WO2007080924A1 - Alkali-free glass substrate - Google Patents

Alkali-free glass substrate Download PDF

Info

Publication number
WO2007080924A1
WO2007080924A1 PCT/JP2007/050243 JP2007050243W WO2007080924A1 WO 2007080924 A1 WO2007080924 A1 WO 2007080924A1 JP 2007050243 W JP2007050243 W JP 2007050243W WO 2007080924 A1 WO2007080924 A1 WO 2007080924A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
alkali
temperature
free glass
rate
Prior art date
Application number
PCT/JP2007/050243
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinari Kato
Original Assignee
Nippon Electric Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co., Ltd. filed Critical Nippon Electric Glass Co., Ltd.
Priority to KR1020087014749A priority Critical patent/KR101282952B1/en
Priority to CN2007800023783A priority patent/CN101370742B/en
Publication of WO2007080924A1 publication Critical patent/WO2007080924A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/04Forming tubes or rods by drawing from stationary or rotating tools or from forming nozzles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/02Annealing glass products in a discontinuous way
    • C03B25/025Glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Definitions

  • the present invention relates to flat display substrates such as liquid crystal displays and EL displays, various image sensors such as charge coupled devices (CCD) and equal-magnification proximity solid-state imaging devices (CIS), substrates for hard disks, filters and the like. It relates to a suitable alkali-free glass substrate.
  • CCD charge coupled devices
  • CIS equal-magnification proximity solid-state imaging devices
  • glass substrates have been widely used as substrates for flat displays such as liquid crystal displays and EL displays.
  • TFT-LCDs thin-film transistor active matrix liquid crystal displays
  • LCDs thin-film transistor active matrix liquid crystal displays
  • a driving element typified by a TFT element on a glass substrate.
  • a transparent conductive film, insulating film, semiconductor film, metal film, etc. are formed on a glass substrate.
  • the glass substrate is treated with various heat treatments and chemical treatments.
  • an insulating film or a transparent conductive film is formed on a glass substrate.
  • amorphous silicon and polycrystalline silicon TFTs are formed on a glass substrate by a photolithography-etching process.
  • the glass substrate is subjected to a heat treatment at 300 to 600 ° C., and is also treated with various chemicals such as sulfuric acid, hydrochloric acid, alkaline solution, hydrofluoric acid, and buffered hydrofluoric acid. Therefore, the following characteristics are required for glass substrates for TFT liquid crystal displays.
  • alkali metal oxide is contained in the glass, alkali ions diffuse into the deposited semiconductor material during the heat treatment and cause deterioration of the film properties. Do not contain oxides.
  • the glass substrate is exposed to a high temperature in processes such as film formation and annealing. At that time, it is desired that the glass substrate has a low thermal shrinkage. That is, if the thermal contraction rate is large, the circuit pattern formed on the substrate will be shifted. From the viewpoint of reducing the heat shrinkage rate, it is advantageous that the glass has a higher strain point.
  • the glass substrate for TFT liquid crystal display is required to have the following characteristics.
  • the devitrification resistance of the glass is important.
  • the liquidus temperature is 1200 ° C or less. It is required to be.
  • the density is low in order to reduce the weight of the liquid crystal display.
  • glass substrates mounted on laptop computers are required to have a weight of 2.50 g / cm 3 or less.
  • the surface flatness is high.
  • a liquid crystal layer sandwiched between two thin glass substrates functions as an optical shutter, and this layer displays images by shielding or transmitting light.
  • This liquid crystal layer is maintained at a very thin thickness of several ⁇ to several tens ⁇ . Therefore, the flatness of the surface of the glass substrate, especially the irregularities of the ⁇ m level called waviness, affects the thickness of the liquid crystal layer (called cell gap), and if the surface waviness is large immediately, display defects such as display unevenness Cause.
  • the liquid crystal display has a tendency to make the cell gap thinner for the purpose of high-speed response and high definition. Therefore, it is possible to reduce the undulation of the surface of the glass substrate used for this. It is becoming increasingly important.
  • the most effective method for reducing the waviness of the surface of the glass substrate is to precisely polish the surface of the glass substrate after molding, but this method increases the manufacturing cost of the glass substrate. For this reason, glass substrates with as little surface waviness as possible are formed by molding methods such as the overflow-down-draw method and float method, and they are shipped without being polished or subjected to extremely light polishing (touch polish). Has been. [0007]
  • Various glass substrates have been proposed to satisfy these characteristics. (For example, see Patent Document 1.)
  • Patent Document 1 JP-A-8-811920
  • the thermal contraction rate of the glass substrate the better.
  • a technique for performing correction using a photomask during circuit formation has been adopted.
  • the medium-to-small glass substrate can solve the problem of pattern deviation even when the thermal shrinkage rate is not sufficiently small.
  • it is still difficult to adopt this technology for a large glass substrate called the 6th generation for example, a glass substrate having a side of 1500 mm or more).
  • An object of the present invention is to provide a large alkali-free glass substrate that can be corrected by a photomask during circuit formation and a method for manufacturing the same.
  • the present inventor has come to propose the present invention by paying attention to the fact that the variation in the thermal contraction rate in the substrate increases as the substrate size increases.
  • the present invention relates to the following (1) to (11).
  • thermosenor On a non-alkali glass substrate with a short side and long side of 1500 mm or more, the temperature is raised from room temperature at a rate of 10 ° CZ, held at a holding temperature of 450 ° C for 10 hours, and cooled at a rate of 10 ° CZ ( Figure 1).
  • a non-alkali glass substrate characterized in that the difference between the maximum value and the minimum value of the absolute value of thermal shrinkage in the substrate is within 5 ppm when heat treatment is performed according to the temperature schedule shown in Fig. 3.
  • the absolute value of the heat shrinkage at the center of the substrate is 40 ppm or more
  • the alkali-free glass substrate according to (1) or (2) which is formed by an overflow down-draw method. SiO 50-70% by weight 0/0, ⁇ 1 ⁇ 1 ⁇ 20%, BO 0 ⁇ : 15%, 0 ⁇ 30% MgO,
  • the average cooling rate in the temperature range from the annealing point to (annealing point-100 ° C) is 200 ° C / min or more at the center in the plate width direction.
  • (5) or (6) a method for producing an alkali-free glass substrate.
  • the sheet drawing speed in the temperature range from the annealing point to (annealing point-100 ° C) is 150 cm / min or more (5) to (7)
  • a method for producing any alkali-free glass substrate is 150 cm / min or more (5) to (7)
  • a non-alkali glass substrate having a composition of CaO 0 to 30%, SrO 0 to 30%, BaO 0 to 30% is manufactured. Production method. (1 1)
  • the glass substrate of the present invention has a small variation in thermal shrinkage within the substrate. Therefore, if correction using a photomask is performed when forming a TFT circuit, the thermal contraction in the substrate is always within a certain range, so that the pattern can be formed stably with a high yield.
  • the glass substrate described above can be easily produced.
  • FIG. 1 is an explanatory diagram showing a temperature schedule for obtaining an absolute value of a heat shrinkage rate.
  • FIG. 2 is a graph showing the relationship between average cooling rate and absolute value of heat shrinkage rate.
  • FIG. 3 is an explanatory diagram showing a method for measuring the absolute value of the heat shrinkage rate.
  • the thermal shrinkage of the glass substrate depends on the cooling rate at the time of forming the glass sheet. According to the investigation by the present inventors, as shown in FIG. 2, a plate glass cooled at a high cooling rate has a large heat shrinkage rate, whereas a plate glass cooled at a low rate has a low heat shrinkage rate.
  • the temperature history (cooling rate) varies little in the drawing direction. Therefore, the difference in heat shrinkage is unlikely to occur in the drawing direction.
  • a temperature difference occurs in the plate width direction, and the temperature history (cooling speed) of the central portion and the edge portion is particularly different. Therefore, the difference in thermal shrinkage in the plate width direction is large.
  • the cooling rate difference between the central part and the edge part in the plate width direction should be adjusted to be within 100 ° C / min.
  • the cooling rate is adjusted mainly by the sheet drawing speed and the heating of the heater in the slow cooling furnace.
  • the power of the heater in the sheet width direction may be adjusted.
  • the variation in the thermal shrinkage rate can also be reduced by increasing the cooling rate.
  • the heat shrinkage rate increases as the cooling rate increases. Even if the cooling rate changes slightly, the heat shrinkage rate hardly changes.
  • a glass material prepared to have a desired composition is melted.
  • the glass raw material may be prepared by weighing and mixing glass raw materials such as oxides, nitrates and carbonates, cullet, etc. so as to obtain a glass composition having characteristics suitable for the application.
  • Silica glass, porosilicate glass, aluminosilicate glass, etc. are not particularly limited in the type of glass, but among these, it is preferable to prepare a glass that can be molded by the downdraw method, particularly the overflow downdraw method. .
  • the glass that can be formed by the downdraw method is, for example, a glass having a liquidus viscosity of 10 4 ' 5 Pa's or more, preferably 10 5 ' ° Pa's or more, in the case of overflow overflow method.
  • the liquid phase viscosity is a viscosity at the time when crystals are precipitated, and the higher the liquid phase viscosity, the more difficult it is to produce devitrification during glass molding.
  • Si 0 50 to 70% As a glass composition suitable for the liquid crystal display substrate application, as will be described later, by weight%, Si 0 50 to 70%, A1 0 1 to 20%. BO 0 to 15%, MgO 0 to 30%, Ca ⁇ 0 ⁇ 30
  • ⁇ 0- Aluminosilicate-based alkali-free glass composition having a composition of 15%
  • the glass raw material thus prepared is supplied to a glass melting apparatus and melted.
  • the melting temperature may be appropriately adjusted according to the type of glass, for example, the glass having the above composition. In such a case, it may be melted at a temperature of about 1500 to 1650 ° C.
  • melting includes various steps such as clarification and stirring.
  • the molten glass is formed into a plate glass and cooled.
  • it is necessary to manage the temperature history in the temperature region where the molded plate glass is cooled to room temperature as described above.
  • the difference in average cooling rate in the temperature range from the annealing point (annealing point-100 ° C) is preferably less than 100 ° C / min at the center and the edge in the plate width direction. Adjust the temperature within 50 ° C / min, and even within 20 ° C / min.
  • the average cooling rate in the temperature range from the annealing point to (annealing point-100 ° C) may be adjusted.
  • the average cooling rate in the central part in the plate width direction is 200 ° C / min or more, especially 300 ° C / min or more, further 350 ° C / min or more, further 400 ° C / min or more, If the temperature is 500 ° C / min or more, a glass substrate with very little variation in the substrate can be easily obtained.
