JP2007040590A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2007040590A
JP2007040590A JP2005224305A JP2005224305A JP2007040590A JP 2007040590 A JP2007040590 A JP 2007040590A JP 2005224305 A JP2005224305 A JP 2005224305A JP 2005224305 A JP2005224305 A JP 2005224305A JP 2007040590 A JP2007040590 A JP 2007040590A
Authority
JP
Japan
Prior art keywords
heat pump
pump circuit
hot water
refrigerant
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005224305A
Other languages
Japanese (ja)
Other versions
JP4277836B2 (en
Inventor
Koichi Fukushima
功一 福島
Taichi Tanaami
太一 店網
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2005224305A priority Critical patent/JP4277836B2/en
Publication of JP2007040590A publication Critical patent/JP2007040590A/en
Application granted granted Critical
Publication of JP4277836B2 publication Critical patent/JP4277836B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress degradation of heating efficiency caused by liquid accumulation occurring as a refrigerant flows into a heat pump circuit from the operating heat pump circuit when operation stops. <P>SOLUTION: The heat pump water heater is provided with a first heat pump circuit 2 having an evaporator 8b connected to a compressor 10b through a first water-refrigerant heat exchanger 6 and a first decompressor 7b, a direct water heating passage 3 for supplying supplied water heated by the first water-refrigerant heat exchanger 6 to a hot water supply port, a second heat pump circuit 4 including the evaporator 8b connected to the compressor 10b through a second water-refrigerant heat exchanger 11 and a second decompressor 7c, a heating circuit 5 for circulating hot water heated by the second water-refrigerant heat exchanger 11 with a heating source 12, and a switching means B for switching operation of the first heat pump circuit 2 and the second heat pump circuit 4. A valve of the second decompressor 7c is opened by a set amount during operation of the first heat pump circuit 2, and a valve 7b of the first decompressor is opened by a set amount during operation of the second heat pump circuit 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ヒートポンプ給湯機に関する。   The present invention relates to a heat pump water heater.

従来の給湯装置としては、例えば、化石燃料を燃焼させて加熱した湯を大容量のタンクに貯蔵し、日中、タンクに貯蔵した湯を使用する給湯装置が知られている。このような給湯装置によれば、例えば、給湯や暖房などの運転を同時に行う場合でも、十分な熱量を供給することができる。しかし、燃焼式の給湯装置は、熱効率が十分でないことに加え、排ガス処理上の問題等を生じるおそれがあることから、近年は減少傾向にある。一方、電気料金が安価な深夜電力を利用して、電気ヒータで加熱した湯を大容量のタンクに貯蔵し、タンク内の湯を日中に使用する電気温水器が知られている。   As a conventional hot water supply device, for example, a hot water supply device that stores hot water obtained by burning fossil fuel in a large-capacity tank and uses the hot water stored in the tank during the day is known. According to such a hot water supply apparatus, for example, a sufficient amount of heat can be supplied even when operations such as hot water supply and heating are performed simultaneously. However, the combustion-type hot water supply apparatus has been decreasing in recent years because it may cause problems in exhaust gas treatment in addition to insufficient thermal efficiency. On the other hand, an electric water heater is known that uses late-night power with a low electricity bill, stores hot water heated by an electric heater in a large-capacity tank, and uses hot water in the tank during the day.

これに対し、近年は、電気温水器よりもエネルギ効率が高いヒートポンプ給湯機が普及し始めている。このヒートポンプ給湯機は、深夜電力を利用してヒートポンプ回路を稼動させ、加熱された給水をタンクに満杯にして蓄えておくことにより日中に使用する給湯用の湯と暖房用の熱を賄うようにしている。   On the other hand, in recent years, heat pump water heaters having higher energy efficiency than electric water heaters have begun to spread. This heat pump water heater operates the heat pump circuit using midnight power, and fills the tank with the heated water supply so that it can cover the hot water used during the day and the heat used for heating. I have to.

例えば、特許文献1で開示されるヒートポンプ給湯機は、電気温水器と同様、深夜電力を利用してヒートポンプ回路を稼動させ、タンク内に湯水を蓄えるものであるが、例えば、日中にタンク内の湯量が減少(又は湯温が低下)して設定された出湯温度の湯が得られないときは、ヒートポンプ回路を再び稼動させてタンク内の湯水を追焚きするようにしている。また、暖房運転時は、タンクの湯を暖房タンク内に設置された熱交換器に導いて循環させ、これにより加熱された暖房タンク内の湯水を放熱器(暖房器)に通流させるようにしている。   For example, a heat pump water heater disclosed in Patent Document 1 operates a heat pump circuit using midnight power and stores hot water in a tank, like an electric water heater. When the amount of hot water is reduced (or the hot water temperature is lowered) and hot water having the set hot water temperature cannot be obtained, the heat pump circuit is operated again to replenish the hot water in the tank. During heating operation, the hot water in the tank is led to a heat exchanger installed in the heating tank and circulated, so that the hot water in the heating tank heated by this is passed to the radiator (heater). ing.

特開2004−28483号公報(第1図)JP 2004-28483 A (FIG. 1)

しかしながら、特許文献1のようにタンクに大量の湯水を蓄える方式の場合、ヒートポンプ回路の高い加熱効率を十分に発揮できない。また、タンクの表面から多くの熱が放射されてエネルギの無駄が生じ、エネルギ効率の低下を招く。さらに、タンクの大容量化に伴い、設置面積が増大し、設置床面の強度が必要なるという問題がある。   However, in the case of a method of storing a large amount of hot water in a tank as in Patent Document 1, the high heating efficiency of the heat pump circuit cannot be sufficiently exhibited. Also, a lot of heat is radiated from the surface of the tank, resulting in wasted energy, leading to a decrease in energy efficiency. Furthermore, with the increase in capacity of the tank, there is a problem that the installation area increases and the strength of the installation floor is required.

しかも、特許文献1の技術では、タンクの湯水を使って暖房運転を行うため、給湯運転だけでも湯切れが生じるおそれがあることに加えて、暖房運転を行なうことにより、湯切れの発生が早まる可能性がある。さらに、タンクから導いた湯水と暖房用の循環水とを熱交換しているため、熱交換効率が低く、放熱器からの戻り水温も中温域まで低下するため、タンク内の温度分布を乱し、給湯にも使用できないほどの低温の温度帯を生成するおそれがある。   In addition, in the technique of Patent Document 1, since the heating operation is performed using the hot water of the tank, the hot water may run out only by the hot water supply operation, and in addition, the occurrence of the hot water running is accelerated by performing the heating operation. there is a possibility. In addition, heat exchange between the hot water led from the tank and the circulating water for heating results in low heat exchange efficiency, and the return water temperature from the radiator also drops to the middle temperature range, disturbing the temperature distribution in the tank. There is a risk of generating a temperature range that is too low to be used for hot water supply.

これに対し、圧縮機と蒸発器を共有する第1のヒートポンプ回路と第2のヒートポンプ回路を切替可能に接続し、例えば、第1のヒートポンプ回路で給湯運転を行う一方、第2のヒートポンプ回路で暖房運転を行うようにしたヒートポンプ回路が考えられる。これによれば、各ヒートポンプ回路の水冷媒熱交換器において、給水や加熱用の循環水と冷媒とを直接熱交換することができるため、高い加熱効率を得ることができる。   On the other hand, the first heat pump circuit and the second heat pump circuit sharing the compressor and the evaporator are connected so as to be switchable, for example, the hot water supply operation is performed by the first heat pump circuit, while the second heat pump circuit is operated. A heat pump circuit that performs heating operation is conceivable. According to this, in the water-refrigerant heat exchanger of each heat pump circuit, since heat can be directly exchanged between the water supply or the circulating water for heating and the refrigerant, high heating efficiency can be obtained.

