JP2007047819A - 光デバイスの製造方法 - Google Patents

光デバイスの製造方法 Download PDF

Info

Publication number
JP2007047819A
JP2007047819A JP2006284928A JP2006284928A JP2007047819A JP 2007047819 A JP2007047819 A JP 2007047819A JP 2006284928 A JP2006284928 A JP 2006284928A JP 2006284928 A JP2006284928 A JP 2006284928A JP 2007047819 A JP2007047819 A JP 2007047819A
Authority
JP
Japan
Prior art keywords
core
clad
solution
optical device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006284928A
Other languages
English (en)
Inventor
Keiichi Kuramoto
慶一 蔵本
Yohei Nakagawa
洋平 中川
Mitsuharu Matsumoto
光晴 松本
Hiroaki Izu
博昭 伊豆
Hitoshi Hirano
均 平野
Nobuhiko Hayashi
伸彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006284928A priority Critical patent/JP2007047819A/ja
Publication of JP2007047819A publication Critical patent/JP2007047819A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

【課題】 コアからの伝搬光の漏洩を低下してノイズを低減する。
【解決手段】 光デバイス10は、基板21と、基板21上に設けられたコア14と、コア14周囲に形成された第一のクラッド12および第二のクラッド16とを含む。光デバイス10はさらに、基板21上に設けられ、コア14から漏れ出た光を吸収する光吸収領域18を含む。光吸収領域18は、たとえばコア14を構成する材料と同じ材料により構成される。
【選択図】図1