  • Sheet glass cooled at a high cooling rate is a sheet glass having a large absolute value of heat shrinkage at the center of the substrate, specifically 40 ppm or more, particularly 5 Oppm or more, further 53 ppm or more, further 55 ppm, or even 57 ppm or more.
  • a plate glass having an absolute value of the heat shrinkage rate is obtained. Note that the upper limit of the average cooling rate in the central part in the plate width direction must be 1000 ° CZ or less in order to prevent inappropriate distortion in the glass and excessive load on the compact. preferable.
  • the “heat shrinkage absolute value” in the present invention means that the temperature is raised from room temperature at a rate of 10 ° CZ, held at a holding temperature of 450 ° C for 10 hours, and cooled at a rate of 10 ° CZ (see Fig. 1). It means the thermal shrinkage of each part of the substrate when it is heat-treated with the temperature schedule shown.
  • the “average cooling rate” is calculated by calculating the time required for the glass to pass through the zone corresponding to the annealing zone (temperature range from annealing point to (slow cooling point-100 ° C)). The speed obtained by dividing the temperature difference by the passage time. As one of the most effective ways to change the average cooling rate, There is a way to change.
  • the higher the sheet drawing speed the larger the absolute value of the heat shrinkage of the glass, and the variation in the heat shrinkage due to fluctuations in the sheet drawing speed can be reduced.
  • the cooling region (gradual cooling furnace) in the molding process is a down draw method that is extremely short compared to the float method, the average cooling rate in this temperature region can be easily changed.
  • an overflow downdraw method which is a kind of downdraw method, is used, a glass substrate with excellent surface quality can be obtained, and there is an advantage that the polishing step can be omitted.
  • the drawing speed in the temperature range from the annealing point to (annealing point-100 ° C) is preferably 150 cm / min or more, 270 cm / min or more, further 320 cm / min or more, In particular, it is desirable to set it to 400 cm / min or more.
  • the upper limit of the sheet drawing speed is not particularly limited, but it is preferably 800 cm / min or less in consideration of the load on the molding apparatus.
  • the “sheet drawing speed” described here means that the central portion of the glass substrate in the plate width direction passes through the annealing region (the region in the temperature range from the annealing point to (annealing point-100 ° C)). Means the average speed.
  • the glass formed into a plate shape is cut into a predetermined size, and then subjected to necessary processing such as end face processing and cleaning.
  • the glass substrate of the present invention is characterized by a small variation in thermal shrinkage rate within one substrate. Specifically, when the temperature is raised from normal temperature at a rate of 10 ° CZ, held for 10 hours at a holding temperature of 450 ° C, and cooled down at a rate of 10 ° CZ (heat treatment according to the temperature schedule shown in Fig. 1). In addition, the difference between the maximum value and the minimum value of the absolute value of the heat shrinkage rate in the substrate is within 5 ppm, preferably within 3 ppm, and more preferably within 1 ppm.
  • the difference between the maximum value and the minimum value of the absolute value of heat shrinkage in the substrate exceeds 5 ppm, the difference in pattern deviation in the substrate becomes large, making correction with a photomask difficult, and display device productivity. Is significantly reduced.
  • the average cooling rate in the temperature range from the annealing point to (annealing point-100 ° C) is greatly different between the central part and the end part in the glass sheet width direction. Adjust so that it does not.
  • the glass substrate which is the subject of the present invention is an alkali-free glass substrate having a short side and a long side of 1500 mm or more, particularly 1800 mm or more, and further 2000 mm or more.
  • the demand for variation in the heat shrinkage rate becomes more severe. That is, when the absolute value of the thermal shrinkage rate is the same, the large glass substrate has a larger variation in dimensional change due to thermal shrinkage than the small substrate. Nevertheless, when manufacturing a large substrate, the temperature difference in the plate width direction tends to increase in the cooling process during molding, and the variation in the thermal contraction rate tends to increase. Therefore, it is important to reduce the variation in the thermal shrinkage rate within a single substrate.
  • the glass substrate that is the subject of the present invention is a glass substrate manufactured at a high cooling rate (that is, a glass substrate having a high absolute value of thermal contraction rate). Variations in heat shrinkage can be reduced. In other words, a glass substrate with a high cooling rate has a large absolute value of the heat shrinkage rate of the glass. On the other hand, even if the cooling rate varies slightly, the heat shrinkage rate hardly changes and the difference in heat shrinkage rate within the substrate becomes small. It is.
  • a glass substrate produced at a high cooling rate has an average cooling rate in the temperature range from the annealing point to (annealing point _100 ° C) at 200 ° C / min or more at the center in the plate width direction.
  • the absolute value of the rate is 40 ppm or more, especially 50 ppm or more, further 53 ppm or more, further 55 ppm or more, 57 ppm or more. It is a glass substrate.
  • the absolute value of the heat shrinkage rate of the glass is increased, the heat shrinkage rate will hardly change even if the cooling rate is slightly changed.
  • the strain point of the glass is preferably 630 ° C or higher, particularly 650 ° C or higher.
  • the alkali-free glass constituting the glass substrate of the present invention various glasses such as silica glass, polysilicate glass, and aluminosilicate glass can be used as long as they are suitable for the application.
  • it is preferably made of glass that can be molded by the overflow downdraw method.
  • the glass substrate formed by the overflow downdraw method has excellent surface quality and has the advantage that it can be used without being polished.
  • a glass substrate formed by the downdraw method generally has a tendency that the cooling rate in the plate width direction is not uniform, and thus the thermal shrinkage rate tends to vary within the substrate. Therefore, it is very important to adjust the variation of the thermal shrinkage rate within the substrate to be within a certain range.
  • Glass that can be formed by the downdraw method is, for example, a glass having a liquidus viscosity of 10 4 ' 5 Pa' s or more, preferably 10 5 '° Pa' s or more in the overflow down draw method. .
  • SiO 50 to 70% by weight is used as a glass suitable for a liquid crystal display substrate.
  • BaO 0 to 30% preferably SiO 50-70% by weight 0/0, A1_rei 10-20%
  • Aluminosilicate non-alkali glass having a composition of 15%. Within this range, it is possible to obtain a glass substrate that satisfies the above required characteristics.
  • SiO is a component that becomes a glass network former. SiO content is 70 wt.
  • the high-temperature viscosity will be high, the meltability will be poor, and the devitrification will also be bad, which is preferable. If it is less than 50% by weight, the chemical durability is deteriorated.
  • Al 2 O is a component that increases the strain point. If the Al O content exceeds 20% by weight, devitrification And preferable because the chemical durability against buffered hydrofluoric acid deteriorates. On the other hand, less than 1% by weight is preferable because the strain point is lowered. Preferably 10-20% by weight
  • B 2 O is a component that acts as a flux and improves the meltability of the glass.
  • B O content is 1
  • the strain point is unfavorable because the chemical resistance against hydrochloric acid and hydrochloric acid deteriorates.
  • the amount is too small, the high-temperature viscosity becomes high and the meltability deteriorates.
  • MgO is a component that lowers the viscosity at high temperature and improves the meltability of the glass, and is preferably 0 to 30% by weight, particularly 0 to 15% by weight. If the MgO content is too high, the devitrification will be poor and the chemical durability against buffered hydrofluoric acid will also be poor.
  • CaO is also a component that lowers the high-temperature viscosity and improves the meltability of the glass as with MgO, and its content is preferably 0 to 30% by weight, particularly 0 to 15% by weight. If the content of CaO is too large, devitrification is deteriorated and chemical durability against buffered hydrofluoric acid is also deteriorated.
  • SrO is a component that improves devitrification and chemical durability. If the SrO content is more than 30% by weight, the density increases, the high-temperature viscosity increases, and the meltability deteriorates. The preferred range is 0 to: 15% by weight.
  • BaO is also a component for improving devitrification and chemical durability similar to SrO, and is preferably 0 to 30% by weight, particularly preferably 0 to 15% by weight. If the content of BaO is too large, the density increases, the high-temperature viscosity increases, and the meltability deteriorates.
  • the glass is crushed, passed through a standard sieve 30 mesh (500 ⁇ m sieve opening), and the glass powder remaining on the 50 mesh (300 ⁇ m sieve sieve) is placed in a platinum boat and kept in a temperature gradient furnace for 24 hours. Then, the temperature at which crystals precipitate, that is, the liquidus temperature, was measured and determined from the high temperature viscosity corresponding to that temperature. The high temperature viscosity was measured by a platinum ball pulling method.
  • Table 1 shows the thermal contraction rate of the glass at the center and end portions in the plate width direction of the obtained glass substrate.
  • the sheet drawing speed refers to the speed at which the central portion in the plate width direction of the glass substrate that is continuously formed passes through the slow cooling region, and in this embodiment, the slow cooling region in the central portion in the plate width direction.
  • the measurement was made by bringing a measuring roller into contact with the intermediate point (position corresponding to an annealing point of 50 ° C).
  • the slow cooling region means a region corresponding to the temperature range from the slow cooling point to (slow cooling point-100 ° C) in each part in the plate width direction. In this example, from 705 ° C to 605 ° C. This refers to the area where the temperature is lowered.
  • the average cooling rate is the rate obtained by calculating the time for the glass to pass through the zone corresponding to the slow cooling region and dividing the temperature difference in the slow cooling region at the center or end by the passing time. Point to. [0052]
  • the absolute value of the heat shrinkage rate was measured by the following method. First, a glass plate sample was cut out from the center portion of the obtained glass substrate and a location (end portion) corresponding to a position 900 mm away from the center portion toward the end portion, and the glass plate 1 was cut as shown in FIG. 3 (a). After placing a linear marking at a predetermined position, fold the glass plate 1 perpendicular to the marking and divide it into two glass plate pieces la and lb.
  • the glass substrate of the present invention has a small variation in thermal shrinkage within the substrate. Therefore, if correction using a photomask is performed when forming a TFT circuit, the thermal shrinkage within the substrate is always within a certain range, so that pattern formation can be performed stably with high yield.
  • the glass substrate described above can be easily produced.