ところで、このようなヒートポンプ回路では、例えば、第1のヒートポンプ回路の減圧装置が開放されてヒートポンプ回路が運転しているときは、第2のヒートポンプ回路の減圧装置は閉鎖され、第2のヒートポンプ回路の運転は停止している。しかし、第2のヒートポンプ回路は、圧縮機の吐出側で第1のヒートポンプ回路と連通しているため、圧縮機から吐出された高温高圧の冷媒の一部が、第2のヒートポンプ回路内に流入し、第2の水冷媒熱交換器で冷却されて凝縮するおそれがある。すなわち、冷媒が第2のヒートポンプ回路内に流入して凝縮し、液溜まりを生じると、その分、第1のヒートポンプ回路内の冷媒循環量が減少するため、加熱能力を維持するためには、例えば、圧縮機の回転数を増加させなければならず、加熱効率の低下を招くおそれがある。   By the way, in such a heat pump circuit, for example, when the decompression device of the first heat pump circuit is opened and the heat pump circuit is operating, the decompression device of the second heat pump circuit is closed, and the second heat pump circuit The operation has stopped. However, since the second heat pump circuit communicates with the first heat pump circuit on the discharge side of the compressor, a part of the high-temperature and high-pressure refrigerant discharged from the compressor flows into the second heat pump circuit. However, it may be cooled and condensed by the second water refrigerant heat exchanger. That is, when the refrigerant flows into the second heat pump circuit and condenses, resulting in a liquid pool, the amount of refrigerant circulating in the first heat pump circuit decreases accordingly, so that the heating capacity is maintained. For example, the number of rotations of the compressor must be increased, which may cause a reduction in heating efficiency.

本発明は、運転が停止するヒートポンプ回路内に運転中のヒートポンプ回路から冷媒が流入し、液溜まりが生じることによる加熱効率の低下を抑制することを課題とする。   An object of the present invention is to suppress a decrease in heating efficiency caused by a refrigerant flowing from a heat pump circuit in operation into a heat pump circuit in which the operation is stopped to cause a liquid pool.

本発明は、上記課題を解決するため、圧縮機に第1の水冷媒熱交換器と第1の減圧装置を介して接続された蒸発器を有する第1のヒートポンプ回路と、第1の水冷媒熱交換器により加熱された温水を給湯口に供給する直接給湯経路と、圧縮機に第2の水冷媒熱交換器と第2の減圧装置を介して接続された蒸発器を有する第2のヒートポンプ回路と、第2の水冷媒熱交換器により加熱された温水を加熱源との間で循環させる暖房回路と、第1のヒートポンプ回路と第2のヒートポンプ回路の運転を切り替える切替手段とを備え、第1のヒートポンプ回路の運転中は、第2の減圧装置の弁を設定量開放することを特徴とする。   In order to solve the above problems, the present invention provides a first heat pump circuit having an evaporator connected to a compressor via a first water refrigerant heat exchanger and a first pressure reducing device, and a first water refrigerant. A second heat pump having a direct hot water supply path for supplying hot water heated by a heat exchanger to a hot water supply port, and an evaporator connected to the compressor via a second water refrigerant heat exchanger and a second decompression device A circuit, a heating circuit that circulates hot water heated by the second water-refrigerant heat exchanger with a heating source, and switching means for switching between the operation of the first heat pump circuit and the second heat pump circuit, During operation of the first heat pump circuit, a set amount of the valve of the second decompression device is opened.

このように、第1のヒートポンプ回路の運転中に、第2の減圧装置の弁を設定量開放することにより第2のヒートポンプ回路に流入した冷媒は、第2の水冷媒熱交換器、第2の減圧装置を経て、第1のヒートポンプ回路に戻される。これにより、第2のヒートポンプ回路内に流入する冷媒は、滞留による液溜まりが抑制されるため、第1のヒートポンプ回路の冷媒量の減少は抑えられ、加熱効率の低下を抑制することができる。また、第2のヒートポンプ回路の運転中は、第1の減圧装置の弁を設定量開放することにより、同様の効果を得ることができる。   Thus, during operation of the first heat pump circuit, the refrigerant flowing into the second heat pump circuit by opening a set amount of the valve of the second decompression device is the second water refrigerant heat exchanger, the second It returns to the 1st heat pump circuit through the decompression device. As a result, the refrigerant flowing into the second heat pump circuit is restrained from the liquid pool due to the retention, so that the decrease in the amount of refrigerant in the first heat pump circuit can be suppressed, and the decrease in heating efficiency can be suppressed. Further, during operation of the second heat pump circuit, the same effect can be obtained by opening a set amount of the valve of the first pressure reducing device.

また、第1の水冷媒熱交換器は、第1と第2のヒートポンプ回路と独立する第3のヒートポンプ回路の冷媒流路を有することが好ましい。これによれば、第3のヒートポンプ回路を給湯専用のヒートポンプ回路とし、必要に応じて第1のヒートポンプ回路を第2のヒートポンプ回路に切り替えることで、給湯、暖房運転を同時に行うことができる。   Moreover, it is preferable that a 1st water refrigerant | coolant heat exchanger has the refrigerant | coolant flow path of the 3rd heat pump circuit independent of the 1st and 2nd heat pump circuit. According to this, a hot water supply and heating operation can be performed simultaneously by making a 3rd heat pump circuit into the heat pump circuit only for hot water supply, and switching a 1st heat pump circuit to a 2nd heat pump circuit as needed.

本発明のヒートポンプ給湯機によれば、液溜まりが生じることによる加熱効率の低下を抑制することができる。   According to the heat pump water heater of the present invention, it is possible to suppress a decrease in heating efficiency due to liquid pooling.

以下、本発明の実施の形態を図面に基づいて説明する。図1は、本発明を適用してなるヒートポンプ給湯機の一例を示す全体構成図である。図2は、図1の一部を拡大して示す構成図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an overall configuration diagram showing an example of a heat pump water heater to which the present invention is applied. FIG. 2 is an enlarged configuration diagram showing a part of FIG.

本実施形態のヒートポンプ給湯機は、ヒートポンプ回路1,2によって加熱された給水を給湯する給湯回路3(後述する浴槽16はこれに含まない)と、ヒートポンプ回路4によって加熱された湯水を循環させて暖房を行なう暖房回路5と、ヒートポンプ回路1,2,4を運転制御するヒートポンプ制御部A,Bと、給湯回路3を制御する給湯制御部Cとを備えており、これらは1つの容器内に収納されている。   The heat pump water heater of the present embodiment circulates the hot water supply circuit 3 (not including a bathtub 16 described later) for supplying hot water heated by the heat pump circuits 1 and 2 and the hot water heated by the heat pump circuit 4. A heating circuit 5 that performs heating, heat pump control units A and B that control operation of the heat pump circuits 1, 2, and 4, and a hot water supply control unit C that controls the hot water supply circuit 3 are provided in a single container. It is stored.

まず、ヒートポンプ回路1は、第1の水冷媒熱交換器6、減圧装置7a、蒸発器8a、圧縮機10aを順次冷媒配管で接続した閉回路を構成し、ヒートポンプ回路2は、第1の水冷媒熱交換器6、減圧装置7b、蒸発器8b、減圧装置10bを順次冷媒配管で接続した閉回路を構成している。   First, the heat pump circuit 1 constitutes a closed circuit in which a first water refrigerant heat exchanger 6, a decompression device 7a, an evaporator 8a, and a compressor 10a are sequentially connected by a refrigerant pipe, and the heat pump circuit 2 has a first water A closed circuit in which the refrigerant heat exchanger 6, the decompression device 7b, the evaporator 8b, and the decompression device 10b are sequentially connected by a refrigerant pipe is configured.

減圧装置7a,7bは、第1の水冷媒熱交換器6で放熱し、温度の低下した高圧冷媒を減圧させるものであり、ヒートポンプ制御部A,Bからの指令により、弁開度を自在に調整できるようになっている。蒸発器8a,8bは、それぞれファン9a,9bにより室外の空気を取り込んで、低温低圧の冷媒を蒸発させることにより、空気と冷媒との熱交換を行なう空気冷媒熱交換器として機能するものである。   The decompression devices 7a and 7b radiate heat from the first water refrigerant heat exchanger 6 and decompress the high-pressure refrigerant whose temperature has been lowered. The valve opening degree can be freely controlled by commands from the heat pump control units A and B. It can be adjusted. The evaporators 8a and 8b function as air refrigerant heat exchangers that exchange heat between air and refrigerant by taking in outdoor air by the fans 9a and 9b and evaporating low-temperature and low-pressure refrigerant, respectively. .