Description

本発明は、光デバイスの製造方法に関する。
近年の情報通信ネットワークの発展に伴い、高速信号の伝送を行うために光により信号を伝送する技術が開発されている。光により信号伝送を行う技術として、光導波路を伝送路とする光伝送システムが知られている。
たとえば、特許文献1には、光導波路に対応するパターンが凹設されたスタンパ(成形型)を用いて、パターン内にコアを構成する有機高分子材料を充填し、有機高分子材料を外部エネルギーにより硬化させることにより、基板表面に光導波路を突出形成する技術が開示されている。図16は、スタンパを用いた光導波路の製造工程を示す図である。図16(a)に示すように、基板120上に下部クラッド112を形成し、その上にコアを構成するコア溶液114aを塗布する。つづいて、図16(b)に示すように、光導波路に対応する凹部が形成されたスタンパ122をコア溶液114aに押し当て、その状態で紫外線を照射してコア溶液114aを硬化させる。これにより図16(c)に示すようにコア114が形成される。
また、特許文献2には、入射光と出射光の光軸が一致しない二点間を曲線で結んだ曲がり部分を有する光導波路において、曲がり部分のコア内にクラッド部を設け、曲がり部分の光導波路を幅の狭い複数の光導波路に分割した技術が開示されている。これにより、曲がり部分で光導波路から光が漏れ出る光損失を低減することができる。
特開平2−131202号公報 特開平9−145943号公報
しかし、上記特許文献1に記載した方法では、図16(b)に示すように、スタンパ122をコア溶液114aに押し当てたときに下部クラッド112とスタンパ122との間にコア溶液114aが残留してしまう。この状態でコア溶液114aを硬化すると、図16(c)に示すように、下部クラッド112上に残留コア層が形成されてしまう。このような残留コア層が厚い場合は、光がコア114を伝搬する際にコア114から残留コア層を通して光が漏れ出て光損失が生じる。このような光損失が大きくなると、光導波路の機能が低減してしまう。
また、光導波路において、コアを曲げたり、分岐させたりすることで、所望の方向に光を伝搬、または分岐させることができるが、コアの曲線部分や分岐部分では、コアからクラッドに光が漏れ出てしまうことがある。クラッドに光が漏れ出すことにより、光損失が大きくなるという問題がある。また、クラッドに漏れ出た光が受光素子に入射することにより通信品質が低下したり、またクラッドに漏れ出た光が再度コアに戻ることで、コアを伝搬してきた光信号との干渉を起こし、ノイズが大きくなるという問題もある。
上記特許文献2は、このようなコアからの光の漏れを低減することを目的としている。しかし、特許文献2の方法では、曲がり部分でコアを複数本に分岐した後、再度合流させる構造となっており、合流点では光路長の異なる光が合流するため、干渉等の問題が発生するおそれがある。
本発明は上記課題に鑑みてなされたものであり、その目的は、コアからの伝搬光の漏洩を低下するとともに、ノイズを低減することのできる光デバイスおよびその製造方法を提供することにある。
本発明によれば、コアと、コアの周囲に形成されたクラッドと、を含む光デバイスであって、クラッドは、平坦部に凹部が形成された第一のクラッドと、第一のクラッド上に形成された第二のクラッドを含み、コアは、第一のクラッドの凹部を埋め込むように形成され、光の伝搬方向に実質的に垂直な断面において、第一のクラッドの平坦部付近で狭く形成された狭窄部を含むように構成されたことを特徴とする光デバイスが提供される。なお、光デバイスは、ガラス等の基板上に形成されたものとすることもできる。また、コアの上面は、第一のクラッドの平坦部の高さよりも下にへこんだ曲面状に形成することができる。ここで、狭窄部とは、クラッドの平坦部上の残留コア層とコアとの境界付近で、残留コア層またはコアの厚みが減少している領域である。
このようにすれば、コアから光が漏れ出しにくいので、光損失を低減することができる。さらに、第一のクラッドの平坦部と第二のクラッドとの間に残留コア層が存在している場合であっても、コアから残留コア層に光が漏れ出さないため、光損失を低減することができる。
本発明の光デバイスにおいて、コアと同一平面上に設けられ、コアから漏れ出た光を吸収する光吸収領域を含んでもよい。
ここで、光吸収領域は、コアからクラッドに漏れ出た光が再びコアに戻らないように、漏洩光を吸収することのできる領域のことである。光吸収領域は、このような漏洩光を吸収することができる材料であれば、どのような材料により構成することもできる。光吸収領域は、たとえばクラッドを構成する材料よりも屈折率の高い材料により構成することができる。また、光吸収領域は、コアを構成する材料と同じ材料により構成することができる。また、光吸収領域は、クラッドを構成する材料にシリカ(SiO)等の酸化物や炭素粉等の懸濁物質を加えて懸濁させた材料により構成することもできる。
このようにすれば、クラッドに漏れ出た光が再びコアに戻ったり受光素子に入射することによるノイズの発生を抑えることができる。
また、光吸収領域は、コアと分離して形成することができる。ここで、分離とは、コアを伝搬する光の損失が無視できる程度に分離されていることをいう。コアと光吸収領域との間に残留コア層が存在する場合、たとえばその厚さが4μm以下とすることができ、さらに好ましくは2μm以下である。なお、コアは、残留コア層と分離するように構成することができる。このようにすることにより、コアから残留コア層へ光が漏れ出さないため、光損失を低減することができる。
本発明の光デバイスにおいて、光吸収領域は、コアにおける光の伝搬方向に沿って、コアの両側に設けることができる。このような構成により、コアから漏れ出た光が再びコアに戻るのを効果的に防ぐことができる。
本発明の光デバイスにおいて、クラッドは、基板全面に形成された第一のクラッドおよび第一のクラッド上に形成された第二のクラッドを含むことができ、コアは第一のクラッド上に形成することができ、第二のクラッドは、第一のクラッド上において、コアの周囲に形成することができ、光吸収領域は、第一のクラッド上において、コアおよび第二のクラッドが設けられた領域以外の基板全面に形成することができる。このような構成により、コアから漏れ出た光を好適に光吸収領域で吸収することができ、コアからの漏洩光が再びコアに戻ることによる光の干渉を低減することができる。
本発明の光デバイスにおいて、コアは、入射光の入射軸に対して屈曲した屈曲部、および/または分岐部を有することができ、光吸収領域は、屈曲部および/または分岐部の近傍に設けることができる。このような屈曲部や分岐部において、コアからクラッドに光が漏れ出るという問題が顕著に起こりやすい。屈曲部や分岐部の近傍に光吸収領域を設けることにより、屈曲部や分岐部においてコアから漏れ出た光を好適に吸収することができ、漏洩光が再びコアに戻ることによる光の干渉を低減することができる。光吸収領域は、光の伝搬方向において、入射光の入射軸とほぼ同軸上に設けることができる。これにより、屈曲部や分岐部から漏れ出た光を効率よく吸収することができる。
本発明の光デバイスにおいて、光吸収領域およびクラッドのいずれか一方をカルボニル基を含む材料により構成することができ、いずれか他方を水酸基を含む材料により構成することができる。これにより、光吸収領域とクラッドとの間に水素結合が形成され、これらの間の接着性を良好にすることができる。
本発明によれば、表面の平坦部に第一の凹部が形成されたクラッド上にコア溶液を塗布して第一の凹部をコア溶液で充填する工程と、クラッドに成形型を押し当て、表面に塗布されたコア溶液を除去する工程と、成形型を押し当てた状態でコア溶液を硬化させることにより、第一の凹部にクラッドの平坦部付近で狭く形成された狭窄部を有するコアを形成する工程と、を含むことを特徴とする光デバイスの製造方法が提供される。このようにすれば、クラッドの平坦部に残留コア層が存在しても、コアから残留コア層に光が漏れ出さないため、光損失を低減することができ、光デバイスを容易に製造することができる。この方法は、少なくともコア上にクラッド溶液を塗布し、当該クラッド溶液を硬化して第二のクラッドを形成する工程をさらに含むこともできる。また、コアを空気の屈折率よりも屈折率が高い材料により構成することにより、第二のクラッドを形成することなく、空気をクラッドとして光デバイスを機能させることもできる。光デバイスを製造後、基板を除去することもできる。
上記光デバイスの製造方法において、クラッドは、第二の凹部をさらに有し、第一の凹部をコア溶液で充填する工程は、第二の凹部をコア溶液で充填する工程をさらに含み、コアを形成する工程は、第二の凹部に光吸収領域を形成する工程をさらに含んでもよい。このようにすれば、コアから漏れ出た光を好適に吸収することができる光吸収領域を容易に形成することができるので、クラッドに漏れ出た光が再びコアに戻ったり受光素子に入射することによるノイズの発生を抑えることができる。
ここで、第一のクラッドは、同一物質により一体に形成されたものに限られず、コアに光を閉じこめる機能を有していれば、複数の部材により構成することができる。なお、第一のクラッドにおいて、第二の凹部は側方に開放された構造とすることができる。このようにすれば、第一のクラッドに平板を押し当てたときに、第一のクラッドと平板との接点に存在するコア溶液を第二の凹部から外部に逃すことができ、第一のクラッド表面に残留コア層が形成されるのを防ぐことができる。
本発明によれば、クラッドの表面にコア溶液を塗布する工程と、表面の平坦部に第一の凹部と該第一の凹部の両側近傍に一対の突起部が形成された成形型をクラッドに押し当て、平坦部に塗布されたコア溶液を除去する工程と、成形型を押し当てた状態で前記コア溶液を硬化させることにより、第一の凹部に突起部近傍で形成された狭窄部を有するコアを形成する工程と、を含むことを特徴とする光デバイスの製造方法が提供される。本発明の光デバイスの製造方法において、成形型は、第二の凹部をさらに有し、コアを形成する工程は、第二の凹部に光吸収領域をさらに形成する工程を含んでもよい。この方法は、少なくともコア上にクラッド溶液を塗布し、当該クラッド溶液を硬化して第二のクラッドを形成する工程をさらに含むこともできる。また、コアを空気の屈折率よりも屈折率が高い材料により構成することにより、第二のクラッドを形成することなく、空気をクラッドとして光デバイスを機能させることもできる。
本発明の光デバイスの製造方法において、成形型は、デュロメータ硬度Aが85以下の弾性材料により構成することができる。このような材料を用いることにより、コアおよび光吸収領域の形状を適宜変更させることができる。これにより、第一のクラッドと成形型が接触する面上に微小な凹凸がある場合でも、成形型がその凹凸に追従するかたちで変形するので、成形型が第一のクラッドに密着し、第一のクラッドと成形型との接点に存在するコア溶液を効率的に外部に排除することができる。また、このような材料を用いることにより、コアまたはコアおよび光吸収領域に、上述したような狭窄部を形成することができる。また、成形型を第一のクラッドに押し当てる圧力を適宜調整することによっても狭窄部を形成することができる。