Abstract

Disclosed is an alkali-free glass substrate wherein both the long side and the short side are not less than 1500 mm. This alkali-free glass substrate is characterized in that the difference between the maximum value and the minimum value of the absolute values of the thermal shrinkage rate of the substrate is not more than 5 ppm when the substrate is heated from room temperature at a rate of 10˚C/min, kept at 450˚C for 10 hours, and then cooled at a rate of 10˚C/min (namely, when the substrate is heat-treated according to the temperature schedule shown in Fig. 1). Such a substrate can be produced by adjusting the average cooling rate within the range from the slow cooling point to the point lower than the slow cooling point by -100˚C in the cooling process during production to not more than 100˚C/min in the central portion and the end portion of the substrate in the width direction.

Description

明 細 書  Specification
無アルカリガラス基板  Alkali-free glass substrate
技術分野  Technical field
[0001] 本発明は、液晶ディスプレイ、 ELディスプレイ等のフラットディスプレイ基板及び、 電荷結合素子 (CCD)、等倍近接型固体撮像素子 (CIS)等の各種イメージセンサー 、ハードディスク、フィルタ一等の基板として適した無アルカリガラス基板に関するもの である。  The present invention relates to flat display substrates such as liquid crystal displays and EL displays, various image sensors such as charge coupled devices (CCD) and equal-magnification proximity solid-state imaging devices (CIS), substrates for hard disks, filters and the like. It relates to a suitable alkali-free glass substrate.
背景技術  Background art
[0002] 従来、液晶ディスプレイ、 ELディスプレイ等のフラットディスプレイの基板として、ガ ラス基板が広く用いられてレ、る。  Conventionally, glass substrates have been widely used as substrates for flat displays such as liquid crystal displays and EL displays.
[0003] 特に薄膜トランジスタ型アクティブマトリックス液晶ディスプレイ (TFT-LCD)等の電 子デバイスは、薄型で消費電力も少ないことから、カーナビゲーシヨン、デジタルカメ ラのファインダー、パソコンのモニターや TV用など、様々な用途に使用されている。  [0003] In particular, electronic devices such as thin-film transistor active matrix liquid crystal displays (TFT-LCDs) are thin and have low power consumption. Therefore, they are used in various applications such as car navigation systems, digital camera viewfinders, PC monitors and TVs. It is used for various purposes.
[0004] 液晶ディスプレイを駆動するためには、 TFT素子を代表とする駆動素子をガラス基 板上に形成する必要がある。 TFT素子の製造工程では、ガラス基板上に透明導電 膜や絶縁膜、半導体膜、金属膜等を成膜する。さらにフォトリソグラフィ -エッチングェ 程において、ガラス基板を種々の熱処理や薬品処理で処理する。例えば TFT型ァク ティブマトリックス液晶ディスプレイでは、ガラス基板上に絶縁膜や透明導電膜を成膜 する。さらにアモルファスシリコンや多結晶シリコンの TFT (薄膜トランジスタ)がフォト リソグラフィ -エッチング工程でガラス基板上に多数形成される。このような製造工程に おいて、ガラス基板は 300〜600°Cの熱処理を受けると共に、硫酸、塩酸、アルカリ 溶液、フッ酸、バッファードフッ酸等の種々の薬品による処理を受ける。そのため TF T液晶ディスプレイ用ガラス基板には、以下のような特性が求められる。  In order to drive a liquid crystal display, it is necessary to form a driving element typified by a TFT element on a glass substrate. In the TFT element manufacturing process, a transparent conductive film, insulating film, semiconductor film, metal film, etc. are formed on a glass substrate. Furthermore, in the photolithography-etching process, the glass substrate is treated with various heat treatments and chemical treatments. For example, in a TFT type active matrix liquid crystal display, an insulating film or a transparent conductive film is formed on a glass substrate. In addition, amorphous silicon and polycrystalline silicon TFTs (thin film transistors) are formed on a glass substrate by a photolithography-etching process. In such a manufacturing process, the glass substrate is subjected to a heat treatment at 300 to 600 ° C., and is also treated with various chemicals such as sulfuric acid, hydrochloric acid, alkaline solution, hydrofluoric acid, and buffered hydrofluoric acid. Therefore, the following characteristics are required for glass substrates for TFT liquid crystal displays.
(1)ガラス中にアルカリ金属酸化物が含有されていると、熱処理中にアルカリイオン が成膜された半導体物質中に拡散し、膜の特性の劣化を招くため、実質的にアル力 リ金属酸化物を含有しなレ、こと。  (1) If an alkali metal oxide is contained in the glass, alkali ions diffuse into the deposited semiconductor material during the heat treatment and cause deterioration of the film properties. Do not contain oxides.
(2)フォトリソグラフィ-エッチング工程で使用される酸、アルカリ等の溶液に対する耐 性、すなわち耐薬品性に優れていること。 (2) Photolithography-Resistance to acid and alkali solutions used in the etching process Excellent in chemical properties, that is, chemical resistance.
(3)成膜、ァニール等の工程で、ガラス基板は高温に晒される。その際、ガラス基板 の熱収縮率が小さいことが望まれる。つまり熱収縮率が大きいと、基板上に形成され る回路のパターンずれが生じてしまうためである。熱収縮率を小さくするとレ、う観点か ら、ガラスの歪点は高い方が有利である。  (3) The glass substrate is exposed to a high temperature in processes such as film formation and annealing. At that time, it is desired that the glass substrate has a low thermal shrinkage. That is, if the thermal contraction rate is large, the circuit pattern formed on the substrate will be shifted. From the viewpoint of reducing the heat shrinkage rate, it is advantageous that the glass has a higher strain point.
[0005] また上記以外にも、 TFT液晶ディスプレイ用ガラス基板には以下の特性が要求され る。  In addition to the above, the glass substrate for TFT liquid crystal display is required to have the following characteristics.
(4)ガラスの溶融工程や成形工程でガラス中に異物が発生しないように、耐失透性 に優れていること。特にオーバーフローダウンドロー法等のダウンドロー法によってガ ラスを成形する場合には、ガラスの耐失透性が重要であり、ガラス成形温度を考慮す ると、その液相線温度が 1200°C以下であることが要求される。  (4) Excellent devitrification resistance so that no foreign matter is generated in the glass during the glass melting or forming process. In particular, when glass is formed by a downdraw method such as the overflow downdraw method, the devitrification resistance of the glass is important. When the glass forming temperature is taken into consideration, the liquidus temperature is 1200 ° C or less. It is required to be.
(5)液晶ディスプレイを軽量化するため、密度が低いこと。特にノート型パソコンに搭 載されるガラス基板は軽量ィ匕の要求が強ぐ具体的には、 2. 50g/cm3以下であるこ とが要求されている。 (5) The density is low in order to reduce the weight of the liquid crystal display. In particular, glass substrates mounted on laptop computers are required to have a weight of 2.50 g / cm 3 or less.
(6)表面の平坦度が高いこと。例えば液晶ディスプレイは、 2枚の薄いガラス基板の 間に挟まれた液晶層が、光シャッターとして働き、この層が光を遮蔽したり、透過した りすることで表示が行われる。この液晶層は、数 μ η〜10数 μ ηと非常に薄い厚み に保持されている。そのため、ガラス基板の表面の平坦度、特にうねりと呼ばれる μ mレベルの凹凸は、液晶層の厚み(セルギャップと呼ばれる)に影響を与えやすぐ 表面のうねりが大きいと、表示ムラ等の表示不良の原因となる。  (6) The surface flatness is high. For example, in a liquid crystal display, a liquid crystal layer sandwiched between two thin glass substrates functions as an optical shutter, and this layer displays images by shielding or transmitting light. This liquid crystal layer is maintained at a very thin thickness of several μη to several tens μη. Therefore, the flatness of the surface of the glass substrate, especially the irregularities of the μm level called waviness, affects the thickness of the liquid crystal layer (called cell gap), and if the surface waviness is large immediately, display defects such as display unevenness Cause.
[0006] また近年では、液晶ディスプレイでは、高速応答化や高精細化の目的で、セルギヤ ップがより薄くなる傾向にあるため、これに用いられるガラス基板の表面のうねりを低 減することがますます重要となってきている。ガラス基板の表面のうねりを低減するた めに最も有効な方法は、成形後のガラス基板の表面を精密に研磨することであるが、 この方法ではガラス基板の製造コストが非常に高くなる。そのため現在では、オーバ 一フローダウンドロー法やフロート法等の成形法により、できるだけ表面のうねりの小 さいガラス基板を成形し、無研磨の状態で、あるいは極く軽い研磨(タツチポリツシュ) を施して出荷されている。 [0007] これらの特性を満足するために種々のガラス基板が提案されている。 (例えば特許 文献 1参照。 ) [0006] In recent years, the liquid crystal display has a tendency to make the cell gap thinner for the purpose of high-speed response and high definition. Therefore, it is possible to reduce the undulation of the surface of the glass substrate used for this. It is becoming increasingly important. The most effective method for reducing the waviness of the surface of the glass substrate is to precisely polish the surface of the glass substrate after molding, but this method increases the manufacturing cost of the glass substrate. For this reason, glass substrates with as little surface waviness as possible are formed by molding methods such as the overflow-down-draw method and float method, and they are shipped without being polished or subjected to extremely light polishing (touch polish). Has been. [0007] Various glass substrates have been proposed to satisfy these characteristics. (For example, see Patent Document 1.)
特許文献 1 :特開平 8-811920号公報  Patent Document 1: JP-A-8-811920
発明の開示  Disclosure of the invention
[0008] ガラス基板の熱収縮率は、上記した通り、小さいほど好ましいとされている。ところが 、近年ではガラス基板の熱収縮率を考慮して、回路形成時にフォトマスクによる補正 を行う技術が採用されるようになってきている。その結果、中小型のガラス基板であれ ば、熱収縮率が十分に小さくない場合であっても、パターンずれの問題を解決するこ とができるようになった。しかし、例えば第 6世代と呼ばれるような大型のガラス基板( 例えば各辺が 1500mm以上のガラス基板)では、未だこの技術を採用することが難 しい。  [0008] As described above, the smaller the thermal contraction rate of the glass substrate, the better. However, in recent years, taking into account the thermal contraction rate of the glass substrate, a technique for performing correction using a photomask during circuit formation has been adopted. As a result, the medium-to-small glass substrate can solve the problem of pattern deviation even when the thermal shrinkage rate is not sufficiently small. However, it is still difficult to adopt this technology for a large glass substrate called the 6th generation (for example, a glass substrate having a side of 1500 mm or more).
[0009] 本発明の目的は、回路形成時にフォトマスクによる補正が可能な大型の無アルカリ ガラス基板とその製造方法を提供することである。  An object of the present invention is to provide a large alkali-free glass substrate that can be corrected by a photomask during circuit formation and a method for manufacturing the same.
[0010] 本発明者は種々の検討を行った結果、基板サイズが大きくなるほど、基板内の熱収 縮率のばらつきが大きくなることに着目し、本発明を提案するに至った。 As a result of various studies, the present inventor has come to propose the present invention by paying attention to the fact that the variation in the thermal contraction rate in the substrate increases as the substrate size increases.