圧縮機10a、10bは、PWM制御、電圧制御(例えば、PAM制御)及びこれらを組み合せた回転数制御により、低速(例えば、2000回転/分)から高速(例えば、8000回転/分)まで回転数が自在に制御できるようになっている。特に、第1の水冷媒熱交換器6から直接給湯する場合は、ヒートポンプ制御部A,Bは圧縮機10a、10bを高速回転数に設定して運転する。   The compressors 10a and 10b are rotated from a low speed (for example, 2000 rotations / minute) to a high speed (for example, 8000 rotations / minute) by PWM control, voltage control (for example, PAM control) and rotation speed control combining them. Can be freely controlled. In particular, when supplying hot water directly from the first water-refrigerant heat exchanger 6, the heat pump controllers A and B operate with the compressors 10a and 10b set at a high speed.

第1の水冷媒熱交換器6は、冷媒側伝熱管と給水側伝熱管とを備えて構成され、冷媒側伝熱管6a,6bには、ヒートポンプ回路1,2の冷媒がそれぞれ通流し、給水側伝熱管6c,6dには、後述する風呂追焚き回路、直接給湯回路(又は風呂湯張り回路)からの給水がそれぞれ通流する。なお、冷媒側伝熱管の管内を流れる冷媒の流れ方向と給水側伝熱管の管内を流れる給水の流れ方向は、互いに反対の対向流となっている。   The first water-refrigerant heat exchanger 6 includes a refrigerant-side heat transfer tube and a water supply-side heat transfer tube, and the refrigerant of the heat pump circuits 1 and 2 flows through the refrigerant-side heat transfer tubes 6a and 6b, respectively. The side heat transfer tubes 6c and 6d are respectively supplied with water from a bath reheating circuit and a direct hot water supply circuit (or a bath hot water circuit) described later. In addition, the flow direction of the refrigerant flowing in the pipe of the refrigerant side heat transfer tube and the flow direction of the water supply flowing in the pipe of the water supply side heat transfer tube are opposite to each other.

給湯回路3は、直接給湯経路、タンク貯湯回路、風呂湯張り回路、風呂追焚き回路を備えている。   The hot water supply circuit 3 includes a direct hot water supply path, a tank hot water storage circuit, a bath hot water filling circuit, and a bath reheating circuit.

直接給湯経路は、図示しない給水源、減圧逆止弁13、第1の水冷媒熱交換器6を給水管15で順次接続する給水経路と、第1の水冷媒熱交換器6、ミキシングバルブ17、流量調整弁19、図示しない給湯口を給湯管21で順次接続する給湯経路を備えて構成される。給湯管21のミキシングバルブ17の後流側には、給水管15から分岐した水管路22(バイパス回路)が接続され、これにより、第1の水冷媒熱交換器6で加熱された湯と給水経路から分岐して供給される水とを混合することができ、給湯制御部Cで設定される所定の給湯温度に調整することができるようになっている。給湯温度の調整は、水管路22に設置されるミキシングバルブ23の弁開度を調整することで給水の混合量を制御する。なお、流量調整弁19は、給湯量が予定の総量を超えないように流量を制御するものである。   The direct hot water supply path includes a water supply source (not shown), a pressure reducing check valve 13, a water supply path for sequentially connecting the first water refrigerant heat exchanger 6 with a water supply pipe 15, a first water refrigerant heat exchanger 6, and a mixing valve 17. The flow rate adjusting valve 19 and a hot water supply path that sequentially connects hot water supply ports (not shown) through a hot water supply pipe 21 are provided. A water pipe 22 (bypass circuit) branched from the water supply pipe 15 is connected to the downstream side of the mixing valve 17 of the hot water supply pipe 21, whereby hot water and water supplied by the first water refrigerant heat exchanger 6 are connected. The water branched and supplied from the path can be mixed and adjusted to a predetermined hot water temperature set by the hot water controller C. The adjustment of the hot water supply temperature controls the mixing amount of the water supply by adjusting the valve opening degree of the mixing valve 23 installed in the water pipeline 22. The flow rate adjusting valve 19 controls the flow rate so that the hot water supply amount does not exceed the planned total amount.

また、給水経路と給湯経路との間には、第1の水冷媒熱交換器6と並列にタンク25が設けられ、このタンク25の頂部は、ミキシングバルブ17を介して給湯管21に接続される一方、底部は給水管15と接続されている。すなわち、第1の水冷媒熱交換器6で加熱された湯と、タンク25内に蓄えられた約60〜90℃の高温の湯を、ミキシングバルブ17を介して直接給湯経路に混合することにより、例えば、ヒートポンプ回路1が立ち上がる前に、設定された給湯温度(例えば、35〜60℃)の湯を給湯することができる。本実施形態のヒートポンプ給湯機では、例えば、ヒートポンプ回路1が立ち上がる前の短時間は、第1の水冷媒熱交換器6を通流した低温水とタンク25内の湯とを混合し、設定温度に保持して給湯する。そして、ヒートポンプ回路1が立ち上がって運転が安定した後は、タンク25内の湯の使用を停止して、第1の水冷媒熱交換器6で加熱された湯を使用端末へ直接給湯できるため、タンク25の容量を小型化できる。   In addition, a tank 25 is provided in parallel with the first water refrigerant heat exchanger 6 between the water supply path and the hot water supply path, and the top of the tank 25 is connected to the hot water supply pipe 21 via the mixing valve 17. On the other hand, the bottom is connected to the water supply pipe 15. That is, by mixing the hot water heated by the first water-refrigerant heat exchanger 6 and the hot water of about 60 to 90 ° C. stored in the tank 25 directly into the hot water supply path through the mixing valve 17. For example, before the heat pump circuit 1 is started, hot water having a set hot water supply temperature (for example, 35 to 60 ° C.) can be supplied. In the heat pump water heater of the present embodiment, for example, for a short time before the heat pump circuit 1 is started up, the low temperature water that has flowed through the first water refrigerant heat exchanger 6 and the hot water in the tank 25 are mixed, and the set temperature is reached. Hold it in the hot water supply. And after the heat pump circuit 1 is started and the operation is stabilized, the use of the hot water in the tank 25 is stopped, and the hot water heated by the first water refrigerant heat exchanger 6 can be directly supplied to the use terminal. The capacity of the tank 25 can be reduced.

タンク貯湯回路は、タンク25の底部を、循環ポンプ27を介して第1の水冷媒熱交換器6の給水口に接続する経路と、第1の水冷媒熱交換器6の出湯口を、ミキシングバルブ17を介してタンク25の頂部に接続する経路とを備えた閉回路になっている。タンク25には、頂部から底部にかけて温度センサ29,31,33が備えられ、例えば、タンク25内の設定温度以上の湯が設定量未満になったとき、循環ポンプ27が稼動して、タンク底部から抜き出した湯水を第1の水冷媒熱交換器6で加熱し、この加熱された湯を頂部からタンク25内に戻すことによりタンク25の沸き戻しを行なうようになっている。   The tank hot water storage circuit mixes the path connecting the bottom of the tank 25 to the water supply port of the first water refrigerant heat exchanger 6 via the circulation pump 27 and the hot water outlet of the first water refrigerant heat exchanger 6. A closed circuit having a path connected to the top of the tank 25 via the valve 17 is provided. The tank 25 is provided with temperature sensors 29, 31, and 33 from the top to the bottom. For example, when hot water having a temperature equal to or higher than the set temperature in the tank 25 becomes less than a set amount, the circulation pump 27 is operated to The hot water extracted from the tank is heated by the first water-refrigerant heat exchanger 6, and the heated water is returned from the top into the tank 25, whereby the tank 25 is boiled back.