本発明の製造方法は、基板上に第一のクラッド溶液を塗布する工程と、第一のクラッド溶液に、第一の凸部を含む成形面を有する成形型を押し当てる工程と、成形型を押し当てた状態で第一のクラッド溶液を硬化させ、成形面が転写された第一の凹部が設けられた第一のクラッドを形成する工程と、を含むことができる。また、本発明の製造方法は、基板上に第一のクラッド溶液を塗布する工程と、第一のクラッド溶液に、第一の凸部と第二の凸部とを含む成形面を有する成形型を押し当てる工程と、成形型を押し当てた状態で第一のクラッド溶液を硬化させ、成形面が転写された第一の凹部および第二の凹部が設けられた第一のクラッドを形成する工程と、を含むことができる。ここで、成形型は、デュロメータ硬度Aが85以下の弾性材料により構成することができる。ここで、成形型は、デュロメータ硬度Aが85以下の弾性材料により構成することができる。
コア溶液およびクラッド溶液は、たとえば紫外線等の光を照射することにより硬化することもでき、熱硬化させることもでき、光照射による硬化と熱硬化とを併用することもできる。
以上の光デバイスは、光ビームスプリッタや光送受信モジュール等に適用することができる。
本発明において、コア、クラッド、および光吸収領域は、有機系材料、または有機無機複合体材料により構成することができる。
有機無機複合体材料は、少なくとも1種の金属アルコキシドを含む。有機無機複合体材料は、さらに、有機重合体を含むこともできる。
金属アルコキシドとしては、一般には、M(OR)(Mは金属、Rはアルキル基、nは2、3、4または5)、R′M(OR)n−1(Mは金属、Rはアルキル基、R′は有機基、nは2、3、4または5)、またはR′M(OR)n−2(Mは金属、Rはアルキル基、R′は有機基、nは2、3、4または5)で表されるものを用いることができる。金属アルコキシドは、オルガノアルコキシシランおよびシランカップリング剤と称されるものも含むことができる。
金属(M)としては、Si、Ti、Zr、A1、Sn、Zn等が好ましく用いられる。たとえば、金属(M)が4価の金属の場合、M(OR)、R′M(OR)、またはR′M(OR)で表される金属アルコキシドを用いることができる。
アルキル基(R)としては、炭素数1〜5のアルキル基を用いることができる。
有機基(R′)としては、たとえば、アルキル基、アリール含有基、アクリロキシ含有基、メタクリロキシ含有基、スチリル含有基、エポキシ含有基等を用いることができる。
金属アルコキシドとしては、アルコキシシラン、チタンアルコキシド、ジルコニウムアルコキシド、またはニオブアルコキシドが好ましく用いられ、特にアルコキシシランが好ましく用いられる。
アルコキシシランとしては、テトラエトキシシラン、テトラメトキシシラン、テトラ−n−プロポキシシラン、テトライソプロポキシシラン、テトラ−n−ブトキシシラン、テトライソブトキシシラン、フェニルトリエトキシシラン、フェニルトリメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−アクリロキシプロピルトリメトキシシラン、ジフェニルジメトキシシラン等が挙げられる。
チタンアルコキシドとしては、チタンイソプロポキシド、またはチタンブトキシド等が挙げられる。
ジルコウムアルコキシドとしては、ジルコニウムイソプロポキシド、またはジルコニウムブトキシド等が挙げられる。ニオブアルコキシドとしては、ペンタエトキシニオブ等が挙げられる。
有機重合体としては、金属アルコキシドと有機無機複合体を形成し得るものであればどのようなものを用いることもできる。有機重合体としては、たとえば、カルボニル基を有する高分子重合体、ベンゼン環を有する高分子重合体、およびナフタレン環を有する高分子重合体を挙げることができる。有機重合体の具体例としては、たとえば、ポリビニルピロリドン、ポリカーボネート、ポリメタクリル酸メチル、ポリアミド、ポリイミド、ポリスチレン、ポリエチレン、ポリプロピレン、エポキシ樹脂、フェノール樹脂、アクリル樹脂、尿素樹脂、メラミン樹脂等が挙げられる。光学的透明性に優れた有機無機複合体材料を形成する観点からは、ポリビニルピロリドン、ポリカーボネート、ポリメタクリル酸メチル、ポリスチレンまたはこれらの混合物が有機重合体として好ましく用いられる。
さらに、3−メタクリロキシプロピルトリエトキシシランの加水分解重縮合物、3−メタクリロキシプロピルトリメトキシシランの加水分解重縮合物、p−スチリルトリエトキシシランの加水分解重縮合物、ジフェニルジメトキシシランの加水分解重縮合物、ジフェニルジエトキシシランの加水分解重縮合物およびp−スチリルトリメトキシシランの加水分解重縮合物も、有機重合体として好ましく用いられる。これらの有機重合体を用いて、ゾルゲル法により上記有機無機複合体材料を準備する場合、メタノール、エタノール、イソプロパノール、およびブタノール等のアルコールを溶媒として用いることができる。
一方、ポリメタクリル酸メチル、ポリスチレン、およびポリビニルナフタレン等の樹脂を有機重合体として用いる場合には、N−メチル−2−ピロリドン、およびジメチルホルムアミド等の溶媒を用いることができる。また、材料合成時に光伝搬損失を低減するための添加剤を加えてもよい。具体的には、材料中の水分と反応して、材料中の水分を除去する各種有機酸無水物、たとえば、トリフルオロ酢酸等を加えてもよい。また、材料合成中に発生したシラノール基と重縮合可能で、加水分解可能な基を1つ有する金属アルコキシド、たとえば、トリメチルエトキシシラン、トリメチルメトキシシラン等を加えてもよい。
また、コアは、種々のUV硬化樹脂により構成することができる。このようなUV硬化樹脂としては、たとえば、エポキシ樹脂を主成分とするエポキシ系UV硬化樹脂、アクリル系UV硬化樹脂、エポキシアクリレート系UV硬化樹脂、ポリウレタン系等UV硬化樹脂を用いることができる。
弾性材料は、ポリシロキサン系の材料とすることができる。このような材料として、たとえばシリコーンゴムを用いることができる。これにより、弾性により容易に変形でき、剥離性が向上する。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置等の間で変換したものもまた、本発明の態様として有効である。
本発明によれば、コアからの伝搬光の漏洩を低下するとともに、ノイズを低減することのできる光デバイスおよびその製造方法が提供される。
本発明に係る光デバイスは、光導波路や光ファイバ等の光伝搬路構造、これらを含む光ビームスプリッタ、光送受信モジュール、光カプラ、光コネクタ、光スイッチ、可変光減衰器、光サーキュレータ、光アイソレータ、光変調器、光増幅器、波長フィルタ、合波分波器、波長スプリッタ、インターリーバ、分散補償器等の光通信デバイスの分野に好適に用いることができる。また、本発明の光デバイスは、電気配線用基板、機械部品用材料、反射防止膜、表面保護膜等の各種コーティング材料、眼鏡、光学レンズ(非球面レンズを含む)、DWDM(Dense Wavelength Division Multiplexing)用を含む光学フィルタ、回折格子、導光板、干渉計、光結合器、光合分波器、光センサ、ホログラム光学素子、その他光学部品用材料、光起電力素子、コンタクトレンズ、および医療用人工組織等にも適用することができる。
図1は、本発明の実施の形態における光デバイス10の構成を示す断面図である。
光デバイス10は、第一のクラッド12と、コア14と、第二のクラッド16と、光吸収領域18と、基板20と、基板21とを含む。
基板20および基板21は、たとえば、ガラス、シリコン、セラミックス、有機無機複合体材料、または樹脂により構成される。なお、基板20および基板21は必ずしも必要でなく、たとえば光デバイスを作製後に除去することも可能である。
第一のクラッド12、第二のクラッド16、および光吸収領域18は、上述したように、有機系材料、または有機無機複合体材料により構成することができる。有機無機複合体材料は、金属アルコキシドおよび有機重合体を含むことができる。このような有機無機複合体材料において、金属アルコキシドおよび有機重合体の混合比を適宜調整することにより、材料の屈折率を好適に設定することができる。第一のクラッド12、第二のクラッド16、および光吸収領域18として有機無機複合体材料を用いることにより、各層に金属アルコキシドのカルボニル基や水酸基が含まれることになるので、各層の界面で水素結合が形成され、層間の接着性を良好にすることもできる。図1(a)および図1(b)において、第一のクラッド12、第二のクラッド16、コア14、および光吸収領域18は、基板20または基板21上に設けた構成としたが、これらの層を形成後、基板20または基板21を除去することもできる。これにより、光デバイス10を柔軟性を有するように構成することができる。このような柔軟性を有する光デバイスは、たとえば光配線ボード間を接続するような光配線用配線材料として好適に用いることができる。
図2は、図1(a)に示す光デバイス10において、第一のクラッド12、コア14および光吸収領域18の構造を示す上面図である。ここで、コア14がY字型の分岐構造を有する場合を例として説明する。第一のクラッド12は、コア14の周囲に形成される。
図2(a)に示すように、第一のクラッド12上において、光吸収領域18は、コア14およびその周囲に形成された第一のクラッド12以外の領域全面にわたって形成される。このような構成により、コア14から漏れ出た光を好適に光吸収領域18で吸収することができ、コア14からの漏洩光が第一のクラッド12を伝搬したのち再びコア14に戻ることによる光の干渉を低減することができる。これにより、ノイズを低減することができる。
また、図2(b)に示すように、光吸収領域18は、コア14の近傍にストライプ状に形成することもできる。このような構成とすることにより、コア14から漏れ出た光を光吸収領域18で吸収することができ、漏洩光がコア14に戻ることによる光の干渉を低減することができる。ここで、コア14が入射光の入射軸に対して屈曲した屈曲部を有する場合、光吸収領域18は入射光の入射軸とほぼ同軸上に設けられるのが好ましい。これにより、光吸収領域18が屈曲部で漏れ出た光を吸収することができ、漏洩光による干渉を効果的に低減することができる。図2(b)に示すようにストライプ状に形成された光吸収領域18を複数設けた構成とすることにより、光吸収領域18と第一のクラッド12との界面の面積が広くなるため、コア14から漏れ出た光が散乱されて戻り光による光の干渉を低減することができる。
図3は、図1(a)に示した光デバイス10の製造手順を示す工程図である。
まず、基板21上に第一のクラッドを構成するクラッド溶液を滴下し、クラッド溶液層12aを形成する(図3(a))。つづいて、凸型スタンパ(成形型)22をクラッド溶液層12a上に配置する(図3(b))。
凸型スタンパ22の製造方法について、図4を参照して説明する。