[0011] 即ち、本発明は以下の(1)〜(11)に関する。 That is, the present invention relates to the following (1) to (11).
(1)  (1)
短辺、長辺ともに 1500mm以上の無アルカリガラス基板において、常温から 10°C Z分の速度で昇温し、保持温度 450°Cで 10時間保持し、 10°CZ分の速度で降温( 図 1に示す温度スケジュールで熱処理)したときに、基板内の熱収縮率絶対値の最 大値と最小値の差が 5ppm以内となることを特徴とする無アルカリガラス基板。  On a non-alkali glass substrate with a short side and long side of 1500 mm or more, the temperature is raised from room temperature at a rate of 10 ° CZ, held at a holding temperature of 450 ° C for 10 hours, and cooled at a rate of 10 ° CZ (Figure 1). A non-alkali glass substrate characterized in that the difference between the maximum value and the minimum value of the absolute value of thermal shrinkage in the substrate is within 5 ppm when heat treatment is performed according to the temperature schedule shown in Fig. 3.
(2)  (2)
常温から 10°C/分の速度で昇温し、保持温度 450°Cで 10時間保持し、 10°C/分 の速度で降温したときに、基板中央部分における熱収縮率絶対値が 40ppm以上と なることを特徴とする(1)の無アルカリガラス基板。  When the temperature is raised from room temperature at a rate of 10 ° C / min, held for 10 hours at a holding temperature of 450 ° C, and the temperature is lowered at a rate of 10 ° C / min, the absolute value of the heat shrinkage at the center of the substrate is 40 ppm or more The alkali-free glass substrate according to (1), wherein
(3)  (3)
オーバーフローダウンドロー法で成形されてなることを特徴とする(1)又は(2)の無 アルカリガラス基板。 重量0 /0で SiO 50〜70%、Α1 Ο 1~20%, B O 0〜: 15%、 MgO 0〜30%、The alkali-free glass substrate according to (1) or (2), which is formed by an overflow down-draw method. SiO 50-70% by weight 0/0, Α1 Ο 1 ~ 20%, BO 0~: 15%, 0~30% MgO,
CaO 0〜30%、 SrO 0〜30%、 BaO 0〜30%含有することを特徴とする(1) 〜(3)の何れかの無アルカリガラス基板。 CaO 0-30%, SrO 0-30%, BaO 0-30%, The alkali-free glass substrate according to any one of (1) to (3).
(5)  (Five)
ガラス原料を溶融、成形して無アルカリガラス基板を製造する方法であって、成形 時の冷却過程にぉレ、て、徐冷点から (徐冷点 _100°C)の温度の範囲での平均冷却 速度が、板幅方向の中央部分と端部で 100°C/分以内の差となるように調節するこ とを特徴とする無アルカリガラス基板の製造方法。  This is a method for producing an alkali-free glass substrate by melting and forming glass raw material, and the average over the temperature range from the annealing point to (annealing point _100 ° C) during the cooling process during molding. A method for producing an alkali-free glass substrate, wherein the cooling rate is adjusted so as to have a difference of 100 ° C / min or less between the central portion and the end portion in the plate width direction.
(6)  (6)
有効幅が 1500mm以上となるようにガラスを成形することを特徴とする(5)の無アル カリガラス基板の製造方法。  (5) The method for producing an alkali-free glass substrate according to (5), wherein the glass is formed so that the effective width is 1500 mm or more.
(7)  (7)
成形時の冷却過程において、徐冷点から (徐冷点- 100°C)の温度の範囲での平均 冷却速度が、板幅方向中央部分で 200°C/分以上であることを特徴とする(5)又は( 6)の無アルカリガラス基板の製造方法。  In the cooling process at the time of molding, the average cooling rate in the temperature range from the annealing point to (annealing point-100 ° C) is 200 ° C / min or more at the center in the plate width direction. (5) or (6) a method for producing an alkali-free glass substrate.
(8)  (8)
成形時の冷却過程において、徐冷点から (徐冷点- 100°C)の温度の範囲での板引 き速度が 150cm/分以上であることを特徴とする(5)〜(7)の何れかの無アルカリガ ラス基板の製造方法。  In the cooling process at the time of molding, the sheet drawing speed in the temperature range from the annealing point to (annealing point-100 ° C) is 150 cm / min or more (5) to (7) A method for producing any alkali-free glass substrate.
(9)  (9)
オーバーフローダウンドロー法で成形することを特徴とする(5)〜(8)の何れかの無 アルカリガラス基板の製造方法。  The method for producing an alkali-free glass substrate according to any one of (5) to (8), which is formed by an overflow downdraw method.
(10)  (Ten)
重量0 /0で SiO 50〜70%、Α1 Ο 1~20%. B O 0〜: 15%、 MgO0〜30%、SiO 50-70% by weight 0/0, Α1 Ο 1 ~ 20% BO 0~:. 15%, MgO0~30%,
CaO 0〜30%、 SrO 0〜30%、 BaO 0〜30%の組成を有する無アルカリガラ ス基板を製造することを特徴とする(5)〜(9)の何れかの無アルカリガラス基板の製 造方法。 ( 1 1 ) A non-alkali glass substrate having a composition of CaO 0 to 30%, SrO 0 to 30%, BaO 0 to 30% is manufactured. Production method. (1 1)
(5)〜(10)の何れかの方法によって製造されてなることを特徴とする無アルカリガ ラス基板。  An alkali-free glass substrate produced by the method according to any one of (5) to (10).
[0012] 本発明のガラス基板は、基板内の熱収縮率のばらつきが小さい。それゆえ TFT回 路を形成する際にフォトマスクによる補正を行うと、基板内の熱収縮が常に一定範囲 にあるため、歩留まりよく安定してパターン形成を行うことができる。  [0012] The glass substrate of the present invention has a small variation in thermal shrinkage within the substrate. Therefore, if correction using a photomask is performed when forming a TFT circuit, the thermal contraction in the substrate is always within a certain range, so that the pattern can be formed stably with a high yield.
[0013] また本発明の製造方法によれば、上記したガラス基板を容易に作製することができ る。  [0013] Further, according to the production method of the present invention, the glass substrate described above can be easily produced.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]熱収縮率絶対値を求めるための温度スケジュールを示す説明図である。  FIG. 1 is an explanatory diagram showing a temperature schedule for obtaining an absolute value of a heat shrinkage rate.
[図 2]平均冷却速度と熱収縮率絶対値の関係を示すグラフである。  FIG. 2 is a graph showing the relationship between average cooling rate and absolute value of heat shrinkage rate.
[図 3]熱収縮率絶対値を測定する方法を示す説明図である。  FIG. 3 is an explanatory diagram showing a method for measuring the absolute value of the heat shrinkage rate.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] ガラス基板の熱収縮率は、板ガラス成形時の冷却速度に左右される。本発明者等 の調査によれば、図 2に示すように、高い冷却速度で冷却された板ガラスは熱収縮率 が大きぐ逆に低い速度で冷却された板ガラスは熱収縮率が小さくなる。またガラス基 板は、ガラス成形装置によって連続的に板引きされているので、板引き方向では温 度履歴 (冷却速度)の変動が少ない。従って板引き方向では熱収縮率差が生じにく い。一方、板幅方向では温度差が生じやすぐ特に中央部分と端部の温度履歴 (冷 却速度)が異なってしまう。それゆえ板幅方向での熱収縮率差が大きい。  [0015] The thermal shrinkage of the glass substrate depends on the cooling rate at the time of forming the glass sheet. According to the investigation by the present inventors, as shown in FIG. 2, a plate glass cooled at a high cooling rate has a large heat shrinkage rate, whereas a plate glass cooled at a low rate has a low heat shrinkage rate. In addition, since the glass substrate is continuously drawn by a glass forming apparatus, the temperature history (cooling rate) varies little in the drawing direction. Therefore, the difference in heat shrinkage is unlikely to occur in the drawing direction. On the other hand, a temperature difference occurs in the plate width direction, and the temperature history (cooling speed) of the central portion and the edge portion is particularly different. Therefore, the difference in thermal shrinkage in the plate width direction is large.
[0016] この傾向は、板幅が大きくなればなるほど顕著になる。つまりガラス基板が大型化す るに従って、 1枚の基板内での熱収縮率のばらつきが大きくなつてしまう。  [0016] This tendency becomes more prominent as the plate width increases. In other words, as the glass substrate increases in size, the variation in thermal shrinkage within a single substrate increases.
[0017] 本発明者等の調査によれば、(徐冷点 + 50°C)の温度から (徐冷点- 100°C)の温 度の範囲での冷却速度の違いが熱収縮率差を生じさせる原因となっていることが分 かった。さらに徐冷点から (徐冷点- 100°C)の温度範囲における冷却条件は、フラッ トパネルディスプレイ基板にとって重要な特性である板厚や歪みには大きな影響を与 えないことが判明した。従って徐冷点以上の温度領域で板厚や歪みを制御し、徐冷 点から(徐冷点- 100°C)の温度範囲(=徐冷領域)での熱収縮率のばらつきを調整 すればよい。 [0017] According to the study by the present inventors, the difference in cooling rate in the temperature range from (annealing point + 50 ° C) to (annealing point-100 ° C) is the difference in heat shrinkage rate. It was found that this was the cause of Furthermore, it was found that the cooling conditions in the temperature range from the annealing point (annealing point-100 ° C) have no significant effect on the plate thickness and distortion, which are important characteristics for flat panel display substrates. Therefore, the plate thickness and strain are controlled in the temperature range above the annealing point, and the variation in thermal shrinkage from the annealing point to the temperature range (= annealing point-100 ° C) is adjusted. do it.
[0018] 熱収縮率のばらつきを調整する手段としては、徐冷点から (徐冷点 _100°C)の温度 範囲において、板幅方向における冷却速度の差を小さくすればよぐ具体的にはこ の温度範囲において、板幅方向中央部分と端部との冷却速度差を 100°C/分以内 となるように調節すればよい。冷却速度は、主として板引き速度と徐冷炉内のヒータ 一加熱によって調整されるが、板幅方向の冷却温度差の調整には、板幅方向のヒー ターの電力を調整すればよい。  [0018] As a means for adjusting the variation of the thermal shrinkage rate, it is only necessary to reduce the difference in cooling rate in the plate width direction in the temperature range from the annealing point to (annealing point _100 ° C). In this temperature range, the cooling rate difference between the central part and the edge part in the plate width direction should be adjusted to be within 100 ° C / min. The cooling rate is adjusted mainly by the sheet drawing speed and the heating of the heater in the slow cooling furnace. To adjust the cooling temperature difference in the sheet width direction, the power of the heater in the sheet width direction may be adjusted.
[0019] また冷却速度を高くすることによつても、熱収縮率のばらつきを小さくすることができ る。つまり図 2より、冷却速度が高くなればなるほど熱収縮率は大きくなる力 冷却速 度が多少変化しても熱収縮率は殆ど変化しないことが分かる。  [0019] The variation in the thermal shrinkage rate can also be reduced by increasing the cooling rate. In other words, it can be seen from FIG. 2 that the heat shrinkage rate increases as the cooling rate increases. Even if the cooling rate changes slightly, the heat shrinkage rate hardly changes.
[0020] 本発明の製造方法をさらに詳述する。  [0020] The production method of the present invention will be described in further detail.
