JP2007047056A - Ultrasonic leakage position detection device - Google Patents

Ultrasonic leakage position detection device Download PDF

Info

Publication number
JP2007047056A
JP2007047056A JP2005232849A JP2005232849A JP2007047056A JP 2007047056 A JP2007047056 A JP 2007047056A JP 2005232849 A JP2005232849 A JP 2005232849A JP 2005232849 A JP2005232849 A JP 2005232849A JP 2007047056 A JP2007047056 A JP 2007047056A
Authority
JP
Japan
Prior art keywords
ultrasonic
wave
bubbles
bubble
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005232849A
Other languages
Japanese (ja)
Other versions
JP4630399B2 (en
Inventor
Takeo Nakamichi
武雄 中道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAMICHI TEKKO KK
Original Assignee
NAKAMICHI TEKKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAMICHI TEKKO KK filed Critical NAKAMICHI TEKKO KK
Priority to JP2005232849A priority Critical patent/JP4630399B2/en
Publication of JP2007047056A publication Critical patent/JP2007047056A/en
Application granted granted Critical
Publication of JP4630399B2 publication Critical patent/JP4630399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attempt enhancing reliability of bubble inspection using ultrasonic wave and realizing cost-lowering. <P>SOLUTION: The ultrasonic leakage position detection device is equipped with: an ultrasonic transmitter/receiver section 20 capable of irradiating ultrasonic wave to suspension L and receiving the reflected wave R; a transmitted wave receiver 30 prepared at a position receivable to transmitted wave T of ultrasonic wave; and a bubble detector detecting existence or nonexistence of and conditions of bubbles based on the signals of reflected wave R received by the reflected wave receiver section 20 and signals of the transmitted wave T received by transmitted wave receiver 30. At a condition that a test object W is sunk to be arranged at a lower position than the level surface at which the ultrasonic transmitter/receiver section 20 and the transmitted wave receiver 30 are prepared in a suspension tank 10 storing suspension L, so as to pass babbles leaked from the test object W through a gap between the ultrasonic transmitter/receiver section 20 and the transmitted wave receiver 30. Ultrasonic wave is radiated from the ultrasonic transmitter to inspect existence or nonexistence of air leakage, conditions of bubbles, and volume of air leakage at the bubble detector based on the signals of reflected wave R and transmitted wave T. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超音波を利用して気泡を検出し、鋼管材等、密閉された容器体等の被検査物の破損部としての小孔、クラックを検出したり、気密性検査を行うことのできる超音波式漏れ位置検出装置に関する。   The present invention detects bubbles using ultrasonic waves, detects small holes or cracks as a damaged part of an object to be inspected such as a sealed tube body such as a steel pipe, and performs an airtightness inspection. The present invention relates to an ultrasonic leak position detection device that can be used.

機械部品の品質検査は、部品の使用目的の重要度によって異なる。配管や貯蔵部品等の場合、引火性・溶解性・高温・低温等気密性が極めて重視される場合があり、全数検査が行われている。例えば、自動車部品に使用される気密性部品の気密性検査や、鋼管材やその他の密閉された容器体の破損部として小孔部を検出するために、特許文献1に示されるような、空気漏れ検査装置を利用した気密検査が行われている。空気漏れ検査装置は、部品を水槽内に水没させて部品内に圧縮空気を充填することにより、部品から気泡の漏れを水槽内に生じさせるものである。検査者はこれを目視で確認して合否判断する。この装置は、水中への気泡発生を容易にするための揺動機構等も有しており、装置が安価で検査が比較的容易なため広い分野で用いられている。   The quality inspection of a machine part differs depending on the importance of the intended use of the part. In the case of pipes and storage parts, airtightness such as flammability, solubility, high temperature and low temperature may be extremely important, and 100% inspection is performed. For example, in order to detect airtightness of airtight parts used in automobile parts and to detect small holes as damaged parts of steel pipes and other sealed containers, air as shown in Patent Document 1 is used. Airtight inspection using a leak inspection device is performed. The air leak inspection apparatus causes air bubbles to leak from a part into the water tank by immersing the part in the water tank and filling the part with compressed air. The inspector makes a pass / fail judgment by visually confirming this. This device also has a swinging mechanism for facilitating the generation of bubbles in water, and is used in a wide range of fields because the device is inexpensive and relatively easy to inspect.

気密検査方法の一例として、特許文献2に開示される方法を図18に基づいて詳述する。まず、測定すべき被検査物としての鋼管材61の両端部を保持装置62によって保持し、水を満たした水槽60内に配置する。次に、前記鋼管材61内に空気圧送装置63から空気を圧送する。この際、鋼管材61に、該鋼管材61の内外面を貫通する破損部としての小孔部64があれば、鋼管材61に圧送された空気がこの小孔部64を通して外部に漏洩し、水中を気泡65となって上昇する。上昇した気泡65は水面に浮上し破裂する。この破裂時に発する超音波をマイクロホン66によって計測することにより、小孔部の有無を検出する。   As an example of the airtight inspection method, the method disclosed in Patent Document 2 will be described in detail with reference to FIG. First, both ends of a steel pipe material 61 as an object to be measured are held by a holding device 62 and placed in a water tank 60 filled with water. Next, air is pumped from the pneumatic feeder 63 into the steel pipe 61. At this time, if the steel pipe material 61 has a small hole portion 64 as a damaged portion penetrating the inner and outer surfaces of the steel pipe material 61, the air pumped to the steel pipe material 61 leaks outside through the small hole portion 64, It rises as bubbles 65 in the water. The rising bubbles 65 rise to the water surface and burst. The presence or absence of a small hole is detected by measuring the ultrasonic wave generated at the time of rupture with the microphone 66.

このように水没式空気漏れ検査装置は、自動車部品、ガス器具、医療器具等様々な分野で実用化されている。しかしながら、このような装置は作業者の手作業と目視による判定が主流であるため、熟練度の違いによる合否判定の曖昧さや、人件費による高コストが製造現場において問題となっていた。このため、これらの製品に関わる電機、石油ガス機器、自動車、食品機械等の業界では、数々の検査装置の自動化を試みており、現在、特許文献3に示されるような、ヘリウムや水素ガスを使ったガス拡散式や特許文献4に示されるような、空気漏れ差圧を利用した差圧式の自動検査装置が実用化されている。   As described above, the submerged air leak inspection apparatus has been put to practical use in various fields such as automobile parts, gas appliances, and medical instruments. However, since such an apparatus is mainly determined manually by the operator and visually, the ambiguity of the pass / fail determination due to the difference in skill level and the high cost due to the labor cost have been problems at the manufacturing site. For this reason, industries such as electric machinery, oil and gas equipment, automobiles, and food machinery related to these products have attempted to automate a number of inspection apparatuses. Currently, as shown in Patent Document 3, helium and hydrogen gas are used. A differential pressure type automatic inspection apparatus using an air leakage differential pressure as shown in Patent Literature 4 or a gas diffusion type used has been put into practical use.

しかしながら、差圧式の自動検査装置では、検査対象物が溶接後の残熱等の影響で高温の場合等には気体膨張による圧力変動の影響や環境温度あるいは気圧変動等による影響で精度が良くないという欠点がある。一方、ガス拡散式も高価なチャンバー槽が必要で、炭素繊維等の複合材料や新素材等水素吸脱性を有する素材を用いた強化軽量化部品には適用できないという問題がある。   However, in the differential pressure type automatic inspection device, when the inspection object is at a high temperature due to the residual heat after welding, etc., the accuracy is not good due to the influence of pressure fluctuation due to gas expansion or the influence of environmental temperature or atmospheric pressure fluctuation. There is a drawback. On the other hand, the gas diffusion type also requires an expensive chamber tank, and there is a problem that it cannot be applied to a reinforced lightweight part using a material having hydrogen absorption / desorption properties such as a composite material such as carbon fiber or a new material.

また、超音波を利用した自動化技術では、例えば特許文献5と6には、検査対象物上に集泡ロートを有し、集泡管や蓄泡管で検知器により泡の有無や空気量を検知するものや、特許文献7には、検査対象物から気体が漏れ出る際に生じる音を検知器によって可聴音あるいは超音波として検出すること、いわゆる漏れに伴う笛吹効果により漏れの有無を検知するものや、特許文献8には、検査対象物にセンサを直接取り付けて検査対象物から気体が漏れ出る際に生じる機械的振動あるいは振動音を超音波として検出することにより漏れの有無を検知するもの等が知られている。これらの空気漏れ検査装置では、漏れの有無を検出するに止まり、漏れの発生している位置や漏れの正確な量までは検出することができなかった。
実開平03−27334号公報 特開昭50−43988号公報 特開2004−163223号公報 実開昭63−63742号公報 特開平03−180734号公報 登実第3044473号公報 特開昭63−249033公報 特開昭63−133334号公報
Moreover, in the automation technology using ultrasonic waves, for example, Patent Documents 5 and 6 have a bubble collecting funnel on an inspection object, and the presence or absence of bubbles and the amount of air are detected by a detector with a bubble collecting tube or a bubble accumulation tube. In what is detected and in Patent Document 7, the presence or absence of leakage is detected by detecting the sound generated when gas leaks from the inspection object as an audible sound or an ultrasonic wave by a detector, the so-called whistling effect associated with leakage. In Patent Document 8, a sensor is directly attached to an inspection object, and the presence or absence of leakage is detected by detecting mechanical vibration or vibration sound generated when gas leaks from the inspection object as ultrasonic waves. Etc. are known. In these air leak inspection apparatuses, it was only possible to detect the presence or absence of a leak, and it was not possible to detect the position where the leak occurred or the exact amount of the leak.
Japanese Utility Model Publication No. 03-27334 Japanese Patent Laid-Open No. 50-43988 JP 2004-163223 A Japanese Utility Model Publication No. 63-63742 Japanese Patent Laid-Open No. 03-180734 No. 3044473 gazette JP-A 63-249033 JP-A-63-133334

本発明は、従来のこのような問題点に鑑みてなされたものである。本発明の主な目的は、超音波を用いてその透過波と反射波の受信波形の変化から気泡のみを正確に検出し、且つ気泡の大きさと数を検出することにより、従来の装置に比べ検査の信頼性の向上と自動化による低コスト化を実現し、特殊な検査ガスを必要としないため広範囲の検査対象物に適用可能な超音波式漏れ位置検出装置を提供することにある。また本発明の他の目的は、超音波の送受信位置を時分割で切り替えることにより漏れ位置の検出が可能な超音波式漏れ位置検出装置を提供することにある。   The present invention has been made in view of such conventional problems. The main object of the present invention is to accurately detect only bubbles from changes in the received waveform of transmitted waves and reflected waves using ultrasonic waves, and to detect the size and number of bubbles, compared to conventional devices. An object of the present invention is to provide an ultrasonic leak position detection device that can be applied to a wide range of inspection objects because it improves the reliability of inspection and reduces the cost by automation and does not require a special inspection gas. Another object of the present invention is to provide an ultrasonic leak position detection apparatus capable of detecting a leak position by switching the transmission / reception position of ultrasonic waves in a time division manner.