まず、目的の第一のクラッド12と同様の凹凸を有するガラス型30を製造する。ガラス型30は、たとえばフォトリソグラフィ技術を用いて形成することができる。ガラス平板基板29を準備し、ガラス平板基板29上にマスク材料となるCr等を成膜する。つづいて、Cr膜上にレジスト(不図示)を形成し、所定形状のパターンとした後、レジストをマスクとしてCr膜を所定形状にエッチングし、マスク31を形成する(図4(a))。つづいて、エッチング溶液としてフッ化水素を用い、ガラス平板基板29のマスク31が形成された領域以外の領域をウェットエッチングし、ガラス平板基板29表面に所定形状の凹凸を形成する。この後、レジストおよびマスク31を除去することによりガラス型30を製造する(図4(b))。
このようにして製造されたガラス型30にたとえば硬化させることで弾性材料となる液体を流し込んだ後に硬化させることにより凸型スタンパ22を製造することができる。(図4(c))。その後、凸型スタンパ22をガラス型30から離脱する(図4(d))。
凸型スタンパ22は、デュロメータ硬度Aが85以下の弾性材料により構成することができる。デュロメータ硬度Aが85以下の弾性材料を用いることで、凸型スタンパ22の剥離性を向上することができ、凸型スタンパ22を用いて第一のクラッド12を形成する際における第一のクラッド12からの型離れを容易にすることができる。また、凸型スタンパ22に印加する圧力を調整することにより、第一のクラッド12の形状を適宜変形させることができる。より好ましくは、凸型スタンパ22は、デュロメータ硬度Aが56以下の材料により構成することができる。デュロメータ硬度Aの測定方法はJIS K6253の5(デュロメータ硬さ試験)に準ずる。このような材料として、シリコーンゴムを用いることができる。
図3に戻り、以上のようにして製造された凸型スタンパ22をクラッド溶液層12aに押し当て、紫外線を照射してクラッド溶液層12aを硬化し、第一のクラッド12を形成する(図3(c))。凸型スタンパ22として上述したようなシリコーンゴムを用いることにより、第一のクラッド溶液層12aを硬化する際に起こる収縮にシリコーンゴムが追従して変形するので、クラックや剥離を抑制することができる。ここで、第一のクラッド12には、後にコア14が形成される凹部13aと、後に光吸収領域18が形成されるポケット部13bが形成される。その後、凸型スタンパ22を除去し、第一のクラッド12上にコア溶液を滴下し、コア溶液層14aを形成する(図3(d))。つづいて、平板23を第一のクラッド12およびコア溶液層14a上に配置し、平板23を第一のクラッド12に押し当て、第一のクラッド12と平板23の接点における不要なコア溶液を除去する。この状態で紫外線を照射してコア溶液層14aを硬化し、コア14および光吸収領域18を形成する(図3(e))。ここで、平板23は、デュロメータ硬度Aが85以下、より好ましくは56以下の弾性材料により構成することができる。このような材料として、シリコーンゴムを用いることができる。平板23としてシリコーンゴムを用いることにより、コア溶液層14aを硬化する際に起こる収縮にシリコーンゴムが追従して変形するので、クラックや剥離を抑制することができる。また、このような材料を用いることにより、第一のクラッド12と平板23が接触する面上に微小な凹凸がある場合でも、平板23がその凹凸に追従するかたちで変形するので、平板23が第一のクラッド12に密着し、第一のクラッド12と平板23の接点に存在するコア溶液を効率的に外部に排除することができる。また、本実施の形態において、第一のクラッド12はポケット部13bを有するので、第一のクラッド12と平板23の接点における不要なコア溶液をポケット部13bから外部に容易に除去することができる。ここで、第一のクラッド12と平板23との間にコア溶液層14aが残らないようにすることが好ましい。これにより、残留コア層の形成を防ぐことができる。
つづいて、平板23を除去する。これにより、第一のクラッド12上にコア14および光吸収領域18が形成される(図3(f))。その後、第一のクラッド12、コア14、および光吸収領域18上にクラッド溶液を滴下して第二のクラッド溶液層16aを形成し、その上に基板20を配置する(図3(g))。この状態で紫外線を照射して第二のクラッド溶液層16aを硬化し、第二のクラッド16(図1(a)参照)を形成する。これにより、図1(a)に示した光デバイス10が製造される。
図5は、光デバイス10の製造手順の他の例を示す工程図である。ここで、図5(a)〜図5(d)までは図3(a)〜図3(d)に示したのと同様の手順で行われる。
第一のクラッド12上にコア溶液層14aを形成した後(図5(d))、平板(成形型)23を第一のクラッド12およびコア溶液層14a上に配置し、平板23を第一のクラッド12に押し当て、平板23と第一のクラッド12との接点における不要なコア溶液を除去する。この状態で紫外線を照射してコア溶液層14aを硬化し、コア14および光吸収領域18を形成する(図5(e))。このとき、平板23を第一のクラッド12に押し当てる圧力を調整したり、平板23としてデュロメータ硬度Aが低い材料を用いることにより、コア14および光吸収領域18の形状を適宜変形させることができ、図示したような狭窄部26を設けた構造とすることができる。
つづいて、平板23を除去する。これにより、第一のクラッド12上にコア14および光吸収領域18が形成される(図5(f))。その後、第一のクラッド12、コア14、および光吸収領域18上にクラッド溶液を滴下し、その上に基板20を配置する。この状態で紫外線を照射して第二のクラッド溶液を硬化し、第二のクラッド16を形成する(図5(g))。
図6は狭窄部26が形成された光デバイス10を詳細に示す図である。
図6(a)に示すように、コア14および光吸収領域18の上面は、第1のクラッドの平坦部25の高さよりも下にへこんだ曲面状に形成される。これにより、コア14および光吸収領域18は、コア14における光の伝播方向に実質的に垂直な断面が、第1のクラッド12の平坦部25付近で狭く形成され、厚みが減少している狭窄部26を有する構成とすることができる。
また、図6(b)に示すように、第1のクラッド12の平坦部25上に残留コア層15が形成された場合には、コア14、光吸収領域18および残留コア層15は、コア14と残留コア層15との境界付近で、および光吸収領域18と残留コア層15との境界付近で、それぞれ狭く形成され、厚みが減少している狭窄部26を有する構成とすることができる。
このような構成により、コア14と光吸収領域18および残留コア層15とがそれぞれ途切れて分離して形成される。その結果、コア14を伝播する光が残留コア層15や光吸収領域18に漏れ出すことを防止することができ、また、光吸収領域18からコア14に光が侵入することも防ぐことができる。
図7は、図1(b)に示した光デバイス10の製造手順を示す工程図である。
まず、基板20上に第二のクラッド16を構成するクラッド溶液を滴下し、第二のクラッド溶液層16aを形成する(図7(a))。つづいて、平板23を第二のクラッド溶液層16aに押し当て、第二のクラッド溶液層16a表面を平坦化して紫外線を照射して第二のクラッド溶液層16aを硬化する(図7(b))。これにより第二のクラッド16が形成される。ここで、平板23は、デュロメータ硬度Aが85以下、より好ましくは56以下の弾性材料により構成することができる。このような材料として、シリコーンゴムを用いることができる。
つづいて、第二のクラッド16上にコア14を構成するコア溶液を滴下し、コア溶液層14aを形成する(図7(c))。その後、凹型スタンパ(成形型)24をコア溶液層14a上に配置する(図7(d))。
凹型スタンパ24の製造方法について、図8を参照して説明する。
まず、リソグラフィ技術を用いて目的の第一のクラッド12と同様の凹凸を有するガラス型32を製造する(図8(a))。このようにして製造されたガラス型32に硬化させることで弾性材料となる液体を流し込み、硬化させることにより凹型スタンパ24を製造することができる。(図8(b))。その後、凹型スタンパ24をガラス型32から離脱する(図8(c))。凹型スタンパ24は、デュロメータ硬度Aが85以下の弾性材料により構成することができる。より好ましくは、凹型スタンパ24は、デュロメータ硬度Aが56以下の弾性材料により構成することができる。このような弾性材料を用いることにより、凹型スタンパ24を用いてコア14および光吸収領域18を形成する際における第二のクラッド16、コア14、および光吸収領域18からの型離れを容易にすることができる。このような弾性材料として、シリコーンゴムを用いることができる。
図7に戻り、以上のようにして製造された凹型スタンパ24を第二のクラッド16に押し当て、凹型スタンパ24と第二のクラッド16との接点における不要なコア溶液を除去し、紫外線を照射してコア溶液層14aを硬化する(図7(e))。その後、凹型スタンパ24を取り除く。これにより、第二のクラッド16上にコア14および光吸収領域18が形成される(図7(f))。ここで、凹型スタンパ24が上述したような弾性材料により構成されているため、凹型スタンパ24と第二のクラッド16とが接触する面上に微小な凹凸がある場合でも、凹型スタンパ24がその凹凸に追従するかたちで変形するので、凹型スタンパ24が第二のクラッド16に密着し、凹型スタンパ24と第二のクラッド16との接点に存在するコア溶液を効率的に外部に排除することができる。また、凹型スタンパ24には、ポケット部13bが形成されているため、凹型スタンパ24を第二のクラッド16に押し当てた際に凹型スタンパ24と第二のクラッド16との接点における不要なコア溶液をポケット部13bの外部に容易に除去することができる。これにより、第二のクラッド16表面に残留コア層が形成されるのを防ぐことができる。
つづいて、コア14および光吸収領域18上に第一のクラッド12を構成するクラッド溶液を滴下し、第一のクラッド溶液層12aを形成する。さらにその上に基板21を配置する(図7(g))。この状態で紫外線を照射して第一のクラッド溶液層12aを硬化し、第一のクラッド12(図1(b)参照)を形成する。これにより、図1(b)に示した光デバイス10が製造される。
以上の実施の形態において、光吸収領域18およびコア14が同じ材料により構成される形態を説明したが、光吸収領域18は、コア14から漏れ出た光を吸収可能な材料であれば、コア14を構成する材料とは異なる材料により構成することもできる。図9を参照して、光吸収領域18がコア14を構成する材料とは異なる材料により構成された光デバイス10の製造手順を説明する。