[0021] まず所望の組成となるように調合したガラス原料を溶融する。ガラス原料の調合は、 その用途に適した特性を有するガラス組成となるように、酸化物、硝酸塩、炭酸塩等 のガラス原料、カレット等を秤量し混合すればよい。シリカガラス、ポロシリケートガラス 、アルミノシリケートガラス等、ガラスの種類は特に問わなレ、が、これらの中でもダウン ドロー法、特にオーバーフローダウンドロー法で成形可能なガラスとなるように調合す ることが好ましい。ダウンドロー法で成形可能なガラスとは、例えばオーバーフローダ ゥンドロー法の場合、液相粘度が 104'5Pa' s以上、好ましくは 105'°Pa' s以上のガラス である。なお、液相粘度は結晶が析出する時の粘度であり、液相粘度が高いほどガ ラス成形時に失透が発生しにくぐ製造がしゃすくなる。 [0021] First, a glass material prepared to have a desired composition is melted. The glass raw material may be prepared by weighing and mixing glass raw materials such as oxides, nitrates and carbonates, cullet, etc. so as to obtain a glass composition having characteristics suitable for the application. Silica glass, porosilicate glass, aluminosilicate glass, etc. are not particularly limited in the type of glass, but among these, it is preferable to prepare a glass that can be molded by the downdraw method, particularly the overflow downdraw method. . The glass that can be formed by the downdraw method is, for example, a glass having a liquidus viscosity of 10 4 ' 5 Pa's or more, preferably 10 5 ' ° Pa's or more, in the case of overflow overflow method. The liquid phase viscosity is a viscosity at the time when crystals are precipitated, and the higher the liquid phase viscosity, the more difficult it is to produce devitrification during glass molding.
[0022] 液晶ディスプレイ基板用途に好適なガラス組成としては、後述の通り、重量%で Si 〇 50〜70%、A1〇 1~20%. B O 0〜: 15%、 MgO 0〜30%、 Ca〇 0〜30 As a glass composition suitable for the liquid crystal display substrate application, as will be described later, by weight%, Si 0 50 to 70%, A1 0 1 to 20%. BO 0 to 15%, MgO 0 to 30%, Ca ○ 0 ~ 30
%、 SrO 0〜30%、 Ba〇 0〜30%、特に重量0 /oで Si〇 50〜70%、 Al〇 10%, SrO 0 to 30%, Ba 0 0 to 30%, especially Si 0 50 to 70% at a weight of 0 / o, Al 10
〜20%、 B O 3〜: 15%、 MgO 0〜15%、 Ca〇 0〜15%、 Sr〇 0〜15%、 Ba~ 20%, B O 3 ~: 15%, MgO 0 ~ 15%, Ca 0 ~ 15%, Sr 0 0 ~ 15%, Ba
〇 0〜: 15%の組成を有するアルミノシリケ一ト系無アルカリガラス組成が挙げられる 〇 0-: Aluminosilicate-based alkali-free glass composition having a composition of 15%
[0023] このようにして調合したガラス原料を、ガラス溶融装置に供給して溶融する。溶融温 度は、ガラスの種類に応じて適宜調節すればよぐ例えば上記組成を有するガラスの 場合には、 1500〜: 1650°C程度の温度で溶融すればよい。なお本発明でいう溶融 には、清澄、攪拌等の各種工程を含む。 [0023] The glass raw material thus prepared is supplied to a glass melting apparatus and melted. The melting temperature may be appropriately adjusted according to the type of glass, for example, the glass having the above composition. In such a case, it may be melted at a temperature of about 1500 to 1650 ° C. In the present invention, melting includes various steps such as clarification and stirring.
[0024] 次いで溶融ガラスを板ガラス状に成形し、冷却する。ガラス基板内の熱収縮率のば らっきを少なくするためには、上記した通り、成形した板ガラスを室温まで冷却する温 度領域での温度履歴を管理する必要がある。特に徐冷点から (徐冷点 _100°C)の温 度範囲において、冷却速度差が生じないようにすることが重要となる。具体的には、 徐冷点から(徐冷点- 100°C)の温度範囲での平均冷却速度の差が、板幅方向の中 央部分と端部とで 100°C/分以内、好ましくは 50°C/分以内、さらには 20°C/分以 内となるように調節すればょレ、。  Next, the molten glass is formed into a plate glass and cooled. In order to reduce the variation of the thermal shrinkage rate in the glass substrate, it is necessary to manage the temperature history in the temperature region where the molded plate glass is cooled to room temperature as described above. In particular, it is important not to cause a difference in cooling rate in the temperature range from the annealing point to (annealing point_100 ° C). Specifically, the difference in average cooling rate in the temperature range from the annealing point (annealing point-100 ° C) is preferably less than 100 ° C / min at the center and the edge in the plate width direction. Adjust the temperature within 50 ° C / min, and even within 20 ° C / min.
[0025] 中央部分と端部の冷却速度の差を小さくする方法として、板幅方向中央部のヒータ 一の電力を下げる、端部のヒーターの電力を上げる等の方法が採用できる。  [0025] As a method for reducing the difference in cooling rate between the central portion and the end portion, methods such as lowering the power of the heater at the central portion in the plate width direction and increasing the power of the end heater can be employed.
[0026] また基板内の熱収縮率のばらつきをより小さくするために、冷却速度を高くすること が好ましい。具体的には徐冷点から (徐冷点- 100°C)の温度の範囲における平均冷 却速度を調節すればよい。この温度領域において、板幅方向中央部分の平均冷却 速度を 200°C/分以上、特に 300°C/分以上、さらには 350°C/分以上、さらには 4 00°C/分以上、さらには 500°C/分以上にすれば、基板内のばらつきが非常に小さ いガラス基板を容易に得ることができる。なお高い冷却速度で冷却された板ガラスは 、基板中央部の熱収縮率絶対値が大きい板ガラス、具体的には 40ppm以上、特に 5 Oppm以上、さらには 53ppm以上、さらには 55ppm、さらには 57ppm以上の熱収縮 率絶対値を有する板ガラスとなる。なおガラスに不適切な歪みが発生したり、成形体 に過剰な負荷がかったりすることを防止するために、板幅方向中央部分における平 均冷却速度の上限は 1000°CZ分以下であることが好ましい。また本発明における「 熱収縮率絶対値」とは、常温から 10°CZ分の速度で昇温し、保持温度 450°Cで 10 時間保持し、 10°CZ分の速度で降温(図 1に示す温度スケジュールで熱処理)したと きの基板各部分の熱収縮率を意味する。また「平均冷却速度」とは、ガラスが徐冷領 域 (徐冷点から(徐冷点- 100°C)の温度の範囲)に相当する区域を通過する時間を 算出し、徐冷領域内の温度差を、通過時間で除することにより求めた速度を指す。 平均冷却速度を変更する最も有効な方法の一つとして、板ガラスの板引き速度を 変更する方法がある。板引き速度を上げれば上げるほど、ガラスの熱収縮率絶対値 が大きくなり、板引き速度の変動による熱収縮率のばらつきを小さくできる。なお板引 き速度を上げるには、成形されたガラスを引き延ばす引っ張りローラーの回転速度を 高くすればよい。また成形工程における冷却領域 (徐冷炉)がフロート法に比べて極 めて短いダウンドロー法の場合は、この温度領域での平均冷却速度を容易に変更す ることができる。さらにダウンドロー法の一種であるオーバーフローダウンドロー法で 成形すれば、表面品位に優れたガラス基板を得ることができ、研磨工程を省略するこ とができるというメリットもある。具体的には、徐冷点から (徐冷点- 100°C)の温度の範 囲における板引き速度が 150cm/分以上であることが好ましく、 270cm/分以上、 さらには 320cm/分以上、特に 400cm/分以上とすることが望ましい。また板引き 速度の上限は特にないが、成形装置の負荷を考慮すると 800cm/分以下とすること が好ましい。なおここで説明する「板引き速度」とは、ガラス基板の板幅方向中央部分 が徐冷領域 (徐冷点から (徐冷点- 100°C)の温度の範囲にある領域)を通過する速 度の平均を意味する。 [0026] It is preferable to increase the cooling rate in order to reduce the variation in the thermal shrinkage rate in the substrate. Specifically, the average cooling rate in the temperature range from the annealing point to (annealing point-100 ° C) may be adjusted. In this temperature range, the average cooling rate in the central part in the plate width direction is 200 ° C / min or more, especially 300 ° C / min or more, further 350 ° C / min or more, further 400 ° C / min or more, If the temperature is 500 ° C / min or more, a glass substrate with very little variation in the substrate can be easily obtained. Sheet glass cooled at a high cooling rate is a sheet glass having a large absolute value of heat shrinkage at the center of the substrate, specifically 40 ppm or more, particularly 5 Oppm or more, further 53 ppm or more, further 55 ppm, or even 57 ppm or more. A plate glass having an absolute value of the heat shrinkage rate is obtained. Note that the upper limit of the average cooling rate in the central part in the plate width direction must be 1000 ° CZ or less in order to prevent inappropriate distortion in the glass and excessive load on the compact. preferable. The “heat shrinkage absolute value” in the present invention means that the temperature is raised from room temperature at a rate of 10 ° CZ, held at a holding temperature of 450 ° C for 10 hours, and cooled at a rate of 10 ° CZ (see Fig. 1). It means the thermal shrinkage of each part of the substrate when it is heat-treated with the temperature schedule shown. The “average cooling rate” is calculated by calculating the time required for the glass to pass through the zone corresponding to the annealing zone (temperature range from annealing point to (slow cooling point-100 ° C)). The speed obtained by dividing the temperature difference by the passage time. As one of the most effective ways to change the average cooling rate, There is a way to change. The higher the sheet drawing speed, the larger the absolute value of the heat shrinkage of the glass, and the variation in the heat shrinkage due to fluctuations in the sheet drawing speed can be reduced. In order to increase the drawing speed, it is only necessary to increase the rotation speed of the pulling roller that stretches the formed glass. In addition, when the cooling region (gradual cooling furnace) in the molding process is a down draw method that is extremely short compared to the float method, the average cooling rate in this temperature region can be easily changed. Further, if an overflow downdraw method, which is a kind of downdraw method, is used, a glass substrate with excellent surface quality can be obtained, and there is an advantage that the polishing step can be omitted. Specifically, the drawing speed in the temperature range from the annealing point to (annealing point-100 ° C) is preferably 150 cm / min or more, 270 cm / min or more, further 320 cm / min or more, In particular, it is desirable to set it to 400 cm / min or more. The upper limit of the sheet drawing speed is not particularly limited, but it is preferably 800 cm / min or less in consideration of the load on the molding apparatus. The “sheet drawing speed” described here means that the central portion of the glass substrate in the plate width direction passes through the annealing region (the region in the temperature range from the annealing point to (annealing point-100 ° C)). Means the average speed.
[0027] なおダウンドロー法で成形する場合、徐冷炉内では板幅方向中央部分に比べて端 部の温度が低下しやすい。つまり中央部分は保温性がよいが、端部は熱が逃げやす い。従って板幅方向の冷却速度が一定となりにくぐ板幅方向の熱収縮率に大きな ばらつきが生じる傾向がある。それゆえ、ダウンドロー法で成形する場合、本発明方 法を採用するメリットが大きいと言える。  [0027] When molding by the downdraw method, the temperature at the end tends to decrease in the slow cooling furnace as compared to the central portion in the plate width direction. In other words, the central part has good heat retention, but heat easily escapes at the end. Therefore, the cooling rate in the plate width direction is constant, and there is a tendency for large variation in the heat shrinkage rate in the plate width direction. Therefore, when molding by the downdraw method, it can be said that the merit of adopting the method of the present invention is great.