上記目的を達成するために、本発明の第1の側面に係る超音波式漏れ位置検出装置は、検査液中に被検査物を水没させた状態で、被検査物から漏れ出る気泡の有無を検出して被検査物の検査を行う超音波式漏れ位置検出装置であって、検査液を保持するための検査液槽と、検査液に対して超音波の照射波を送出するために、検査液槽中に一つ又は水平方向に複数個並べて配置された超音波送信部と、検査液槽中に水平方向に複数個並べて配置され、超音波送信部から発せられる超音波の反射波を受信可能な位置に設けられた第1の超音波受信部と、検査液槽中の超音波送信部と対向する位置に水平方向に複数個並べて配置され、超音波送信部からの超音波の透過波を受信可能な位置に設けられた第2の超音波受信部とを備え、検査液を蓄えた検査液槽中で超音波送信部と第2の超音波受信部を配置した水平面よりも低い位置まで被検査物を水没させ、被検査物から漏れ出る気泡が超音波送信部と第2の超音波受信部の間を通過するように配置した状態で、超音波送信部から超音波を照射して、被検査物から漏れ出る気泡に超音波を反射、透過させて反射波、透過波を、それぞれ第1の超音波受信部及び第2の超音波受信部で受信し、その結果に基づいて気泡の有無及び状態を検出可能に構成している。この構成により、超音波の反射波と透過波を併用して気泡を正確に検出することができ、誤検出を回避して信頼性の高い気密検査を実現できる。   In order to achieve the above object, the ultrasonic leak position detection apparatus according to the first aspect of the present invention detects whether or not there are bubbles leaking from the inspection object in a state where the inspection object is submerged in the inspection liquid. An ultrasonic leak position detection device that detects and inspects an object to be inspected. An inspection liquid tank for holding an inspection liquid, and an inspection for sending an irradiation wave of ultrasonic waves to the inspection liquid. One ultrasonic transmission unit arranged in the liquid tank or a plurality of horizontal arrangements in the liquid tank and a plurality of horizontal transmission elements arranged in the horizontal direction in the test liquid tank to receive the reflected ultrasonic wave emitted from the ultrasonic transmission unit A plurality of ultrasonic transmission waves from the ultrasonic transmission unit are arranged in a horizontal direction at a position facing the ultrasonic transmission unit in the test liquid tank and the first ultrasonic reception unit provided at a possible position. And a second ultrasonic receiving unit provided at a position capable of receiving The inspection object is submerged to a position lower than the horizontal plane in which the ultrasonic transmission unit and the second ultrasonic reception unit are arranged in the inspection tank, and bubbles leaking from the inspection object are mixed with the ultrasonic transmission unit and the second ultrasonic wave. In a state where it is arranged so as to pass between the sound wave receiving parts, the ultrasonic wave is irradiated from the ultrasonic wave transmitting part, and the reflected wave and the transmitted wave are reflected and transmitted through the bubbles leaking from the inspection object, Each is received by the first ultrasonic receiving unit and the second ultrasonic receiving unit, and based on the result, the presence / absence and state of the bubbles can be detected. With this configuration, it is possible to accurately detect bubbles by using both the reflected wave and the transmitted wave of ultrasonic waves, and it is possible to realize a highly reliable airtight inspection while avoiding erroneous detection.

また、本発明の第2の側面に係る超音波式漏れ位置検出装置は、超音波の照射波と比較して、第1の超音波受信部で受信された反射波の信号の振幅及び位相、周波数の変化量と、第2の超音波受信部で受信された透過波の信号の振幅及び位相、周波数の変化量とに基づいて、気泡の大きさと数を検出し、気泡の大きさと数の積から気泡の量を算出するよう構成されている。これにより、第1の超音波受信部で検出された反射波が、気泡漏れが無い場合には大きな反射が起こらないため振幅が小さく、小さな気泡がある場合には位相や周波数の変化を伴った振幅が受信され、大きな気泡が有る場合には位相や周波数の変化を伴った大きな振幅が受信され、検出される反射波の位相と周波数の変化は気泡までの距離と気泡の曲率に応じて異なることを利用して、気泡の大きさと数を検出する。第2の超音波受信部で検出された透過波が、小さな気泡がある場合には僅かな振幅減少が受信され、大きな気泡が有る場合には大きな振幅減少が受信され、受信される透過波は気泡の大きさと数に応じた反射波の位相と周波数の変化を伴うことを利用して、気泡の大きさと数を検出する。この構成により、検出された超音波のスペクトル波形から気泡の大きさと数の積から量を算出検出することができ、誤検出を回避して信頼性の高い気密検査を実現できる。   In addition, the ultrasonic leak position detection apparatus according to the second aspect of the present invention includes an amplitude and a phase of a reflected wave signal received by the first ultrasonic receiving unit as compared with an ultrasonic wave. Based on the amount of change in frequency, the amplitude and phase of the transmitted wave signal received by the second ultrasonic wave receiver, and the amount of change in frequency, the size and number of bubbles are detected. It is configured to calculate the amount of bubbles from the product. As a result, the reflected wave detected by the first ultrasonic receiving unit has a small amplitude because there is no large reflection when there is no bubble leakage, and there is a change in phase or frequency when there is a small bubble. When the amplitude is received and there is a large bubble, a large amplitude with a change in phase or frequency is received, and the change in phase and frequency of the detected reflected wave depends on the distance to the bubble and the curvature of the bubble This is used to detect the size and number of bubbles. The transmitted wave detected by the second ultrasonic wave receiving unit receives a small amplitude decrease when there is a small bubble, receives a large amplitude decrease when there is a large bubble, and the received transmitted wave is The size and number of bubbles are detected by utilizing the fact that the phase and frequency of the reflected wave change according to the size and number of bubbles. With this configuration, it is possible to calculate and detect the amount from the product of the size and the number of bubbles from the detected spectrum waveform of the ultrasonic wave, and to realize a highly reliable airtight inspection while avoiding erroneous detection.

さらに、本発明の第3の側面に係る超音波式漏れ位置検出装置は、超音波送信部から比較的大きな出力の超音波を照射することにより大きな気泡においては表面の形状変化を生じせしめ,小さな気泡においては照射方向に相対的移動を生じせしめ,これをもって複数の第1の超音波受信部で受信された信号に気泡の大きさによる位相及び周波数の変化を生じせしめる。超音波送信部から照射する超音波の強さを変化させることにより、気泡が大きい場合には超音波が当たる表面積が大きいため気泡表面に形状変化を成さしめ、これによって受信される信号の位相、周波数、振幅、ピーク幅に変化を生じさせることができ、気泡が小さい場合には超音波が当たる表面積が小さいため気泡の形状変化を伴うことなく水平方向への位置的移動を成さしめ、これによって受信される信号の位相、周波数、振幅、ピーク幅に変化を生じさせることができるため、検査液の粘性や検査液に混入した浮遊物による誤検出を回避して信頼性の高い気密検査を実現できる。   Furthermore, the ultrasonic leak position detection apparatus according to the third aspect of the present invention causes a change in the shape of the surface of a large bubble by irradiating a relatively large output ultrasonic wave from the ultrasonic transmitter, and is small. The bubbles cause a relative movement in the irradiation direction, and this causes a change in phase and frequency depending on the size of the bubbles in the signals received by the plurality of first ultrasonic receivers. By changing the intensity of the ultrasonic wave radiated from the ultrasonic transmitter, the surface area where the ultrasonic wave hits is large when the bubble is large, causing the bubble surface to change its shape, and the phase of the received signal. The frequency, amplitude, and peak width can be changed, and when the bubble is small, the surface area to which the ultrasonic wave hits is small, so the positional movement in the horizontal direction is achieved without accompanying the bubble shape change, This makes it possible to change the phase, frequency, amplitude, and peak width of the received signal, thus avoiding false detections due to the viscosity of the test solution and floating substances mixed in the test solution, and a highly reliable airtight test. Can be realized.

さらにまた、本発明の第4の側面に係る超音波式漏れ位置検出装置は、超音波送信部が、複数の超音波送信部を備えており、各超音波送信部は第1の超音波受信部の機能を併せ持つか、複数の第1の超音波受信部の各々とそれぞれ垂直方向に相当するように配置されてなり、超音波送信部はバースト状の超音波を発生させるタイミングを時分割で切り替え、検査液槽中を順次走査するように超音波を照射するよう構成されてなり、複数の第1の超音波受信部で受信された信号から気泡漏れの発生位置を検出するよう構成されている。この構成により、検査液槽中の気泡の経路を面状に走査できるので、第2の超音波受信部の各々で受信された透過波から気泡の発生位置を把握することが可能となる。   Furthermore, in the ultrasonic leak position detection apparatus according to the fourth aspect of the present invention, the ultrasonic transmission unit includes a plurality of ultrasonic transmission units, and each ultrasonic transmission unit receives the first ultrasonic reception. The ultrasonic transmitters are arranged in the vertical direction with each of the plurality of first ultrasonic receivers, and the ultrasonic transmitter transmits the timing for generating burst-like ultrasonic waves in a time-sharing manner. It is configured to irradiate ultrasonic waves so as to sequentially scan and scan the inside of the test liquid tank, and is configured to detect the occurrence position of bubble leakage from the signals received by the plurality of first ultrasonic receiving units. Yes. With this configuration, the bubble path in the test liquid tank can be scanned in a planar shape, so that the generation position of the bubble can be ascertained from the transmitted wave received by each of the second ultrasonic receiving units.

さらにまた、本発明の第5の側面に係る超音波式漏れ位置検出装置は、超音波送信部が、複数の超音波送信部を備えており、各超音波送信部は第1の超音波受信部の機能を併せ持つか、複数の第1の超音波受信部の各々とそれぞれ垂直方向に相当するように配置されてなり、超音波送信部はバースト状の超音波を発生させるタイミングを時分割で切り替え、検査液槽中を順次走査するように超音波を照射するよう構成されてなり、複数の第1の超音波受信部で受信された信号から気泡漏れの発生位置を検出するよう構成されている。この構成により、検査液槽中の気泡の経路を面状に走査できるので、第1の超音波受信部の各々で受信された反射波から気泡の発生位置を把握することが可能となる。   Furthermore, in the ultrasonic leak position detection apparatus according to the fifth aspect of the present invention, the ultrasonic transmission unit includes a plurality of ultrasonic transmission units, and each ultrasonic transmission unit receives the first ultrasonic reception. The ultrasonic transmitters are arranged in the vertical direction with each of the plurality of first ultrasonic receivers, and the ultrasonic transmitter transmits the timing for generating burst-like ultrasonic waves in a time-sharing manner. It is configured to irradiate ultrasonic waves so as to sequentially scan and scan the inside of the test liquid tank, and is configured to detect the occurrence position of bubble leakage from the signals received by the plurality of first ultrasonic receiving units. Yes. With this configuration, the path of the bubbles in the test liquid tank can be scanned in a planar shape, so that the position where the bubbles are generated can be grasped from the reflected wave received by each of the first ultrasonic receivers.

さらにまた、本発明の第6の側面に係る超音波式漏れ位置検出装置は、第1の超音波受信部で受信した反射波の信号及び第2の超音波受信部で受信した透過波の信号に基づき、気泡の有無及び状態を検出するための気泡検出部を備える。気泡検出部は、第1の超音波受信部で受信した反射波及び第2の超音波受信部で受信した透過波が、共に気泡の大きさと数によって関連づけられた振幅、位相、周波数の変化を伴うことから、反射波での変化と透過波での変化を比較することにより、信号の変化が気泡に伴うものであるかその他の浮遊物によるものであるかを容易に識別することができる。気泡の状態検出のために必要な演算機能を超音波式漏れ位置検出装置に付加することで、気泡検出を完結させることができる。   Furthermore, the ultrasonic leak position detection apparatus according to the sixth aspect of the present invention is a reflected wave signal received by the first ultrasonic receiver and a transmitted wave signal received by the second ultrasonic receiver. And a bubble detector for detecting the presence and state of bubbles. The bubble detector detects changes in amplitude, phase, and frequency in which the reflected wave received by the first ultrasonic receiver and the transmitted wave received by the second ultrasonic receiver are both related by the size and number of bubbles. Therefore, by comparing the change in the reflected wave with the change in the transmitted wave, it is possible to easily identify whether the change in the signal is due to bubbles or due to other floating substances. By adding a calculation function necessary for detecting the state of the bubble to the ultrasonic leak position detection device, the bubble detection can be completed.