ここで、図9(a)〜図9(c)までは図3(a)〜図3(c)に示したのと同様の手順で行われる。図9(d)に示すように、基板21上に第一のクラッド12を形成した後、第一のクラッド12のコア14が形成される凹部13a部分に開口を有し、光吸収領域18が形成されるポケット部13bを覆うように形成されたマスク基板27を第一のクラッド12上に配置する。この状態で、たとえばシリンジ28等を用いて第一のクラッド12の凹部13a内にコア溶液を充填する。つづいて、第一のクラッド12の凹部13a内に充填されたコア溶液に紫外線を照射してコア溶液を硬化し、コア14を形成する。次に、第一のクラッド12およびコア14上に光吸収用溶液を滴下し、第一のクラッド12のポケット部13bを光吸収用溶液で充填する。その後、平板23を第一のクラッド12、コア14、および光吸収用溶液上に配置し、平板23を第一のクラッド12に押し当て、平板23と第一のクラッド12との接点における不要な光吸収用溶液を除去する(図9(e))。このとき、第一のクラッド12にはポケット部13bが設けられているので、不要な光吸収用溶液を良好に除去することができる。この状態で紫外線を照射して光吸収用溶液を硬化し、光吸収領域18を形成する。つづいて、第一のクラッド12、コア14、および光吸収領域18上に第二のクラッド16を構成するクラッド溶液を塗布し、その上に基板20を配置し、紫外線を照射して第二のクラッド16を形成する(図9(f))。これにより、コア14および光吸収領域18が異なる材料により構成された光デバイス10が製造される。光吸収領域18を構成する材料としては、第一のクラッド12または第二のクラッド16を構成する材料よりも屈折率の高い材料を用いることができる。また、第一のクラッド12または第二のクラッド16を構成する材料にシリカ(SiO)等の酸化物や炭素粉等の懸濁物質を加えたものを用いることもできる。
以上の説明で、第一のクラッド溶液層12a、コア溶液層14a、および第二のクラッド溶液層16aは紫外線を照射することにより硬化させるとして説明したが、これらは、熱により硬化させることもできる。
以下、本発明を実施例により説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
図10(a)に示すようなS字型コア14を含む光デバイス10を製造した。光デバイス10は、図3に示した手順で製造した。
図3に示す凸型スタンパ22は、図4に示すガラス型30に硬化後のデュロメータ硬度Aが56のシリコーンゴム液を流し込むことにより製造した。
コア溶液としては、以下の金属アルコキシド液および有機重合体溶液を用いた。
金属アルコキシド液:フェニルトリメトキシシラン(PhTMS) 有機重合体溶液:3−メタクリロキシプロピルエトキシシラン(MPTES)の加水分解重縮合物 金属アルコキシド液と有機重合体溶液の配合比=10:9 有機重合体溶液は、MPTESの加水分解重縮合物9.5g、溶媒としてのエタノール13.3g、2規程の塩酸1.35gを混合後、19時間放置した後、95℃に加熱し、エタノールを蒸発除去して合成した。
クラッド溶液としては、以下の金属アルコキシド液および有機重合体溶液を用いた。
金属アルコキシド液:フェニルトリエトキシシラン(PhTES) 有機重合体溶液:3−メタクリロキシプロピルエトキシシラン(MPTES)の加水分解重縮合物 金属アルコキシド液と有機重合体溶液の配合比=8:17 有機重合体溶液は、MPTESの加水分解重縮合物14.8g、溶媒としてのエタノール8.4g、2規定の塩酸1.6gを混合後、19時間放置した後、95℃に加熱し、エタノールを蒸発除去して合成した。
以上のようにして準備した凸型スタンパ22、コア溶液、およびクラッド溶液を用いて、図3に示した手順で光デバイス10を製造した。図3(e)に示した平板23としては、デュロメータ硬度Aが56のシリコーンゴムを用いた。平板23を第一のクラッド12に押し当てる圧力は、200gf/cmとした。ここで、コア14のコア径は70μmとした。
基板21上にクラッド溶液を塗布し、凸型スタンパ22を押し当て、365nmの紫外線によりクラッド溶液を硬化させて第一のクラッド12を形成した。つづいて、第一のクラッド12上にコア溶液を塗布し、凹部13aおよびポケット部13b内にコア溶液を充填させてデュロメータ硬度A56のシリコーンゴムの平板23で200gf/cmの圧力で押して紫外線により14aを硬化させた。次にクラッド溶液を塗布して紫外線により硬化して第二のクラッド16を製造した。
(参照例1)
実施例1と同様の材料を用い、光吸収領域18を有しない光デバイスを製造した。平板23によるクラッドの押下は、200gf/cmの圧力で行った。
(コアからの伝搬光漏洩の評価)
上記の実施例1および参照例1で得られた光デバイスについて、コア14の一端から1300nmの波長の光を入射し、ビームプロファイラを用いて出射端の伝搬光漏洩を評価した。図11は、出射端の光出力と位置との関係を模式的に示す図である。出射端の伝搬光漏洩の評価は、図11に示すように、コア14の断面から出射した伝搬信号とコア14の周囲の第一のクラッド12および光吸収領域18から出射したノイズ成分との比であるノイズ比を算出することにより行った。表1に結果を示す。
Figure 2007047819
表1に示すように、実施例1で得られた光デバイスにおいて、参照例1で得られた光デバイスに比べてノイズ成分が10%低減された。
なお、実施例1および参照例1において、コア溶液の材料として、PhTMSのかわりにフェニルトリエトキシシラン(PhTES)、MPTESのかわりに3メタクリロキシプロピルトリメトキシシラン(MPTMS)を用いた場合も同様の結果が得られた。
また、実施例1および参照例1において、PhTMSのかわりにフェニル基を含有するpスチリルトリエトキシシラン、ジフェニルジエトキシシラン、またはジフェニルジメトキシシランを用いた場合も同様の結果が得られた。
(実施例2)
図10(b)に示すようなY分岐型コア14を含む光デバイス10を製造した。光デバイス10は、図7に示した手順で製造した。
図7に示す凹型スタンパ24は、図8(a)に示すガラス型32に硬化後のデュロメータ硬度Aが56のシリコーンゴム液を流し込むことにより製造した。
コア溶液としては、屈折率1.53のエポキシ系UV硬化樹脂を用いた。
クラッド溶液としては、以下の金属アルコキシド液および有機重合体溶液を用いた。
金属アルコキシド液:フェニルトリエトキシシラン(PhTES) 有機重合体溶液:3−メタクリロキシプロピルトリエトキシシラン(MPTES)の加水分解重縮合物 金属アルコキシド液と有機重合体溶液の配合比=8:17 有機重合体溶液は、MPTESの加水分解重縮合物14.8g、溶媒としてのエタノール8.4g、2規定の塩酸1.6gを混合後、19時間放置した後、95℃に加熱し、エタノールを蒸発除去して合成した。
以上のようにして準備した凹型スタンパ24、コア溶液、およびクラッド溶液を用いて、図7に示した手順で光デバイス10を製造した。凹型スタンパ24を第二のクラッド1
6に押し当てる圧力は、200gf/cmとした。ここで、コア14のコア径は70μmとした。
以上のようにして形成した光デバイス10における分岐機能を調べた。図10(b)に示すコア14の入射端40から1300nmの波長の光(100μW)を入射して、出射端42aおよび出射端42bからの出射光を検出した。出射端42aおよび出射端42bのいずれにおいても、30μWの光が検出された。このことから実施例2で製造した光デバイス10は、ビームスプリッタとしての分岐機能を有していることが確認できた。
また、コア14のコア径を6μmとして実施例2と同様にY分岐型コア14を含む光デバイスを製造して同様の測定を行った場合も、同様のビームスプリッタとしての機能を有していることが確認できた。
(参照例2)
実施例2と同様の材料を用い、図16に示すように、光吸収領域18を有しない光デバイスを製造した。スタンパ122を下部クラッド112に押し当てる圧力は、200gf/cmとした。
実施例2で得られた光デバイスにおいて、図10(b)に示す出射端42bにレーザーダイオード、出射端42aにフォトダイオードを設置することで、入射端40からの入射光をフォトダイオードで受信する機能、およびレーザーダイオードからの出力光を入射端40から出射する機能を有する送受信モジュールとしての機能を確認できた。
(フォトダイオード出力ノイズ成分評価)
上記の実施例2および参照例2で得られた光デバイスを用いた送受信モジュールにおいて、フォトダイオードへ出力される光伝搬信号のノイズ成分の評価を行うために図10(b)に示すように、出射端42bからレーザーダイオードによって1300nmの波長の光を入射し、入射端40において反射され出射端42aに伝搬される戻り光を評価した。表2に結果を示す。
Figure 2007047819
表2に示すように、実施例2で得られた光デバイスにおいて、参照例2で得られた光デバイスに比べてノイズ成分が約12%低減された。
(コアからの伝搬光漏洩の評価)
また上記の実施例2および参照例2で得られた光デバイスについて、入力端40から1300nmの光を入射し、ビームプロファイラを用いて光導波路の出射端の伝搬光漏洩を評価した。表3に結果を示す。
Figure 2007047819
表3に示すように、実施例2で得られた光デバイスにおいて、参照例2で製造した光デバイスに比べてノイズ成分が約9%低減された。
なお、実施例2および参照例2において、クラッド溶液の材料として、MPTESのかわりに3−アクリロキシプロピルトリメトキシシランを用いた場合も同様の結果が得られた。
(実施例3)
図10(a)に示すようなS字型コア14を含む光デバイス10を製造した。実施例1と同様の材料を用い、図3に示した手順で光デバイス10を製造した。図3(e)に示した平板23としては、デュロメータ硬度Aが45のシリコーンゴムを用いた。平板23を第一のクラッド12に押し当てる圧力は、200gf/cmとした。ここで、コア14のコア径は70μmとした。
本実施例において、図6(b)に示すように、狭窄部26を有するコア14および光吸収領域18が形成された。第一のクラッド12と第二のクラッド16との間には残留コア層15が一部存在していた。段差計を用いて残留コア層15の厚さを測定したところ、残留コア層15は、約4μmの厚さを有していた。
(参照例3)
図10(a)に示すようなS字型コア14を含む光デバイス10を製造した。実施例1と同様の材料を用い、図3に示した手順で光デバイス10を製造した。図3(e)に示した平板23としては、ガラス平板を用いた。ガラス平板を第一のクラッド12に押し当てる圧力は、200gf/cmとした。コア14のコア径は70μmとした。本参照例において、図12に示すように第一のクラッド12と第二のクラッド16との間には残留コア層15が一部存在していた。段差計を用いて残留コア層15の厚さを測定したところ、厚さが約4μmであった。
(参照例4)
図10(a)に示すようなS字型コア14を含む光デバイス10を製造した。実施例1と同様の材料を用い、図3に示した手順で光デバイス10を製造した。図3(e)に示した平板23としては、ガラス平板を用いた。ガラス平板を第一のクラッド12に押し当てる圧力は、400gf/cmとした。コア14のコア径は70μmとした。本参照例においても、図12に示すように第一のクラッド12と第二のクラッド16との間には残留コア層15が一部存在していた。段差計を用いて残留コア層15の厚さを測定したところ、厚さが約2μmであった。
