JP2007043565A - 信号伝送方法 - Google Patents

信号伝送方法 Download PDF

Info

Publication number
JP2007043565A
JP2007043565A JP2005226989A JP2005226989A JP2007043565A JP 2007043565 A JP2007043565 A JP 2007043565A JP 2005226989 A JP2005226989 A JP 2005226989A JP 2005226989 A JP2005226989 A JP 2005226989A JP 2007043565 A JP2007043565 A JP 2007043565A
Authority
JP
Japan
Prior art keywords
signal
power supply
circuit
output line
switching power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005226989A
Other languages
English (en)
Inventor
Haruhiko Nishio
春彦 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2005226989A priority Critical patent/JP2007043565A/ja
Priority to US11/492,064 priority patent/US7474014B2/en
Priority to CN2006101109350A priority patent/CN1909395B/zh
Publication of JP2007043565A publication Critical patent/JP2007043565A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B14/00Transmission systems not characterised by the medium used for transmission
    • H04B14/02Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation
    • H04B14/026Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using pulse time characteristics modulation, e.g. width, position, interval
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Dc-Dc Converters (AREA)
  • Dc Digital Transmission (AREA)

Abstract

【目的】配線面積が少ない、ノイズ耐量が高い、放射雑音を小さくすることができるといった特徴を有するとともに、停止状態もしくはスタンバイ状態における消費電力を抑制することのできる信号伝送方法を提供する。
【構成】この発明の信号伝送方法は、原信号に拡散符号を重畳し、その合成されたデータに基づきスイッチング電源のスイッチング周期を変更させることによりスイッチング電源の出力線を介して複数の半導体装置に第1の信号を伝送するとともに、出力線の直流出力電圧レベルを変更することにより子機に対し第2の信号を伝送することができる。第2の信号を子機に対する制御・指示などに用いることにより、例えば子機を停止状態もしくはスタンバイモードから通常動作モードに移行させて、第1の信号を受信できるようにさせることができる。出力線の電圧レベルは静的な手段で監視するので、停止状態もしくはスタンバイ状態における子機の消費電力を抑制することができる。
【選択図】 図1