[0028] またガラスの板幅方向の距離が長くなると、得られるガラス基板の熱収縮率のばら つき大きくなりやすレ、。つまりガラスの有効幅が 1500mm以上、特に 1800mm以上 となるように成形する場合には、成形時の冷却工程において、板幅方向での温度差 が大きくなり易 熱収縮率のばらつきが大きくなる傾向にある。それゆえ、大型のガ ラス基板を成形しょうとする場合、本発明方法を採用するメリットが大きいと言える。  [0028] Further, when the distance in the plate width direction of the glass is increased, the variation of the thermal shrinkage rate of the obtained glass substrate tends to increase. In other words, when the glass is molded so that the effective width is 1500 mm or more, especially 1800 mm or more, the temperature difference in the sheet width direction tends to increase in the cooling process during molding, and the variation in the easy heat shrinkage tends to increase. is there. Therefore, when trying to mold a large glass substrate, it can be said that the merit of employing the method of the present invention is great.
[0029] その後、板状に成形されたガラスは、所定のサイズに切断された後、端面処理、洗 浄等必要な処理が施される。  [0029] Thereafter, the glass formed into a plate shape is cut into a predetermined size, and then subjected to necessary processing such as end face processing and cleaning.
[0030] このようにして熱収縮率のばらつきが小さいガラス基板を得ることができる。  [0030] In this way, a glass substrate having a small variation in thermal shrinkage can be obtained.
[0031] 次に、上記のようにして得られる本発明のガラス基板について説明する。 [0032] 本発明のガラス基板は、 1枚の基板内での熱収縮率のばらつきが小さいという特徴 がある。具体的には、常温から 10°CZ分の速度で昇温し、保持温度 450°Cで 10時 間保持し、 10°CZ分の速度で降温(図 1に示す温度スケジュールで熱処理)したとき に、基板内の熱収縮率絶対値の最大値と最小値の差が 5ppm以内、好ましくは 3pp m以内、さらに好ましくは lppm以内となる。基板内の熱収縮率絶対値の最大値と最 小値の差が 5ppmを超える場合は、基板内でのパターンずれの差が大きくなり、フォ トマスクによる補正が困難になって表示装置の生産性が著しく低下する。なお基板内 の熱収縮率差を小さくするには、徐冷点から (徐冷点- 100°C)の温度範囲における 平均冷却速度が、ガラスの板幅方向中央部分と端部とで大きく相違しないように調節 すればよい。 [0031] Next, the glass substrate of the present invention obtained as described above will be described. [0032] The glass substrate of the present invention is characterized by a small variation in thermal shrinkage rate within one substrate. Specifically, when the temperature is raised from normal temperature at a rate of 10 ° CZ, held for 10 hours at a holding temperature of 450 ° C, and cooled down at a rate of 10 ° CZ (heat treatment according to the temperature schedule shown in Fig. 1). In addition, the difference between the maximum value and the minimum value of the absolute value of the heat shrinkage rate in the substrate is within 5 ppm, preferably within 3 ppm, and more preferably within 1 ppm. If the difference between the maximum value and the minimum value of the absolute value of heat shrinkage in the substrate exceeds 5 ppm, the difference in pattern deviation in the substrate becomes large, making correction with a photomask difficult, and display device productivity. Is significantly reduced. In order to reduce the thermal shrinkage difference in the substrate, the average cooling rate in the temperature range from the annealing point to (annealing point-100 ° C) is greatly different between the central part and the end part in the glass sheet width direction. Adjust so that it does not.
[0033] 本発明の対象とするガラス基板は、短辺、長辺ともに 1500mm以上、特に 1800m m以上、さらには 2000mm以上の無アルカリガラス基板である。このような大型のガラ ス基板では、熱収縮率のばらつきに対する要求が一層厳しくなる。つまり熱収縮率絶 対値のばらつきが同じである場合、大型のガラス基板は小型基板に比べて、熱収縮 による寸法変化のばらつきが大きくなる。それにもかかわらず、大型の基板を製造す る際には、成形時の冷却工程において、板幅方向での温度差が大きくなり易ぐ熱収 縮率のばらつきが大きくなる傾向にある。それゆえ、 1枚の基板内での熱収縮率のば らっきを小さくすることが重要となる。  [0033] The glass substrate which is the subject of the present invention is an alkali-free glass substrate having a short side and a long side of 1500 mm or more, particularly 1800 mm or more, and further 2000 mm or more. In such a large glass substrate, the demand for variation in the heat shrinkage rate becomes more severe. That is, when the absolute value of the thermal shrinkage rate is the same, the large glass substrate has a larger variation in dimensional change due to thermal shrinkage than the small substrate. Nevertheless, when manufacturing a large substrate, the temperature difference in the plate width direction tends to increase in the cooling process during molding, and the variation in the thermal contraction rate tends to increase. Therefore, it is important to reduce the variation in the thermal shrinkage rate within a single substrate.
[0034] また本発明の対象となるガラス基板は、高い冷却速度で作製されるガラス基板(即 ち、熱収縮率絶対値が高いガラス基板)であればあるほど、 1枚の基板内での熱収縮 率のばらつきを小さくすることができる。つまり冷却速度が高いガラス基板は、ガラス の熱収縮率絶対値が大きくなる一方で、冷却速度が多少変動しても熱収縮率が殆ど 変化しなくなり、基板内の熱収縮率差が小さくなるためである。なお高い冷却速度で 作製されたガラス基板とは、徐冷点から (徐冷点 _100°C)の温度の範囲における平 均冷却速度が、板幅方向中央部分で 200°C/分以上、特に 300°C/分以上、さら には 350°CZ分、さらには 400°CZ分以上、さらには 500°CZ分以上で作製された ガラス基板であり、或いは基板中央部(重心付近)の熱収縮率絶対値が 40ppm以上 、特に 50ppm以上、さらには 53ppm以上、さらには 55ppm以上、 57ppm以上となる ガラス基板である。またガラスの熱収縮率絶対値を高くすれば、冷却速度が多少変 化しても熱収縮率が殆ど変わらないため、基板同士の熱収縮率のばらつきも小さいと レヽ メ];、ノト力 sある [0034] In addition, the glass substrate that is the subject of the present invention is a glass substrate manufactured at a high cooling rate (that is, a glass substrate having a high absolute value of thermal contraction rate). Variations in heat shrinkage can be reduced. In other words, a glass substrate with a high cooling rate has a large absolute value of the heat shrinkage rate of the glass. On the other hand, even if the cooling rate varies slightly, the heat shrinkage rate hardly changes and the difference in heat shrinkage rate within the substrate becomes small. It is. A glass substrate produced at a high cooling rate has an average cooling rate in the temperature range from the annealing point to (annealing point _100 ° C) at 200 ° C / min or more at the center in the plate width direction. Glass substrate made at 300 ° C / min or higher, 350 ° CZ min, 400 ° CZ min or higher, or even 500 ° CZ min or higher, or thermal contraction at the center of the substrate (near the center of gravity) The absolute value of the rate is 40 ppm or more, especially 50 ppm or more, further 53 ppm or more, further 55 ppm or more, 57 ppm or more. It is a glass substrate. In addition, if the absolute value of the heat shrinkage rate of the glass is increased, the heat shrinkage rate will hardly change even if the cooling rate is slightly changed.
[0035] またガラス基板の熱収縮率絶対値が同じであれば、ガラス基板の歪点が高いほど 熱収縮率変化量が小さくなる傾向にある。それゆえガラスの歪点は高い方が有利で あると言える。具体的には、ガラスの歪点が 630°C以上、特に 650°C以上であること が好ましい。  [0035] If the absolute value of the heat shrinkage rate of the glass substrate is the same, the amount of change in the heat shrinkage rate tends to be smaller as the strain point of the glass substrate is higher. Therefore, it can be said that the higher the strain point of glass, the more advantageous. Specifically, the strain point of the glass is preferably 630 ° C or higher, particularly 650 ° C or higher.
[0036] また本発明のガラス基板を構成する無アルカリガラスは、その用途に適したガラスで あればシリカガラス、ポロシリケートガラス、アルミノシリケートガラス等、種々のガラス が使用可能である。中でもオーバーフローダウンドロー法で成形可能なガラスからな ることが好ましい。つまり、オーバーフローダウンドロー法で成形されたガラス基板は、 表面品位に優れており、研磨することなく使用に供することができるというメリットもある 。なおダウンドロー法で成形されたガラス基板は、一般に板幅方向の冷却速度が一 定になりにくいことから、基板内に熱収縮率のばらつきが生じやすいという傾向がある 。そこで、基板内の熱収縮率のばらつきが一定範囲内となるように調節することが非 常に重要となる。  [0036] As the alkali-free glass constituting the glass substrate of the present invention, various glasses such as silica glass, polysilicate glass, and aluminosilicate glass can be used as long as they are suitable for the application. In particular, it is preferably made of glass that can be molded by the overflow downdraw method. In other words, the glass substrate formed by the overflow downdraw method has excellent surface quality and has the advantage that it can be used without being polished. A glass substrate formed by the downdraw method generally has a tendency that the cooling rate in the plate width direction is not uniform, and thus the thermal shrinkage rate tends to vary within the substrate. Therefore, it is very important to adjust the variation of the thermal shrinkage rate within the substrate to be within a certain range.
[0037] ダウンドロー法で成形可能なガラスとは、例えばオーバーフローダウンドロー法の場 合、液相粘度が 104'5Pa' s以上、好ましくは 105'°Pa' s以上のガラスである。 [0037] Glass that can be formed by the downdraw method is, for example, a glass having a liquidus viscosity of 10 4 ' 5 Pa' s or more, preferably 10 5 '° Pa' s or more in the overflow down draw method. .
[0038] また液晶ディスプレイ基板用途に好適なガラスとしては、重量%で SiO 50〜70% [0038] Further, as a glass suitable for a liquid crystal display substrate, SiO 50 to 70% by weight is used.
2  2
、A1 0 1~20%, B O 0〜: 15%、 MgO 0〜30%、 CaO 0〜30%、 SrO 0  , A1 0 1 ~ 20%, B O 0 ~: 15%, MgO 0 ~ 30%, CaO 0 ~ 30%, SrO 0
2 3 2 3  2 3 2 3
〜30%、 BaO 0〜30%、好ましくは重量0 /0で SiO 50〜70%、 A1〇 10〜20% To 30%, BaO 0 to 30%, preferably SiO 50-70% by weight 0/0, A1_rei 10-20%
2 2 3  2 2 3
、 : B O 3〜: 15%、 Mg〇 0〜: 15%、 Ca〇 0〜: 15%、 SrO 0〜: 15%、 BaO 0〜 ,: B 3 O ~: 15%, Mg 0 0 ~: 15%, Ca 0 0 ~: 15%, SrO 0 ~: 15%, BaO 0 ~
2 3 twenty three
15%の組成を有するアルミノシリケ一ト系無アルカリガラスが挙げられる。この範囲内 であれば、上記要求特性を満たすガラス基板を得ることが可能である。  Aluminosilicate non-alkali glass having a composition of 15%. Within this range, it is possible to obtain a glass substrate that satisfies the above required characteristics.
[0039] SiOはガラスのネットワークフォーマーとなる成分である。 SiOの含有量が 70重量 [0039] SiO is a component that becomes a glass network former. SiO content is 70 wt.
2 2  twenty two
%より多いと高温粘度が高くなり溶融性が悪くなり、また失透性も悪くなるため好ましく なレ、。 50重量%より少ないと化学的耐久性が悪くなるため好ましくない。  If it is more than%, the high-temperature viscosity will be high, the meltability will be poor, and the devitrification will also be bad, which is preferable. If it is less than 50% by weight, the chemical durability is deteriorated.