以上のように、本発明の超音波式漏れ位置検出装置によれば、目視によらず確実かつ容易に気泡を検出して、気泡検出及びこれに基づく被検査物の小孔や亀裂等の検査の信頼性と精度を高めることができる。特に超音波の反射波と透過波という2種類の信号を併用して受信した信号の振幅変化と位相変化と周波数変化とから気泡の有無と状態を検出するので、誤検出を防止しかつ高精度な漏れ量の検出を実現している。また目視による検出では手間がかかり、定量化ができないため判断基準が曖昧であるといった欠点があったが、本発明によれば自動化及び定量化が可能で、判定基準を一律にできる上人件費も削減でき、安価で信頼性の高い検出を容易に行える利点が得られる。またこの方法は、差圧式や水素、ヘリウムによるガス拡散式の検査方法に比べて適用可能範囲が広く、さらに漏れ量に加えて漏れ位置まで検出できるという優れた利点が得られる。特に差圧方式では残熱に影響され、ガス拡散式では複合材料に適用できないといった問題があったが、本発明ではこれらの制限を受けず、広い範囲の被検査物を検査対象とできる。   As described above, according to the ultrasonic leak position detection apparatus of the present invention, bubbles are detected reliably and easily without visual observation, and bubble detection and inspection of small holes, cracks, and the like of the inspection object based on the bubbles are detected. Can improve the reliability and accuracy. In particular, since the presence / absence and state of bubbles are detected from the amplitude change, phase change, and frequency change of the received signal using both the reflected wave and transmitted wave of the ultrasonic wave, false detection is prevented and high accuracy is achieved. Realizes accurate leak detection. In addition, the detection by visual inspection is troublesome and there is a drawback that the determination standard is ambiguous because it cannot be quantified.According to the present invention, it is possible to automate and quantify, and the labor cost for uniform determination standard is also high. The advantage is that it can be reduced, and inexpensive and highly reliable detection can be easily performed. Further, this method has a wider range of applicability than the differential pressure type and gas diffusion type inspection methods using hydrogen and helium, and further has the advantage of being able to detect the leak position in addition to the leak amount. In particular, the differential pressure method is affected by residual heat, and the gas diffusion method cannot be applied to a composite material. However, the present invention is not subject to these limitations, and can inspect a wide range of objects to be inspected.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための超音波式漏れ位置検出装置を例示するものであって、本発明は超音波式漏れ位置検出装置を以下のものに特定しない。また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一つの部材で複数の要素を兼用する態様としてもよいし、逆に一つの部材の機能を複数の部材で分担して実現することもできる。
(実施の形態1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies an ultrasonic leak position detecting device for embodying the technical idea of the present invention, and the present invention is an ultrasonic leak position detecting device as follows. Not specified. Further, the present specification by no means specifies the members shown in the claims to the members of the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention unless otherwise specified, and are merely explanations. It's just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and a plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
(Embodiment 1)

図1に、本発明の実施の形態1に係る超音波式漏れ位置検出装置の概略構成を示す斜視図、図2にその側面図を、それぞれ示す。これらの図に示す超音波式漏れ位置検出装置は、検査液槽10と、検査液槽10中に水平方向に複数並べて配置された超音波送受信部20と、超音波送受信部20と対向する位置に配置されて、超音波送受信部20からの超音波の透過波Tを受信可能な透過波受信部30とを備える。また超音波送受信部20は、超音波を発する超音波送信部と、自らが発した超音波が気泡に反射されて生じる反射波Rを検出する第1の超音波受信部に相当する反射波受信部とを兼ねている。超音波送信部と超音波受信部を兼用する超音波送受信部20は、超音波送受信素子等を利用して構成され、部品点数を少なくし、検査液槽10内の配置スペースを低減できる利点が得られる。   FIG. 1 is a perspective view showing a schematic configuration of an ultrasonic leak position detection apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a side view thereof. The ultrasonic leak position detection device shown in these drawings includes a test liquid tank 10, a plurality of ultrasonic transmission / reception units 20 arranged in the horizontal direction in the test liquid tank 10, and a position facing the ultrasonic transmission / reception unit 20. And a transmitted wave receiving unit 30 capable of receiving an ultrasonic transmitted wave T from the ultrasonic transmitting / receiving unit 20. The ultrasonic transmission / reception unit 20 receives a reflected wave corresponding to an ultrasonic wave transmission unit that emits an ultrasonic wave and a first ultrasonic wave reception unit that detects a reflected wave R generated by reflection of an ultrasonic wave generated by itself. Also serves as a department. The ultrasonic transmission / reception unit 20 that serves as both the ultrasonic transmission unit and the ultrasonic reception unit is configured by using an ultrasonic transmission / reception element or the like, and has an advantage that the number of parts can be reduced and the arrangement space in the test liquid tank 10 can be reduced. can get.

この検査液槽10に検査液Lを蓄えた状態で被検査物Wを水没、あるいは先に被検査物Wを検査液槽10内に載置した状態で、検査液Lを充填して水没させる。このとき、超音波送受信部20と透過波受信部30を配置した水平面よりも低い位置まで被検査物Wを水没させ、被検査物Wから漏れ出る気泡が超音波送受信部20と透過波受信部30の間を通過するようにしている。   The inspection object W is submerged in a state where the inspection liquid L is stored in the inspection liquid tank 10, or the inspection liquid L is filled and submerged in a state where the inspection object W is first placed in the inspection liquid tank 10. . At this time, the inspection object W is submerged to a position lower than the horizontal plane where the ultrasonic transmission / reception unit 20 and the transmission wave reception unit 30 are arranged, and bubbles leaking from the inspection object W are transmitted to the ultrasonic transmission / reception unit 20 and the transmission wave reception unit. It passes between 30.

また超音波送受信部20及び透過波受信部30は、コントローラ50と接続される。コントローラ50は、超音波送受信部20で受信した反射波Rの信号及び透過波受信部30で受信した透過波Tの信号に基づき、気泡の有無及び状態を検出するための気泡検出部の機能を実現する。コントローラ50は、外付けのコンピュータ等の外部機器とすることもできるが、超音波式漏れ位置検出装置自体にコントローラを組み込むことにより、外部機器を付加することなく気泡検出やその位置、量の検出を実現できる。コントローラ50には、必要に応じて検出された超音波反射波Rや透過波Tのスペクトル波形、気泡検出結果等を表示する表示部を備える。表示部はCRTや液晶パネル等とすることができる。またコントローラ等の超音波式漏れ位置検出装置の部材を操作するための操作パネルやコンソール、キーボード等の入力デバイスを必要に応じて設ける。   The ultrasonic transmission / reception unit 20 and the transmitted wave reception unit 30 are connected to the controller 50. The controller 50 functions as a bubble detection unit for detecting the presence and state of bubbles based on the reflected wave R signal received by the ultrasonic transmission / reception unit 20 and the transmitted wave T signal received by the transmitted wave reception unit 30. Realize. The controller 50 can be an external device such as an external computer. However, by incorporating the controller in the ultrasonic leak position detection device itself, it is possible to detect bubbles and detect their position and amount without adding an external device. Can be realized. The controller 50 includes a display unit that displays a spectrum waveform of the ultrasonic reflected wave R and transmitted wave T detected as necessary, a bubble detection result, and the like. The display unit can be a CRT, a liquid crystal panel, or the like. In addition, an input device such as an operation panel, a console, or a keyboard for operating members of the ultrasonic leak position detection device such as a controller is provided as necessary.

さらに検査液槽10内には、検査液Lに水没された被検査物Wの内部に圧縮空気を供給するためのエアー配管12を備える。これにより、被検査物Wに圧縮空気を送出して、被検査物Wに小孔や亀裂が存在する場合に小孔や亀裂から気泡の漏れを生じさせる。気泡は検査液槽10内の検査液L中を上昇し、検査液Lの液面に到達して破消する。気泡が上昇する過程で、気泡の移動経路に対して超音波送受信部20から超音波を照射し、気泡で超音波が反射される反射波Rと、気泡を透過する透過波Tを生じさせる。反射波Rは超音波送受信部20で、透過波Tは透過波受信部30でそれぞれ受信される。この受信信号に基づいて、コントローラ50で気泡の有無すなわち気密漏れの存在を検出すると共に、気泡の状態に基づいて気泡の量や発生位置等の情報を検出する。
(検査液槽10)
Further, the inspection liquid tank 10 includes an air pipe 12 for supplying compressed air to the inside of the inspection object W submerged in the inspection liquid L. Thereby, compressed air is sent out to the inspection object W, and when the inspection object W has a small hole or a crack, a bubble leaks from the small hole or the crack. The bubbles rise in the test liquid L in the test liquid tank 10, reach the liquid level of the test liquid L, and disappear. In the process of rising bubbles, ultrasonic waves are irradiated from the ultrasonic transmission / reception unit 20 to the movement path of the bubbles to generate a reflected wave R in which the ultrasonic waves are reflected by the bubbles and a transmitted wave T that is transmitted through the bubbles. The reflected wave R is received by the ultrasonic wave transmitting / receiving unit 20, and the transmitted wave T is received by the transmitted wave receiving unit 30. Based on this received signal, the controller 50 detects the presence / absence of air bubbles, that is, the presence of airtight leakage, and detects information such as the amount of bubbles and the position of occurrence based on the state of the air bubbles.
(Inspection bath 10)

検査液槽10は、検査液Lを蓄える水槽であり、上方を開口した略矩形状の容器型に形成される。また検査液槽10の壁面には、超音波送信部及び反射波受信部として超音波送受信部20、透過波受信部30として超音波受信部がそれぞれ配置される。   The test liquid tank 10 is a water tank that stores the test liquid L, and is formed in a substantially rectangular container shape that opens upward. Further, on the wall surface of the test liquid tank 10, an ultrasonic transmission / reception unit 20 as an ultrasonic transmission unit and a reflected wave reception unit and an ultrasonic reception unit as a transmitted wave reception unit 30 are arranged.

超音波は、水平方向に沿って、あるいは水平方向成分を含む斜め方向に照射する。これによって、特に水平面内で超音波の進行方向における気泡の発生位置を照射から反射までの時間差として検出できる。また超音波素子を超音波の進行方向と垂直な方向に並べて配置し、各超音波素子から各々超音波を時分割で線状にバースト照射することで面状の検出面を構成でき、反射波R及び透過波Tの変化の有無から超音波素子の配列方向における気泡の発生位置も把握できるようになる。
(実施の形態2)
Ultrasound is irradiated along the horizontal direction or in an oblique direction including a horizontal component. As a result, it is possible to detect the generation position of bubbles in the traveling direction of ultrasonic waves in the horizontal plane as a time difference from irradiation to reflection. In addition, by arranging ultrasonic elements side by side in a direction perpendicular to the traveling direction of ultrasonic waves and irradiating ultrasonic waves from each ultrasonic element in a time-sharing manner in a linear manner, a planar detection surface can be configured, and reflected waves From the presence / absence of changes in R and transmitted wave T, it is possible to grasp the generation position of bubbles in the arrangement direction of the ultrasonic elements.
(Embodiment 2)

上記の実施の形態1では、一つの超音波送受信部20で超音波送信部及び反射波受信部を兼用しているが、これらを個別に設けることもできる。図3に本発明の実施の形態2として、超音波の発生源である超音波送信部21と、超音波送信部21から照射された超音波の反射波Rを受信する反射波受信部40を個別に設けた超音波式漏れ位置検出装置の斜視図を示す。図3に示す超音波式漏れ位置検出装置は、一方の側面に超音波送信部21と反射波受信部40を上下に並べて配置している。また超音波送信部21から超音波を水平方向に対して傾斜させて照射させることにより、超音波が気泡で反射された反射波Rが入射角に応じて照射位置と異なる位置に反射されるように構成している。これにより、超音波送信部21と反射波受信部40が異なる位置に配置されても、正しく超音波の反射波Rを送受信できる。また透過波受信部30Bは、超音波送信部21の対角線上に位置するように配置されて、超音波の透過波Tを正しく受信できる。   In the first embodiment described above, one ultrasonic transmission / reception unit 20 serves as both the ultrasonic transmission unit and the reflected wave reception unit, but these can also be provided individually. As Embodiment 2 of the present invention, FIG. 3 shows an ultrasonic transmission unit 21 that is an ultrasonic wave generation source and a reflected wave reception unit 40 that receives the reflected wave R of the ultrasonic wave emitted from the ultrasonic transmission unit 21. The perspective view of the ultrasonic type leak position detection apparatus provided individually is shown. In the ultrasonic leak position detection apparatus shown in FIG. 3, the ultrasonic transmitter 21 and the reflected wave receiver 40 are arranged one above the other on one side. Further, by irradiating the ultrasonic wave from the ultrasonic transmission unit 21 while being inclined with respect to the horizontal direction, the reflected wave R in which the ultrasonic wave is reflected by the bubble is reflected at a position different from the irradiation position according to the incident angle. It is configured. Thereby, even if the ultrasonic transmission part 21 and the reflected wave receiving part 40 are arrange | positioned in a different position, the reflected wave R of an ultrasonic wave can be transmitted / received correctly. Further, the transmitted wave receiving unit 30B is disposed so as to be positioned on the diagonal line of the ultrasonic transmitting unit 21, and can correctly receive the transmitted wave T of the ultrasonic wave.