Description

本発明は、複数の半導体装置に対し情報を伝送し、制御を行うための信号伝送方法に関するものである。
ホストCPUが複数の半導体装置の制御を行うシステムの例を図8に示す。図8においてホストCPU50がスイッチ51を制御してバッテリー52の出力を電源線53に供給する。ホストCPUは信号線54により他のホストCPU55やサブCPU56などと通信するとともに、信号線54によりDC/DCコンバータ制御IC57,液晶ドライバ制御IC58,RAM59,ディスプレイ制御IC60などといった半導体装置に制御情報を送りその動きをコントロールする。
また、図9はパワーマネージメントコントローラ61が複数のDC/DCコンバータを制御するシステムである。図8と共通する部分は同一符号を付して説明を省略し、異なる部分について説明する。複数のDC/DCコンバータ62〜67はそれぞれ異なる電圧を出力して、それを他の半導体装置に供給するものであり、パワーマネージメントコントローラ61は信号線54を介して制御情報を送りその動きをコントロールする。
図8,11における信号線54に関するインターフェース規格としてはIIC,SPI,マイクロLANなどが提案されているが、いずれもCLK,D,CE,W/Rといった複数の信号の配線を必要としている。一方、ますます多くの半導体装置が使われる携帯電話などでは、上記配線のためにプリント基板上に多くの配線面積を必要とするという課題がある。また、単一の周波数を用いるために雑音に弱い、信号の振幅が電源電圧であるため放射雑音も多く小型化を阻む原因となっている、といった課題もある。
雑音に弱いというノイズ耐量の課題に対しては、拡散符号系列によるスペクトル拡散通信が提案されている(例えば、非特許文献1,2)。この方式について、簡単に説明する。拡散符号系列とは擬似的な乱数(PN:Pseudo−Noise)符号系列で拡散符号長の周期で繰り返すものであり、他の拡散符号との相関が非常に低いという特徴をもっている。すなわち、拡散符号長をnビットとし、2つの拡散符号PN1,PN2を構成するnビットのデータをそれぞれb11,b12,・・・,b1nおよびb21,b22,・・・,b2n(b1i,b2iは0または1)とし、2つの拡散符号PN1,PN2の相関値をb1i,b2iの排他的論理和(Exclusibe−OR:b1iとb2iが等しいと0、等しくないと1となる関数)をi=1〜nについて総和をとったものと定義すると、PN1=PN2の場合は相関値は0となり、PN1=−PN2(−PN2はPN2を構成する各ビットb2iの0/1を反転させたもの)の場合はその相関値はnとなり、PN1とPN2が異なる拡散符号であるとその相関値はn/2もしくはn/2に近い値となる。相関値が0またはnとなる場合は相関が高く、相関値がn/2もしくはn/2に近い値となる場合は相関が低い。拡散符号系列にはM系列、Gold信号系列などがあり、M系列を発生させる回路はシフトレジスタを用いることにより簡単に実現できる。
拡散符号による通信の原理を図10により説明する。DATA1が送信すべきデータであり、PN1が拡散符号である。拡散符号PN1はデータDATA1よりはるかに高速な信号である。データDATA1は拡散符号PN1により変調されて変調器68から送信される。実際は、データDATA1と拡散符号PN1の排他的論理和をとってDATA2として変調器68から出力される。実際の送信データDATA2において、元のデータDATA1がHだった部分は−PN1となっており、またLだった部分はPN1となっている。受信側は復調器69において送信データDATA2を拡散符号PN1により復調を行う。実際はDATA2と拡散符号の各ビットの排他的論理和の総和を計算し、それが第1の所定値以上であればデータとしてHが送信されたと判断し、総和が第2の所定値以下であればデータとしてLが送信されたと判断する。総和が第1の所定値と第2の所定値の中間の値である場合、そのデータは当該受信器に送られたものではないと判断する。上述の相関に関する説明から分かるように、送信側と受信側で同じ拡散符号PN1を用いる場合は送信データDATA1が受信側で再現でき、異なる拡散符号を用いる場合は再現できない。受信側は拡散符号により送信データが自分宛にものか否かを判断することができる。すなわち、受信側固有の拡散符号で送信データDATA2の復調動作を行ない、データが再現できた場合は自分宛のデータであると判断し、再現できない場合は他者宛のデータと判断すればよい。また、本方式は復調の際に拡散符号長分の総和をとるため、送信データDATA2において部分的にエラーが生じてもデータDATA1の再現が可能であり、ノイズ耐量が高いという特徴がある。
しかしながら、非特許文献1などに示されるCDMA方式を用いた有線通信インターフェースでも通信線としてはデータ線2本とクロック線1本の計3本を必要とし、配線面積に関する課題は解決されない。
そこで、本出願人は拡散符号を送信情報に重畳した信号を作成し、さらにその信号を電源線に重畳させて伝送する信号伝送方法を特許文献1で提案した。以下、その概略について説明する。
図11は、特許文献1に開示されている発明の実施形態(全体構成)を示す回路ブロック図である。なお、後述のように、図11は本発明の実施形態を示すものでもある。図11において1は、バッテリー2の出力を受けて電源バス(出力線)3へ信号を重畳した電源Vregを供給する周波数拡散PWM型DC/DCコンバータおよびバスコントローラを内蔵する制御回路である。また、制御回路1はホストCPUとの通信も行っている。電源バス3には2.5V電源を作るための第2のDC/DCコンバータ用制御IC4,液晶ドライバ制御IC5,ディスプレイ制御IC6,RAM7などが接続されている。これらの半導体装置には制御回路1から同期用信号線8も接続されている。同期用信号線8により、受信側の各半導体装置に制御回路1から電源バス3に重畳されるデータとの同期をとる信号(例えばデータの送信開始を示す信号など)が送信される。
図12は、特許文献1に係る発明の別の実施形態を示す回路ブロック図である。なお、図11と同様に、図12も本発明の実施形態を示すものでもある。図12に示す回路は制御回路1Aがバスコントローラではなくパワーマネージメントコントローラを内蔵するものであり、図11の液晶ドライバ制御IC5,ディスプレイ制御IC6,RAM7の部分を第3,4,5のDC/DCコンバータ用制御IC13,14,15に置き換えたものになっている。図12に示す回路は、制御回路中のパワーマネージメントコントローラが、電源バス3に重畳させた制御信号により複数のDC/DCコンバータ用制御ICを制御するものである。