[0040] Al Oは歪点を上げる成分である。 Al Oの含有量が 20重量%より多いと失透性お よびバッファードフッ酸に対する化学的耐久性が悪くなるため好ましくなレ、。一方、 1 重量%より少ないと歪点が下がるため好ましくなレ、。好ましくは 10〜20重量%である [0040] Al 2 O is a component that increases the strain point. If the Al O content exceeds 20% by weight, devitrification And preferable because the chemical durability against buffered hydrofluoric acid deteriorates. On the other hand, less than 1% by weight is preferable because the strain point is lowered. Preferably 10-20% by weight
[0041] B Oは融剤として作用しガラスの溶融性を改善する成分である。 B Oの含有量が 1 [0041] B 2 O is a component that acts as a flux and improves the meltability of the glass. B O content is 1
2 3 2 3 2 3 2 3
5重量%より多いと歪点が下力^塩酸に対する耐薬品性が悪くなるため好ましくない。 一方、少なすぎると高温粘度が高くなり溶融性が悪くなる。好ましくは 3〜: 15重量% である。 If it is more than 5% by weight, the strain point is unfavorable because the chemical resistance against hydrochloric acid and hydrochloric acid deteriorates. On the other hand, if the amount is too small, the high-temperature viscosity becomes high and the meltability deteriorates. Preferably 3 to 15% by weight.
[0042] また MgOは高温粘性を下げガラスの溶融性を改善する成分であり、 0〜30重量% 、特に 0〜: 15重量%であることが好ましい。 MgOの含有量が多すぎると失透性が悪 くなりバッファードフッ酸に対する化学的耐久性も悪くなる。  [0042] MgO is a component that lowers the viscosity at high temperature and improves the meltability of the glass, and is preferably 0 to 30% by weight, particularly 0 to 15% by weight. If the MgO content is too high, the devitrification will be poor and the chemical durability against buffered hydrofluoric acid will also be poor.
[0043] Ca〇も、 MgOと同じぐ高温粘度を下げガラスの溶融性を改善する成分であり、そ の含有量は 0〜30重量%、特に 0〜: 15重量%であることが好ましい。 Ca〇の含有量 が多すぎると失透性が悪くなりバッファードフッ酸に対する化学的耐久性も悪くなるた め好ましくない。  [0043] CaO is also a component that lowers the high-temperature viscosity and improves the meltability of the glass as with MgO, and its content is preferably 0 to 30% by weight, particularly 0 to 15% by weight. If the content of CaO is too large, devitrification is deteriorated and chemical durability against buffered hydrofluoric acid is also deteriorated.
[0044] SrOは失透性および化学的耐久性を向上させる成分である。 SrOの含有量が 30 重量%より多いと密度が大きくなり、高温粘度が高くなり溶融性が悪くなるため好まし くない。好適な範囲は 0〜: 15重量%である。  [0044] SrO is a component that improves devitrification and chemical durability. If the SrO content is more than 30% by weight, the density increases, the high-temperature viscosity increases, and the meltability deteriorates. The preferred range is 0 to: 15% by weight.
[0045] BaOも Sr〇と同じぐ失透性および化学的耐久性を向上させるの成分であり、 0〜3 0重量%、特に 0〜: 15重量%であることが好ましい。 Ba〇の含有量が多すぎると密度 が大きくなり、高温粘度が高くなり溶融性が悪くなるため好ましくない。  [0045] BaO is also a component for improving devitrification and chemical durability similar to SrO, and is preferably 0 to 30% by weight, particularly preferably 0 to 15% by weight. If the content of BaO is too large, the density increases, the high-temperature viscosity increases, and the meltability deteriorates.
なお上記以外にも種々の成分、例えば清澄剤等を必要に応じて添加することがで きる。  In addition to the above, various components such as a clarifying agent can be added as necessary.
実施例  Example
[0046] 以下、実施例に基づいて本発明を説明する。  Hereinafter, the present invention will be described based on examples.
[0047] まず重量0 /0で SiO 60%、 Al O 15%、 B O 10%、 MgO 0%、 Ca〇 5%、 Sr [0047] First SiO 60% by weight 0/0, Al O 15% , BO 10%, MgO 0%, Ca_〇 5%, Sr
2 2 3 2 3  2 2 3 2 3
〇 5%、 BaO 2%の組成となるようにガラス原料を調合し、混合した後、連続溶融炉 にて最高温度 1650°Cで溶融した。さらに溶融ガラスを、表 1に示す種々の条件でォ 一バーフローダウンドロー法にて板状に成形し、徐冷した。その後、板状ガラスを切 断することにより、 1500 X 1800 X 0. 65mmの大きさの無アルカリガラス基板を得た 。このガラス基板は、歪点が 650°C、徐冷点が 705°C、液相粘度が 105' °Pa' sの特性 を有してレ、た。なお歪点および徐冷点はファイバーェロンゲーシヨン法で確認した。 ガラスを粉砕し、標準篩 30メッシュ (篩目開き 500 μ m)を通過し、 50メッシュ(篩目開 き 300 μ m)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に 24時間保持し て、結晶の析出する温度、すなわち液相温度を測定し、その温度に相当する高温粘 度から求めた。なお高温粘度は白金球引き上げ法で測定した。 〇 Glass raw materials were prepared so as to have a composition of 5% and BaO 2%, mixed, and then melted at a maximum temperature of 1650 ° C in a continuous melting furnace. Furthermore, the molten glass was formed into a plate shape by the overflow down draw method under various conditions shown in Table 1, and then gradually cooled. Then cut the glass sheet By cutting, an alkali-free glass substrate having a size of 1500 × 1800 × 0.665 mm was obtained. This glass substrate had characteristics of a strain point of 650 ° C, an annealing point of 705 ° C, and a liquid phase viscosity of 10 5 '° Pa's. The strain point and the annealing point were confirmed by the fiber elongation method. The glass is crushed, passed through a standard sieve 30 mesh (500 μm sieve opening), and the glass powder remaining on the 50 mesh (300 μm sieve sieve) is placed in a platinum boat and kept in a temperature gradient furnace for 24 hours. Then, the temperature at which crystals precipitate, that is, the liquidus temperature, was measured and determined from the high temperature viscosity corresponding to that temperature. The high temperature viscosity was measured by a platinum ball pulling method.
[0048] 得られたガラス基板について、板幅方向中央部及び端部におけるガラスの熱収縮 率を表 1に示す。  [0048] Table 1 shows the thermal contraction rate of the glass at the center and end portions in the plate width direction of the obtained glass substrate.
[0049] [表 1]  [0049] [Table 1]
Figure imgf000014_0001
Figure imgf000014_0001
[0050] 表 1より、板幅方向中央部と端部の冷却速度の差が小さいほど、また冷却速度が速 レ、ほど、基板内の熱収縮率のばらつきが小さいことが分かる。 [0050] From Table 1, it can be seen that the smaller the difference in cooling rate between the central part and the edge part in the plate width direction, and the faster the cooling rate, the smaller the variation in the thermal shrinkage rate in the substrate.
[0051] なお板引き速度とは、連続的に成形されるガラス基板の板幅方向中央部分が徐冷 領域を通過する速度を指し、本実施例においては板幅方向中央部分の徐冷領域の 中間点 (徐冷点一 50°Cに相当する位置)に測定用ローラを当接させて測定したもの である。徐冷領域とは、板幅方向各部分において、徐冷点から(徐冷点- 100°C)の 温度の範囲に相当する領域を意味し、本実施例では、 705°Cから 605°Cへ降温され る領域を指す。また平均冷却速度とは、ガラスが徐冷領域に相当する区域を通過す る時間を算出し、中央部又は端部の徐冷領域内の温度差を、通過時間で除すること により求めた速度を指す。 [0052] 熱収縮率絶対値は、以下の方法で測定した。まず得られたガラス基板の中央部分 、及び中央部分から端部側に 900mm離れた位置に対応する場所 (端部)からガラス 板試料をそれぞれ切り出し、図 3 (a)に示すようにガラス板 1の所定箇所に直線状の マーキングを入れた後、ガラス板 1をマーキングに対して垂直に折り、 2つのガラス板 片 la、 lbに分割する。そして一方のガラス板片 laのみに、図 1に示す温度スケジュ ールで熱処理(常温から 10°C/分の速度で昇温し、保持温度 450°Cで 10時間保持 し、 10°CZ分の速度で降温)を施す。その後、図 3 (b)に示すように熱処理を施した ガラス板片 laと、未処理のガラス板片 lbを並べて接着テープ(図示せず)で両者を 固定してから、マーキングのずれを、レーザー顕微鏡にて測定し、下記の式 1を用い て求める。なお式 1中の 1はマーキング間の距離を、 AL及び はマーキングの位 [0051] Note that the sheet drawing speed refers to the speed at which the central portion in the plate width direction of the glass substrate that is continuously formed passes through the slow cooling region, and in this embodiment, the slow cooling region in the central portion in the plate width direction. The measurement was made by bringing a measuring roller into contact with the intermediate point (position corresponding to an annealing point of 50 ° C). The slow cooling region means a region corresponding to the temperature range from the slow cooling point to (slow cooling point-100 ° C) in each part in the plate width direction. In this example, from 705 ° C to 605 ° C. This refers to the area where the temperature is lowered. The average cooling rate is the rate obtained by calculating the time for the glass to pass through the zone corresponding to the slow cooling region and dividing the temperature difference in the slow cooling region at the center or end by the passing time. Point to. [0052] The absolute value of the heat shrinkage rate was measured by the following method. First, a glass plate sample was cut out from the center portion of the obtained glass substrate and a location (end portion) corresponding to a position 900 mm away from the center portion toward the end portion, and the glass plate 1 was cut as shown in FIG. 3 (a). After placing a linear marking at a predetermined position, fold the glass plate 1 perpendicular to the marking and divide it into two glass plate pieces la and lb. Then, heat treatment was performed on only one glass plate piece la at the temperature schedule shown in Fig. 1 (temperature was raised from normal temperature at a rate of 10 ° C / min, held at a holding temperature of 450 ° C for 10 hours, and 10 ° CZ min. (Temperature decrease) After that, as shown in FIG. 3 (b), the heat-treated glass plate piece la and the untreated glass plate piece lb are arranged and fixed with an adhesive tape (not shown). Measure with a laser microscope and use Equation 1 below. In Equation 1, 1 is the distance between markings, AL and are the marking positions.
0 1 2  0 1 2
置ズレ量を示している。  The amount of displacement is shown.
[0053] 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れる ことなく様々な変更および修正が可能であることは、当業者にとって明らかである。 なお、本出願は、 2006年 1月 12日付けで出願された日本特許出願(特願 2006— 4984)に基づいており、その全体が引用により援用される。  [0053] Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on January 12, 2006 (Japanese Patent Application No. 2006-4984), which is incorporated by reference in its entirety.
また、ここに引用されるすべての参照は全体として取り込まれる。  Also, all references cited herein are incorporated as a whole.
産業上の利用可能性  Industrial applicability
[0054] 本発明のガラス基板は、基板内の熱収縮率のばらつきが小さい。それゆえ TFT回 路を形成する際にフォトマスクによる補正を行うと、基板内の熱収縮が常に一定範囲 にあるため、歩留まりよく安定してパターン形成を行うことができる。 [0054] The glass substrate of the present invention has a small variation in thermal shrinkage within the substrate. Therefore, if correction using a photomask is performed when forming a TFT circuit, the thermal shrinkage within the substrate is always within a certain range, so that pattern formation can be performed stably with high yield.
また本発明の製造方法によれば、上記したガラス基板を容易に作製することができ る。  Further, according to the production method of the present invention, the glass substrate described above can be easily produced.