風呂湯張り回路は、図示しない給水源、減圧逆止弁13、第1の水冷媒熱交換器6を給水管15で順次接続する給水経路と、第1の水冷媒熱交換器6、ミキシングバルブ17、流量調整弁19、注湯電磁弁35、循環ポンプ37、浴槽16を水管で順次接続する給湯経路とを備えた回路になっている。   The hot water bathing circuit includes a water supply source (not shown), a pressure reducing check valve 13, a water supply path for sequentially connecting the first water refrigerant heat exchanger 6 with a water supply pipe 15, a first water refrigerant heat exchanger 6, and a mixing valve. 17, a flow rate adjusting valve 19, a pouring electromagnetic valve 35, a circulation pump 37, and a hot water supply path for sequentially connecting the bathtub 16 with water pipes.

風呂追焚き回路は、浴槽16、循環ポンプ37、注湯電磁弁35、第1の水冷媒熱交換器6、浴槽16を水管で接続した閉回路になっている。   The bath reheating circuit is a closed circuit in which the bathtub 16, the circulation pump 37, the pouring solenoid valve 35, the first water refrigerant heat exchanger 6, and the bathtub 16 are connected by a water pipe.

一方、ヒートポンプ回路4は、圧縮機10b及び蒸発器8bをヒートポンプ回路2と共有し、圧縮機10bの吐出側と蒸発器8bの入り側とをバイパスさせた構成になっている。すなわち、ヒートポンプ回路4は、圧縮器10b、第2の水冷媒熱交換器11、減圧装置7c、蒸発器8bを順次冷媒配管で接続した閉回路となっている。第2の水冷媒熱交換器11は、冷媒側伝熱管11aと給水側伝熱管11bとを備え、冷媒側伝熱管11aには、ヒートポンプ回路4の冷媒が通流し、給水側伝熱管11bには、暖房回路5の循環水が通流する。   On the other hand, the heat pump circuit 4 shares the compressor 10b and the evaporator 8b with the heat pump circuit 2, and has a configuration in which the discharge side of the compressor 10b and the entrance side of the evaporator 8b are bypassed. That is, the heat pump circuit 4 is a closed circuit in which the compressor 10b, the second water refrigerant heat exchanger 11, the decompression device 7c, and the evaporator 8b are sequentially connected by the refrigerant pipe. The second water refrigerant heat exchanger 11 includes a refrigerant side heat transfer tube 11a and a water supply side heat transfer tube 11b. The refrigerant of the heat pump circuit 4 flows through the refrigerant side heat transfer tube 11a, and the water supply side heat transfer tube 11b passes through the refrigerant. The circulating water of the heating circuit 5 flows.

暖房回路5は、第2の水冷媒熱交換器11、暖房パネル12、循環ポンプ14を順次水配管で接続した閉回路になっている。   The heating circuit 5 is a closed circuit in which the second water-refrigerant heat exchanger 11, the heating panel 12, and the circulation pump 14 are sequentially connected by water piping.

また、本実施形態のヒートポンプ給湯機には、上述したタンク25の温度センサ29,31,33のほか、給水流量を検知する流量センサ41、給水温度を検知する温度センサ43、第1の水冷媒熱交換器6から出湯する水の温度を検知する温度センサ44、タンク25から供給される水と第1の水冷媒熱交換器6から供給される水との混合水の温度を検知する温度センサ45、最終的な給湯温度を検知する温度センサ47、蒸発器8a,8bの中間温度を検知する温度センサ51a,51b、圧縮機10a,10bの冷媒吸込み温度を検知する温度センサ53a,53b、暖房回路5の循環水温度を検知するサーミスタ61が各部に備えられている。   Further, in the heat pump water heater of the present embodiment, in addition to the temperature sensors 29, 31, 33 of the tank 25 described above, a flow rate sensor 41 for detecting the feed water flow rate, a temperature sensor 43 for detecting the feed water temperature, and the first water refrigerant. A temperature sensor 44 that detects the temperature of the water discharged from the heat exchanger 6, and a temperature sensor that detects the temperature of the mixed water of the water supplied from the tank 25 and the water supplied from the first water-refrigerant heat exchanger 6. 45, a temperature sensor 47 that detects the final hot water supply temperature, temperature sensors 51a and 51b that detect intermediate temperatures of the evaporators 8a and 8b, temperature sensors 53a and 53b that detect refrigerant suction temperatures of the compressors 10a and 10b, and heating Each part is provided with a thermistor 61 for detecting the circulating water temperature of the circuit 5.

ヒートポンプ制御部A,Bは、例えば、ヒートポンプ回路1,ヒートポンプ回路2及び4にそれぞれ対応し、給湯用リモコン、暖房用リモコンなどの操作・設定と各センサの検出値に基づいてヒートポンプ回路1,2,4の運転・停止並びに圧縮機10a,10bの回転数制御を行なう。給湯制御部Cは、例えば、各センサの検出値に基づいてミキシングバルブ17,23、流量調整弁19などを制御する。   The heat pump control units A and B correspond to, for example, the heat pump circuit 1 and the heat pump circuits 2 and 4, respectively. The heat pump circuits 1 and 2 are based on the operation / setting of the hot water remote control, the heating remote control, and the detection values of the sensors. , 4 and the rotation speed control of the compressors 10a and 10b. The hot water supply control unit C controls, for example, the mixing valves 17 and 23, the flow rate adjustment valve 19 and the like based on the detection values of the sensors.

なお、ヒートポンプ回路1,2,4、タンク25を含めた給湯回路及び浴槽16、暖房パネル12以外のその他の機器類は、図示しない箱体の中にすべて収納されている。   The heat pump circuits 1, 2 and 4, the hot water supply circuit including the tank 25, and other devices other than the bathtub 16 and the heating panel 12 are all housed in a box (not shown).

このように構成されるヒートポンプ給湯機において、使用端末が利用された場合の各部の動作について説明する。   In the heat pump water heater configured as described above, the operation of each part when the use terminal is used will be described.

使用端末(給湯口)から給湯が開始されると、水道圧により図示しない給水金具から流入した給水が、減圧逆止弁13を経由して給水管15内を流れる。このとき、流量センサ41が給水を検知すると、ヒートポンプ制御部A,Bにより圧縮機10a,10bの運転が開始され、ヒートポンプ回路1,2の運転が開始される。水道圧により給水された水が、第1の水冷媒熱交換器6に流入すると、熱交換により所定温度に加熱された湯が出湯し、ミキシングバルブ17、流量調整弁19を経て使用端末から直接給湯される。   When hot water supply is started from the use terminal (hot water supply port), water supplied from a water supply fitting (not shown) due to water pressure flows through the water supply pipe 15 via the pressure reducing check valve 13. At this time, when the flow sensor 41 detects water supply, the operation of the compressors 10a and 10b is started by the heat pump controllers A and B, and the operation of the heat pump circuits 1 and 2 is started. When the water supplied by the water pressure flows into the first water-refrigerant heat exchanger 6, the hot water heated to a predetermined temperature is discharged by heat exchange, and directly from the use terminal via the mixing valve 17 and the flow rate adjusting valve 19. Hot water is supplied.

ヒートポンプ回路1,2が立ち上がるまでの間、第1の水冷媒熱交換器6で加熱された湯水の温度は、設定された出湯温度よりも低いため、タンク25に蓄えられた高温の湯をミキシングバルブ17により所定量混合することで、給湯温度に近い湯温に調整する。ここで、ミキシングバルブ17のタンク25側の流入口を開放させることによりタンク25に蓄えられた高温の湯は、底部からタンク25内に流入する水道水の水圧によって頂部からタンク25の外側に押し出される。このように、運転の初期においては、タンク25から供給される湯の量は多く、第1の水冷媒熱交換器6を通じて供給される湯の量は少なくなっている(混合運転モード)。そのため、第1の水冷媒熱交換器6に供給される湯の量をより少なくすることで、設定された給湯温度(例えば、35〜60℃)の湯をより早く給湯することができる。   Until the heat pump circuits 1 and 2 are started up, the temperature of the hot water heated by the first water-refrigerant heat exchanger 6 is lower than the set hot water temperature, so the hot water stored in the tank 25 is mixed. By mixing a predetermined amount by the valve 17, the hot water temperature is adjusted to be close to the hot water supply temperature. Here, the hot water stored in the tank 25 by opening the inlet of the mixing valve 17 on the tank 25 side is pushed out of the tank 25 from the top by the water pressure of tap water flowing into the tank 25 from the bottom. It is. Thus, in the initial stage of operation, the amount of hot water supplied from the tank 25 is large, and the amount of hot water supplied through the first water refrigerant heat exchanger 6 is small (mixing operation mode). Therefore, by reducing the amount of hot water supplied to the first water-refrigerant heat exchanger 6, hot water at a set hot water supply temperature (for example, 35 to 60 ° C.) can be supplied more quickly.