図13に、図11,12の周波数拡散PWM型DC/DCコンバータの構成例を示す。図13においてP型MOSトランジスタPMOS1、N型MOSトランジスタNMOS1、インダクタL、容量C0、抵抗R1,R2、コンパレータCMP1,CMP2、基準電圧Vref、発振回路OSCおよび駆動回路10は通常の同期整流方式の降圧型DC/DCコンバータを構成している。P型MOSトランジスタPMOS1のソースは電源VDD(バッテリー2の出力に相当)に接続され、ドレインはN型MOSトランジスタNMOS1のドレインおよびインダクタLの一端に接続されている。N型MOSトランジスタNMOS1のソースは接地電位(GND)に接続されている。インダクタLの他端は容量C0の一端および直列接続された抵抗R1,R2の一端に接続されるとともに、電源バス3に制御された電源電圧Vregを供給する出力部となっている。抵抗R1,R2の接続点は出力電源Vregをフィードバックする信号Vfbを与えるものとしてコンパレータCMP1の反転入力端子に接続される。コンパレータCMP1の非反転入力端子には基準電圧Vrefが接続されていて、VfbとVrefの比較結果に基づきコンパレータCMP1からエラー信号Verrが出力されてコンパレータCMP2の非反転入力端子に接続される。コンパレータCMP2の反転入力端子には発振回路OSCの出力である三角波Voscが接続されている。VerrとVoscの比較結果に基づきコンパレータCMP2から駆動信号Vdrvが出力され、駆動回路10に接続される。駆動回路10は駆動信号Vdrvに基づきP型MOSトランジスタPMOS1,N型MOSトランジスタNMOS1をオン・オフさせることにより、Vfb=Vrefとなるように出力電圧Vregを安定させる。ここで、図10においてDATA1とPN1からDATA2を生成したように、送信データを拡散符号で変調したデータを生成し、生成した変調データに基づき発振回路OSCの発振周波数(発振周期)を制御すれば、DC/DCコンバータのスイッチング周波数(周期)によりデータを送信することができる。スイッチング周波数は電源バス3上のリップルとして観察することができるから、受信側半導体装置本体11は図14に示すようにDCカットのための容量C1により電源バス3のリップル成分を取り出して増幅器AMP1で増幅した後、復調回路12により拡散符号PNを用いて復調することにより、自分宛の送信データを再現できるか、もしくは相関が低く他の半導体装置宛の信号と判断することができる。復調結果は半導体装置本体11に伝えられ、それが半導体装置本体11への制御信号である場合、半導体装置本体11はその制御信号により指示された動作を行う。
次に、図13の発振回路OSCの構成について、図15により説明を行う。図15は定電流回路20,21,30,31、P型MOSトランジスタPMOS2、N型MOSトランジスタNMOS2、スイッチSW1,SW2、容量CT、コンパレータCMP3,CMP4、基準電圧Vou,VolおよびフリップフロップFF1から構成されている。P型MOSトランジスタPMOS2のソースは定電流回路20に接続されるととともにスイッチSW1を介して定電流回路21にも接続されている。N型MOSトランジスタNMOS2のソースは定電流回路30に接続されるととともにスイッチSW2を介して定電流回路31にも接続されている。P型MOSトランジスタPMOS2とN型MOSトランジスタNMOS2のドレインは互いに接続されるとともに、容量CTの一端とコンパレータCMP3の非反転入力端子およびコンパレータCMP4の反転入力端子に接続されている。P型MOSトランジスタPMOS2とN型MOSトランジスタNMOS2のゲートにはフリップフロップFF1の出力Qが共通に接続されているため、2つのMOSトランジスタPMOS2,NMOS2は相補的な動作をする。コンパレータCMP3の反転入力端子とコンパレータCMP4の非反転入力端子にはそれぞれ基準電圧Vou,Vol(Vou>Vol)が接続され、コンパレータCMP3,CMP4の出力はそれぞれフリップフロップFF1のセット入力端子Sおよびリセット入力端子Rに接続される。2つのMOSトランジスタPMOS2,NMOS2は相補的な動作をするため、P型MOSトランジスタPMOS2がオン(導通)しているときは容量CTは定電流回路20単独または定電流回路20,21により充電され、容量CTの積分値、すなわち発振回路の三角波出力Voscは上昇していく。N型MOSトランジスタNMOS2がオンしているときは容量CTは定電流回路30単独または定電流回路30,31により放電され、容量CTの積分値、すなわち発振回路の三角波出力Voscは下降していく。Voscが上昇しているときにその値が基準電圧Vouを超えるとコンパレータCMP3の出力がHとなって、フリップフロップFF1はセットされてその出力QがHとなり、今度はN型MOSトランジスタNMOS2がオンしてVoscは下降を始める。次に基準電圧Volを下回るとコンパレータCMP4の出力がHとなって、フリップフロップFF1はリセットされてその出力QがLになり、P型MOSトランジスタPMOS2がオンして再度Voscは上昇を開始する。このように、VoscはVouとVolの間で発振する信号する三角波となる。その発振周期は容量CTを充放電する定電流の値による。すなわち、スイッチSW1,SW2をオフさせた標準状態に比べ、スイッチSW1,SW2をオンさせて容量CTを充放電する電流値を大きくすると発振周期は短くなる。なお、定電流回路20,21,31,31に流れる定電流値をそれぞれi20,i21,i30,i31とするとi20>>i21、i30>>i31として、i20およびi30により基本周波数が定まり、i21やi31を付加しても発振周波数が基本周波数から大きくずれないうようにしておくとよい。
上述の送信データを拡散符号で変調した送信データの各ビットデータを信号SELとしてSW1,SW2の制御に適用し、そのL/HによりスイッチSW1,SW2のオン・オフ制御を行えば、発振周期を送信データのL/Hに合わせて変更することができる。例えば送信データのビットがLのときスイッチSW1,SW2をオンし、Hのときオフすると、ビットのL/Hは発振周期の短/長に対応し、これが電源ラインに重畳されることになる。この様子を図16のタイミングチャートに示す。なお、Lのときにオンではなく、Hのときにオンとしてもよい。
図16は発振回路OSCの出力Vosc約3周期分の信号を示す。実線はVoscの3周期ともSW1,SW2がオフで長周期である場合に関する信号を、破線はVoscの2周期目(2つ目の山)のみSW1,SW2がオンとなって短周期となった場合の信号を示す。VoscはコンパレータCMP2によりCMP1からのエラー信号出力Verrと比較され、Verr>VoscのときにHとなる駆動信号Vdrvが出力される。実線で示されるようにVoscが3周期とも長周期、すなわち送信データの対応するビットが3ビットともHの場合は、Vdrvの周期も長周期t0のままであるが、破線で示す送信データの2ビット目がLの場合は、t0より短い周期t1やt2といった周期となる。駆動信号VdrvがHだと図13のP型MOSトランジスタPMOS1がオンして容量C0に対する充電電流iが増大し、駆動信号VdrvがLだと図13のN型MOSトランジスタNMOS1がオンして容量C0に対する充電電流iが減少し、図16に示すiの波形となる。図13には図示しない負荷へ供給される平均の負荷電流値をioaveとすれば、i>ioaveのときは図13の容量C0を充電してその積分電圧値は上昇し、i<ioaveのときは図13の容量C0を放電してその積分電圧値は下降するから、Vregの波形は図16に示すものになり、これが観察されるリップル波形となる。なお、厳密にはVregの波形は直線ではないが簡単化のために直線で示してある。実線のVoscが3周期とも長周期の場合は、Vregのリップル周期もt0であるが、破線のようにVoscの2周期目が短周期であると、Vregのリップル周期もt3,t4と短くなる。図14において、復調回路12は容量C1および増幅器AMP1により得られたリップル信号の周期をチェックすることにより伝送されたデータの0/1判定を行ない、その結果に対し拡散符合PNを適用すれば、上述のように伝送された信号が自分宛かの判別および自分宛のデータの復調を実現できる。
上述のように電源に重畳させた信号自体で自分宛のデータかどうかが判断できるので、従来技術で必要だったデータ線およびCE(Chip Enable)信号線は不要となり、配線面積を削減できる。また、情報がリップルの形で伝えられ、リップル自体の振幅は大きくはないので、情報を伝送することにより発生する放射雑音を小さくすることができる。さらに、復調データを送信データの複数ビットと拡散符号を形成する複数ビットの相関で決めることから、ノイズ耐量も高いものが得られる。
上記のように、特許文献1に係る発明は、伝送すべき信号に拡散符号を重畳し、そのデータに基づきスイッチング電源のスイッチング周期を変更させることにより電源バスを介して複数の半導体装置に信号を伝送するようにしたことから、データおよび送付先の半導体装置を選択するための配線を省略できるという特徴を有している。また、通信が電源バスのリップルの形で伝送され、かつその周期が変動して一定周波数に集中することを防ぐことから、EMIを削減する効果も大きく、さらに、拡散符号を適用していることから、ノイズに強い信号伝送を実現することができるという特徴も有している。
また、電源の出力ラインの出力電圧レベルを高低2つ設け、高低のレベルを100μs程度の時間単位で変化させることにより、出力回線を介して信号系列を伝送する通信方法(例えば時間単位を100μsとすると、最初の300μsを高レベル、次の200μsを低レベルとすると、11100という2進データが送信されたことになる)が特許文献2に開示されている。
吉村隆治、外3名,「CDMA方式を用いた有線通信インタフェース」,電子情報通信学会論文誌,社団法人電子情報通信学会,1999年11月,Vol.J82−CII,No.11,p.631−636 杉浦彰彦,「スペクトル拡散技術とCDMA通信技術の基礎」,雑誌インターフェース,CQ出版社,2000年2月号,p.59−74 特開2005−33534号公報 特開平4−287598号公報(段落0026、図2)
特許文献1に開示されている発明は、上述のように様々な特徴を持つが、消費電流に着目すると課題が残るものになっている。図11,12に示すシステムにおいて、親機(制御回路1,1A)の指示により停止状態もしくはスタンバイ状態から動作状態に移行する場合を考えると、子機(図11の第2のDC/DCコンバータ用制御IC4,液晶ドライバ制御IC5,ディスプレイ制御IC6,RAM7や、図12の第2,3,4,5のDC/DCコンバータ用制御IC4,13,14,15)は親機から送られてくる信号をいつでも受信できるように、復調回路12を常時動作させておく必要がある。復調回路12の動作にはクロック信号が必要であるから、クロック信号を発生する発振器(図示せず)を常時動作させておく必要がある。これにより、停止状態もしくはスタンバイ状態であるにも関わらず、子機の発振回路および復調回路12による消費電流を抑制することができない。
特許文献2に開示されている発明は、出力電圧レベルの変更を電源自体の応答によっているため、高速の通信はできないという課題がある。また、高低レベルの差が小さければノイズに弱く、高低レベルを大きくすればEMIが大きくなってしまう。さらに、子機がデータを受信するためには特許文献1に開示されている発明と同様に発振器が必要で、特許文献2に開示されている発明も子機の発振回路および復調回路12による消費電流を抑制することができない。
そこで、本発明は上記課題を解決するためになされたものであり、その目的は上述の特許文献1に開示されている発明の特徴(長所)をそのまま保持するとともに、停止状態もしくはスタンバイ状態における消費電力を抑制することのできる信号伝送方法を提供することにある。
そこで上記課題を解決するために、請求項1に係る発明は、スイッチング素子を有するスイッチング電源において、前記スイッチング素子のスイッチング周波数を第1の信号により変調させることにより前記スイッチング電源の出力線に前記第1の信号を重畳し、前記スイッチング電源の出力線の電圧レベルを変更することにより前記出力線を介して第2の信号を伝送する信号伝送方法であることを特徴とする。
請求項2に係る発明は、請求項1に係る発明において、前記出力線の電圧レベルが所定値もしくは所定の範囲にあるときは、前記スイッチング電源の出力線に前記第1の信号を重畳しないことを特徴とする。
請求項3に係る発明は、請求項1または2に係る発明において、原信号に拡散符号を重畳させて前記第1の信号を生成することを特徴とする。
請求項4に係る発明は、請求項3に係る発明において、前記スイッチング周波数を決定する発振回路が定電流により容量を所定電圧値の間で充放電するものであり、前記伝送すべき信号に拡散符号を重畳させた信号中の連続したmビット(mは自然数)のデータにより前記定電流の値を変化させることを特徴とする。
請求項5に係る発明は、請求項1ないし4のいずれかに係る発明において、前記スイッチング電源がDC−DCコンバータであることを特徴とする。
請求項6に係る発明は、請求項5に係る発明において、前記スイッチング電源の出力線に第2のDC−DCコンバータが接続されていて、前記第1および第2の信号を前記第2のDC−DCコンバータへの制御信号とすることにより前記第2のDC−DCコンバータの制御を行うことを特徴とする。
請求項7に係る発明は、請求項1ないし6のいずれかに係る発明において、前記スイッチング電源の出力線に重畳された第2の信号の同期をとるための信号線を前記スイッチング電源の出力線とは別に設けることを特徴とする。
この発明の信号伝送方法は、原信号に拡散符号を重畳し、その合成データに基づきスイッチング電源のスイッチング周期を変更させることによりスイッチング電源の出力線を介して複数の半導体装置に第1の信号を伝送するとともに、出力線の直流出力電圧レベルを変更することにより子機に対し第2の信号を伝送することができる。第2の信号を子機に対する制御・指示などに用いることにより、例えば子機を停止状態もしくはスタンバイモードから通常動作モードに移行させて、第1の信号を受信できるようにさせることができる。出力線の電圧レベルはクロック信号を用いることのない静的な手段で監視できるので、停止状態もしくはスタンバイ状態における子機の消費電力を抑制することができる。また、特許文献1に係る発明と同様に、データおよび送付先の子機(半導体装置)を選択するための配線を省略できる、通信が電源バスのリップルの形で伝送され、かつその周期が変動して一定周波数に集中することを防ぐことからEMIを削減する効果が大きい、拡散符号を適用していることからノイズに強い信号伝送を実現することができる、などの効果を実現することができる。
発明の実施するための最良の形態
以下、図に沿って本発明の実施形態を説明する。
本発明の実施の形態に関する全体システムの構成を示すブロック図は前述のように図11,12と同じであるが、親機と子機の構成が背景技術のものとは異なっている。
図1に、図11,12の周波数拡散PWM型DC/DCコンバータに関する本発明の実施の形態を示す。なお、図13と同じ部位には同じ符号を付して詳細な説明は省略する。図1はコンパレータCMP1の非反転入力端子がスイッチSW1,SW2を介して2つの基準電圧Vref1,Vref2に接続されている点が、図13と異なっている。スイッチSW1,SW2は互いに排他的にオン・オフ(一方がオンなら他方はオフ)し、例えばホストCPUによりそのオン・オフが制御される。DC/DCコンバータはコンパレータCMP1の非反転入力端子と反転入力端子が仮想短絡するよう動作するから、コンパレータCMP1の非反転入力端子に接続される基準電圧がVref1かVref2かによって、出力電圧VregはVref1・(R1+R2)/R2またはVref2・(R1+R2)/R2のいずれかの値となる。本実施の形態では、基準電圧Vref1,Vref2の値は、それぞれ出力電圧Vregが2.2V,2.5Vとなる値とする。親機は子機に通常動作をさせたい場合は基準電圧としてVref1を選択し、停止状態もしくはスタンバイモードにさせたい場合はVref2を選択する。子機は出力電圧Vregを監視して、出力電圧Vregが2.5Vとなったら発振器の動作を停止させ、2.2Vとなったら発振器を動作させるようにする。
図2は子機における出力電圧Vreg判定回路の基本構成を示す図である。図2において、抵抗R3,R4は出力電圧Vregを分圧して信号Vinを発生する分圧抵抗であり、信号VinはコンパレータCMP5の反転入力端子に入力されている。定電流源16とダイオード接続されたN型MOSトランジスタNMOS3は基準電圧発生回路を構成している。ダイオード接続されたN型MOSトランジスタNMOS3の電圧・電流特性は二乗特性を示し、定電流源16が供給する定電流i0をN型MOSトランジスタNMOS3に流す電圧が基準電圧Vref3となる。基準電圧Vrefは定電流源16とN型MOSトランジスタNMOS3のドレインおよびゲートとの接続部に発生し、コンパレータCMP5の非反転入力端子に接続される。コンパレータCMP5は信号Vinと基準電圧Vef3とを比較して、子機に通常動作を指示する信号enableを発生させる。Vin>Vref3の場合はenable=L(ロー)となり、子機はこれを受けて出力電圧Vregが2.5Vと判断して停止状態もしくはスタンバイモードとなる。Vin<Vref3の場合はenable=H(ハイ)となり、子機はこれを受けて出力電圧Vregが2.2Vと判断して通常動作モードとなる。
実際には、出力電圧Vreg判定回路に図3に示すようなヒステリシス特性を持たせたほうがよく、図4にヒステリシス特性を持たせた判定回路の例を示す。図4において図2と同じ部位には同じ符号を付して説明は省略する。図2に示す判定回路の基準電圧は1つのVref3だけであるのに対し、図4に示す判定回路は2つの基準電圧VrefLとVref(VrefL<VrefH)を2つのトランスミッションゲート17,18で切り替えるようになっている。2つのトランスミッションゲート17,18はコンパレータCMP5の出力およびそれをインバータ19で反転させた信号で制御されている。enable=Lの場合はトランスミッションゲート17がオン、トランスミッションゲート18がオフであるため、判定回路の基準電圧はVrefLとなる。その後、出力電圧Vregが下がってVin<VrefLとなるとenable=Hになり、トランスミッションゲート17がオフ、トランスミッションゲート18がオンとなって、判定回路の基準電圧がVrefHに変化する。この状態で出力電圧Vregが上がってVin>VrefHとなるとenable=Lになり、トランスミッションゲート17がオン、トランスミッションゲート18がオフとなって、判定回路の基準電圧が再度VrefLになる。
VrefL,VrefHは図2のVref3と同様に定電流源とN型MOSトランジスタを組み合わせて生成してもよいし、バンドギャップリファレンス回路などによるものでもよく、その生成方法を限定するものではない。また、VrefL,VrefHの値は、図3に示す特性に合わせて、それぞれ2.2×R3/(R3+R4),2.4×R3/(R3+R4)とすればよい。
上述のように、本実施の形態では、子機は出力電圧Vregを監視し、その結果によって通常動作であるか、停止状態もしくはスタンバイモードであるかを判断し、停止状態もしくはスタンバイモードと判断される場合は発振器を停止することができるので消費電流を抑制することができる。停止状態もしくはスタンバイモードの子機において動作しているのは出力電圧Vreg判定回路のみである。動作中の発振回路は数百μA程度の電流を消費するのに対し、出力電圧Vreg判定回路は高速動作を必要とはしないので、その消費電流を数μA以下とすることができ、本実施の形態により停止状態もしくはスタンバイモードの消費電流を大幅に抑制することができる。
また、通常動作か否かの指令およびデータの伝送を全てスイッチング電源の出力線を介して行うため、これらの信号のための配線が不要である、
なお、上記の説明では出力電圧Vregが高いと停止状態もしくはスタンバイモード、低いと通常動作モードとしたが、逆でもよい。また、出力電圧Vregの値を2.2Vと2.5Vとしたが、これに限定するものではなく、子機が2つの出力電圧Vregを容易に判別できるようにするためには、子機が動作可能な範囲で2つの出力電圧Vregの値の差を大きくすることが好ましい。
上述の実施例1に示す実施の形態は図15に示す発振回路を前提としているため、発振回路OSCの発振1周期にデータを1ビットしか送信できない。本発明に係る第2の実施形態として、発振1周期毎に1ビットではなくmビット送る方法について説明する。そのためには、送信すべきデータをmビットずつのデータに分割し、各mビットのデータにより発振回路OSCの発振周期を決めてやればよい。mビットのデータにより発振回路OSCの発振周期を決める回路を図5に示す。図5に示す回路は、図15の破線で囲った回路ブロック40を置き換えるものである。図15と共通する部分は同一符号を付して説明を省略し、異なる部分について説明する。図5は図15の回路ブロックに対し、定電流22〜2mおよび32〜3mとスイッチSW12〜SW1mおよびSW22〜SW2mを付加したものである。なお、スイッチSW11およびSW21はそれぞれ図15のスイッチSW1およびSW2に対応する。定電流2j,3j(j=2〜m)に流れる電流の大きさi2j,i3jをそれぞれ、i2j=i21×(1/2)j−1,i3j=i31×(1/2)j−1、上述のmビットのデータうちk番目のビットをbk(k=1〜m)とし、bkのL/HでSW1kおよびSW2kのオン・オフを決めれば(例えばLで双方オン,Hで双方オフ、この逆でもよい)、上述のmビットのデータにより容量CTを充放電する電流がそれぞれ2とおりに変化する。これにより、図15のt0,t3,t4といったデータもより細かい動きをするようになる。これを検出するため、図14に示す復調器12の構成はより複雑なものになる。すなわち、送信するデータ量と復調器の複雑さはトレードオフの関係にあるが、どちらを選択するかは本発明を適用する個々の状況に応じて判断すればよい。
図6は、本発明に係る第3の実施形態を示す回路図である。図6に示す回路は図11に示す回路から同期用信号線8を取り去ったものとなっている。本実施例では同期用信号線がないため、受信側でそれぞれ同期補足回路(例えば、非特許文献2を参照)を設けておく必要がある。これにより、同期用信号線8の配線面積を削減できる。但し、この場合は同期補足回路追加による回路規模増大、すなわち回路のレイアウト面積の増大とのトレードオフとなるが、どちらを選択するかは本発明を適用する個々の状況に応じて判断すればよい。
図7は、本発明に係る第4の実施形態を示す回路図である。図7に示す回路は図12に示す回路から同期用信号線8を取り去り、その配線面積を削減したものとなっている。本実施の形態においても同期補足回路追加による回路規模増大、すなわち回路のレイアウト面積の増大とのトレードオフとなっているが、どちらを選択するかは本発明を適用する個々の状況に応じて判断すればよい。
第1の実施形態における周波数拡散PWM型DC/DCコンバータの回路図である。 出力電圧Vreg判定回路の基本構成を示す図である。 ヒステリシス特性を示す図である。 ヒステリシス特性を有する出力電圧Vreg判定回路の構成を示す図である。 本発明に係る第2の実施形態を示す回路図である。 本発明に係る第3の実施形態を示す回路図である。 本発明に係る第4の実施形態を示す回路図である。 第1の従来技術について説明するための回路図である。 第2の従来技術について説明するための回路図である。 拡散符号による通信の原理を説明するための図である。 本発明に係る実施の形態と共通する従来技術の全体構成を説明するための図である。 本発明に係る実施の形態と共通する他の従来技術の全体構成を説明するための図である。 特許文献1に開示されている周波数拡散PWM型DC/DCコンバータの構成を示す回路図である。 特許文献1に開示されている受信側の構成を示す回路図である。 特許文献1に開示されている発振回路OSCの構成を示す回路図である。 特許文献1に開示されている発振回路OSCの動作を説明するためのタイミングチャートである。
符号の説明
1,1A 制御回路
2 バッテリー
3 電源バス
4,5,7 半導体装置
6,13,14,15 DC/DCコンバータ
8 同期用信号線
9 重畳回路
10 駆動回路
11 受信側半導体装置本体
12 復調回路
20〜2m 定電流回路
30〜3m 定電流回路
AMP1 増幅器
CMP1〜CMP5 コンパレータ
C0,C1,CT 容量
L インダクタ
R1,R2 抵抗
OSC 発振回路
PN 拡散符号
FF1 フリップフロップ
PMOS1,PMOS2 P型MOSトランジスタ
NMOS1〜NMOS3 N型MOSトランジスタ
SW11〜SW1m,SW21〜SW2m スイッチ
Vref1〜Vref3,VrefL,VrefH 基準電圧

Claims (7)

  1. スイッチング素子を有するスイッチング電源において、前記スイッチング素子のスイッチング周波数を第1の信号により変調させることにより前記スイッチング電源の出力線に前記第1の信号を重畳し、前記スイッチング電源の出力線の電圧レベルを変更することにより前記出力線を介して第2の信号を伝送することを特徴とする信号伝送方法。
  2. 前記出力線の電圧レベルが所定値もしくは所定の範囲にあるときは、前記スイッチング電源の出力線に前記第1の信号を重畳しないことを特徴とする請求項1に記載の信号伝送方法。
  3. 原信号に拡散符号を重畳させて前記第1の信号を生成することを特徴とする請求項1または2に記載の信号伝送方法。
  4. 前記スイッチング周波数を決定する発振回路が定電流により容量を所定電圧値の間で充放電するものであり、前記伝送すべき信号に拡散符号を重畳させた信号中の連続したmビット(mは自然数)のデータにより前記定電流の値を変化させることを特徴とする請求項3に記載の信号伝送方法。
  5. 前記スイッチング電源がDC−DCコンバータであることを特徴とする請求項1ないし4のいずれかに記載の信号伝送方法。
  6. 前記スイッチング電源の出力線に第2のDC−DCコンバータが接続されていて、前記第1および第2の信号を前記第2のDC−DCコンバータへの制御信号とすることにより前記第2のDC−DCコンバータの制御を行うことを特徴とする請求項5に記載の信号伝送方法。
  7. 前記スイッチング電源の出力線に重畳された第2の信号の同期をとるための信号線を前記スイッチング電源の出力線とは別に設けることを特徴とする請求項1ないし6のいずれかに記載の信号伝送方法。
JP2005226989A 2005-08-04 2005-08-04 信号伝送方法 Pending JP2007043565A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005226989A JP2007043565A (ja) 2005-08-04 2005-08-04 信号伝送方法
US11/492,064 US7474014B2 (en) 2005-08-04 2006-07-25 Signal transmission method
CN2006101109350A CN1909395B (zh) 2005-08-04 2006-08-03 信号传输方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005226989A JP2007043565A (ja) 2005-08-04 2005-08-04 信号伝送方法

Publications (1)

Publication Number Publication Date
JP2007043565A true JP2007043565A (ja) 2007-02-15

Family

ID=37700398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005226989A Pending JP2007043565A (ja) 2005-08-04 2005-08-04 信号伝送方法

Country Status (3)

Country Link
US (1) US7474014B2 (ja)
JP (1) JP2007043565A (ja)
CN (1) CN1909395B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009153325A (ja) * 2007-12-21 2009-07-09 Denso Corp スイッチング電源回路
US10468993B2 (en) 2007-05-17 2019-11-05 Enphase Energy, Inc. Inverter for use in photovoltaic module

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9231790B2 (en) * 2007-03-02 2016-01-05 Qualcomm Incorporated N-phase phase and polarity encoded serial interface
US8064535B2 (en) * 2007-03-02 2011-11-22 Qualcomm Incorporated Three phase and polarity encoded serial interface
US9711041B2 (en) 2012-03-16 2017-07-18 Qualcomm Incorporated N-phase polarity data transfer
US8792426B2 (en) * 2008-03-24 2014-07-29 Qualcomm Incorporated Method and apparatus for resource management in a wireless communication system
ATE531119T1 (de) * 2008-08-13 2011-11-15 Osram Ag Schaltung und verfahren zur reduzierung elektromagnetischer interferenzen
JP4893722B2 (ja) * 2008-10-15 2012-03-07 ソニー株式会社 携帯端末システム、携帯端末、並びに外部機器
WO2014117801A1 (en) * 2013-01-29 2014-08-07 Phonak Ag State of charge indication in a hearing device
WO2015032079A1 (en) * 2013-09-09 2015-03-12 Texas Instruments Incorporated Intrinsic comparator delay for output clamping circuit
CN113014084A (zh) * 2021-02-07 2021-06-22 联想(北京)有限公司 一种控制方法、装置及电子设备
CN112803744B (zh) * 2021-03-24 2023-08-08 江苏应能微电子有限公司 低功耗电源启动控制装置、方法及电源设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000041071A (ja) * 1998-07-23 2000-02-08 Matsushita Electric Works Ltd データ伝送装置
JP2005033534A (ja) * 2003-07-14 2005-02-03 Fuji Electric Holdings Co Ltd 信号伝送方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04287598A (ja) 1991-03-18 1992-10-13 Toshiba Corp 電源と負荷との間の通信方法
JP3506913B2 (ja) * 1997-09-22 2004-03-15 セイコーインスツルメンツ株式会社 スイッチングレギュレータ
KR100433901B1 (ko) * 1998-02-21 2004-11-06 삼성전자주식회사 이동통신시스템의시간스위칭송신다이버시티장치
US6515439B2 (en) * 2000-12-25 2003-02-04 Sanyo Electric Co., Ltd. Vertical deflection driving circuit
JP2003299347A (ja) * 2002-02-01 2003-10-17 Seiko Instruments Inc Pwmスイッチングレギュレータ制御回路、pwmスイッチングレギュレータ及び電子機器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000041071A (ja) * 1998-07-23 2000-02-08 Matsushita Electric Works Ltd データ伝送装置
JP2005033534A (ja) * 2003-07-14 2005-02-03 Fuji Electric Holdings Co Ltd 信号伝送方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10468993B2 (en) 2007-05-17 2019-11-05 Enphase Energy, Inc. Inverter for use in photovoltaic module
JP2009153325A (ja) * 2007-12-21 2009-07-09 Denso Corp スイッチング電源回路

Also Published As

Publication number Publication date
CN1909395B (zh) 2013-07-17
CN1909395A (zh) 2007-02-07
US7474014B2 (en) 2009-01-06
US20070030881A1 (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP2007043565A (ja) 信号伝送方法
JP4148048B2 (ja) 信号伝送方法
JP5186148B2 (ja) ディジタル制御スイッチング電源装置
JP6357773B2 (ja) Dc/dcコンバータ、スイッチング電源装置及び電子機器
JP5464695B2 (ja) Dc−dcコンバータ、直流電圧変換方法
JP4997891B2 (ja) Dc−dcコンバータ及びdc−dcコンバータの制御方法
US9722625B2 (en) Semiconductor device and semiconductor device operating method
US20070217108A1 (en) Control circuit of power supply, power supply and control method thereof
KR20210111073A (ko) 듀얼 핀 인터페이스를 갖는 멀티플 전력 관리 집적 회로들 및 장치
KR101263105B1 (ko) Dc-dc 컨버터
US8058860B2 (en) Single pin multi-VID bit interface circuit for dynamic voltage change of a DC/DC converter
JP5965905B2 (ja) Dc−dcコンバータ
JP2010200450A (ja) 半導体集積回路および電源装置
US20050001603A1 (en) Pulse-skipping PFM DC-DC converter using a voltage mode control loop
EP3311477B1 (en) Power supplier, power supply system, and voltage adjustment method
JP4251021B2 (ja) 電源装置及びそれを用いたハードディスク装置,ic
JP2009278713A (ja) スイッチングレギュレータ
US20080203993A1 (en) Dynamically scaling apparatus for a system on chip power voltage
US20180269787A1 (en) System and method for controlling switching power supply
US20150346247A1 (en) Digital current sensor for on-die switching voltage regulator
KR101039906B1 (ko) 어댑티브 온 타임 컨트롤러 및 이를 이용한 pfm 벅 변환기
JP7386064B2 (ja) 電源制御装置
JP2009118692A (ja) 直流−直流変換装置
JP4983275B2 (ja) Dc/dcコンバータ
Zhang et al. Digitally controlled distributed multiphase DC-DC converters

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301