Claims

請求の範囲 The scope of the claims
[1] 短辺、長辺ともに 1500mm以上の無アルカリガラス基板において、常温から 10°C /分の速度で昇温し、保持温度 450°Cで 10時間保持し、 10°C/分の速度で降温( 図 1に示す温度スケジュールで熱処理)したときに、基板内の熱収縮率絶対値の最 大値と最小値の差が 5ppm以内となることを特徴とする無アルカリガラス基板。  [1] On a non-alkali glass substrate with a short side and long side of 1500 mm or more, the temperature is raised from room temperature at a rate of 10 ° C / min, held at a holding temperature of 450 ° C for 10 hours, and at a rate of 10 ° C / min. The alkali-free glass substrate is characterized in that the difference between the maximum value and the minimum value of the absolute value of heat shrinkage within the substrate is within 5ppm when the temperature is lowered at (heat treatment according to the temperature schedule shown in Fig. 1).
[2] 常温から 10°C/分の速度で昇温し、保持温度 450°Cで 10時間保持し、 10°C/分 の速度で降温したときに、基板中央部分における熱収縮率絶対値が 40ppm以上と なることを特徴とする請求項 1の無アルカリガラス基板。  [2] The absolute value of heat shrinkage at the center of the substrate when the temperature is raised from room temperature at a rate of 10 ° C / min, held at a holding temperature of 450 ° C for 10 hours, and lowered at a rate of 10 ° C / min. The alkali-free glass substrate according to claim 1, wherein is 40 ppm or more.
[3] オーバーフローダウンドロー法で成形されてなることを特徴とする請求項 1又は 2の 無アルカリガラス基板。  [3] The alkali-free glass substrate according to claim 1 or 2, wherein the alkali-free glass substrate is formed by an overflow downdraw method.
[4] 重量0 /0で SiO 50〜70%、Α1 Ο :!〜 20%、 B〇 0〜: 15%、 MgO 0〜30%、[4] SiO 50~70% by weight 0/0, Α1 Ο:! ~ 20%, B_〇 0~: 15%, 0~30% MgO ,
CaO 0〜30%、 SrO 0〜30%、 BaO 0〜30%含有することを特徴とする請求 項:!〜 3の何れかの無アル力リガラス基板。 The non-strength glass substrate according to any one of claims 1 to 3, characterized by containing CaO 0 to 30%, SrO 0 to 30%, BaO 0 to 30%.
[5] ガラス原料を溶融、成形して無アルカリガラス基板を製造する方法であって、成形 時の冷却過程にぉレ、て、徐冷点から (徐冷点 _100°C)の温度の範囲での平均冷却 速度が、板幅方向の中央部分と端部で 100°C/分以内の差となるように調節するこ とを特徴とする無アルカリガラス基板の製造方法。 [5] A method for producing a non-alkali glass substrate by melting and forming a glass raw material. The temperature range from the annealing point to (annealing point _100 ° C) during the cooling process at the time of molding. A method for producing an alkali-free glass substrate, characterized in that the average cooling rate in the step is adjusted so that the difference between the central portion and the end portion in the plate width direction is within 100 ° C / min.
[6] 有効幅が 1500mm以上となるようにガラスを成形することを特徴とする請求項 5の 無アルカリガラス基板の製造方法。  6. The method for producing an alkali-free glass substrate according to claim 5, wherein the glass is formed so that the effective width is 1500 mm or more.
[7] 成形時の冷却過程において、徐冷点から (徐冷点- 100°C)の温度の範囲での平均 冷却速度が、板幅方向中央部分で 200°C/分以上であることを特徴とする請求項 5 又は 6の無アルカリガラス基板の製造方法。 [7] In the cooling process at the time of molding, the average cooling rate in the temperature range from the annealing point to (annealing point-100 ° C) should be 200 ° C / min or more at the center in the plate width direction. The method for producing an alkali-free glass substrate according to claim 5 or 6.
[8] 成形時の冷却過程において、徐冷点から (徐冷点- 100°C)の温度の範囲での板引 き速度が 150cm/分以上であることを特徴とする請求項 5〜7の何れかの無アルカリ ガラス基板の製造方法。 [8] The sheet drawing speed in the temperature range from the annealing point to (annealing point-100 ° C) in the cooling process during molding is 150 cm / min or more. A method for producing an alkali-free glass substrate according to any of the above.
[9] オーバーフローダウンドロー法で成形することを特徴とする請求項 5〜8の何れかの 無アルカリガラス基板の製造方法。 [9] The method for producing an alkali-free glass substrate according to any one of claims 5 to 8, wherein the alkali-free glass substrate is molded by an overflow downdraw method.
[10] 重量0 /0で SiO 50〜70%、Α1 Ο :!〜 20%、 B〇 0〜: 15%、 MgO0〜30%、 CaO 0〜30%、 SrO 0〜30%、 BaO 0〜30%の組成を有する無アルカリガラ ス基板を製造することを特徴とする請求項 5〜9の何れかの無アルカリガラス基板の 製造方法。 [10] SiO 50~70% by weight 0/0, Α1 Ο:! ~ 20%, B_〇 0~: 15%, MgO0~30%, 10. The method for producing an alkali-free glass substrate according to claim 5, wherein an alkali-free glass substrate having a composition of CaO 0-30%, SrO 0-30%, BaO 0-30% is produced. .
請求項 5〜: 10の何れかの方法によって製造されてなることを特徴とする無アルカリ ガラス基板。  An alkali-free glass substrate produced by the method according to claim 5.
PCT/JP2007/050243 2006-01-12 2007-01-11 Alkali-free glass substrate WO2007080924A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020087014749A KR101282952B1 (en) 2006-01-12 2007-01-11 Alkali-free glass substrate
CN2007800023783A CN101370742B (en) 2006-01-12 2007-01-11 Alkali-free glass substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-004984 2006-01-12
JP2006004984 2006-01-12

Publications (1)

Publication Number Publication Date
WO2007080924A1 true WO2007080924A1 (en) 2007-07-19

Family

ID=38256329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050243 WO2007080924A1 (en) 2006-01-12 2007-01-11 Alkali-free glass substrate

Country Status (4)

Country Link
KR (1) KR101282952B1 (en)
CN (1) CN101370742B (en)
TW (1) TWI402237B (en)
WO (1) WO2007080924A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302550A (en) * 2006-04-11 2007-11-22 Nippon Electric Glass Co Ltd Glass substrate for display
WO2009093550A1 (en) * 2008-01-21 2009-07-30 Nippon Electric Glass Co., Ltd. Process for production of glass substrates and glass substrates
US20130345040A1 (en) * 2011-09-02 2013-12-26 Lg Chem, Ltd. ALKALI-FREE GLASS AND PREPARATION THEREOF (As Amended)
US20140005027A1 (en) * 2010-12-08 2014-01-02 Schott Ag Boron-free universal glass
US20140045676A1 (en) * 2011-09-02 2014-02-13 Lg Chem, Ltd. Alkali-free glass and preparation thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103080032B (en) * 2011-07-01 2016-07-06 安瀚视特股份有限公司 Flat panel display glass substrate and manufacture method thereof
KR101654753B1 (en) * 2011-12-28 2016-09-08 아반스트레이트 가부시키가이샤 Glass substrate for flat panel displays and method for manufacturing same
JP5408374B2 (en) * 2012-11-22 2014-02-05 旭硝子株式会社 ELECTRONIC DEVICE MEMBER, ELECTRONIC DEVICE MANUFACTURING METHOD, AND ELECTRONIC DEVICE MEMBER
JP2016153345A (en) * 2013-06-27 2016-08-25 旭硝子株式会社 Alkali-free glass
TWI580650B (en) * 2014-06-30 2017-05-01 Avanstrate Inc Glass substrate manufacturing method and glass substrate
JP6315011B2 (en) * 2016-03-15 2018-04-25 旭硝子株式会社 Alkali-free glass substrate and method for producing alkali-free glass substrate
US10483101B2 (en) * 2016-06-30 2019-11-19 Corning Incorporated Glass-based article with engineered stress distribution and method of making same
CN112777923B (en) * 2020-12-28 2022-07-22 北京工业大学 TFT substrate glass annealing process and TFT substrate glass prepared by adopting same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000016825A (en) * 1998-06-29 2000-01-18 Nippon Electric Glass Co Ltd Production of glass substrate for flat panel display
JP2001031435A (en) * 1999-07-22 2001-02-06 Nh Techno Glass Kk Production of glass plate, apparatus for producing glass plate, and liquid crystal device
JP2001151534A (en) * 1999-11-25 2001-06-05 Nippon Electric Glass Co Ltd Glass substrate for liquid crystal display

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070026462A (en) * 2004-06-11 2007-03-08 니폰 덴키 가라스 가부시키가이샤 Method for sorting plate glass for flat panel display, plate glass for flat panel display and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000016825A (en) * 1998-06-29 2000-01-18 Nippon Electric Glass Co Ltd Production of glass substrate for flat panel display
JP2001031435A (en) * 1999-07-22 2001-02-06 Nh Techno Glass Kk Production of glass plate, apparatus for producing glass plate, and liquid crystal device
JP2001151534A (en) * 1999-11-25 2001-06-05 Nippon Electric Glass Co Ltd Glass substrate for liquid crystal display

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302550A (en) * 2006-04-11 2007-11-22 Nippon Electric Glass Co Ltd Glass substrate for display
WO2009093550A1 (en) * 2008-01-21 2009-07-30 Nippon Electric Glass Co., Ltd. Process for production of glass substrates and glass substrates
US20140005027A1 (en) * 2010-12-08 2014-01-02 Schott Ag Boron-free universal glass
US9096461B2 (en) * 2010-12-08 2015-08-04 Schott Ag Boron-free universal glass
US20130345040A1 (en) * 2011-09-02 2013-12-26 Lg Chem, Ltd. ALKALI-FREE GLASS AND PREPARATION THEREOF (As Amended)
US20140045676A1 (en) * 2011-09-02 2014-02-13 Lg Chem, Ltd. Alkali-free glass and preparation thereof
US8883665B2 (en) * 2011-09-02 2014-11-11 Lg Chem, Ltd. Alkali-free glass and preparation thereof
US8962502B2 (en) * 2011-09-02 2015-02-24 Lg Chem, Ltd. Alkali-free glass and preparation thereof

Also Published As

Publication number Publication date
CN101370742A (en) 2009-02-18
TWI402237B (en) 2013-07-21
CN101370742B (en) 2012-06-13
KR101282952B1 (en) 2013-07-08
KR20080081155A (en) 2008-09-08
TW200730462A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP5477782B2 (en) Alkali-free glass substrate
WO2007080924A1 (en) Alkali-free glass substrate
WO2007069739A1 (en) Non-alkali glass substrate and method for producing same
JP5733639B2 (en) Glass substrate
KR101639226B1 (en) Glass and glass substrate
US20090226671A1 (en) Alkali-free glass and alkali-free glass substrate, and method of producing the same
CN115611511A (en) Glass substrate
KR20210009447A (en) Glass
JP5088670B2 (en) Glass substrate for display
JP5071880B2 (en) Method for producing alkali-free glass substrate
TWI725140B (en) Method and apparatus for making glass substrate
JP5071878B2 (en) Alkali-free glass and alkali-free glass substrate using the same
TWI450870B (en) E-glass substrate and its manufacturing method
JP6770984B2 (en) Glass and glass substrate
JP5428137B2 (en) Alkali-free glass and alkali-free glass substrate
CN113727952B (en) Method for manufacturing glass substrate
CN113574023A (en) Glass substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087014749

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780002378.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07706590

Country of ref document: EP

Kind code of ref document: A1