図3の例では、超音波送信部21を検査液槽10Bの壁面の上方で、超音波照射面が斜め下方に傾斜するように配置し、また検査液槽10Bの対向する壁面上で、超音波照射面の超音波進行方向と対応する位置に、透過波受信部30Bを透過波受信面が斜め上方を向くように配置している。同様に反射波受信部40も、検査液槽10Bの壁面の下方で反射波Rの進行方向と一致するように配置すると共に、反射波受信面を斜め上方に向けて反射波Rの進行方向と対向するように傾斜させている。   In the example of FIG. 3, the ultrasonic transmitter 21 is arranged above the wall surface of the test liquid tank 10B so that the ultrasonic irradiation surface is inclined obliquely downward, and on the wall surface facing the test liquid tank 10B, The transmitted wave receiving unit 30B is arranged at a position corresponding to the ultrasonic wave traveling direction of the sound wave irradiation surface so that the transmitted wave reception surface faces obliquely upward. Similarly, the reflected wave receiving unit 40 is also arranged so as to coincide with the traveling direction of the reflected wave R below the wall surface of the test liquid tank 10B, and the traveling direction of the reflected wave R with the reflected wave receiving surface obliquely upward. It is inclined to face each other.

この配置は一例であって、超音波送信部21、反射波受信部40及び透過波受信部30、30B等の配置は、超音波送信部21から照射される超音波の進行方向上に透過波受信部30、30Bが、反射波Rの進行方向上に反射波受信部40が位置するようなレイアウトであれば、超音波の反射波R及び透過波Tを確実に検出できる。例えば図4に示す本発明の実施の形態3に係る超音波式漏れ位置検出装置は、超音波送信部21Bを検査液槽10Cの壁面の下方で、超音波照射面が斜め上方に傾斜するように配置し、また検査液槽10Cの対向する壁面上に透過波受信部30Cを、超音波照射面からの超音波進行方向と対応する位置に、かつ透過波受信面が斜め下方を向くように配置し、さらに反射波受信部40Bを、反射波Rの進行方向と一致するように検査液槽10Cの壁面の上方に配置し、かつ反射波受信面を斜め下方に向けて反射波Rの進行方向と対向するように傾斜させている。このような構成であっても図3の超音波式漏れ位置検出装置と全く同様の作用効果を奏することができることは言うまでもない。
(超音波送信部21)
This arrangement is an example, and the arrangement of the ultrasonic transmitter 21, the reflected wave receiver 40, and the transmitted wave receivers 30, 30B, etc. is transmitted waves in the traveling direction of the ultrasonic waves emitted from the ultrasonic transmitter 21. If the receiving units 30 and 30B have such a layout that the reflected wave receiving unit 40 is positioned in the traveling direction of the reflected wave R, the reflected wave R and the transmitted wave T of the ultrasonic wave can be reliably detected. For example, in the ultrasonic leak position detection apparatus according to Embodiment 3 of the present invention shown in FIG. 4, the ultrasonic transmitter 21B is inclined below the wall surface of the test liquid tank 10C and the ultrasonic irradiation surface is inclined obliquely upward. Further, the transmitted wave receiving unit 30C is placed on the opposite wall surface of the test liquid tank 10C at a position corresponding to the ultrasonic wave traveling direction from the ultrasonic wave irradiation surface so that the transmitted wave receiving surface faces obliquely downward. Further, the reflected wave receiving unit 40B is arranged above the wall surface of the test liquid tank 10C so as to coincide with the traveling direction of the reflected wave R, and the reflected wave R advances with the reflected wave receiving surface obliquely downward. It is inclined so as to face the direction. Needless to say, even with such a configuration, it is possible to achieve the same effects as the ultrasonic leak position detection apparatus of FIG.
(Ultrasonic transmitter 21)

次に、超音波を発生させる超音波送信部21若しくは超音波送受信部20について説明する。図5に、超音波送信部21の正面図を示す。この図に示すように、超音波送信部21は、複数の超音波素子を横一列に並べている。素子配列のパターンは、図5のように様々のパターンが適宜採用できるが、配置する素子間が広い場合には超音波送信部21と超音波送受信部20の間で各超音波素子から各々超音波を時分割で線状にバースト照射しても面状の検出面を構成できないため、2つ以上の素子から同時に照射し、時分割で1つずつずらすか、各々の素子幅よりも広い超音波を照射できるような素子形状あるいは音響レンズを用いる必要がある。あるいは、個別の超音波送信装置を複数個検査液槽10内に配置する構成とすることもできる。請求項における複数の超音波送信部とは、このような複数の超音波素子を含む超音波送信部や、超音波送信部自体を複数備える態様を含む意味で使用する。また超音波素子は、超音波送受信部20のように超音波送信素子と超音波受信素子とを兼用させた超音波送受信素子を利用することもできる。なお、超音波送信部に一つの超音波素子を設け、この超音波送信面を回転式あるいは首振り式に回動させて、対応する位置に超音波受信部を配置することで、一つの超音波素子で超音波を走査させ、面状の検出面を構成することも可能である。   Next, the ultrasonic transmission unit 21 or the ultrasonic transmission / reception unit 20 that generates ultrasonic waves will be described. FIG. 5 shows a front view of the ultrasonic transmitter 21. As shown in this figure, the ultrasonic transmitter 21 has a plurality of ultrasonic elements arranged in a horizontal row. As the element arrangement pattern, various patterns can be appropriately adopted as shown in FIG. 5. However, when the elements to be arranged are wide, each ultrasonic element is superposed between the ultrasonic transmission unit 21 and the ultrasonic transmission / reception unit 20. Even if the sound wave burst is irradiated in a time-sharing manner in a line shape, a planar detection surface cannot be formed, so that two or more elements can be irradiated simultaneously and shifted one by one in a time-division manner or larger than the width of each element. It is necessary to use an element shape or an acoustic lens that can emit sound waves. Alternatively, a configuration may be adopted in which a plurality of individual ultrasonic transmission devices are arranged in the test liquid tank 10. The term “a plurality of ultrasonic transmission units” in the claims is used to include an aspect including a plurality of ultrasonic transmission units including a plurality of such ultrasonic elements and a plurality of ultrasonic transmission units themselves. As the ultrasonic element, an ultrasonic transmission / reception element that combines an ultrasonic transmission element and an ultrasonic reception element, such as the ultrasonic transmission / reception unit 20, can also be used. In addition, one ultrasonic element is provided in the ultrasonic transmission unit, the ultrasonic transmission surface is rotated in a rotating manner or a swinging manner, and the ultrasonic receiving portion is arranged at a corresponding position, thereby allowing one ultrasonic transmission portion to be arranged. It is also possible to configure a planar detection surface by scanning ultrasonic waves with a sound wave element.

超音波送受信部20あるいは超音波送信部21、反射波受信部40、並びに透過波受信部30、30B等の部材は、好ましくは水没式とする。これによって検査液Lに対して直接信号を送信、検出し、精度を向上できる。これらの部材は、検査液Lに対する耐腐食性や防水性、耐酸性、耐アルカリ性等を備えるような表面部材で覆ったり、表面にコーティングを施す等の耐性処理を加える。一方、これらの超音波部材は検査液槽10の外部に設けることも可能である。この場合は、検査液槽10の壁面を介して超音波の送受信が行われる。検査液Lに水没させないことで耐性がさほど要求されないので、送信部等のコストを安価にできる利点が得られる。
(時分割)
Members such as the ultrasonic transmission / reception unit 20 or the ultrasonic transmission unit 21, the reflected wave reception unit 40, and the transmitted wave reception units 30 and 30B are preferably submerged. As a result, a signal can be directly transmitted to and detected from the test liquid L to improve accuracy. These members are covered with a surface member having corrosion resistance, water resistance, acid resistance, alkali resistance, etc. with respect to the test liquid L, or are subjected to resistance treatment such as coating the surface. On the other hand, these ultrasonic members can be provided outside the inspection liquid tank 10. In this case, ultrasonic waves are transmitted and received through the wall surface of the test liquid tank 10. Since the test liquid L is not submerged in water so that the resistance is not so much required, there is an advantage that the cost of the transmission unit and the like can be reduced.
(Time division)

超音波素子は、各素子から同時に超音波を照射することもできるが、好ましくは時分割で超音波素子を切り替えながら超音波素子からの超音波照射を順次切り替えるように照射
これによって隣接する超音波素子の干渉を防止し、高い分解能で超音波を検出できる。図6(a)に、図5(c)に示す超音波素子から時分割で超音波を発生させるタイミングチャートを示す。この図に示すように、バースト状の超音波を発生させるタイミングを時分割で切り替え、検査液槽10中を超音波素子配列方向に隙間無く順次走査するように超音波を照射する。これによって、照射から反射波R、透過波Tを検出するまでの時間差と超音波送受信部20のどの位置の素子で信号が検出されたかを判定でき、水平面上の気泡の発生位置つまり漏れ位置を特定できる。
The ultrasonic element can irradiate ultrasonic waves from each element at the same time. Preferably, the ultrasonic elements are irradiated so that the ultrasonic irradiation from the ultrasonic elements is sequentially switched while switching the ultrasonic elements in time division. Interference of elements can be prevented and ultrasonic waves can be detected with high resolution. FIG. 6A shows a timing chart for generating ultrasonic waves in a time-sharing manner from the ultrasonic element shown in FIG. As shown in this figure, the timing for generating burst-like ultrasonic waves is switched in a time-sharing manner, and ultrasonic waves are irradiated so that the inside of the test liquid tank 10 is sequentially scanned in the ultrasonic element array direction without any gaps. As a result, it is possible to determine the time difference between the detection of the reflected wave R and the transmitted wave T from the irradiation and the element at which position of the ultrasonic wave transmitting / receiving unit 20 has detected the signal. Can be identified.

さらに、超音波送受信部20から照射されるバースト状超音波の周期と検査液L中の気泡の上昇速度の積の倍数が超音波送受信部20から照射される超音波の上下方向のビーム幅より小さい場合には、特定の超音波素子において、同一の気泡を繰り返し検出できることとなり、受信波の再現性を比較することにより、気泡検出の精度を向上させることができる。   Further, the multiple of the product of the period of the burst-like ultrasonic wave irradiated from the ultrasonic transmission / reception unit 20 and the rising speed of the bubbles in the test liquid L is based on the vertical beam width of the ultrasonic wave irradiated from the ultrasonic transmission / reception unit 20. If it is small, the same bubble can be repeatedly detected in a specific ultrasonic element, and the accuracy of bubble detection can be improved by comparing the reproducibility of received waves.