(コアからの伝搬光漏洩の評価)
上記の実施例3、参照例3、および参照例4で得られた光デバイスについて、コア14の一端から1300nmの波長の光を入射し、ビームプロファイラを用いて出射端の伝搬光漏洩を評価した。出射端の伝搬光漏洩評価は、実施例1および参照例1で説明したのと同様に行った。表4に結果を示す。
Figure 2007047819
表4に示すように、実施例3で得られた光デバイスにおいて、参照例3で得られた光デバイスに比べてノイズ成分が25%低減された。また、実施例3で得られた光デバイスにおいて、参照例4で得られた光デバイスと比べてもノイズ成分が4%低減された。
このように、デュロメータ硬度Aが45のシリコーンゴムを用いることにより、図6(b)に示すような狭窄部26が形成されるため、コア14が残留コア層15と分離して形成され、残留コア層15が存在していても、コア14から漏れ出す光の量を低減することができる。これによりノイズ成分を低減することができたと考えられる。
なお、実施例3において、平板23としてデュロメータ硬度Aが85以下のシリコーンゴムを用いた場合も、同様の効果が得られることが別途実験により確認できた。
なお、参照例3および参照例4で説明したのと同様の材料を用い、光吸収領域18を有しない光デバイスを製造し、当該光デバイスについて出射端の伝搬光漏洩を評価したところ、参照例3および参照例4で得られたデバイスにおいて光吸収領域18を有しない光デバイスに比べてノイズ成分が減少することも確認できた。参照例3および参照例4で製造した光デバイスにおいて、光吸収領域18が形成されているため、残留コア層15の厚みを薄くすることができるとともにコアから漏れ出た光を光吸収領域18で吸収することができるため、光吸収領域18を有しない光デバイスに比べてノイズ成分が低減したと考えられる。
(実施例4)
図10(a)に示すようなS字型コア14を含む光デバイス10を、図3に示した手順で製造した。
コア14を構成するコア溶液としては、以下の金属アルコキシド液および有機重合体溶液を用いた。
金属アルコキシド液:フェニルトリメトキシシラン(PhTMS) 有機重合体溶液:3−メタクリロキシプロピルトリエトキシシラン(MPTES)の加水分解重縮合物 金属アルコキシド液と有機重合体溶液の配合比=10:9 有機重合体溶液は、MPTESの加水分解重縮合物9.5g、溶媒としてのエタノール13.3g、2規程の塩酸1.35gを混合後、19時間放置した後、95℃に加熱し、エタノールを蒸発除去して合成した。
クラッド溶液としては、以下の金属アルコキシド液および有機重合体溶液を用いた。
金属アルコキシド液:フェニルトリエトキシシラン(PhTES) 有機重合体溶液:3−メタクリロキシプロピルトリエトキシシラン(MPTES)の加水分解重縮合物 金属アルコキシド液と有機重合体溶液の配合比=8:17 有機重合体溶液は、MPTESの加水分解重縮合物14.8g、溶媒としてのエタノール8.4g、2規定の塩酸1.6gを混合後、19時間放置した後、95℃に加熱し、エタノールを蒸発除去して合成した。
光吸収溶液としては、上記クラッド溶液に平均粒径1μmのシリカ(SiO)微粒子をクラッド溶液に対する重量比を1:1として混合した。これにより、白濁した光吸収溶液が得られた。
実施例1と同様に準備した凸型スタンパ22を用いて光デバイス10を製造した。平板23としては、デュロメータ硬度Aが56のシリコーンゴムを用いた。平板23を第一のクラッド12に押し当てる圧力は、200gf/cmとした。コア14のコア径は70μmとした。
(コアからの伝搬光漏洩の評価)
実施例4および上記参照例1で得られた光デバイスについて、コア14の一端から1300nmの波長の光を入射し、ビームプロファイラを用いて出射端の伝搬光漏洩を評価した。その結果、実施例4で得られた光デバイスにおいて、参照例1で得られた光デバイスに比べてノイズ成分が12%低減された。
なお、光吸収溶液として、シリカ微粒子のかわりに平均粒径が100nmの炭素粉を用いた場合も参照例1で製造した光デバイスに比べてノイズ成分が同様に低減した。
以上説明した実施の形態および実施例では、コアの両側に光吸収領域が設けられているが、光吸収領域は必ずしも必須ではなく、以下に説明するように、コアに狭窄部が設けられ、コアの両側に光吸収領域が設けられていない実施の形態も本発明に含まれる。
図13は、光デバイス10の製造手順の他の例を示す工程図である。ここで、図13(a)〜図13(d)までは、ポケット部13bを形成しない点を除いて、図3(a)〜図3(d)に示したのと同様の手順で行われる。これにより、後にコア14が形成される凹部13aを有する第1クラッド12が形成される。本実施例で用いられる凸型スタンパ22の製造方法は、図4(a)〜図4(d)に示した手順と基本的には同様である。ただし、本実施例で用いられる凸型スタンパ22の製造方法においては、図4(a)においてガラス平板基板29の上に、コア14に対応する領域のみを開口とするマスク31を用いる。これにより、コア14に対応する領域にのみ凸部を有する凸型スタンパ22が製造される。
第一のクラッド12上にコア溶液層14aを形成した後(図13(d))、平板23を
第一のクラッド12およびコア溶液層14a上に配置し、平板23を第一のクラッド12に押し当て、平板23と第一のクラッド12との接点における不要なコア溶液を除去する。この状態で紫外線を照射してコア溶液層14aを硬化し、コア14を形成する(図13(e))。このとき、平板23を第一のクラッド12に押し当てる圧力を調整したり、平板23としてデュロメータ硬度Aが低い材料を用いることにより、コア14の形状を適宜変形させることができ、図示したような狭窄部26を設けた構造とすることができる。
つづいて、平板23を除去する。これにより、第一のクラッド12上にコア14が形成される(図13(f))。その後、第一のクラッド12およびコア14の上にクラッド溶液を滴下し、その上に基板20を配置する。この状態で紫外線を照射して第二のクラッド溶液を硬化し、第二のクラッド16を形成する(図13(g))。
なお、コア14に狭窄部26を設ける方法としては、図13(e)に示したような平板23を用いる方法に限られず、図14(a)〜図14(d)に示すような形状の成形型200を用いることができる。図14(a)の成形型200には、コア14と接する側に、コア14の両端部に位置する部分に一対の凸部が設けられている。この成形型200を第一のクラッド12に押圧することにより、両端部に狭窄部26が設けられたコア14が形成される。
図14(b)の成形型200には、コア14と接する側に、コア14の両端部に位置する部分に一対の凸部が設けられ、一対の凸部の間の領域がクレーター状の凹部となっている。この成形型200を第一のクラッド12に押圧することにより、中央付近が盛り上がり、両端部に狭窄部26が設けられたコア14が形成される。
図14(c)の成形型200には、コア14と接する側に、コア14の領域に矩形状の凸部が設けられている。この成形型200を第一のクラッド12に押圧することにより、コア14の上面が第一のクラッド12の上面より下に押し下げられ、両端部に狭窄部26が設けられたコア14が形成される。
図14(d)の成形型200には、コア14と接する側に、コア14の領域に中央付近が盛り上がった凸部が設けられている。この成形型200を第一のクラッド12に押圧することにより、コア14の中央付近が押し下げられ、両端部に狭窄部26が設けられたコア14が形成される。
図14(a)〜図14(d)に例示した成形型200を用いることにより、第一のクラッド12に残留コア層15が存在していても、コア14および残留コア層15の境界付近でコア14および残留コア層15の厚みが減少している狭窄部26を簡便かつ確実に形成することができる。
図15は、光デバイス10の製造手順のさらに他の例を示す工程図である。図15は、スタンパを用いた光導波路の製造工程を示す図である。図15(a)に示すように、基板300上に第二のクラッド302を形成し、第二のクラッド302の上にコアを構成するコア溶液層304aを塗布する。一方、本実施例で用いられるスタンパ306には、コア304に対応する凹部が設けられ、凹部の両側近傍の表面には、一対の突起部307が形成されている。つづいて、図15(b)に示すように、スタンパ306をコア溶液層304aに押し当て、その状態で紫外線を照射してコア溶液層304aを硬化させる。これにより図15(c)に示すように、両側の側壁基部に一対の狭窄部310が設けられたコア304が形成される。つづいて、第二のクラッド302およびコア14の上に第一のクラッド溶液を滴下し、その上に基板314を配置する。この状態で紫外線を照射して第一のクラッド溶液を硬化し、第一のクラッド312を形成する(図15(d))。
このような手順によれば、第二のクラッド302とスタンパ306との間に残留コア層316が形成されたとしても、コア304が残留コア層316と接する部分に狭窄部310が設けられているため、コア304から残留コア層316に光が漏れ出ることが抑制されるため、光損失が低減し、光導波路の機能が向上する。
以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
本発明の実施の形態における光デバイスの構成を示す断面図である。 第一のクラッド、コアおよび光吸収体層の構造を示す上面図である 図1に示した光デバイスの製造手順の一例を示す工程図である。 凸型スタンパの製造手順を示す工程図である。 図1に示した光デバイスの製造手順の他の例を示す工程図である。 狭窄部が形成された光デバイスを詳細に示す図である。 図1に示した光デバイスの製造手順の他の例を示す工程図である。 凹型スタンパの製造手順を示す工程図である。 光吸収体層がコアを構成する材料とは異なる材料により構成された光デバイスの製造手順を示す工程図である。 実施例で製造した光デバイスの上面図である。 光デバイスの出射端の光出力と位置との関係を模式的に示す図である。 第一のクラッドと第二のクラッドとの間には残留コア層が存在する例を示す図である。 光デバイスの製造手順の他の例を示す工程図である。 狭窄部が設けられたコアを形成する方法を示す工程図である。 光デバイスの製造手順のさらに他の例を示す工程図である。 スタンパを用いた従来の光導波路の製造工程を示す図である。
符号の説明
10 光デバイス、 12 第一のクラッド、 13a 、 13b 、 14 コア、 15 残留コア層、 16 第二のクラッド、 18 光吸収体層、 20 基板、 21 基板、 22 凸型スタンパ、 23 平板、 24 凹型スタンパ、 25 平坦部、 26 狭窄部、 27 マスク基板、 28 シリンジ、 29 ガラス平板基板、 30 ガラス型、 40 入射端、 42a 出力端、 42b 出力端。