なお、この混合運転モードにて、例えば、温度センサ47が検知した使用端末の湯温が設定温度以上となった場合、ミキシングバルブ23が開放されて水管路22から水が混合され、設定温度に調節される。   In this mixing operation mode, for example, when the hot water temperature of the use terminal detected by the temperature sensor 47 is equal to or higher than the set temperature, the mixing valve 23 is opened and water is mixed from the water line 22 to reach the set temperature. Adjusted.

この状態で運転が継続されると、ヒートポンプ回路1,2は徐々に安定し始め、第1の水冷媒熱交換器6から出湯する湯の温度も高温となり、タンク25と第1の水冷媒熱交換器25からそれぞれ供給される湯を混合するミキシングバルブ17は、徐々にタンク25からの給湯を絞り込んでゆく。そして、第1の水冷媒熱交換器6からの出湯温度が設定温度となった場合に、ミキシングバルブ17のタンク25側の流入口を全閉し、ヒートポンプ回路1,2によって加熱された湯水のみで使用端末に給湯するように制御される(瞬間湯沸しモード)。   When the operation is continued in this state, the heat pump circuits 1 and 2 start to stabilize gradually, the temperature of the hot water discharged from the first water refrigerant heat exchanger 6 also becomes high, and the tank 25 and the first water refrigerant heat The mixing valve 17 for mixing the hot water supplied from the exchanger 25 gradually narrows down the hot water supply from the tank 25. And when the hot water temperature from the 1st water refrigerant | coolant heat exchanger 6 turns into preset temperature, the inlet by the side of the tank 25 of the mixing valve 17 is fully closed, and only the hot water heated by the heat pump circuits 1 and 2 is used. It is controlled to supply hot water to the terminal in use (instant water heating mode).

このとき設定された温度で使用端末に湯を供給するため、温度センサ45の検出温度に基づいて、ミキシングバルブ17を経て第1の水冷媒熱交換器6から供給される湯と水管路22からミキシングバルブ23を経て供給される給水の混合比を調整する。すなわち、水冷媒熱交換器6とタンク25をバイパスして直接給湯経路に水を混合する。この経路をバイパス回路という。これによって、設定温度に調整された湯を使用端末に供給する。特に、要求給湯量や要求温度が下がった場合には、第1の水冷媒熱交換器6から出湯する湯が設定温度よりも高くなる可能性がある。このため、ミキシングバルブ23を調節し、給水の混合量を適宜調整することで、設定温度の湯を迅速に給湯することができる(水混合モード)。効率を考えると、なるべく水を混合しないよう圧縮機の回転数を制御して水冷媒熱交換器6の加熱能力を制御することが好ましいが、水を混合することで応答性を改善することができる。   In order to supply hot water to the use terminal at the set temperature at this time, based on the temperature detected by the temperature sensor 45, the hot water supplied from the first water refrigerant heat exchanger 6 through the mixing valve 17 and the water conduit 22 are used. The mixing ratio of the feed water supplied through the mixing valve 23 is adjusted. That is, water is mixed directly into the hot water supply path, bypassing the water refrigerant heat exchanger 6 and the tank 25. This path is called a bypass circuit. As a result, hot water adjusted to the set temperature is supplied to the use terminal. In particular, when the required hot water supply amount or the required temperature decreases, the hot water discharged from the first water-refrigerant heat exchanger 6 may become higher than the set temperature. For this reason, by adjusting the mixing valve 23 and appropriately adjusting the mixing amount of the water supply, hot water at the set temperature can be quickly supplied (water mixing mode). In consideration of efficiency, it is preferable to control the heating capacity of the water refrigerant heat exchanger 6 by controlling the number of rotations of the compressor so that water is not mixed as much as possible, but it is possible to improve responsiveness by mixing water. it can.

一方、タンク25内の沸き戻し運転は、ヒートポンプ回路1,2を運転させたまま、第1の水冷媒熱交換器6の出口側の水温を温度センサ44で検知し、検出温度が所定温度、つまり貯湯温度になったところで、循環ポンプ27を運転させる。これにより、タンク貯湯回路において、タンク25の下部に溜まった水は、タンク25内から抜き出されて第1の水冷媒熱交換器6に導かれ、所定温度に加熱された後、ミキシングバルブ17を介してタンク25の頂部から再びタンク25内に戻される。   On the other hand, in the boil-back operation in the tank 25, the water temperature on the outlet side of the first water-refrigerant heat exchanger 6 is detected by the temperature sensor 44 while the heat pump circuits 1 and 2 are operated, and the detected temperature is a predetermined temperature, That is, when the hot water storage temperature is reached, the circulation pump 27 is operated. Thereby, in the tank hot water storage circuit, the water accumulated in the lower part of the tank 25 is extracted from the tank 25 and guided to the first water refrigerant heat exchanger 6 and heated to a predetermined temperature, and then the mixing valve 17. Through the top of the tank 25 and returned to the tank 25 again.

ここで、温度センサ44により第1の水冷媒熱交換器6から出湯した湯の温度が検知されると、その検出温度がタンク25の貯湯温度になるように、圧縮機10a,10bの回転数、及び循環ポンプ27の吐出流量が制御される。そして、タンク25底部の温度センサ33によってタンク25の沸上げ完了を検知すると、タンク25内の沸き戻し運転が終了し、待機状態となる。   Here, when the temperature of the hot water discharged from the first water / refrigerant heat exchanger 6 is detected by the temperature sensor 44, the rotation speeds of the compressors 10 a and 10 b are adjusted so that the detected temperature becomes the hot water storage temperature of the tank 25. The discharge flow rate of the circulation pump 27 is controlled. Then, when the completion of the boiling of the tank 25 is detected by the temperature sensor 33 at the bottom of the tank 25, the boil-back operation in the tank 25 is finished and a standby state is entered.

また、浴槽16に湯張りを行なう場合は、風呂湯張り回路において、上記と同様の運転(混合運転モード、瞬間湯沸しモード、水混合モード)を行い、注湯電磁弁35を所定量開放することで、湯張り運転を行なう。また、浴槽16の追焚きを行なう場合は、風呂追焚き回路において、循環ポンプ37を運転させ、浴槽16から抜き出した浴槽水を第1の水冷媒熱交換器6に導いて熱交換し、加熱された湯水を再び浴槽16内に戻すことにより、追焚き運転を行なう。   In addition, when filling the bathtub 16 with hot water, the same operation as described above (mixing operation mode, instantaneous boiling mode, water mixing mode) is performed in the bath hot water circuit, and the pouring solenoid valve 35 is opened by a predetermined amount. Then, hot water filling operation is performed. Further, when reheating the bathtub 16, in the bath reheating circuit, the circulation pump 37 is operated, and the bathtub water extracted from the bathtub 16 is guided to the first water / refrigerant heat exchanger 6 to perform heat exchange and heating. The returned hot water is returned to the bathtub 16 to perform a chasing operation.