また、時分割で切り替えて超音波を照射する構成に限らず、他の構成も適宜採用できる。例えば、図6(b)のようにライン状に配置された複数の素子から同時に超音波を照射して、各超音波送信部及びその反射波受信部、透過波受信部のペアで各々独立して検出する構成としてもよい。この場合は、隣接する素子間の分解能が多少低下する。また、超音波送信部と超音波受信部を必ずしも一対にする必要はなく、例えば一つの超音波送信部から照射する超音波の照射方向を変更可能とすることで、複数の反射波受信部に対して放射状に照射波を照射して面状に検査液槽10内を走査し、気泡の位置検出を行うこともできる。   Further, the configuration is not limited to the configuration in which the ultrasonic waves are irradiated by switching in a time division manner, and other configurations can be appropriately employed. For example, as shown in FIG. 6B, ultrasonic waves are simultaneously irradiated from a plurality of elements arranged in a line, and each ultrasonic transmission unit and its reflected wave reception unit and transmitted wave reception unit pair are independent. It is good also as a structure detected. In this case, the resolution between adjacent elements is somewhat lowered. In addition, it is not always necessary to pair the ultrasonic transmitter and the ultrasonic receiver. For example, by changing the irradiation direction of the ultrasonic wave irradiated from one ultrasonic transmitter, a plurality of reflected wave receivers can be provided. On the other hand, the position of the bubble can also be detected by irradiating the irradiation wave radially and scanning the test liquid tank 10 in a planar shape.

このように、超音波の照射を走査することで、面状に気泡の位置を検出でき、これによって気泡発生源である気密の漏れやクラックの位置検出が可能となる。またこのような超音波の照射、反射する面内を気泡が通過するように、被検査物Wはこれよりも低い位置に載置する必要がある。検査液槽10は、被検査物Wを底面あるいは下方で移動しないように保持するための保持構造を設けることが好ましい。   In this way, by scanning the irradiation of ultrasonic waves, the position of the bubble can be detected in a planar shape, and thereby the position of an airtight leak or a crack as a bubble generation source can be detected. In addition, the inspection object W needs to be placed at a position lower than this so that the bubbles pass through the ultrasonic wave irradiation and reflection plane. The inspection liquid tank 10 is preferably provided with a holding structure for holding the inspection object W so as not to move on the bottom surface or below.

被検査物Wは、気密性や亀裂、小孔の発生を検出したい部材であり、検査液Lに水没可能なあらゆる部材が対象となる。例えば、車両用触媒コンバータや燃料タンク等である。また検査液Lは、被検査物Wに腐食等の損傷を与えない、あるいはその影響の少ない液体が選択され、例えば水等である。検査液Lは防錆剤の水溶液を使用することが望ましく、また必要に応じて気泡流動や超音波伝搬を考慮した粘度、温度に調整する。   The inspection object W is a member that is desired to detect the occurrence of airtightness, cracks, and small holes, and any member that can be submerged in the inspection liquid L is a target. For example, a vehicle catalytic converter or a fuel tank. In addition, as the inspection liquid L, a liquid that does not cause damage such as corrosion to the object W to be inspected or has little influence is selected, for example, water. The inspection liquid L is preferably an aqueous solution of a rust inhibitor, and is adjusted to a viscosity and temperature in consideration of bubble flow and ultrasonic wave propagation as necessary.

また検査液槽10は、検査液Lに対する耐性を有する材質で構成し、若しくは表面に検査液Lに対する耐性を持たせたコーティングを施す。
(超音波)
Further, the test liquid tank 10 is made of a material having resistance to the test liquid L, or is coated on the surface with resistance to the test liquid L.
(Ultrasonic)

各超音波素子はMHzオーダーの超音波を送信する。検査液Lでの減衰を考慮して、好ましくは1MHz以上20MHz以下の超音波を使用し、信号処理回路の容易さ等から1MHzから2MHzが望ましい。超音波は気泡に当たるとその90%以上が反射し、反射波Rが顕著に検出できる。また気泡が検査液L中を上昇する際には、検査液Lに上昇を阻まれ、螺旋運動や振り子運動、表面形状の変化等の揺動を伴って浮上するので、MHzオーダーの超音波を水平方向から照射するとその反射波Rは揺動に伴う周波数偏移を生じる。周波数偏移は周波数の変化量、言い換えれば振動数の変化量であり、通常ヘルツ(Hz)で表わされる。さらに超音波は回折し、重畳するので,気泡の後方でも観測される。このように気泡の揺動に応じて,透過波T及び反射波Rの周波数偏移の量が異なる。したがって、これらを検出することで気泡の状態を検出でき、ひいては被検査物Wの気密性や漏れ量等を検出できる。   Each ultrasonic element transmits ultrasonic waves in the order of MHz. In consideration of attenuation in the test liquid L, it is preferable to use ultrasonic waves of 1 MHz to 20 MHz, and 1 MHz to 2 MHz is desirable from the viewpoint of the ease of the signal processing circuit. When the ultrasonic wave hits the bubble, 90% or more of it is reflected, and the reflected wave R can be detected remarkably. When bubbles rise in the test liquid L, the test liquid L is prevented from rising and floats with fluctuations such as spiral motion, pendulum motion, and surface shape change. When irradiated from the horizontal direction, the reflected wave R causes a frequency shift accompanying fluctuation. The frequency shift is the amount of change in frequency, in other words, the amount of change in frequency, and is usually expressed in hertz (Hz). Furthermore, since the ultrasonic waves are diffracted and superimposed, they are also observed behind the bubbles. As described above, the amount of frequency shift of the transmitted wave T and the reflected wave R varies depending on the fluctuation of the bubble. Therefore, by detecting these, it is possible to detect the state of the bubbles, and consequently the airtightness, leakage amount, etc. of the inspection object W can be detected.

超音波を気泡に対して照射して、透過波Tと反射波Rとを発生させる。これらの信号は、異なる性質を有するためこれらを併用することで、誤検出を防止して精度よく気泡の性質を特定できる。一般に透過波Tは気泡の量が多い場合の検出に好適であり、一方反射波Rは気泡の量が少ない場合に好適である。また反射波Rは、小さな気泡が複数個あるときは複数の任意の周波数に顕著な変化を生じ、大きな気泡が複数個あるとき周波数のパワースペクトルが幅広く持ち上がり、気泡の大きさと数に相関を示す。さらに小さな気泡が1個あるときは幅の狭い急峻な波形を示し、大きな気泡が1個あるときは幅広の波形を示して、気泡の大きさと周波数のパワースペクトルに相関を示す。一方、透過波Tは気泡があるとき振幅が減少する。
(反射波R)
Ultrasonic waves are applied to the bubbles to generate a transmitted wave T and a reflected wave R. Since these signals have different properties, they can be used in combination to prevent misdetection and accurately specify the properties of bubbles. In general, the transmitted wave T is suitable for detection when the amount of bubbles is large, whereas the reflected wave R is suitable when the amount of bubbles is small. The reflected wave R causes a significant change in a plurality of arbitrary frequencies when there are a plurality of small bubbles, and when there are a plurality of large bubbles, the power spectrum of the frequency rises widely and shows a correlation with the size and number of bubbles. . Further, when there is one small bubble, a narrow and steep waveform is shown, and when there is one large bubble, a wide waveform is shown, showing a correlation between the bubble size and the frequency power spectrum. On the other hand, the amplitude of the transmitted wave T decreases when there is a bubble.
(Reflected wave R)

まず気泡の状態を検出する方法を、図7〜図12に基づいて説明する。まず図7を気泡がないときの反射波Rの受信信号とする。このように、気泡がない場合は超音波の照射波の周波数とほぼ同じ位置にピークが表れる。   First, a method for detecting the state of bubbles will be described with reference to FIGS. First, FIG. 7 is a reception signal of the reflected wave R when there is no bubble. Thus, when there is no bubble, a peak appears at a position that is substantially the same as the frequency of the ultrasonic wave.

検査液L内を浮上する気泡は検査液Lの粘性によって気泡の大きさに係わる異なったの揺動を示す。例えば、小さい気泡の揺動は水平方向の軌跡の変化が支配的であるためその周波数のパワースペクトルは裾野の狭い鋭い波形となり、大きい気泡の揺動は水平方向の軌跡の変化と気泡の表面形状の歪みの双方が支配的となるためその周波数のパワースペクトルは裾野の広い波形となるので、揺動に伴って生じる反射波R及び透過波Tの周波数のパワースペクトルの形状は気泡の大きさに係わりを持った形状となり、この周波数のパワースペクトルの面積は気泡の量つまり気泡の大きさに相当する。検査液Lを使用した超音波漏れ位置検査機の気泡検出部において、送信周波数を除くピーク周波数のパワースペクトル値とこのピーク周波数から一定の幅の1つ以上の周波数でのパワースペクトル値との差を算出することにより、周波数のパワースペクトルの形状つまり周波数のパワースペクトルの面積を求めることができ、気泡の大きさすなわち気泡の体積、言い換えれば漏れ量が検出できる。   Bubbles floating in the test liquid L exhibit different oscillations related to the size of the bubbles due to the viscosity of the test liquid L. For example, small bubble fluctuations are dominated by changes in the horizontal trajectory, so the power spectrum of that frequency has a sharp waveform with a narrow base, and large bubble fluctuations are caused by changes in the horizontal locus and the surface shape of the bubbles. Since both of the distortions of the power wave are dominant, the power spectrum of the frequency has a wide waveform, so that the shape of the power spectrum of the frequency of the reflected wave R and the transmitted wave T generated by the fluctuation is the size of the bubble. The area of the power spectrum at this frequency corresponds to the amount of bubbles, that is, the size of the bubbles. In the bubble detection unit of the ultrasonic leak position inspection machine using the test liquid L, the difference between the power spectrum value at the peak frequency excluding the transmission frequency and the power spectrum value at one or more frequencies having a certain width from the peak frequency. , The shape of the frequency power spectrum, that is, the area of the frequency power spectrum, can be obtained, and the size of the bubble, that is, the volume of the bubble, in other words, the amount of leakage can be detected.

さらに反射波Rは、同一の小孔や亀裂の位置からの漏れに伴う気泡が1個の場合には気泡の揺動に伴う周波数のパワースペクトルが送信周波数によるピークを除き唯一のピークを有するが、気泡が複数の場合にはそれぞれの気泡が少し異なった揺動を示すために一定の範囲内に複数のピークを有するような周波数のパワースペクトル波形となり、実際にはこれらのピークを有する周波数のパワースペクトルの重畳により複数のピークを有し且つ周波数のパワースペクトルの裾野が幅広く持ち上がるような波形を示すこととなる。検査液Lを使用した超音波式漏れ位置検出装置の気泡検出部において一定の周波数範囲内の周波数のパワースペクトルの変化量を計測することにより気泡の総量すなわち漏れ量を算出することができ、ピークの数を求めることにより気泡の数が検出できる。   Further, the reflected wave R has a single peak except for the peak due to the transmission frequency when the frequency of the reflected wave R is one bubble accompanying leakage from the same small hole or crack, and the frequency due to the fluctuation of the bubble. When there are a plurality of bubbles, each bubble exhibits a slightly different fluctuation, so that the power spectrum waveform has a frequency having a plurality of peaks within a certain range. A waveform having a plurality of peaks due to the superposition of the power spectrum and a wide range of the power spectrum of the frequency is shown. The total amount of bubbles, that is, the amount of leakage can be calculated by measuring the amount of change in the power spectrum of the frequency within a certain frequency range in the bubble detection unit of the ultrasonic leak position detection device using the test liquid L. The number of bubbles can be detected by obtaining the number of.