Claims (5)

  1. 表面の平坦部に第一の凹部が形成されたクラッド上にコア溶液を塗布して前記第一の凹部を前記コア溶液で充填する工程と、
    前記クラッドに成形型を押し当て、前記表面に塗布された前記コア溶液を除去する工程と、
    前記成形型を押し当てた状態で前記コア溶液を硬化させることにより、前記第一の凹部に前記クラッドの平坦部付近で狭く形成された狭窄部を有するコアを形成する工程と、を含むことを特徴とする光デバイスの製造方法。
  2. 請求項1に記載の光デバイスの製造方法において、
    前記クラッドは、第二の凹部をさらに有し、
    前記第一の凹部を前記コア溶液で充填する工程は、前記第二の凹部を前記コア溶液で充填する工程をさらに含み、
    前記コアを形成する工程は、前記第二の凹部に光吸収領域を形成する工程をさらに含むことを特徴とする光デバイスの製造方法。
  3. クラッドの表面にコア溶液を塗布する工程と、
    表面の平坦部に第一の凹部と該第一の凹部の両側近傍に一対の突起部が形成された成形型を前記クラッドに押し当て、前記平坦部に塗布された前記コア溶液を除去する工程と、
    前記成形型を押し当てた状態で前記コア溶液を硬化させることにより、前記第一の凹部に前記突起部近傍で形成された狭窄部を有するコアを形成する工程と、を含むことを特徴とする光デバイスの製造方法。
  4. 請求項3に記載の光デバイスの製造方法において、
    前記成形型は、第二の凹部をさらに有し、
    前記コアを形成する工程は、前記第二の凹部に光吸収領域をさらに形成する工程を含むことを特徴とする光デバイスの製造方法。
  5. 請求項1〜4に記載の光デバイスの製造方法において、
    前記成形型は、デュロメータ硬度Aが85以下の弾性材料により構成されたことを特徴とする光デバイスの製造方法。
JP2006284928A 2003-05-23 2006-10-19 光デバイスの製造方法 Withdrawn JP2007047819A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006284928A JP2007047819A (ja) 2003-05-23 2006-10-19 光デバイスの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003146107 2003-05-23
JP2006284928A JP2007047819A (ja) 2003-05-23 2006-10-19 光デバイスの製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004144185A Division JP2005010758A (ja) 2003-05-23 2004-05-13 光デバイスおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2007047819A true JP2007047819A (ja) 2007-02-22