次に、本実施形態のヒートポンプ給湯機を用いた暖房運転について説明する。上述したように、本実施形態では、圧縮機10bと蒸発器8bを共有するヒートポンプ回路2とヒートポンプ回路4を切替可能に設けることにより、例えば、給湯運転と暖房運転を自在に切り替えることができる。すなわち、使用端末側から給湯及び暖房の要求がきたとき、給湯はヒートポンプ回路1、暖房はヒートポンプ回路4をそれぞれ運転することにより行なう。   Next, the heating operation using the heat pump water heater of this embodiment will be described. As described above, in the present embodiment, by providing the heat pump circuit 2 and the heat pump circuit 4 that share the compressor 10b and the evaporator 8b in a switchable manner, for example, a hot water supply operation and a heating operation can be switched freely. That is, when there is a request for hot water supply and heating from the use terminal side, hot water supply is performed by operating the heat pump circuit 1 and heating is performed by operating the heat pump circuit 4, respectively.

ここで、給湯運転と暖房運転を切り替える場合、例えば、ヒートポンプ回路2が運転中、暖房運転の要求がくると、ヒートポンプ制御部A,Bの指令により減圧装置7bの弁が全閉するとともに、減圧装置7cの弁が開放される。これにより、それまでヒートポンプ回路2内を循環していた冷媒(図2の点線矢印)は、ヒートポンプ回路4内を循環するようになる(図2の実線矢印)。そして、暖房運転中、使用端末から暖房温度の変更の要求がくると、サーミスタ61の検出温度に基づいて、例えば、循環ポンプ14の吐出流量を調整したり、圧縮機10bの回転数を調整することで、暖房パネル12の加熱温度を調整することができる。   Here, when switching between the hot water supply operation and the heating operation, for example, when a request for the heating operation is received while the heat pump circuit 2 is in operation, the valve of the decompression device 7b is fully closed by the command of the heat pump control units A and B, and the decompression is performed. The valve of the device 7c is opened. As a result, the refrigerant (dotted arrow in FIG. 2) that has been circulating in the heat pump circuit 2 until then circulates in the heat pump circuit 4 (solid arrow in FIG. 2). Then, when a request to change the heating temperature is received from the use terminal during the heating operation, for example, the discharge flow rate of the circulation pump 14 or the rotation speed of the compressor 10b is adjusted based on the detected temperature of the thermistor 61. Thus, the heating temperature of the heating panel 12 can be adjusted.

ところで、例えば、給湯運転において、ヒートポンプ回路2を運転し、ヒートポンプ回路4を停止している場合、圧縮機10bから吐出された高温高圧の冷媒の一部は、圧縮機10bの吐出側の冷媒管を分岐させて形成されるヒートポンプ回路4の冷媒管内に流入する場合がある。すなわち、ヒートポンプ回路4の冷媒管内に流入した冷媒は、例えば、減圧装置7cの入り側に配置された第2の水冷媒熱交換器11において凝縮され、液化して蓄積するおそれがある。このように、冷媒がヒートポンプ回路4内で蓄積されると、ヒートポンプ回路2における冷媒の循環量が減少し、加熱能力が低下する。この冷媒量の減少を補うため、圧縮機10bの回転数を増加させることが考えられるが、これによれば、ヒートポンプ回路2の加熱効率を低下させることになる。また、暖房運転においても、給湯運転の場合と同様の問題が生じ、ヒートポンプ回路4における冷媒の循環量が減少し、加熱能力が低下する。   By the way, for example, in the hot water supply operation, when the heat pump circuit 2 is operated and the heat pump circuit 4 is stopped, a part of the high-temperature and high-pressure refrigerant discharged from the compressor 10b is a refrigerant pipe on the discharge side of the compressor 10b. May flow into the refrigerant pipe of the heat pump circuit 4 formed by branching. That is, the refrigerant that has flowed into the refrigerant pipe of the heat pump circuit 4 may be condensed, liquefied, and accumulated in the second water refrigerant heat exchanger 11 disposed on the entry side of the decompression device 7c, for example. Thus, when a refrigerant | coolant is accumulate | stored in the heat pump circuit 4, the circulation amount of the refrigerant | coolant in the heat pump circuit 2 will reduce, and a heating capability will fall. In order to compensate for the decrease in the refrigerant amount, it is conceivable to increase the rotational speed of the compressor 10b. However, according to this, the heating efficiency of the heat pump circuit 2 is reduced. Also, in the heating operation, the same problem as in the hot water supply operation occurs, the amount of refrigerant circulating in the heat pump circuit 4 decreases, and the heating capacity decreases.

そこで、本実施形態では、例えば、給湯運転において、ヒートポンプ回路2の運転中は、ヒートポンプ制御部Bなどによって、ヒートポンプ回路4の減圧装置7cの弁、つまり膨張弁を設定量開放するように制御している。これによれば、ヒートポンプ回路2からヒートポンプ回路4の冷媒管に漏れ込んだ冷媒は、第2の水冷媒熱交換器11、減圧装置7cを経由して冷媒管内を流れ、液溜まりを生じることなく、再びヒートポンプ回路2内に戻される。このため、ヒートポンプ回路2を循環する冷媒量の減少を抑制することができ、圧縮機10bの回転数の増加を抑え、給湯運転を効率的に行なうことができる。また、暖房運転では、上記と同様、ヒートポンプ回路4を運転中は、減圧装置7bを設定量開放するように制御することで、ヒートポンプ回路4を循環する冷媒量の減少を抑制し、暖房運転を効率的に行なうことができる。なお、運転中のヒートポンプ回路内の減圧装置の開度を増減することによって、冷媒循環量を調整できることはいうまでもない。   Therefore, in the present embodiment, for example, in the hot water supply operation, during operation of the heat pump circuit 2, the heat pump control unit B or the like controls the valve of the decompression device 7c of the heat pump circuit 4, that is, the expansion valve to open a set amount. ing. According to this, the refrigerant that has leaked from the heat pump circuit 2 into the refrigerant pipe of the heat pump circuit 4 flows through the refrigerant pipe via the second water refrigerant heat exchanger 11 and the decompression device 7c without causing a liquid pool. Then, it is returned to the heat pump circuit 2 again. For this reason, the reduction | decrease of the refrigerant | coolant amount which circulates through the heat pump circuit 2 can be suppressed, the increase in the rotation speed of the compressor 10b can be suppressed, and a hot water supply operation can be performed efficiently. In the heating operation, similarly to the above, during the operation of the heat pump circuit 4, the decompression device 7b is controlled so as to release a set amount, thereby suppressing the decrease in the amount of refrigerant circulating in the heat pump circuit 4, and the heating operation. It can be done efficiently. Needless to say, the refrigerant circulation rate can be adjusted by increasing or decreasing the opening of the decompression device in the operating heat pump circuit.

ここで、圧縮機と蒸発器を共有する切替可能な2つのヒートポンプ回路において、例えば、一方の給湯用ヒートポンプ回路を運転する際に、他方の暖房用ヒートポンプ回路の減圧装置(膨張弁)の開放量について図を用いて説明する。   Here, in the two switchable heat pump circuits sharing the compressor and the evaporator, for example, when operating one of the hot water supply heat pump circuits, the opening amount of the decompression device (expansion valve) of the other heating heat pump circuit Will be described with reference to the drawings.

図3は、給湯用ヒートポンプ回路の運転時において、暖房用ヒートポンプ回路の減圧装置7cの膨張弁開度(横軸)と、給湯用ヒートポンプ回路の加熱能力,冷媒循環量,圧縮機回転数(縦軸)との関係を示す図であり、図4は、暖房用ヒートポンプ回路の運転時において、給湯用ヒートポンプ回路の減圧装置7bの膨張弁開度(横軸)と、暖房用ヒートポンプ回路の加熱能力,冷媒循環量,圧縮機回転数(縦軸)との関係を示す図である。   FIG. 3 shows the expansion valve opening (horizontal axis) of the decompression device 7c of the heating heat pump circuit, the heating capacity of the hot water supply heat pump circuit, the refrigerant circulation rate, and the compressor rotation speed (vertical) during operation of the hot water supply heat pump circuit. 4 is a diagram showing the relationship between the expansion valve opening (horizontal axis) of the decompression device 7b of the hot water supply heat pump circuit and the heating capacity of the heating heat pump circuit during operation of the heating heat pump circuit. It is a figure which shows the relationship between refrigerant | coolant circulation amount and compressor rotation speed (vertical axis).