反射波Rについて、以上をまとめると、微少気泡が1個のときの反射波Rは、図8に示すように任意の周波数に変化が見られ、例えば照射波よりも高い位置に半値幅の狭いピークが検出される。一方、微小気泡が複数個あるときの反射波Rは、図9に示すように複数の部位で周波数の変化が見られる。ここでは照射波の近傍で複数のピークが検出される。さらに大きな気泡が1個あるときの反射波Rは、図10に示すように幅広のピークが観察される。また大きな気泡が複数個あるときの反射波Rは、図11に示すように幅広のピークが複数形成される結果、スペクトル全体がブロードに嵩上げされる状態となる。このように反射波Rは気泡の大きさ及び数と相関しており、このような差異を用いることで、気泡量すなわち漏れ量を換算できる。
(気泡の強制揺動)
Regarding the reflected wave R, when the above is summarized, the reflected wave R when the number of microbubbles is one is changed at an arbitrary frequency as shown in FIG. 8, for example, the half-value width is narrow at a position higher than the irradiation wave. A peak is detected. On the other hand, as for the reflected wave R when there are a plurality of microbubbles, as shown in FIG. Here, a plurality of peaks are detected in the vicinity of the irradiation wave. In the reflected wave R when there is one larger bubble, a broad peak is observed as shown in FIG. The reflected wave R when there are a plurality of large bubbles is in a state where the entire spectrum is broadened as a result of the formation of a plurality of wide peaks as shown in FIG. Thus, the reflected wave R correlates with the size and number of bubbles, and the amount of bubbles, that is, the amount of leakage can be converted by using such a difference.
(Forced bubble oscillation)

また、本実施の形態においては、超音波を気泡に照射して気泡の揺動を能動的に生じさせ、この変化を受信信号の位相・周波数変化等として検出することで、高精度な気泡検出を図ることができる。例えば、気泡が検査液L中を上昇する際には、検査液Lの粘性に伴う抵抗力によって上昇を阻まれ、その結果として検査液Lの流動や地球の自転等の微少な影響を伴って螺旋運動や振り子運動、表面形状の変化等の揺動を生じる。これらの揺動は気泡の大きさと相関関係を有しているが、些細な力学的影響により変化を生じるため現実的には再現性が低い。しかし、比較的パワーの大きい超音波を水平方向から気泡に照射することで、気泡の大きさに係わる固有の揺動を誘導することができ、気泡の大きさに相関関係を有す揺動の再現性を高めることができる。例えば、大きな気泡においては超音波を水平方向から受けたとしても表面の形状が変化するだけで気泡の水平位置はほとんど変化しない、一方、小さな気泡においては超音波を水平方向から受けると照射方向に相対的な位置の移動を生じる。これにより反射波Rと透過波Tに気泡の大きさに相関関係を有する位相及び周波数の変化を能動的に生じさせると共に、特徴が発散しがちな揺動を気泡の大きさに係わる特定の揺動に収束させ、安定した気泡量の算出が可能となる。   Also, in this embodiment, the bubble is actively generated by irradiating the bubble with ultrasonic waves, and this change is detected as a phase / frequency change of the received signal, thereby detecting the bubble with high accuracy. Can be achieved. For example, when bubbles rise in the test liquid L, the rise is blocked by the resistance force associated with the viscosity of the test liquid L, and as a result, there is a slight influence such as the flow of the test liquid L or the rotation of the earth. Oscillations such as spiral movement, pendulum movement, and surface shape change occur. These fluctuations have a correlation with the bubble size, but in reality, the reproducibility is low because changes occur due to slight mechanical influences. However, by irradiating a bubble with a relatively high power ultrasonic wave from the horizontal direction, it is possible to induce a specific fluctuation related to the size of the bubble, and a fluctuation having a correlation with the size of the bubble. Reproducibility can be improved. For example, in the case of large bubbles, even if ultrasonic waves are received from the horizontal direction, the horizontal position of the bubbles is hardly changed by changing the surface shape. A relative position shift occurs. As a result, the reflected wave R and the transmitted wave T are actively caused to change in phase and frequency, which have a correlation with the bubble size, and fluctuations, which tend to diverge, are caused by specific fluctuations related to the bubble size. It is possible to calculate the stable amount of bubbles by converging on the movement.

このように、スペクトル波形の変化を観察することで、気泡の数及び大きさを把握することができる。スペクトル波形の観察は、演算処理により定量的に処理することができる。例えばスペクトルのピーク位置や半値幅、平均値等を演算し、所定の基準値や閾値と比較することでこれらの判定を自動化することが可能となる。この演算及び判定は、コントローラ50で行う。これにより、従来のように気泡の個数をカウントしたり気泡をタンクや漏斗に誘導して計数する方式に比べ、気泡の大きさと数を検出できるため、空気漏れ量の総量を把握でき、クラック等の大きさをより正確に検出できる。また、操作者がスペクトル波形に基づいて目視で行うこともできる。
(誤検出防止)
Thus, the number and size of bubbles can be grasped by observing the change in the spectrum waveform. The observation of the spectrum waveform can be quantitatively processed by arithmetic processing. For example, these determinations can be automated by calculating the peak position, half-value width, average value, etc. of the spectrum and comparing them with a predetermined reference value or threshold value. This calculation and determination are performed by the controller 50. This makes it possible to detect the size and number of bubbles compared to the conventional method of counting the number of bubbles or guiding bubbles to a tank or funnel and counting them. Can be detected more accurately. It can also be performed visually by the operator based on the spectrum waveform.
(Prevention of false detection)

一方、反射波Rは漏れによる気泡が無い場合であっても検査液槽10内の検査液L中に浮遊する気泡以外のゴミ等の浮遊物や検査液Lの流動によって、図12に示すように複数の気泡が生じた場合の周波数のパワースペクトルの変化に似た周波数のパワースペクトルの変化を生じることがある。しかし、これら浮遊物や検査液Lの流動による反射波Rは、音響インピーダンスの違いから気泡が90%以上の反射を示すのに対し遙かに低い反射であるため、周波数のパワースペクトルはピークが顕著でなく、送信周波数よるパワースペクトルのピークに寄り添うように生じるので、気泡によるもので無いことが容易に識別できる。極めて希に、検査液Lを使用した超音波漏れ位置検査機の気泡検出部において一定の周波数範囲内の周波数のパワースペクトルの変化量やピーク周波数から一定の幅の1つ以上の周波数でのパワースペクトル値との差を計測する場合や音響インピーダンスが気泡に近い特徴を示す浮遊物であった場合には識別に難を生じることがあるが、透過波Tでは、浮遊物による周波数や振幅の変化は照射された超音波の回折・重畳により変化が軽減され、検査液Lの流動により振幅が変化することは無いので、反射波Rと透過波Tを併用することで、誤検出を防止して精度よく気泡の性質を特定できる。   On the other hand, even if the reflected wave R is free from bubbles due to leakage, as shown in FIG. 12 due to the floating matter other than bubbles floating in the test liquid L in the test liquid tank 10 and the flow of the test liquid L. A change in the power spectrum of the frequency similar to the change of the power spectrum of the frequency when a plurality of bubbles are generated may occur. However, the reflected wave R due to the flow of the suspended matter or the test liquid L is a reflection that is much lower than the bubble reflecting 90% or more due to the difference in acoustic impedance, so the frequency power spectrum has a peak. It is not noticeable, and occurs close to the peak of the power spectrum due to the transmission frequency, so it can be easily identified that it is not caused by bubbles. Very rarely, in the bubble detection unit of the ultrasonic leak position inspection machine using the test liquid L, the amount of change in the power spectrum of a frequency within a certain frequency range or the power at one or more frequencies of a certain width from the peak frequency When measuring the difference from the spectrum value or when the acoustic impedance is a floating object that has characteristics similar to bubbles, it may be difficult to identify, but in the transmitted wave T, changes in frequency and amplitude due to the floating object Since the change is reduced by the diffraction and superposition of the irradiated ultrasonic wave, and the amplitude does not change due to the flow of the test liquid L, the erroneous detection can be prevented by using the reflected wave R and the transmitted wave T together. The nature of the bubbles can be specified with high accuracy.

さらに、気泡が無い場合であっても超音波送信部から水平方向に比較的パワーの大きい超音波を照射した場合、浮遊物の多くは親水性であるためほとんど形状変化や位置移動を生じず、検査液Lの流動変化もほとんど生じないので、超音波の強さを変化させることにより、気泡にのみ作用して浮遊物や検査液Lの流動に影響しないような超音波を照射し、検査液Lに混入した浮遊物や検査液Lの流動による誤検出を減らすことができる。
(透過波T)
Furthermore, even when there are no bubbles, when radiating ultrasonic waves with relatively high power in the horizontal direction from the ultrasonic transmitter, most of the suspended solids are hydrophilic, so almost no shape change or position movement occurs. Since the flow of the test liquid L hardly changes, by changing the intensity of the ultrasonic wave, the test liquid is irradiated with ultrasonic waves that act only on the bubbles and do not affect the flow of the suspended matter or the test liquid L. It is possible to reduce false detections due to floating substances mixed in L and the flow of the test liquid L.
(Transmission wave T)

本実施の形態では、超音波の透過波Tの振幅減衰あるは位相周波数変化を検出することで、気泡の有無を検出することが可能となる。この原理を図13及び図14に基づいて説明する。超音波は進行に伴って減衰する性質を有する。透過信号の振幅減衰は気泡のある場合に顕著で、流動や浮遊物によっては顕著でない。これは、音響インピーダンスの違いから検査液L中の気泡が超音波を90%以上反射するのに対して、検査液Lの流動ではほぼ0%、浮遊物の多くは親水性であるため遙かに低い反射となり、十分区別できる程度の相違が見られる。   In the present embodiment, it is possible to detect the presence or absence of bubbles by detecting the amplitude attenuation or the phase frequency change of the transmitted wave T of ultrasonic waves. This principle will be described with reference to FIGS. Ultrasound has the property of decaying as it progresses. The amplitude attenuation of the transmitted signal is significant when there are bubbles, and is not significant depending on the flow and floating matter. This is because the bubbles in the test liquid L reflect 90% or more of the ultrasonic waves due to the difference in acoustic impedance, whereas the flow of the test liquid L is almost 0%, and most of the suspended matter is hydrophilic. The reflection is low and there is a difference that can be sufficiently distinguished.

図13に示すように、気泡がない場合は気泡による減衰がなく、透過波Tの波形は高い振幅を示している。一方、気泡がある場合は、気泡によって減衰が生じて、図14に示すように振幅が小さくなる。よって、振幅の変化量を検出することで、気泡の有無を検出できる。このような振幅の変化は比較的顕著であるため、透過波Tを利用して気泡の有無を確実に検出でき、反射波Rで気泡の変化が誤検出されても、透過波Tの減衰の変化量から気泡の有無が判定できるので、このような誤検出を回避でき、信頼性の高い安定した気泡検出が図られる。   As shown in FIG. 13, when there is no bubble, there is no attenuation by the bubble, and the waveform of the transmitted wave T shows a high amplitude. On the other hand, when there are bubbles, the bubbles are attenuated and the amplitude is reduced as shown in FIG. Therefore, the presence or absence of bubbles can be detected by detecting the amount of change in amplitude. Since such a change in amplitude is relatively remarkable, the presence or absence of a bubble can be reliably detected using the transmitted wave T, and even if a change in the bubble is erroneously detected in the reflected wave R, the attenuation of the transmitted wave T is reduced. Since the presence / absence of bubbles can be determined from the amount of change, such erroneous detection can be avoided, and highly reliable and stable bubble detection can be achieved.

また、本実施の形態では、一般的に被検査物W内に供給する気体として空気を用いる為、ヘリウムガス拡散式に比べるとランニングコストが安く、水素ガス拡散式では困難な水素吸脱性部品であるアルミや炭素繊維等の材料が使われている被検査物Wにも適用可能である。
(実際のスペクトル波形)
Further, in this embodiment, since air is generally used as the gas to be supplied into the inspection object W, the running cost is lower than that of the helium gas diffusion type, and the hydrogen adsorption / desorption component is difficult with the hydrogen gas diffusion type. The present invention is also applicable to an inspected object W in which materials such as aluminum and carbon fiber are used.
(Actual spectrum waveform)

次に、実際に気泡に超音波を照射して反射波Rのスペクトル波形を測定し、周波数分布曲線をスペクトルアナライザで表示した一例を、図15〜図17に示す。図15は検査液槽10内に被検査物Wがない状態の反射波Rのスペクトル波形を示しており、図16は被検査物Wを検査液槽10に水没させる際のスペクトル波形の変化を示している。この図に示すように、被検査物Wを検査液槽10に水没させつつある際に生じる検査液Lの流動による変化は、低い周波数に表れる。さらに被検査物Wに圧縮空気を圧入して気泡を生じさせ、気泡の漏れを検出したスペクトル波形を図17に示す。この際の気泡の漏れによるスペクトル変化は図16に比べて大きく、特に周波数の低い領域から中領域にかけて振幅が増大している。このように周波数分布曲線は各状態で顕著に変化するため、これらの変化を検出することで気泡の状態のみならず、検査液槽10内の状態、すなわち流動が生じている状態か、流動がない状態か、あるいは気泡が発生している状態かという状態の区別も行える。   Next, FIG. 15 to FIG. 17 show an example in which the ultrasonic wave is actually irradiated to the bubbles, the spectrum waveform of the reflected wave R is measured, and the frequency distribution curve is displayed by the spectrum analyzer. FIG. 15 shows the spectrum waveform of the reflected wave R in a state where there is no inspection object W in the inspection liquid tank 10, and FIG. 16 shows the change of the spectrum waveform when the inspection object W is submerged in the inspection liquid tank 10. Show. As shown in this figure, the change due to the flow of the test liquid L that occurs when the test object W is being submerged in the test liquid tank 10 appears at a low frequency. Further, FIG. 17 shows a spectrum waveform in which compressed air is press-fitted into the inspection object W to generate bubbles and the leakage of the bubbles is detected. The spectrum change due to the leakage of bubbles at this time is larger than that in FIG. 16, and the amplitude increases particularly from the low frequency region to the middle region. As described above, the frequency distribution curve changes significantly in each state. Therefore, by detecting these changes, not only the state of bubbles but also the state in the test liquid tank 10, that is, the state in which the flow occurs or the flow is It is also possible to distinguish between a state where there is no bubble or a state where bubbles are generated.

従来の超音波を利用した空気漏れ検査装置では、水中の気泡の上昇速度をドップラーシフトにより検出するために、上方向から超音波を照射する構成を採用していた。言い換えると、気泡の上昇方向に対して側方から超音波を照射する構成は採用できず、このため水平面内における気泡の位置検出が困難であった。これに対して本実施の形態では、横方向から超音波を照射する構成を採用し、かつ超音波を走査することにより気泡の位置を検出することが可能となる。また従来の超音波を利用した空気漏れ検査装置では、気泡の個数をカウントする方式のため、気泡の大きさを検出することができず、その結果漏れ量を正確に検出することができなかった。これに対して本実施の形態では、比較的強いMHzオーダーの超音波を水平方向から照射し気泡の揺動から漏れ量を算出する方式であるため、気泡の大きさによらず漏れ量を検出することが可能となる。一方、ドップラー効果のみを利用した空気漏れ検査装置では、気泡が無くても反応する誤検出のおそれが生じる。このため本発明の実施の形態では、超音波の透過波Tを検出する透過波受信部30を設けることにより、透過波Tの減衰をモニタしてこのような誤検出を防止している。すなわち、検査液L中の浮遊物や液槽内の流動・振動、及び気泡の量が多い場合等に、超音波素子列で受信された超音波信号の振幅強度、位相及び周波数変化を、反射した超音波受信信号の位相及び周波数に生じる外乱と識別し、気泡量の校正に用いる。   A conventional air leak inspection apparatus using ultrasonic waves employs a configuration in which ultrasonic waves are irradiated from above in order to detect the rising speed of bubbles in water by Doppler shift. In other words, the configuration in which the ultrasonic wave is irradiated from the side with respect to the rising direction of the bubbles cannot be adopted, and thus it is difficult to detect the position of the bubbles in the horizontal plane. On the other hand, in the present embodiment, it is possible to detect the position of the bubble by adopting a configuration in which ultrasonic waves are irradiated from the lateral direction and scanning the ultrasonic waves. In addition, in the conventional air leak inspection apparatus using ultrasonic waves, the size of the bubbles cannot be detected because of the method of counting the number of bubbles, and as a result, the amount of leakage cannot be accurately detected. . On the other hand, in this embodiment, since a relatively strong MHz-order ultrasonic wave is irradiated from the horizontal direction and the amount of leakage is calculated from the fluctuation of the bubbles, the amount of leakage is detected regardless of the size of the bubbles. It becomes possible to do. On the other hand, in an air leak inspection apparatus using only the Doppler effect, there is a risk of erroneous detection that reacts even if there are no bubbles. For this reason, in the embodiment of the present invention, by providing the transmitted wave receiving unit 30 that detects the transmitted wave T of the ultrasonic wave, the attenuation of the transmitted wave T is monitored to prevent such erroneous detection. That is, when the suspended matter in the test liquid L, the flow / vibration in the liquid tank, and the amount of bubbles are large, the amplitude intensity, phase, and frequency changes of the ultrasonic signal received by the ultrasonic element array are reflected. It is discriminated from the disturbance generated in the phase and frequency of the received ultrasonic signal and used for the calibration of the bubble amount.

本発明の超音波式漏れ位置検出装置は、超音波計測センサを用いた水没式空気漏れ検査装置に好適に適用できる。また検査対象としては、エンジンブロック、ミッションケース、ショックアブソーバ、燃料パイプ、燃料タンク等の自動車部品、電気機器部品、ガス・水道器具、食品・薬品、医療器具等が挙げられる。例えば車両用触媒コンバータの空気漏れ検査や、密封充填の包装容器のピンホール等シール不良の検出に好適に利用できる。   The ultrasonic leak position detection apparatus of the present invention can be suitably applied to a submerged air leak inspection apparatus using an ultrasonic measurement sensor. Examples of inspection objects include engine parts, transmission cases, shock absorbers, fuel pipes, fuel tanks and other automotive parts, electrical equipment parts, gas / water supplies, food / medicine, medical instruments, and the like. For example, it can be suitably used for air leakage inspection of a catalytic converter for a vehicle and detection of a sealing failure such as a pinhole of a sealed and filled packaging container.

本発明の実施の形態1に係る超音波式漏れ位置検出装置を示す模式図である。It is a schematic diagram which shows the ultrasonic type leak position detection apparatus which concerns on Embodiment 1 of this invention. 図1の超音波式漏れ位置検出装置を示すブロック図である。It is a block diagram which shows the ultrasonic type leak position detection apparatus of FIG. 本発明の実施の形態2に係る超音波式漏れ位置検出装置を示す模式図である。It is a schematic diagram which shows the ultrasonic type leak position detection apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る超音波式漏れ位置検出装置を示す模式図である。It is a schematic diagram which shows the ultrasonic type leak position detection apparatus which concerns on Embodiment 3 of this invention. 超音波送信部の一例を示す正面図である。It is a front view which shows an example of an ultrasonic transmission part. 図5(a)に示す超音波素子から時分割で超音波を発生させるタイミングを示すタイミングチャートである。It is a timing chart which shows the timing which generates an ultrasonic wave by the time division from the ultrasonic element shown to Fig.5 (a). 気泡がない場合の反射波のスペクトルを示すグラフである。It is a graph which shows the spectrum of the reflected wave when there is no bubble. 小さな気泡が1個ある場合の反射波のスペクトルを示すグラフである。It is a graph which shows the spectrum of the reflected wave in case there is one small bubble. 小さな気泡が複数個ある場合の反射波のスペクトルを示すグラフである。It is a graph which shows the spectrum of the reflected wave when there are a plurality of small bubbles. 大きな気泡が1個ある場合の反射波のスペクトルを示すグラフである。It is a graph which shows the spectrum of the reflected wave in case there is one big bubble. 大きな気泡が複数個ある場合の反射波のスペクトルを示すグラフである。It is a graph which shows the spectrum of the reflected wave when there are a plurality of large bubbles. 検査液槽内の検査液に流動がある場合の反射波のスペクトルを示すグラフである。It is a graph which shows the spectrum of a reflected wave when there exists a flow in the test liquid in a test liquid tank. 気泡がない場合の透過波の振幅波形を示すグラフである。It is a graph which shows the amplitude waveform of the transmitted wave when there is no bubble. 気泡がある場合の透過波の振幅波形を示すグラフである。It is a graph which shows the amplitude waveform of the transmitted wave in case there exists a bubble. 検査液槽内に被検査物がない状態の反射波のスペクトルを示すイメージ図である。It is an image figure which shows the spectrum of the reflected wave in a state with no to-be-inspected object in a test liquid tank. 被検査物を検査液槽に水没させる際の反射波のスペクトルを示すイメージ図である。It is an image figure which shows the spectrum of the reflected wave at the time of submerging a to-be-inspected object to a test | inspection liquid tank. 被検査物から生じる気泡の漏れがある場合の反射波のスペクトルを示すイメージ図である。It is an image figure which shows the spectrum of a reflected wave in case there exists a leak of the bubble which arises from a to-be-inspected object. 従来の気密検査の一例を示す模式図である。It is a schematic diagram which shows an example of the conventional airtight test | inspection.

符号の説明Explanation of symbols

10、10B、10C…検査液槽
12…エアー配管
20…超音波送受信部
21、21B…超音波送信部
30、30B、30C…透過波受信部
40、40B…反射波受信部
50…コントローラ
60…水槽
61…鋼管材
62…保持装置
63…空気圧送装置
64…小孔部
65…気泡
66…マイクロホン
W…被検査物
L…検査液
T…透過波
R…反射波
DESCRIPTION OF SYMBOLS 10, 10B, 10C ... Test | inspection liquid tank 12 ... Air piping 20 ... Ultrasonic transmission / reception part 21, 21B ... Ultrasonic transmission part 30, 30B, 30C ... Transmitted wave receiving part 40, 40B ... Reflected wave receiving part 50 ... Controller 60 ... Water tank 61 ... Steel pipe material 62 ... Holding device 63 ... Pneumatic feeding device 64 ... Small hole portion 65 ... Bubble 66 ... Microphone W ... Inspection object L ... Test solution T ... Transmission wave R ... Reflected wave

Claims (6)

検査液中に被検査物を水没させた状態で、被検査物から漏れ出る気泡の有無を検出して被検査物の検査を行う超音波式漏れ位置検出装置であって、
検査液を保持するための検査液槽と、
前記検査液に対して超音波の照射波を送出するために、前記検査液槽中に一つ又は水平方向に複数個並べて配置された超音波送信部と、
前記検査液槽中に水平方向に複数個並べて配置され、前記超音波送信部から発せられる超音波の反射波を受信可能な位置に設けられた第1の超音波受信部と、
前記検査液槽中の前記超音波送信部と対向する位置に水平方向に複数個並べて配置され、前記超音波送信部からの超音波の透過波を受信可能な位置に設けられた第2の超音波受信部と
を備え、
検査液を蓄えた前記検査液槽中で前記超音波送信部と第2の超音波受信部を配置した水平面よりも低い位置まで被検査物を水没させ、被検査物から漏れ出る気泡が前記超音波送信部と第2の超音波受信部の間を通過するように配置した状態で、前記超音波送信部から超音波を照射して、被検査物から漏れ出る気泡に超音波を反射、透過させて反射波、透過波を、それぞれ前記第1の超音波受信部及び第2の超音波受信部で受信し、その結果に基づいて気泡の有無及び状態を検出可能に構成してなることを特徴とする超音波式漏れ位置検出装置。
An ultrasonic leak position detection device that inspects an inspection object by detecting the presence or absence of bubbles leaking from the inspection object in a state where the inspection object is submerged in the inspection liquid,
A test solution tank for holding the test solution;
In order to send out the irradiation wave of ultrasonic waves to the test liquid, one or a plurality of ultrasonic transmitters arranged in the horizontal direction in the test liquid tank,
A plurality of first ultrasonic receiving units arranged in a horizontal direction in the test liquid tank and provided at a position capable of receiving a reflected wave of an ultrasonic wave emitted from the ultrasonic transmitting unit;
A plurality of second ultrasonic waves arranged in a horizontal direction at a position facing the ultrasonic transmission unit in the inspection liquid tank and provided at a position capable of receiving a transmitted wave of ultrasonic waves from the ultrasonic transmission unit. A sound wave receiver,
The inspection object is submerged to a position lower than the horizontal plane in which the ultrasonic transmission unit and the second ultrasonic reception unit are arranged in the inspection liquid tank storing the inspection liquid, and bubbles leaking from the inspection object are In a state of being arranged so as to pass between the sound wave transmitting unit and the second ultrasonic wave receiving unit, the ultrasonic wave is irradiated from the ultrasonic wave transmitting unit, and the ultrasonic wave is reflected and transmitted to the bubbles leaking from the inspection object. The reflected wave and the transmitted wave are received by the first ultrasonic receiving unit and the second ultrasonic receiving unit, respectively, and the presence / absence and state of bubbles are detected based on the results. An ultrasonic leak position detecting device.
請求項1に記載の超音波式漏れ位置検出装置であって、
超音波の照射波と比較して、前記第1の超音波受信部で受信された反射波の信号の振幅及び位相、周波数の変化量と、第2の超音波受信部で受信された透過波の信号の振幅及び位相、周波数の変化量とに基づいて、気泡の大きさと数を検出し、気泡の大きさと数の積から気泡の量を算出するよう構成されてなることを特徴とする超音波式漏れ位置検出装置。
The ultrasonic leak position detecting device according to claim 1,
Compared with the irradiation wave of the ultrasonic wave, the amplitude and phase of the reflected wave signal received by the first ultrasonic wave receiver, the amount of change in the frequency, and the transmitted wave received by the second ultrasonic wave receiver It is configured to detect the size and number of bubbles based on the amplitude, phase, and frequency variation of the signal, and to calculate the amount of bubbles from the product of the size and number of bubbles. Sonic leak position detector.
請求項1又は2に記載の超音波式漏れ位置検出装置であって、
前記超音波送信部から比較的大きな出力の超音波を照射することにより大きな気泡においては表面の形状変化を生じせしめ,小さな気泡においては照射方向に相対的移動を生じせしめ,これをもって前記複数の第1の超音波受信部で受信された信号に気泡の大きさによる位相及び周波数の変化を生じせしめることを特徴とする超音波式漏れ位置検出装置。
The ultrasonic leak position detection device according to claim 1 or 2,
By irradiating ultrasonic waves with a relatively large output from the ultrasonic transmission unit, a change in the shape of the surface is caused in a large bubble, and a relative movement is caused in the irradiation direction in a small bubble. An ultrasonic leak position detecting apparatus, wherein a signal received by one ultrasonic wave receiving section is caused to change in phase and frequency depending on the size of a bubble.
請求項1から3のいずれか一に記載の超音波式漏れ位置検出装置であって、
前記超音波送信部が、複数の超音波送信部を備えており、各超音波送信部は前記複数の第2の超音波受信部の各々とそれぞれ水平方向に対向するように配置されてなり、
前記超音波送信部はバースト状の超音波を発生させるタイミングを時分割で切り替え、前記検査液槽中を順次走査するように超音波を照射するよう構成されてなり、前記複数の第2の超音波受信部で受信された信号から気泡漏れの発生位置を検出するよう構成されてなることを特徴とする超音波式漏れ位置検出装置。
The ultrasonic leak position detection device according to any one of claims 1 to 3,
The ultrasonic transmission unit includes a plurality of ultrasonic transmission units, and each ultrasonic transmission unit is arranged to face each of the plurality of second ultrasonic reception units in the horizontal direction,
The ultrasonic transmission unit is configured to switch the timing for generating burst-shaped ultrasonic waves in a time-sharing manner, and to irradiate ultrasonic waves so as to sequentially scan the inspection liquid tank. An ultrasonic leak position detection apparatus configured to detect a bubble leak occurrence position from a signal received by a sound wave receiver.
請求項1から4のいずれか一に記載の超音波式漏れ位置検出装置であって、
前記超音波送信部が、複数の超音波送信部を備えており、各超音波送信部は前記第1の超音波受信部の機能を併せ持つか、前記複数の第1の超音波受信部の各々とそれぞれ垂直方向に相当するように配置されてなり、
前記超音波送信部はバースト状の超音波を発生させるタイミングを時分割で切り替え、前記検査液槽中を順次走査するように超音波を照射するよう構成されてなり、前記複数の第1の超音波受信部で受信された信号から気泡漏れの発生位置を検出するよう構成されてなることを特徴とする超音波式漏れ位置検出装置。
The ultrasonic leak position detecting device according to any one of claims 1 to 4,
The ultrasonic transmission unit includes a plurality of ultrasonic transmission units, and each ultrasonic transmission unit has the function of the first ultrasonic reception unit or each of the plurality of first ultrasonic reception units. Are arranged to correspond to the vertical direction,
The ultrasonic transmission unit is configured to switch the timing for generating burst-shaped ultrasonic waves in a time-sharing manner and to irradiate ultrasonic waves so as to sequentially scan the inspection liquid tank, and the plurality of first ultrasonic waves An ultrasonic leak position detection apparatus configured to detect a bubble leak occurrence position from a signal received by a sound wave receiver.
請求項1から5のいずれか一に記載の超音波式漏れ位置検出装置であって、さらに、
前記第1の超音波受信部で受信した反射波の信号及び前記第2の超音波受信部で受信した透過波の信号に基づき、気泡の有無及び状態を検出するための気泡検出部を備えることを特徴とする超音波式漏れ位置検出装置。
The ultrasonic leak position detection device according to any one of claims 1 to 5, further comprising:
A bubble detection unit is provided for detecting the presence and state of bubbles based on the reflected wave signal received by the first ultrasonic receiving unit and the transmitted wave signal received by the second ultrasonic receiving unit. An ultrasonic leak position detecting device characterized by the above.
JP2005232849A 2005-08-11 2005-08-11 Ultrasonic leak position detector Active JP4630399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005232849A JP4630399B2 (en) 2005-08-11 2005-08-11 Ultrasonic leak position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005232849A JP4630399B2 (en) 2005-08-11 2005-08-11 Ultrasonic leak position detector

Publications (2)

Publication Number Publication Date
JP2007047056A true JP2007047056A (en) 2007-02-22
JP4630399B2 JP4630399B2 (en) 2011-02-09

Family

ID=37849990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005232849A Active JP4630399B2 (en) 2005-08-11 2005-08-11 Ultrasonic leak position detector

Country Status (1)

Country Link
JP (1) JP4630399B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113628A (en) * 2011-11-25 2013-06-10 Hitachi-Ge Nuclear Energy Ltd Ultrasonic leakage detecting device and method for the same
EP2256473A3 (en) * 2009-05-27 2016-06-15 BSH Hausgeräte GmbH Water boiler with water leak recognition function
CN106259268A (en) * 2016-08-17 2017-01-04 农业部南京农业机械化研究所 A kind of droplet generating means and method
CN107063194A (en) * 2017-04-20 2017-08-18 东南大学 A kind of experimental provision for being used to observe vacuole growth
JP2020143938A (en) * 2019-03-04 2020-09-10 中道鉄工株式会社 Ultrasonic leakage inspection device
JP2020143937A (en) * 2019-03-04 2020-09-10 中道鉄工株式会社 Ultrasonic leakage inspection device
JP2020143939A (en) * 2019-03-04 2020-09-10 中道鉄工株式会社 Ultrasonic leakage inspection device
US11125641B1 (en) * 2020-03-05 2021-09-21 Mas Automation Corp. Gas leakage sensing device
CN114103031A (en) * 2021-11-22 2022-03-01 兴宇伟业(天津)科技有限公司 Silica gel shaping and processing device and processing method thereof
US11326975B2 (en) * 2020-03-05 2022-05-10 Mas Automation Corp. Method of sensing leaking gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977329A (en) * 1982-10-25 1984-05-02 Mitsubishi Electric Corp Automatic gross leak testing device
JPH10123004A (en) * 1996-10-15 1998-05-15 Kawasaki Heavy Ind Ltd Ultrasonic detecting method for water leakage in heat exchanger
JP2002168725A (en) * 2000-11-30 2002-06-14 Dainippon Printing Co Ltd Method and device for inspecting liquid container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977329A (en) * 1982-10-25 1984-05-02 Mitsubishi Electric Corp Automatic gross leak testing device
JPH10123004A (en) * 1996-10-15 1998-05-15 Kawasaki Heavy Ind Ltd Ultrasonic detecting method for water leakage in heat exchanger
JP2002168725A (en) * 2000-11-30 2002-06-14 Dainippon Printing Co Ltd Method and device for inspecting liquid container

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256473A3 (en) * 2009-05-27 2016-06-15 BSH Hausgeräte GmbH Water boiler with water leak recognition function
JP2013113628A (en) * 2011-11-25 2013-06-10 Hitachi-Ge Nuclear Energy Ltd Ultrasonic leakage detecting device and method for the same
CN106259268A (en) * 2016-08-17 2017-01-04 农业部南京农业机械化研究所 A kind of droplet generating means and method
CN107063194A (en) * 2017-04-20 2017-08-18 东南大学 A kind of experimental provision for being used to observe vacuole growth
JP2020143938A (en) * 2019-03-04 2020-09-10 中道鉄工株式会社 Ultrasonic leakage inspection device
JP2020143937A (en) * 2019-03-04 2020-09-10 中道鉄工株式会社 Ultrasonic leakage inspection device
JP2020143939A (en) * 2019-03-04 2020-09-10 中道鉄工株式会社 Ultrasonic leakage inspection device
JP7230301B2 (en) 2019-03-04 2023-03-01 中道鉄工株式会社 Ultrasonic leak tester
US11125641B1 (en) * 2020-03-05 2021-09-21 Mas Automation Corp. Gas leakage sensing device
US11326975B2 (en) * 2020-03-05 2022-05-10 Mas Automation Corp. Method of sensing leaking gas
CN114103031A (en) * 2021-11-22 2022-03-01 兴宇伟业(天津)科技有限公司 Silica gel shaping and processing device and processing method thereof
CN114103031B (en) * 2021-11-22 2023-11-21 兴宇伟业(天津)科技有限公司 Silica gel shaping processing device and processing method thereof

Also Published As

Publication number Publication date
JP4630399B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4630399B2 (en) Ultrasonic leak position detector
JP4232183B2 (en) Airtight inspection method and apparatus
CN106441507B (en) The system and method for non-intruding and continuous level gauging are carried out in hydrostatic column
RU2485388C2 (en) Device and group of sensors for pipeline monitoring using ultrasonic waves of two different types
US6363788B1 (en) Noninvasive detection of corrosion, mic, and foreign objects in containers, using guided ultrasonic waves
CN106338332A (en) System and method for measuring a speed of sound in a liquid or gaseous medium
NO341253B1 (en) Configurations Ultrasonic testing apparatus for polymeric materials
KR101736641B1 (en) An apparatus and a method for detecting a crack
US7240554B2 (en) Method and device for sizing a crack in a workpiece using the ultrasonic pulse-echo technique
KR101921685B1 (en) Apparatus for inspecting defect and mehtod for inspecting defect using the same
JPS6410778B2 (en)
CN107430096B (en) Apparatus and method for inspecting a pipe
JP2002340654A (en) Method and device for detecting liquid level by sound
CN105571675B (en) A kind of gas pipeline safety monitoring system and its monitoring method
US20110126628A1 (en) Non-destructive ultrasound inspection with coupling check
CN105547414B (en) A kind of gas pipeline monitoring system and its monitoring method
JP2020143938A (en) Ultrasonic leakage inspection device
JP7230301B2 (en) Ultrasonic leak tester
JP2020143940A (en) Ultrasonic leakage inspection device
JPH06105240B2 (en) Air bubble detector
KR20120028127A (en) Ultrasonic inspection method of structure in a pipe
CN105547413B (en) A kind of gas pipeline hydrops monitoring system and its monitoring method with blimp
RU198395U1 (en) DEVICE FOR DETECTING DEFECTS IN THE SOLE OF RAIL RAILS AND FEATURES OF THE SOLE
JP2010190794A (en) Thinning detection method
US20230049260A1 (en) Acoustic Detection of Defects in a Pipeline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4630399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250