Family

ID=37850620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006284928A Withdrawn JP2007047819A (ja) 2003-05-23 2006-10-19 光デバイスの製造方法

Country Status (1)

Country Link
JP (1) JP2007047819A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007886A (ja) * 2009-06-23 2011-01-13 Nippon Shokubai Co Ltd 光導波路の製造方法およびそれに用いる型
JP2018178033A (ja) * 2017-04-19 2018-11-15 旭化成株式会社

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007886A (ja) * 2009-06-23 2011-01-13 Nippon Shokubai Co Ltd 光導波路の製造方法およびそれに用いる型
JP2018178033A (ja) * 2017-04-19 2018-11-15 旭化成株式会社

Similar Documents

Publication Publication Date Title
JP2005010758A (ja) 光デバイスおよびその製造方法
Tong Advanced materials for integrated optical waveguides
US7901784B2 (en) Optical waveguide, optical transmitter and receiver module, and laminated structure
JP5199060B2 (ja) 交差導波路
JP2024083560A (ja) 光導波路
JP2007047819A (ja) 光デバイスの製造方法
US7542646B2 (en) Optical waveguide and method of manufacturing the same
US7561774B2 (en) Optical waveguide
DeGroot Jr Cost-effective optical waveguide components for printed circuit applications
JP4004480B2 (ja) 光導波路
JP4687631B2 (ja) 光導波路及びその製造方法
JP2013174838A (ja) 光導波路、光導波路の製造方法および電子機器
JP3819871B2 (ja) 光デバイスおよびその製造方法
JP2015087660A (ja) 光導波路、光電気混載基板および電子機器
JP5737108B2 (ja) 光ファイバユニット及びその製造方法
JP2017083874A (ja) 光導波路、光配線部品および電子機器
JP2010286734A (ja) 光導波路接合体
JP4458328B2 (ja) 光導波路の製法
US20040120649A1 (en) Optical coupling interface for optical waveguide and optical fiber
JP2018087843A (ja) 光配線部品、光配線部品の接続方法および電子機器
JP2018097287A (ja) 光配線部品および電子機器
JP6108668B2 (ja) 光導波路、光配線部品および電子機器
JP6108667B2 (ja) 光導波路、光配線部品および電子機器
JP2009223184A (ja) 光導波路構造体及びその製造方法、光モジュール
JP6065377B2 (ja) 光導波路、光導波路の製造方法、光配線部品および電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090622