図3から明らかなように、給湯用ヒートポンプ回路の加熱能力(Q)を維持するため、暖房用ヒートポンプ回路の膨張弁開度を全開100%に対して約5%に設定することで、COP(効率)を最も高くすることができる。膨張弁開度を5%よりも小さくすると、暖房用ヒートポンプ回路側へ流入した冷媒が給湯用ヒートポンプ回路側へ供給されないため、暖房用ヒートポンプ回路の水冷媒熱交換器にて冷媒が凝縮し、液溜まりが生じる。このため、給湯用ヒートポンプ回路の冷媒循環量(Gw)は減少し、目標の加熱能力を維持するためには、圧縮機回転数(N)を増加させなければならず、COPは低下する。これに対し、膨張弁開度を5%よりも大きくすると、暖房用ヒートポンプ回路の水冷媒熱交換器に冷媒が余分に流れてしまい、給湯用ヒートポンプ回路の必要凝縮熱(凝縮エンタルピ)が減少し、熱ロスが生じる。このため、給湯用ヒートポンプ回路の冷媒循環量(Gw)が減少し、目標加熱能力を維持するためには圧縮機回転数(N)を増加させなければならず、COPは低下する。同様に、図4からも明らかなように、給湯用ヒートポンプ回路の膨張弁開度を約5%に設定することで、COPを最も高くすることができる。ただし、多少の幅(±2%)をみて、膨張弁開度は3〜7%程度とするのがよい。   As apparent from FIG. 3, in order to maintain the heating capacity (Q) of the hot water supply heat pump circuit, the expansion valve opening degree of the heating heat pump circuit is set to about 5% with respect to the fully opened 100%. Efficiency) can be maximized. If the expansion valve opening is smaller than 5%, the refrigerant flowing into the heating heat pump circuit side is not supplied to the hot water supply heat pump circuit side, so that the refrigerant condenses in the water refrigerant heat exchanger of the heating heat pump circuit. Puddle occurs. For this reason, the refrigerant circulation amount (Gw) of the hot water supply heat pump circuit decreases, and in order to maintain the target heating capacity, the compressor rotational speed (N) must be increased, and the COP decreases. On the other hand, if the expansion valve opening is larger than 5%, excess refrigerant flows into the water / refrigerant heat exchanger of the heating heat pump circuit, and the required condensation heat (condensation enthalpy) of the hot water supply heat pump circuit decreases. Heat loss occurs. For this reason, the refrigerant circulation amount (Gw) of the hot water supply heat pump circuit decreases, and in order to maintain the target heating capacity, the compressor rotational speed (N) must be increased, and the COP decreases. Similarly, as is apparent from FIG. 4, the COP can be maximized by setting the expansion valve opening degree of the hot water supply heat pump circuit to about 5%. However, considering a certain width (± 2%), the expansion valve opening is preferably about 3 to 7%.

以上述べたように、本実施形態のヒートポンプ給湯機によれば、切替可能な一方のヒートポンプ回路の運転中において、他方のヒートポンプ回路の減圧装置の弁を設定量開放(例えば、5%開度)させることにより、他方のヒートポンプ回路側に流入する冷媒を一方のヒートポンプ回路側に回収することができる。これにより、一方のヒートポンプ回路において適正な冷媒の循環量を確保することができ、給湯及び暖房運転の効率を高く維持することができる。   As described above, according to the heat pump water heater of this embodiment, during operation of one heat pump circuit that can be switched, the valve of the decompression device of the other heat pump circuit is opened by a set amount (for example, 5% opening). By doing so, the refrigerant flowing into the other heat pump circuit side can be recovered to the one heat pump circuit side. As a result, an appropriate refrigerant circulation amount can be secured in one of the heat pump circuits, and the efficiency of hot water supply and heating operation can be maintained high.

また、本実施形態のヒートポンプ給湯機は、給湯運転及び暖房運転の切替可能なヒートポンプ回路を備えるとともに、給湯運転専用のヒートポンプ回路を別途備えているため、給湯運転及び暖房運転を同時に行なうことができ、湯切れを生じることなく、しかも、給湯及び暖房運転の効率を高く維持することができる。   In addition, the heat pump water heater of this embodiment includes a heat pump circuit that can be switched between a hot water supply operation and a heating operation, and a heat pump circuit dedicated to the hot water supply operation, so that the hot water supply operation and the heating operation can be performed simultaneously. In addition, the hot water supply and the heating operation efficiency can be kept high without causing hot water to run out.

また、本実施形態のヒートポンプ給湯機は、湯を貯蔵するタンクを備えているが、タンクを装備せずに直接給湯方式のみで給湯する構成としてもよい。   Moreover, although the heat pump water heater of this embodiment is provided with the tank which stores hot water, it is good also as a structure which supplies hot water only with a direct hot water supply system, without equip | installing a tank.

なお、冷媒は二酸化炭素COとし、高圧側で超臨界となる冷凍サイクルとすることにより、タンクに貯湯する湯の温度を60〜90℃の高温にすることができる。 Note that the refrigerant is carbon dioxide CO 2, by a refrigeration cycle which becomes supercritical at the high pressure side, the temperature of the hot water to the hot water storage tank can be a high temperature of 60 to 90 ° C..

本発明を適用してなるヒートポンプ給湯機の一例を示す全体構成図である。It is a whole lineblock diagram showing an example of a heat pump water heater to which the present invention is applied. 図1の一部を拡大して示す構成図である。It is a block diagram which expands and shows a part of FIG. 給湯用ヒートポンプ回路の運転時において、暖房用ヒートポンプ回路の膨張弁開度(横軸)と、給湯用ヒートポンプ回路の加熱能力,冷媒循環量,圧縮機回転数(縦軸)との関係を示す図である。The figure which shows the relationship between the expansion valve opening degree (horizontal axis) of the heat pump circuit for heating, the heating capacity of the heat pump circuit for hot water supply, the amount of refrigerant circulation, and the rotation speed of the compressor (vertical axis) during operation of the heat pump circuit for hot water supply It is. 暖房用ヒートポンプ回路の運転時において、給湯用ヒートポンプ回路の膨張弁開度(横軸)と、暖房用ヒートポンプ回路の加熱能力,冷媒循環量,圧縮機回転数(縦軸)との関係を示す図である。The figure which shows the relationship between the expansion valve opening degree (horizontal axis) of the heat pump circuit for hot water supply, the heating capability of the heating pump circuit, the refrigerant circulation amount, and the compressor rotation speed (vertical axis) during the operation of the heating heat pump circuit It is.

符号の説明Explanation of symbols

1,2,4 ヒートポンプ回路
5 暖房回路
6 第1の水冷媒熱交換器
7a,7b,7c 減圧装置
8a,8b 蒸発器
10a,10b 圧縮器
11 第2の水冷媒熱交換器
12 暖房パネル
14,27,37 循環ポンプ
15 給水管
17,23 ミキシングバルブ
19 流量調整弁
21 給湯管
25 タンク
A,B ヒートポンプ制御部
C 給湯制御部
1, 2, 4 Heat pump circuit 5 Heating circuit 6 First water refrigerant heat exchanger 7a, 7b, 7c Pressure reducing device 8a, 8b Evaporator 10a, 10b Compressor 11 Second water refrigerant heat exchanger 12 Heating panel 14, 27, 37 Circulation pump 15 Water supply pipe 17, 23 Mixing valve 19 Flow rate adjustment valve 21 Hot water supply pipe 25 Tank A, B Heat pump controller C Hot water controller

Claims (7)

圧縮機に第1の水冷媒熱交換器と第1の減圧装置を介して接続された蒸発器を有する第1のヒートポンプ回路と、前記第1の水冷媒熱交換器により加熱された温水を給湯口に供給する直接給湯経路と、前記圧縮機に第2の水冷媒熱交換器と第2の減圧装置を介して接続された前記蒸発器を有する第2のヒートポンプ回路と、前記第2の水冷媒熱交換器により加熱された温水を加熱源との間で循環させる暖房回路と、前記第1のヒートポンプ回路と前記第2のヒートポンプ回路の運転を切り替える切替手段とを備え、
前記第1のヒートポンプ回路の運転中は、前記第2の減圧装置の弁を設定量開放し、前記第2のヒートポンプ回路の運転中は、前記第1の減圧装置の弁を設定量開放することを特徴とするヒートポンプ給湯機。
A first heat pump circuit having an evaporator connected to a compressor via a first water refrigerant heat exchanger and a first pressure reducing device, and hot water heated by the first water refrigerant heat exchanger A direct hot water supply path for supplying to the mouth, a second heat pump circuit having the evaporator connected to the compressor via a second water refrigerant heat exchanger and a second pressure reducing device, and the second water A heating circuit that circulates hot water heated by the refrigerant heat exchanger with a heating source; and a switching unit that switches operation of the first heat pump circuit and the second heat pump circuit,
During operation of the first heat pump circuit, a set amount of the valve of the second pressure reducing device is opened, and during operation of the second heat pump circuit, a set amount of the valve of the first pressure reducing device is opened. A heat pump water heater characterized by
圧縮機に第1の水冷媒熱交換器と第1の減圧装置を介して接続された蒸発器を有する第1のヒートポンプ回路と、前記第1の水冷媒熱交換器により加熱された温水を給湯口に供給する直接給湯経路と、前記圧縮機に第2の水冷媒熱交換器と第2の減圧装置を介して接続された前記蒸発器を有する第2のヒートポンプ回路と、前記第2の水冷媒熱交換器により加熱された温水を加熱源との間で循環させる暖房回路とを備え、
前記暖房回路を運転せず前記第1のヒートポンプ回路を運転する場合には、前記第2の減圧装置の弁を設定量だけ開放し、前記第1のヒートポンプ回路を運転せず前記第2のヒートポンプ回路を運転する場合には、前記第1の減圧装置の弁を設定量だけ開放するように、前記各減圧装置を制御する制御手段とを有するヒートポンプ給湯機。
A first heat pump circuit having an evaporator connected to a compressor via a first water refrigerant heat exchanger and a first pressure reducing device, and hot water heated by the first water refrigerant heat exchanger A direct hot water supply path for supplying to the mouth, a second heat pump circuit having the evaporator connected to the compressor via a second water refrigerant heat exchanger and a second pressure reducing device, and the second water A heating circuit that circulates hot water heated by the refrigerant heat exchanger with a heating source,
When operating the first heat pump circuit without operating the heating circuit, the valve of the second pressure reducing device is opened by a set amount, and the second heat pump is not operated without operating the first heat pump circuit. When operating the circuit, a heat pump water heater having control means for controlling each of the pressure reducing devices so as to open the valve of the first pressure reducing device by a set amount.
前記制御手段は、前記暖房回路を運転せず前記第1のヒートポンプ回路を運転する場合には、前記第1の減圧装置の開度を増減して冷媒循環量を調整し、及び/又は、前記第1のヒートポンプ回路を運転せず前記第2のヒートポンプ回路を運転する場合には、前記第2の減圧装置の開度を増減して冷媒循環量を調整することを特徴とする請求項2に記載のヒートポンプ給湯機。 When the first heat pump circuit is operated without operating the heating circuit, the control means adjusts the refrigerant circulation amount by increasing / decreasing the opening of the first pressure reducing device, and / or 3. The refrigerant circulation amount is adjusted by increasing or decreasing an opening degree of the second decompression device when the second heat pump circuit is operated without operating the first heat pump circuit. The heat pump water heater described. 前記第1又は第2の減圧装置の弁を開放するときの前記設定量は、3乃至7%の弁開度であることを特徴とする請求項1乃至3のいずれかに記載のヒートポンプ給湯機。 The heat pump water heater according to any one of claims 1 to 3, wherein the set amount when the valve of the first or second pressure reducing device is opened is a valve opening of 3 to 7%. . 前記第1の水冷媒熱交換器は、前記第1と第2のヒートポンプ回路と独立する第3のヒートポンプ回路の冷媒流路を有することを特徴とする請求項4に記載のヒートポンプ給湯機。 5. The heat pump water heater according to claim 4, wherein the first water refrigerant heat exchanger has a refrigerant flow path of a third heat pump circuit independent of the first and second heat pump circuits. 6. 前記直接給湯経路に、貯湯された湯を混合することができるタンクと、給水された水を混合することができるバイパス回路と、を備えたことを特徴とする請求項5に記載のヒートポンプ給湯機。 The heat pump water heater according to claim 5, further comprising a tank capable of mixing hot water stored in the direct hot water supply path and a bypass circuit capable of mixing water supplied. . 前記各ヒートポンプ回路内に循環する冷媒は二酸化炭素であり、高圧側で超臨界となる冷凍サイクルであることを特徴とする請求項6に記載のヒートポンプ給湯機。
The heat pump water heater according to claim 6, wherein the refrigerant circulating in each of the heat pump circuits is carbon dioxide, and is a refrigeration cycle that becomes supercritical on the high-pressure side.
JP2005224305A 2005-08-02 2005-08-02 Heat pump water heater Expired - Fee Related JP4277836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005224305A JP4277836B2 (en) 2005-08-02 2005-08-02 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005224305A JP4277836B2 (en) 2005-08-02 2005-08-02 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2007040590A true JP2007040590A (en) 2007-02-15
JP4277836B2 JP4277836B2 (en) 2009-06-10

Family

ID=37798746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005224305A Expired - Fee Related JP4277836B2 (en) 2005-08-02 2005-08-02 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4277836B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275271A (en) * 2007-05-01 2008-11-13 Hitachi Appliances Inc Heat pump hot water supply floor heating device
JP2009299941A (en) * 2008-06-11 2009-12-24 Rinnai Corp Hot water supply system
JP2009299942A (en) * 2008-06-11 2009-12-24 Rinnai Corp Hot water supply system
WO2011136064A1 (en) * 2010-04-28 2011-11-03 三菱重工業株式会社 Heat pump water heater using co2 refrigerant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275271A (en) * 2007-05-01 2008-11-13 Hitachi Appliances Inc Heat pump hot water supply floor heating device
JP2009299941A (en) * 2008-06-11 2009-12-24 Rinnai Corp Hot water supply system
JP2009299942A (en) * 2008-06-11 2009-12-24 Rinnai Corp Hot water supply system
WO2011136064A1 (en) * 2010-04-28 2011-11-03 三菱重工業株式会社 Heat pump water heater using co2 refrigerant
JP2011232000A (en) * 2010-04-28 2011-11-17 Mitsubishi Heavy Ind Ltd Heat pump water heater using co2 refrigerant

Also Published As

Publication number Publication date
JP4277836B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
KR100640137B1 (en) Heat pumped water heating and heating apparaturs
JP5087484B2 (en) Hot water storage hot water heater
JP4958460B2 (en) Heat pump water heater
JP5071434B2 (en) Heat pump water heater
JP2008002776A (en) Heat pump hot water supply system
JP4277836B2 (en) Heat pump water heater
JP3887781B2 (en) Heat pump water heater
JP2010084975A (en) Heating device
JP5746104B2 (en) Hot water heating system
JP5575049B2 (en) Heat pump water heater
JP2007322084A (en) Heat pump water heater
JP2005016757A (en) Heat pump water heater
JP5095488B2 (en) Heat pump water heater
JP2006003077A (en) Heat pump type hot water supply apparatus
JP2004218910A (en) Heat pump type hot-water supply heating device
JP3869801B2 (en) Heat pump water heater / heater
JP2013238336A (en) Water supply heating system
JP2010054145A (en) Heat pump water heater
JP4148909B2 (en) Heat pump water heater / heater
JP2006266592A (en) Heat pump water heater
JP3840456B2 (en) Heat pump water heater
JP5094217B2 (en) Heat pump water heater
JP3896378B2 (en) Heat pump water heater
JP2019039596A (en) Heat pump heat source machine
JP2005009724A (en) Heat pump type water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees