016135715A (en) 2016-07-28

Similar Documents

Publication Publication Date Title
JP6127978B2 (en) Support roll, plate glass forming apparatus having support roll, and plate glass forming method using support roll
JP5229778B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
EP2460911B1 (en) Silica glass crucible for pulling of silicon single crystal
KR101493179B1 (en) Method and apparatus for producing glass substrate
KR20190003381A (en) Method for manufacturing glass substrate and glass substrate manufacturing apparatus
WO2014185127A1 (en) Method for molding glass plate, device for manufacturing glass plate, and method for manufacturing glass plate
JPWO2013187179A1 (en) Sheet glass manufacturing apparatus and sheet glass manufacturing method
JP6137306B2 (en) Support roll, glass plate forming method, glass plate manufacturing method, and glass plate manufacturing apparatus
JP6693263B2 (en) Refractory, refractory manufacturing method, glass article manufacturing apparatus, and glass article manufacturing method
WO2014185130A1 (en) Device for manufacturing glass plate and method for manufacturing glass plate
JP6103048B2 (en) Glass plate manufacturing apparatus and glass plate manufacturing method
JP6094670B2 (en) Support roll, glass plate forming method, glass plate manufacturing apparatus, and glass plate manufacturing method
CN218642622U (en) Backup roll and glass plate molding device
WO2013073353A1 (en) Support roll, molding device for plate glass having support roll, and molding method for plate glass using support roll
TWI814302B (en) Glass substrate manufacturing device and manufacturing method of glass substrate
JP2019116406A (en) Apparatus and method for manufacturing glass substrate
WO2014185129A1 (en) Method for molding glass plate, device for manufacturing glass plate, and method for manufacturing glass plate
JP2015124111A (en) Manufacturing method for glass substrate, and glass substrate manufacturing method
KR20100027047A (en) Apparatus for the production of silica crucible

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14797125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP