JP2019039596A - Heat pump heat source machine - Google Patents

Heat pump heat source machine Download PDF

Info

Publication number
JP2019039596A
JP2019039596A JP2017161146A JP2017161146A JP2019039596A JP 2019039596 A JP2019039596 A JP 2019039596A JP 2017161146 A JP2017161146 A JP 2017161146A JP 2017161146 A JP2017161146 A JP 2017161146A JP 2019039596 A JP2019039596 A JP 2019039596A
Authority
JP
Japan
Prior art keywords
hot water
heating
heat
temperature
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017161146A
Other languages
Japanese (ja)
Other versions
JP6969223B2 (en
Inventor
秋人 江田
Akito Eda
秋人 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2017161146A priority Critical patent/JP6969223B2/en
Publication of JP2019039596A publication Critical patent/JP2019039596A/en
Application granted granted Critical
Publication of JP6969223B2 publication Critical patent/JP6969223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a heat pump heat source machine capable of suppressing reduction of energy efficiency by avoiding an intermittent operation of a compressor under a low load during a heating operation.SOLUTION: A heat pump heat source device comprises: a coolant circuit connecting a compressor, a condensation heat exchanger, expansion means and an evaporation heat exchanger; a bypass passage provided in the coolant circuit so as to bypass the condensation heat exchanger and the expansion means; an on-off valve capable of opening/closing the bypass passage; and an air blower which blows air to the evaporation heat exchanger. A coolant which is heated to a predetermined heating temperature is heat-exchanged with hot water for heating a heating medium which is supplied to a heating terminal, by the condensation heat exchanger. Therefore, a rotation speed of the compressor and an aperture of the expansion means are controlled in such a manner that a temperature of the hot water is settled within a predetermined target temperature range. In a case where the temperature of the hot water becomes higher than the target temperature range while the compressor is being actuated at a preset lower limit rotation speed, the on-off valve can be opened.SELECTED DRAWING: Figure 2

Description

本発明は、加熱した湯水を貯湯給湯暖房装置に供給するヒートポンプ熱源機に関する。   The present invention relates to a heat pump heat source device that supplies heated hot water to a hot water storage hot water supply / heating device.

従来から、ヒートポンプ熱源機の加熱運転により加熱した湯水を利用して暖房運転を行うと共に、加熱運転により加熱した湯水を貯湯タンクに貯留して給湯設定温度の給湯を行う貯湯給湯暖房装置が広く使用されている。暖房運転時には、貯湯給湯暖房装置の暖房用熱交換器において、加熱運転により加熱した湯水と暖房端末に供給する暖房熱媒との熱交換により、暖房熱媒を暖房端末の暖房要求温度に加熱する。   Conventionally, a hot water storage / heating system that uses hot water heated by the heating operation of the heat pump heat source machine to perform heating operation, stores hot water heated by the heating operation in a hot water storage tank, and supplies hot water at a hot water set temperature is widely used. Has been. During the heating operation, in the heating heat exchanger of the hot water storage hot water supply / heating device, the heating heat medium is heated to the required heating temperature of the heating terminal by heat exchange between the hot water heated by the heating operation and the heating heat medium supplied to the heating terminal. .

暖房運転開始直後は、低温の室内を暖めるために暖房の必要熱量が多く、室温が上昇するにつれて暖房の必要熱量が減少する。このときヒートポンプ熱源機は、冷媒を圧縮する圧縮機の作動回転数を減少させると共に、冷媒の膨張手段である膨張弁の開度を調整して供給熱量を減少させる。   Immediately after the start of the heating operation, the amount of heat required for heating is large in order to warm the low-temperature room, and the amount of heat required for heating decreases as the room temperature rises. At this time, the heat pump heat source unit decreases the operating heat speed of the compressor that compresses the refrigerant, and adjusts the opening degree of the expansion valve, which is an expansion unit of the refrigerant, to decrease the amount of supplied heat.

圧縮機の作動回転数を減少させていくと圧縮機の振動が大きくなり、圧縮機に接続された配管に加わる応力や騒音が大きくなる虞があるので、作動回転数には予め下限値が設定されている。そのため、ヒートポンプ熱源機は、例えば、必要熱量が作動回転数の下限値で作動したときの供給熱量を下回るような低負荷時に圧縮機を停止し、暖房用熱交換器で加熱した暖房熱媒の温度が暖房要求温度を下回ると圧縮機の作動を再開する間欠運転を行うように構成されている。   Decreasing the operating speed of the compressor will increase the vibration of the compressor, which may increase the stress and noise applied to the piping connected to the compressor, so a lower limit is set in advance for the operating speed. Has been. Therefore, the heat pump heat source machine, for example, stops the compressor at a low load such that the required heat quantity is lower than the supply heat quantity when operating at the lower limit value of the operating rotational speed, and the heating heat medium heated by the heating heat exchanger When the temperature is lower than the heating required temperature, the intermittent operation for restarting the operation of the compressor is performed.

ところで、ヒートポンプ熱源機は、膨張弁で膨張した低温の冷媒により蒸発熱交換器に霜が発生して空気との熱交換が妨げられる場合に、圧縮機で圧縮した高温の冷媒を、開閉弁を備えた通路を介して蒸発熱交換器に流通させる除霜運転を行うように構成されている。また、特許文献1のように、ヒートポンプを利用する冷凍システムにおいて、圧縮機の作動回転数が低い場合に発生する冷凍用熱交換器内の油分の滞留を、圧縮機で圧縮した冷媒を、開閉弁を備えた通路を介して定期的に冷凍用熱交換器に流通させることにより解消する技術が知られている。   By the way, the heat pump heat source device uses a low-temperature refrigerant expanded by an expansion valve to generate high-temperature refrigerant compressed by the compressor when the frost is generated in the evaporative heat exchanger and heat exchange with air is prevented. It is comprised so that the defrost operation which distribute | circulates to an evaporative heat exchanger through the provided channel | path may be performed. Also, as in Patent Document 1, in a refrigeration system that uses a heat pump, the retention of oil in the refrigeration heat exchanger that occurs when the operating speed of the compressor is low, opens and closes the refrigerant compressed by the compressor. There is known a technique for solving this problem by periodically circulating the refrigerant into a heat exchanger for refrigeration through a passage provided with a valve.

特開2012−102919号公報JP 2012-102919 A

圧縮機の作動は、図4に示すように時刻t1の作動開始から冷媒温度が安定する時刻t2まである程度時間がかかり、その間ヒートポンプ熱源機のエネルギー効率が低い状態である。従って、ヒートポンプ熱源機は、圧縮機の間欠運転によりエネルギー効率が低下する。その上、間欠運転により圧縮機の振動発生の機会が増加するので騒音が増え、ヒートポンプ熱源機の耐久性を損なう虞がある。   As shown in FIG. 4, the operation of the compressor takes some time from the start of operation at time t1 to time t2 when the refrigerant temperature is stabilized, and the energy efficiency of the heat pump heat source unit is low during that time. Therefore, the energy efficiency of the heat pump heat source machine is reduced due to the intermittent operation of the compressor. In addition, intermittent operation increases the chance of occurrence of compressor vibration, which increases noise and may impair the durability of the heat pump heat source device.

本発明の目的は、暖房運転における低負荷時に圧縮機の間欠運転を回避してエネルギー効率の低下を抑えることが可能なヒートポンプ熱源機を提供することである。   An object of the present invention is to provide a heat pump heat source machine capable of avoiding intermittent operation of a compressor at a low load in heating operation and suppressing reduction in energy efficiency.

請求項1の発明は、圧縮機と凝縮熱交換器と膨張手段と蒸発熱交換器とを接続する冷媒回路と、前記凝縮熱交換器と前記膨張手段をバイパスするように前記冷媒回路に設けられたバイパス通路と、前記バイパス通路を開閉可能な開閉弁と、前記蒸発熱交換器に送風する送風機を備えたヒートポンプ熱源機であって、前記凝縮熱交換器で、所定の加熱温度に加熱した冷媒と暖房端末に供給する暖房熱媒を加熱するための湯水との熱交換により、湯水の温度が所定の目標温度範囲内となるように前記圧縮機の回転数と前記膨張手段の開度を制御するヒートポンプ熱源機において、前記圧縮機が設定された下限回転数で作動しているときに、湯水の温度が前記目標温度範囲より高温となった場合には、前記開閉弁を開放することを特徴としている。   The invention of claim 1 is provided in the refrigerant circuit so as to bypass the compressor, the condensing heat exchanger, the expansion means, and the evaporating heat exchanger, and the condensing heat exchanger and the expansion means. A heat pump heat source device comprising a bypass passage, an on-off valve capable of opening and closing the bypass passage, and a blower for blowing air to the evaporative heat exchanger, wherein the refrigerant is heated to a predetermined heating temperature by the condensation heat exchanger The number of rotations of the compressor and the opening degree of the expansion means are controlled so that the temperature of the hot water falls within a predetermined target temperature range by exchanging heat with hot water for heating the heating medium supplied to the heating terminal. In the heat pump heat source machine, when the temperature of the hot water is higher than the target temperature range when the compressor is operating at the set lower limit rotation speed, the on-off valve is opened. It is said.

上記構成により、暖房運転における低負荷時に圧縮機が下限回転数で作動しているときに、バイパス通路に高温の冷媒を分配することができるので、圧縮機を停止させることなく湯水に供給する熱量を減少させることができる。従って、圧縮機が停止と作動を繰り返す間欠運転を回避して、ヒートポンプ熱源機のエネルギー効率の低下を抑えることができると共に、騒音の発生を抑え、ヒートポンプ熱源機の耐久性を維持することができる。   With the above configuration, when the compressor is operating at the lower limit rotation speed during a low load in heating operation, high-temperature refrigerant can be distributed to the bypass passage, so the amount of heat supplied to hot water without stopping the compressor Can be reduced. Therefore, it is possible to avoid intermittent operation in which the compressor is repeatedly stopped and operated, and to suppress a decrease in energy efficiency of the heat pump heat source unit, to suppress generation of noise, and to maintain the durability of the heat pump heat source unit. .

請求項2の発明は、請求項1の発明において、前記開閉弁の開放中に湯水の温度が前記目標温度範囲より低温となった場合には、前記開閉弁を閉止することを特徴としている。   The invention of claim 2 is characterized in that, in the invention of claim 1, when the temperature of the hot water becomes lower than the target temperature range while the on-off valve is open, the on-off valve is closed.

上記構成により、湯水の温度が目標温度範囲の下限温度より低下した場合に、バイパス通路を閉止して凝縮熱交換器を流通する冷媒を増加させ、湯水に供給する熱量を増加させて目標温度範囲内の温度に湯水を加熱することができる。   With the above configuration, when the temperature of the hot water falls below the lower limit temperature of the target temperature range, the bypass passage is closed, the refrigerant flowing through the condensation heat exchanger is increased, and the amount of heat supplied to the hot water is increased to increase the target temperature range. Hot water can be heated to the internal temperature.

請求項3の発明は、請求項1又は2の発明において、前記開閉弁の開放中に前記圧縮機から吐出される冷媒の温度が低下し始めた場合には、前記送風機の作動を停止させることを特徴としている。   According to a third aspect of the present invention, in the first or second aspect of the present invention, when the temperature of the refrigerant discharged from the compressor starts to decrease while the on-off valve is open, the operation of the blower is stopped. It is characterized by.

上記構成により、蒸発熱交換器において冷媒の放熱を抑制して、ヒートポンプ熱源機のエネルギー効率の低下を抑制することができる。   With the above configuration, it is possible to suppress the heat dissipation of the refrigerant in the evaporative heat exchanger and suppress the decrease in energy efficiency of the heat pump heat source unit.

請求項4の発明は、請求項1〜3の何れか1項の発明において、前記開閉弁の開放中に前記圧縮機から吐出される冷媒の温度が前記加熱温度より低温となった場合には、前記開閉弁を閉止することを特徴としている。   The invention of claim 4 is the invention of any one of claims 1 to 3, wherein the temperature of the refrigerant discharged from the compressor becomes lower than the heating temperature while the on-off valve is open. The on-off valve is closed.

上記構成により、凝縮熱交換器に供給する冷媒を加熱温度に加熱して湯水を目標温度範囲内の温度に維持することができる。   By the said structure, the refrigerant | coolant supplied to a condensation heat exchanger can be heated to heating temperature, and hot water can be maintained at the temperature within a target temperature range.

請求項5の発明は、請求項1〜4の何れか1項の発明において、湯水を貯留する貯湯タンクと、前記貯湯タンクの湯水を給湯設定温度に調整して給湯するための給湯通路と、前記貯湯タンクの湯水と前記暖房熱媒との熱交換を行う暖房用熱交換器とを備えた貯湯給湯暖房装置の前記貯湯タンクに加熱した湯水を供給することを特徴としている。   The invention of claim 5 is the invention of any one of claims 1 to 4, wherein a hot water storage tank for storing hot water, a hot water supply passage for adjusting the hot water in the hot water storage tank to a hot water supply set temperature and supplying hot water, Heated hot water is supplied to the hot water storage tank of a hot water storage hot water supply / heating device provided with a heat exchanger for heating that performs heat exchange between hot water in the hot water storage tank and the heating heat medium.

上記構成により、ヒートポンプ熱源機により加熱された湯水を暖房に利用すると共に給湯に使用することができる。従って、湯水に供給する熱量を減らすために開閉弁を開放して暖房運転を行っているときに給湯使用があった場合に、開閉弁を閉止して凝縮熱交換器に供給する熱量を増加させることができるので、湯水に供給する熱量を早く増加させることができる。   With the above configuration, hot water heated by the heat pump heat source machine can be used for heating and hot water supply. Therefore, in order to reduce the amount of heat supplied to the hot water, when the hot water supply is used when the on-off valve is opened to perform heating operation, the on-off valve is closed to increase the amount of heat supplied to the condensation heat exchanger. Therefore, the amount of heat supplied to the hot water can be increased quickly.

本発明によれば、暖房運転における低負荷時に圧縮機の間欠運転を回避できるので、ヒートポンプ熱源機のエネルギー効率の低下を抑えることができる。   According to the present invention, since the intermittent operation of the compressor can be avoided at the time of low load in the heating operation, it is possible to suppress a decrease in energy efficiency of the heat pump heat source device.

本発明の実施例に係る貯湯給湯暖房装置の全体構成を示す図である。It is a figure which shows the whole structure of the hot water storage hot-water supply heating apparatus which concerns on the Example of this invention. ヒートポンプ熱源機の構成を示す図である。It is a figure which shows the structure of a heat pump heat source machine. 貯湯給湯暖房装置の構成を示す図である。It is a figure which shows the structure of the hot water storage hot-water supply heating apparatus. 従来のヒートポンプ熱源機に係る圧縮機の間欠運転の一例を示す図である。It is a figure which shows an example of the intermittent operation of the compressor which concerns on the conventional heat pump heat source machine.

以下、本発明を実施するための形態について実施例に基づいて説明する。   Hereinafter, modes for carrying out the present invention will be described based on examples.

最初に、図1〜図3に基づいて貯湯給湯暖房システム1の全体構成について説明する。
貯湯給湯暖房システム1は、ヒートポンプ熱源機2と貯湯給湯暖房装置3と暖房端末4を備え、湯水循環通路15により貯湯給湯暖房装置3がヒートポンプ熱源機2に接続され、暖房回路13により暖房端末4が貯湯給湯暖房装置3に接続されている。貯湯給湯暖房装置3とヒートポンプ熱源機2の間で湯水循環通路15を介して湯水が循環する。また、暖房端末4と貯湯給湯暖房装置3の間で暖房回路13を介して暖房熱媒が循環する。
Initially, the whole structure of the hot water storage hot-water supply heating system 1 is demonstrated based on FIGS. 1-3.
The hot water storage and hot water heating system 1 includes a heat pump heat source device 2, a hot water storage hot water supply and heating device 3, and a heating terminal 4. Is connected to the hot water storage hot water heater 3. Hot water circulates between the hot water storage hot water supply / heating device 3 and the heat pump heat source machine 2 through the hot water circulation passage 15. Further, the heating heat medium circulates between the heating terminal 4 and the hot water storage hot water supply / heating device 3 via the heating circuit 13.

次に、ヒートポンプ熱源機2について説明する。
ヒートポンプ熱源機2は、外装ケース20内に圧縮機22、凝縮熱交換器23、膨張弁24(膨張手段)、蒸発熱交換器25を冷媒配管26により接続した冷媒回路27を有する。圧縮機22と凝縮熱交換器23の間で冷媒配管26から分岐した冷媒バイパス通路28(バイパス通路)は、冷媒バイパス通路28を開閉可能な除霜用開閉弁28a(開閉弁)を備え、膨張弁24と蒸発熱交換器25の間の冷媒配管26に接続されている。また、圧縮機22と凝縮熱交換器23の間の冷媒配管26には、圧縮機22から吐出された冷媒の温度を検知する冷媒温度センサ29が配設されている。湯水循環通路15に接続された凝縮熱交換器23の熱交換通路部23aには、凝縮熱交換器23の入口側の湯水の温度を検知する入口温度センサ23b及び出口側の湯水の温度を検知する出口温度センサ23cが配設されている。
Next, the heat pump heat source machine 2 will be described.
The heat pump heat source device 2 has a refrigerant circuit 27 in which a compressor 22, a condensation heat exchanger 23, an expansion valve 24 (expansion means), and an evaporative heat exchanger 25 are connected in an outer case 20 by a refrigerant pipe 26. A refrigerant bypass passage 28 (bypass passage) branched from the refrigerant pipe 26 between the compressor 22 and the condensation heat exchanger 23 includes a defrosting on-off valve 28a (open / close valve) capable of opening and closing the refrigerant bypass passage 28, and is expanded. A refrigerant pipe 26 between the valve 24 and the evaporation heat exchanger 25 is connected. A refrigerant temperature sensor 29 that detects the temperature of the refrigerant discharged from the compressor 22 is disposed in the refrigerant pipe 26 between the compressor 22 and the condensation heat exchanger 23. In the heat exchange passage 23 a of the condensation heat exchanger 23 connected to the hot water circulation passage 15, an inlet temperature sensor 23 b for detecting the temperature of hot water on the inlet side of the condensation heat exchanger 23 and a temperature of hot water on the outlet side are detected. An outlet temperature sensor 23c is disposed.

ヒートポンプ熱源機2は、後述する貯湯給湯暖房装置3の制御ユニット16と電気的に接続された補助制御ユニット21により加熱運転等を制御する。加熱運転では、除霜用開閉弁28aを閉止し、圧縮機22と蒸発熱交換器25に送風する送風機25aを夫々駆動し、膨張弁24の開度を調整して冷媒配管26内に封入された冷媒を循環させる。   The heat pump heat source unit 2 controls the heating operation and the like by an auxiliary control unit 21 electrically connected to a control unit 16 of the hot water storage hot water supply / heating device 3 described later. In the heating operation, the defrosting on-off valve 28a is closed, the blower 25a that blows air to the compressor 22 and the evaporative heat exchanger 25 is driven, and the opening degree of the expansion valve 24 is adjusted to be enclosed in the refrigerant pipe 26. Circulate the refrigerant.

加熱運転により圧縮機22において圧縮されて昇温した高温の冷媒が、凝縮熱交換器23に導入される。凝縮熱交換器23において、高温の冷媒と湯水循環通路15に接続された熱交換通路部23aを流れる湯水との間で熱交換が行われて湯水が加熱される。熱交換により降温して一部液化した冷媒は、膨張弁24において膨張してさらに降温し、蒸発熱交換器25に導入される。蒸発熱交換器25において、冷媒は外気の熱を吸熱して気化し、再び圧縮機22に導入される。   The high-temperature refrigerant compressed and heated in the compressor 22 by the heating operation is introduced into the condensation heat exchanger 23. In the condensation heat exchanger 23, heat exchange is performed between the high-temperature refrigerant and hot water flowing through the heat exchange passage 23a connected to the hot water circulation passage 15 to heat the hot water. The refrigerant, which has been cooled by heat exchange and partially liquefied, expands at the expansion valve 24, further cools down, and is introduced into the evaporative heat exchanger 25. In the evaporative heat exchanger 25, the refrigerant absorbs heat from the outside air and vaporizes, and is introduced into the compressor 22 again.

この加熱運転により蒸発熱交換器25に低温の冷媒が供給されるので、蒸発熱交換器25に大気と冷媒の熱交換を妨げる霜が発生する場合がある。このとき補助制御ユニット21は、圧縮機22で圧縮され高温になった冷媒を利用して霜を除去するために、除霜用開閉弁28aを所定の期間開放する除霜運転を行う。   Since the low-temperature refrigerant is supplied to the evaporative heat exchanger 25 by this heating operation, frost may be generated in the evaporative heat exchanger 25 that prevents heat exchange between the atmosphere and the refrigerant. At this time, the auxiliary control unit 21 performs a defrosting operation in which the defrosting on-off valve 28a is opened for a predetermined period in order to remove frost using the refrigerant that has been compressed by the compressor 22 and has reached a high temperature.

次に、貯湯給湯暖房装置3について説明する。
貯湯給湯暖房装置3は、貯湯、給湯、浴槽への注湯及び浴槽の湯水の追焚き、床暖房パネル等の暖房端末4への暖房熱媒の供給等の機能を有する。この貯湯給湯暖房装置3は、貯湯タンク5、補助熱源機6、追焚用熱交換器7、暖房用熱交換器8、給水通路9、給湯系通路10、湯張り通路11、風呂追焚回路12、暖房回路13、熱交換器往き通路14a、熱交換器戻り通路14b、湯水循環通路15、制御ユニット16、湯水混合弁35等を外装ケース30内に備え、貯湯給湯暖房装置3の各種設定等操作が可能なように制御ユニット16に電気的に接続された操作端末38を備えている。
Next, the hot water storage hot water supply / heating device 3 will be described.
The hot water storage hot water supply / heating device 3 has functions such as hot water storage, hot water supply, pouring of hot water into the bathtub, reheating of hot water in the bathtub, and supply of a heating heat medium to the heating terminal 4 such as a floor heating panel. This hot water storage hot water supply / heating device 3 includes a hot water storage tank 5, an auxiliary heat source device 6, a heat exchanger 7 for reheating, a heat exchanger 8 for heating, a water supply passage 9, a hot water supply passage 10, a hot water filling passage 11, a bath retreat circuit. 12, a heating circuit 13, a heat exchanger forward passage 14 a, a heat exchanger return passage 14 b, a hot water circulation passage 15, a control unit 16, a hot water mixing valve 35, etc. are provided in the exterior case 30, and various settings of the hot water storage hot water supply / heating device 3 are provided. An operation terminal 38 that is electrically connected to the control unit 16 is provided so that equal operations are possible.

貯湯タンク5は、ヒートポンプ熱源機2により加熱された湯水を貯留する。貯湯タンク5の外周部には、上下方向に間隔を空けて複数の貯湯温度センサ5a〜5dが設けられ、貯湯タンク5内の複数の貯留層の湯水温度を検出可能である。貯留された湯水の放熱を防ぐため、貯湯タンク5は図示外の保温材で覆われている。   The hot water storage tank 5 stores hot water heated by the heat pump heat source unit 2. A plurality of hot water storage temperature sensors 5 a to 5 d are provided on the outer peripheral portion of the hot water storage tank 5 at intervals in the vertical direction, and the hot water temperatures of the plurality of storage layers in the hot water storage tank 5 can be detected. In order to prevent the stored hot water from radiating heat, the hot water storage tank 5 is covered with a heat insulating material (not shown).

補助熱源機6は、バーナや熱交換器等を内蔵した公知のガス給湯器である。この補助熱源機6は、貯湯タンク5内の湯水では給湯設定温度の給湯ができない場合等の特別な場合に限り、湯水を加熱して給湯するように制御ユニット16に制御される。   The auxiliary heat source unit 6 is a known gas water heater that incorporates a burner, a heat exchanger, and the like. This auxiliary heat source unit 6 is controlled by the control unit 16 so as to heat and supply hot water only in special cases such as when hot water at the hot water supply set temperature cannot be supplied with hot water in the hot water storage tank 5.

給水通路9は、上水源から低温の上水を貯湯タンク5の下部に供給するものであり、上流端が上水源に接続され、下流端が貯湯タンク5の下部に接続され、給水温度を検知する給水温度センサ9aが配設されている。給湯系通路10に上水を供給するために、給水通路9から分岐された給水バイパス通路17が湯水混合弁35に接続されている。この分岐部より下流側の給水通路9に設けられた切換弁19から熱交換器戻り通路14bに接続する接続通路部18が分岐されている。この接続通路部18を介して、低温の上水を熱交換器戻り通路14bに供給することができ、逆に熱交換器戻り通路14bから湯水を貯湯タンク5に供給することができる。   The water supply passage 9 supplies low temperature clean water from a water supply source to the lower part of the hot water storage tank 5, the upstream end is connected to the hot water source, and the downstream end is connected to the lower part of the hot water storage tank 5 to detect the water supply temperature. A feed water temperature sensor 9a is disposed. In order to supply clean water to the hot water supply system passage 10, a water supply bypass passage 17 branched from the water supply passage 9 is connected to the hot water mixing valve 35. A connecting passage portion 18 connected to the heat exchanger return passage 14b is branched from a switching valve 19 provided in the water supply passage 9 on the downstream side of the branch portion. Via this connection passage 18, low temperature clean water can be supplied to the heat exchanger return passage 14 b, and conversely hot water can be supplied from the heat exchanger return passage 14 b to the hot water storage tank 5.

次に、給湯系通路10について説明する。
給湯系通路10は、貯湯タンク5に貯湯された湯水を給湯栓等の所望の給湯先に供給するものであり、給湯栓に接続する給湯通路31、貯湯タンク5の上部から湯水混合弁35を介して給湯通路31に接続する出湯通路32、この出湯通路32から分岐して補助熱源機6に接続する補助加熱通路33、補助熱源機6から出湯通路32に接続する補助熱源機出湯通路34等を有している。
Next, the hot water supply system passage 10 will be described.
The hot water supply system passage 10 supplies hot water stored in the hot water storage tank 5 to a desired hot water supply destination such as a hot water tap. The hot water supply passage 31 connected to the hot water tap and the hot water mixing valve 35 are provided from the upper part of the hot water storage tank 5. A hot water passage 32 connected to the hot water supply passage 31, an auxiliary heating passage 33 branched from the hot water passage 32 and connected to the auxiliary heat source device 6, an auxiliary heat source machine hot water passage 34 connected from the auxiliary heat source device 6 to the hot water passage 32, etc. have.

給湯設定温度の給湯が可能なように混合比を調整可能な湯水混合弁35において、出湯通路32を流通する高温の湯水と給水バイパス通路17から供給される上水とを混合し、給湯通路31から給湯栓等に給湯される。給湯通路31から分岐された湯張り通路11は、図示外の浴槽に湯張り可能なように接続される。給湯通路31には給湯流量センサ31aと給湯流量調整弁31bが配設され、出湯通路32には出湯通路32の湯水の温度を検知する出湯温度センサ32aが配設されている。   In the hot and cold water mixing valve 35 capable of adjusting the mixing ratio so that hot water can be supplied at a hot water supply set temperature, hot hot water flowing through the hot water supply passage 32 and hot water supplied from the water supply bypass passage 17 are mixed, and the hot water supply passage 31 is mixed. Hot water is supplied to the hot water tap etc. The hot water filling passage 11 branched from the hot water supply passage 31 is connected to a bathtub (not shown) so as to be hot water filled. The hot water supply passage 31 is provided with a hot water supply flow rate sensor 31a and a hot water supply flow rate adjustment valve 31b, and the hot water supply passage 32 is provided with a hot water temperature sensor 32a for detecting the temperature of hot water in the hot water supply passage 32.

補助加熱通路33には三方弁33a、圧送ポンプ39等が配設されている。補助熱源機出湯通路34は、流量調整弁34aを介して出湯通路32に接続されている。流量調整弁34aより上流側で補助熱源機出湯通路34から分岐した熱交換器往き通路14aは、追焚用熱交換器7及び暖房用熱交換器8に湯水を供給可能に接続されている。   The auxiliary heating passage 33 is provided with a three-way valve 33a, a pressure feed pump 39, and the like. The auxiliary heat source machine hot water passage 34 is connected to the hot water passage 32 via a flow rate adjusting valve 34a. The heat exchanger outgoing passage 14a branched from the auxiliary heat source machine hot water outlet passage 34 on the upstream side of the flow rate adjusting valve 34a is connected to the heat exchanger 7 for heating and the heat exchanger 8 for heating so that hot water can be supplied.

次に、湯水循環通路15について説明する。
湯水循環通路15は、貯湯タンク5の下部とヒートポンプ熱源機2の熱交換通路部23aを接続する上流循環通路部15a、熱交換通路部23aと貯湯タンク5の上部を接続する下流循環通路部15bを備えている。上流循環通路部15aは、循環ポンプ36と循環切換弁37を有する。下流循環通路部15bから分岐した循環バイパス通路部15cは、循環切換弁37を介して上流循環通路部15aに接続され、循環切換弁37を循環バイパス通路部15c側に切換えて、ヒートポンプ熱源機2で加熱された湯水をヒートポンプ熱源機2で再加熱可能に構成されている。
Next, the hot water circulation passage 15 will be described.
The hot water circulation passage 15 includes an upstream circulation passage portion 15a that connects the lower portion of the hot water storage tank 5 and the heat exchange passage portion 23a of the heat pump heat source unit 2, and a downstream circulation passage portion 15b that connects the heat exchange passage portion 23a and the upper portion of the hot water storage tank 5. It has. The upstream circulation passage portion 15 a includes a circulation pump 36 and a circulation switching valve 37. The circulation bypass passage portion 15c branched from the downstream circulation passage portion 15b is connected to the upstream circulation passage portion 15a via the circulation switching valve 37, and the circulation switching valve 37 is switched to the circulation bypass passage portion 15c side so that the heat pump heat source machine 2 The hot water heated in is reheatable by the heat pump heat source unit 2.

次に、制御ユニット16について説明する。
制御ユニット16は、暖房端末4の暖房要求信号等を受信すると共に、貯湯温度センサ5a〜5d等の各部に配設されたセンサにより検知信号に基づいて、湯水混合弁35、循環ポンプ36、圧送ポンプ39等を駆動し、補助制御ユニット21を介してヒートポンプ熱源機2を加熱運転して貯湯運転、給湯運転、暖房運転等を制御する。
Next, the control unit 16 will be described.
The control unit 16 receives the heating request signal of the heating terminal 4, and the hot water mixing valve 35, the circulation pump 36, and the pressure pump based on the detection signals by the sensors disposed in the hot water storage temperature sensors 5a to 5d and the like. The pump 39 and the like are driven, and the heat pump heat source unit 2 is heated through the auxiliary control unit 21 to control hot water storage operation, hot water supply operation, heating operation, and the like.

次に、暖房端末4について説明する。
暖房端末4は、例えば温水式の床暖房パネルや温風ヒータであり、制御ユニット16に通信可能に接続された制御部(図示略)を備えている。暖房運転時には暖房端末4の制御部から制御ユニット16に、暖房運転時の暖房熱媒の設定温度として予め設定された暖房要求温度が送信される。暖房要求温度は暖房端末4の種類により異なるが、例えば40℃〜60℃の温度に設定される。
Next, the heating terminal 4 will be described.
The heating terminal 4 is, for example, a hot water type floor heating panel or a warm air heater, and includes a control unit (not shown) connected to the control unit 16 so as to be communicable. During the heating operation, the heating request temperature preset as the set temperature of the heating heat medium during the heating operation is transmitted from the control unit of the heating terminal 4 to the control unit 16. Although the heating required temperature varies depending on the type of the heating terminal 4, it is set to a temperature of 40 ° C to 60 ° C, for example.

次に、貯湯運転について説明する。
貯湯運転は、ヒートポンプ熱源機2の加熱運転により、給湯や浴槽の湯張りに必要な熱量に相当する湯水を貯湯タンク5に貯留する。具体的には、循環ポンプ36を駆動して貯湯タンク5の下部から供給される低温の湯水をヒートポンプ熱源機2で加熱し、高温の湯水を貯湯タンク5の上部から貯留する。
Next, hot water storage operation will be described.
In the hot water storage operation, hot water corresponding to the amount of heat necessary for hot water supply or hot water filling of the bathtub is stored in the hot water storage tank 5 by the heating operation of the heat pump heat source device 2. Specifically, the circulating pump 36 is driven to heat the low-temperature hot water supplied from the lower part of the hot water storage tank 5 by the heat pump heat source unit 2, and the hot hot water is stored from the upper part of the hot water storage tank 5.

次に、給湯運転について説明する。
給湯栓等が開栓されて給湯流量センサ31aが所定の流量を検知すると、制御ユニット16は、例えば出湯通路32の湯水の温度と給水温度に基づいて、給湯通路31を流通する湯水の給湯温度が操作端末38で設定した給湯設定温度となるように湯水混合弁35の混合比率を調整する。また、貯湯タンク5に貯留された湯水を上水との混合により給湯設定温度に調整することが困難な場合には、補助熱源機6と圧送ポンプ39を作動させて加熱した湯水を湯水混合弁35に供給して給湯する。
Next, the hot water supply operation will be described.
When the hot water tap or the like is opened and the hot water flow rate sensor 31a detects a predetermined flow rate, the control unit 16 supplies the hot water temperature of the hot water flowing through the hot water passage 31 based on, for example, the temperature of the hot water in the hot water passage 32 and the temperature of the hot water. Adjusts the mixing ratio of the hot and cold water mixing valve 35 so as to be the hot water supply set temperature set by the operation terminal 38. When it is difficult to adjust the hot water stored in the hot water storage tank 5 to the hot water supply set temperature by mixing with clean water, the hot water heated by operating the auxiliary heat source unit 6 and the pressure feed pump 39 is supplied to the hot water mixing valve. 35 to supply hot water.

次に、追焚運転について説明する。
浴槽の湯水を加熱する追焚運転において、風呂追焚回路12に浴槽の湯水を循環させ、追焚用熱交換器7で補助熱源機6により加熱した高温の湯水との熱交換により浴槽の湯水を加熱する。このとき追焚用開閉弁7aを開放し、圧送ポンプ39を駆動して熱交換器往き通路14aから追焚用熱交換器7にヒートポンプ熱源機2又は補助熱源機6で加熱した湯水を導入する。熱交換器往き通路14aから追焚用熱交換器7に導入された湯水は、熱交換器戻り通路14bを流通して補助熱源機6に戻る。
Next, the memorial operation will be described.
In the memorial operation for heating the hot water in the bathtub, the hot water in the bathtub is circulated in the bath memorial circuit 12 and is exchanged with the hot water heated by the auxiliary heat source device 6 in the heat exchanger 7 for memorial heat. Heat. At this time, the remedy on-off valve 7a is opened, the pump pump 39 is driven, and hot water heated by the heat pump heat source device 2 or the auxiliary heat source device 6 is introduced into the remedy heat exchanger 7 from the heat exchanger forward passage 14a. . The hot and cold water introduced into the heat exchanger for remedy 7 from the heat exchanger going-out passage 14a flows through the heat exchanger return passage 14b and returns to the auxiliary heat source unit 6.

次に、暖房運転について説明する。
暖房運転は、暖房用熱交換器8において、ヒートポンプ熱源機2の加熱運転により加熱した高温の湯水と、暖房回路13に循環させた暖房熱媒との熱交換により、暖房熱媒を加熱する。このとき暖房用開閉弁8aを開放し、圧送ポンプ39を駆動して、ヒートポンプ熱源機2で目標温度範囲内の温度に加熱した貯湯タンク5の上部の湯水を熱交換器往き通路14aから暖房用熱交換器8に導入する。熱交換器往き通路14aから暖房用熱交換器8に導入された湯水は、熱交換器戻り通路14bを流通して貯湯タンク5の下部に供給される。
Next, the heating operation will be described.
In the heating operation, the heating heat medium 8 is heated by heat exchange between the hot water heated by the heating operation of the heat pump heat source unit 2 and the heating heat medium circulated in the heating circuit 13 in the heating heat exchanger 8. At this time, the heating on-off valve 8a is opened, the pressure pump 39 is driven, and the hot water in the upper part of the hot water storage tank 5 heated to a temperature within the target temperature range by the heat pump heat source device 2 is heated from the heat exchanger forward passage 14a. It introduces into the heat exchanger 8. The hot water introduced into the heating heat exchanger 8 from the heat exchanger going-out passage 14 a flows through the heat exchanger return passage 14 b and is supplied to the lower part of the hot water storage tank 5.

制御ユニット16は、暖房用熱交換器8において暖房熱媒を暖房端末4から送信された暖房熱媒温度に加熱するため、暖房用熱交換器8に導入する湯水の温度、即ちヒートポンプ熱源機2で加熱する湯水の温度を所定の目標温度範囲内に維持するように制御する。そのために、補助制御ユニット21は、圧縮機22から吐出される冷媒温度を所定の加熱温度に維持するように、圧縮機22の回転数や膨張弁24の開度、送風機25aの回転数を制御する。例えば暖房要求温度が40℃の場合に、目標温度範囲は、暖房要求温度より例えば10℃〜20℃高い50℃〜60℃に設定され、加熱温度は目標温度範囲より例えば10℃高い60℃〜70℃に設定される。尚、これらの温度は1例を示すものであり、適宜変更可能である。   The control unit 16 heats the heating medium in the heating heat exchanger 8 to the heating medium temperature transmitted from the heating terminal 4, so that the temperature of the hot water introduced into the heating heat exchanger 8, that is, the heat pump heat source machine 2. Control is performed so that the temperature of the hot and cold water to be heated is maintained within a predetermined target temperature range. Therefore, the auxiliary control unit 21 controls the rotational speed of the compressor 22, the opening degree of the expansion valve 24, and the rotational speed of the blower 25 a so as to maintain the refrigerant temperature discharged from the compressor 22 at a predetermined heating temperature. To do. For example, when the heating required temperature is 40 ° C., the target temperature range is set to 50 ° C. to 60 ° C., for example, 10 ° C. to 20 ° C. higher than the heating required temperature, and the heating temperature is 60 ° C. to 10 ° C. higher than the target temperature range, for example. Set to 70 ° C. In addition, these temperature shows an example and can be changed suitably.

循環ポンプ36を駆動して貯湯タンク5の下部から凝縮熱交換器23に導入される湯水が、凝縮熱交換器23において加熱温度の冷媒との熱交換により目標温度範囲内の温度に加熱される。加熱された湯水は貯湯タンク5の上部に貯留され、圧送ポンプ39の作動により出湯通路32、補助加熱通路33、補助熱源機6、補助熱源機出湯通路34、熱交換器往き通路14aの順に流通して暖房用熱交換器8に導入される。このとき補助熱源機6で湯水を加熱しない。暖房用熱交換器8において導入された湯水と暖房熱媒との熱交換により暖房熱媒を暖房要求温度に加熱し、熱交換後の湯水は熱交換器戻り通路14bと接続通路部18と下流給水通路部9cを介して貯湯タンク5の下部に戻る。暖房熱媒は暖房用熱交換器8と暖房端末4の間を循環する。   Hot water introduced into the condensation heat exchanger 23 from the lower part of the hot water storage tank 5 by driving the circulation pump 36 is heated to a temperature within the target temperature range by heat exchange with the refrigerant having the heating temperature in the condensation heat exchanger 23. . The heated hot water is stored in the upper part of the hot water storage tank 5, and is circulated in the order of the hot water discharge passage 32, the auxiliary heating passage 33, the auxiliary heat source unit 6, the auxiliary heat source outlet hot water passage 34, and the heat exchanger outgoing passage 14 a by the operation of the pressure feed pump 39. Then, it is introduced into the heat exchanger 8 for heating. At this time, hot water is not heated by the auxiliary heat source unit 6. The heating heat medium is heated to the required heating temperature by heat exchange between the hot water introduced in the heating heat exchanger 8 and the heating heat medium, and the hot water after the heat exchange is downstream of the heat exchanger return passage 14b, the connection passage portion 18, and the downstream. It returns to the lower part of the hot water storage tank 5 through the water supply passage 9c. The heating heat medium circulates between the heating heat exchanger 8 and the heating terminal 4.

暖房端末4が冷えた状態で暖房運転が開始された場合、暖房端末4での放熱量が多いので暖房熱媒は低温になって暖房用熱交換器8に戻る。そのため、暖房熱媒と熱交換した湯水は、低温になって貯湯タンク5の下部から凝縮熱交換器23に導入される。暖房運転により室温が上昇するにつれて暖房に必要な熱量が減少し、暖房熱媒と熱交換した湯水は温度が高いまま凝縮熱交換器23に導入されるようになる。そのため、補助制御ユニット21は、凝縮熱交換器23で湯水を加熱するための供給熱量を減少させるように圧縮機22の回転数を低下させ、膨張弁24の開度を調整する。   When the heating operation is started in a state where the heating terminal 4 is cooled, the amount of heat released from the heating terminal 4 is large, so that the heating heat medium becomes low temperature and returns to the heating heat exchanger 8. Therefore, the hot water exchanged with the heating heat medium becomes low temperature and is introduced into the condensation heat exchanger 23 from the lower part of the hot water storage tank 5. As the room temperature rises due to the heating operation, the amount of heat required for heating decreases, and the hot water exchanged with the heating heat medium is introduced into the condensation heat exchanger 23 while the temperature is high. Therefore, the auxiliary control unit 21 adjusts the opening degree of the expansion valve 24 by reducing the rotational speed of the compressor 22 so as to reduce the amount of heat supplied for heating the hot water with the condensation heat exchanger 23.

湯水の加熱に必要とされる熱量が、圧縮機22の回転数を予め設定された下限回転数まで下げたときの供給熱量を下回る低負荷時には、凝縮熱交換器23で加熱した湯水の温度が目標温度範囲より高温になる。このとき補助制御ユニット21は除霜用開閉弁28aを開放して圧縮機22で圧縮された冷媒の一部を冷媒バイパス通路28に流通させる。これにより圧縮機22を停止することなく凝縮熱交換器23に供給する冷媒を減らして供給熱量を減らすことができる。   At a low load when the amount of heat required for heating the hot water is lower than the amount of heat supplied when the rotation speed of the compressor 22 is lowered to a preset lower limit rotation speed, the temperature of the hot water heated by the condensation heat exchanger 23 is The temperature is higher than the target temperature range. At this time, the auxiliary control unit 21 opens the defrosting on-off valve 28 a and causes a part of the refrigerant compressed by the compressor 22 to flow through the refrigerant bypass passage 28. Thereby, the refrigerant | coolant supplied to the condensation heat exchanger 23 can be reduced, and supply heat amount can be reduced, without stopping the compressor 22. FIG.

除霜用開閉弁28aを開放すると、圧縮機22で圧縮された高温の冷媒が膨張弁24を流通した低温の冷媒と混合されて蒸発熱交換器25に導入される。このとき蒸発熱交換器25に導入される冷媒の温度は気温より高くなり、蒸発熱交換器25において冷媒の熱を大気に放熱することになる。また、温度が高い冷媒が圧縮機22に供給されるので、冷媒温度センサ29で検知される冷媒の温度は上昇する。圧縮機22から吐出される冷媒の温度が低下し始めると、補助制御ユニット21は送風機25aの駆動を停止して、蒸発熱交換器25における冷媒の放熱を抑制する。これにより加熱された冷媒の大気への放熱を抑制してエネルギー効率の低下を抑制できる。   When the defrosting on-off valve 28 a is opened, the high-temperature refrigerant compressed by the compressor 22 is mixed with the low-temperature refrigerant flowing through the expansion valve 24 and introduced into the evaporation heat exchanger 25. At this time, the temperature of the refrigerant introduced into the evaporation heat exchanger 25 becomes higher than the air temperature, and the heat of the refrigerant is radiated to the atmosphere in the evaporation heat exchanger 25. Further, since the refrigerant having a high temperature is supplied to the compressor 22, the temperature of the refrigerant detected by the refrigerant temperature sensor 29 rises. When the temperature of the refrigerant discharged from the compressor 22 starts to decrease, the auxiliary control unit 21 stops driving the blower 25a and suppresses the heat radiation of the refrigerant in the evaporative heat exchanger 25. As a result, it is possible to suppress heat dissipation to the atmosphere of the heated refrigerant and to suppress a decrease in energy efficiency.

上記のように供給熱量を減らして暖房運転を継続すると、凝縮熱交換器23に導入される湯水の温度が低下して圧縮機22に供給される冷媒の温度が低下する。そして圧縮機22から吐出される冷媒の温度が加熱温度より低温となった場合には、補助制御ユニット21は除霜用開閉弁28aを閉止して通常の加熱運転に戻る。また、出口温度センサ23cが検知する凝縮熱交換器23で加熱した湯水の温度が、目標温度範囲より低温になった場合にも、除霜用開閉弁28aを閉止して通常の加熱運転に戻る。このように、圧縮機22を作動させたまま除霜用開閉弁28aの開閉により供給熱量を調整するので、圧縮機22の間欠運転を回避することが可能である。尚、所定期間(例えば10分間)除霜用開閉弁28aを開放した後、除霜用開閉弁28aを閉止するように構成してもよい。   When the amount of heat supplied is reduced and the heating operation is continued as described above, the temperature of the hot water introduced into the condensation heat exchanger 23 is lowered and the temperature of the refrigerant supplied to the compressor 22 is lowered. When the temperature of the refrigerant discharged from the compressor 22 becomes lower than the heating temperature, the auxiliary control unit 21 closes the defrosting on-off valve 28a and returns to the normal heating operation. In addition, even when the temperature of the hot water heated by the condensation heat exchanger 23 detected by the outlet temperature sensor 23c becomes lower than the target temperature range, the defrosting on-off valve 28a is closed to return to the normal heating operation. . Thus, since the supply heat quantity is adjusted by opening and closing the defrosting on-off valve 28a while the compressor 22 is operated, intermittent operation of the compressor 22 can be avoided. In addition, after opening the defrosting on-off valve 28a for a predetermined period (for example, 10 minutes), you may comprise so that the defrosting on-off valve 28a may be closed.

本発明のヒートポンプ熱源機2の作用、効果について説明する。
暖房運転においてヒートポンプ熱源機2は、湯水を目標温度範囲内に維持するために圧縮機22の作動回転数と膨張弁24の開度を制御する。湯水の加熱に必要な熱量が少ない低負荷時には、除霜用開閉弁28aを開放して圧縮機22で圧縮された高温の冷媒の一部を冷媒バイパス通路28に流通させ、凝縮熱交換器23において湯水への供給熱量を減少させる。従って、供給熱量を減らすために圧縮機22が下限回転数で作動する状態でさらに供給熱量を減らすことができ、圧縮機22の間欠運転を回避してエネルギー効率の低下を抑制することができる。さらに、圧縮機22の間欠運転を回避して振動の発生を抑えて騒音を抑えると共に、配管等に加わる応力を小さくしてヒートポンプ熱源機2の耐久性を維持することができる。
The operation and effect of the heat pump heat source apparatus 2 of the present invention will be described.
In the heating operation, the heat pump heat source device 2 controls the operating rotational speed of the compressor 22 and the opening degree of the expansion valve 24 in order to maintain the hot water in the target temperature range. At a low load when the amount of heat required for heating the hot water is low, the defrosting on-off valve 28a is opened, and a part of the high-temperature refrigerant compressed by the compressor 22 is circulated through the refrigerant bypass passage 28, thereby condensing the heat exchanger 23. The amount of heat supplied to the hot water is reduced. Therefore, in order to reduce the amount of heat supplied, the amount of heat supplied can be further reduced while the compressor 22 operates at the lower limit rotation speed, and intermittent operation of the compressor 22 can be avoided to suppress a decrease in energy efficiency. Furthermore, intermittent operation of the compressor 22 can be avoided to suppress generation of vibration and noise, and stress applied to the piping can be reduced to maintain the durability of the heat pump heat source device 2.

また、除霜用開閉弁28aの開放中に加熱した湯水の温度が目標温度範囲より低下した場合には、除霜用開閉弁28aを閉止することにより凝縮熱交換器23に導入する冷媒を増やして湯水に供給する熱量を増加させ、目標温度範囲内の温度に湯水を加熱することができる。   Further, when the temperature of the hot water heated while the defrosting on / off valve 28a is opened falls below the target temperature range, the refrigerant introduced into the condensation heat exchanger 23 is increased by closing the defrosting on / off valve 28a. The amount of heat supplied to the hot water is increased, and the hot water can be heated to a temperature within the target temperature range.

その上、除霜用開閉弁28aを開放しているときに圧縮機22から吐出される冷媒の温度が下がり始めたら送風機25aを停止し、蒸発熱交換器25において冷媒の放熱を抑制して、ヒートポンプ熱源機2のエネルギー効率の低下を抑制することができる。しかも、除霜用開閉弁28aの開放中に圧縮機22から吐出される冷媒の温度が加熱温度より低温となった場合には、除霜用開閉弁28aを閉止するので、冷媒を加熱温度に加熱して凝縮熱交換器23に導入し、湯水を目標温度範囲内の温度に維持することができる。   In addition, when the temperature of the refrigerant discharged from the compressor 22 starts to decrease when the defrosting on-off valve 28a is opened, the blower 25a is stopped, and the heat dissipation of the refrigerant is suppressed in the evaporative heat exchanger 25, A decrease in energy efficiency of the heat pump heat source unit 2 can be suppressed. In addition, when the temperature of the refrigerant discharged from the compressor 22 becomes lower than the heating temperature while the defrosting on / off valve 28a is open, the defrosting on / off valve 28a is closed, so that the refrigerant is brought to the heating temperature. It can heat and introduce | transduce into the condensation heat exchanger 23, and can maintain hot water at the temperature within a target temperature range.

また、貯湯給湯暖房装置3の貯湯タンク5にヒートポンプ熱源機2で加熱した湯水を供給するので、ヒートポンプ熱源機2により加熱された湯水を暖房に利用すると共に給湯に使用することができる。従って、湯水に供給する熱量を減らすために除霜用開閉弁28aを開放して暖房運転を行っているときに給湯使用があった場合に、除霜用開閉弁28aを閉止して湯水に供給する熱量を増加させることができるので、圧縮機22が間欠運転を行う場合と比べて、湯水に供給する熱量を早く増加させることができる。   Moreover, since the hot water heated by the heat pump heat source unit 2 is supplied to the hot water storage tank 5 of the hot water storage hot water supply / heating device 3, the hot water heated by the heat pump heat source unit 2 can be used for heating and hot water supply. Therefore, in order to reduce the amount of heat supplied to the hot water, when the hot water supply is used when the defrosting on / off valve 28a is opened and heating operation is performed, the defrosting on / off valve 28a is closed and supplied to the hot water. Since the amount of heat to be increased can be increased, the amount of heat supplied to the hot water can be increased faster than when the compressor 22 performs intermittent operation.

1 貯湯給湯暖房システム
2 ヒートポンプ熱源機
3 貯湯給湯暖房装置
4 暖房端末
5 貯湯タンク
8 暖房用熱交換器
13 暖房回路
15 湯水循環通路
16 制御ユニット
21 補助制御ユニット
22 圧縮機
23 凝縮熱交換器
23a 熱交換通路部
23c 出口温度センサ
24 膨張弁
25 蒸発熱交換器
25a 送風機
27 冷媒回路
28 冷媒バイパス通路
28a 除霜用開閉弁
29 冷媒温度センサ
31 給湯通路
33 補助加熱通路
34 補助熱源機出湯通路
36 循環ポンプ
39 圧送ポンプ
DESCRIPTION OF SYMBOLS 1 Hot water storage hot water heating system 2 Heat pump heat source machine 3 Hot water storage hot water heating apparatus 4 Heating terminal 5 Hot water storage tank 8 Heating heat exchanger 13 Heating circuit 15 Hot water circulation passage 16 Control unit 21 Auxiliary control unit 22 Compressor 23 Condensing heat exchanger 23a Heat Exchange passage 23c Outlet temperature sensor 24 Expansion valve 25 Evaporation heat exchanger 25a Blower 27 Refrigerant circuit 28 Refrigerant bypass passage 28a Defrosting on-off valve 29 Refrigerant temperature sensor 31 Hot water supply passage 33 Auxiliary heating passage 34 Auxiliary heat source machine outlet passage 36 Circulation pump 39 Pressure feed pump

Claims (5)

圧縮機と凝縮熱交換器と膨張手段と蒸発熱交換器とを接続する冷媒回路と、前記凝縮熱交換器と前記膨張手段をバイパスするように前記冷媒回路に設けられたバイパス通路と、前記バイパス通路を開閉可能な開閉弁と、前記蒸発熱交換器に送風する送風機を備えたヒートポンプ熱源機であって、
前記凝縮熱交換器で、所定の加熱温度に加熱した冷媒と暖房端末に供給する暖房熱媒を加熱するための湯水との熱交換により、湯水の温度が所定の目標温度範囲内となるように前記圧縮機の回転数と前記膨張手段の開度を制御するヒートポンプ熱源機において、
前記圧縮機が設定された下限回転数で作動しているときに、湯水の温度が前記目標温度範囲より高温となった場合には、前記開閉弁を開放することを特徴とするヒートポンプ熱源機。
A refrigerant circuit connecting the compressor, the condensation heat exchanger, the expansion means, and the evaporative heat exchanger; a bypass passage provided in the refrigerant circuit so as to bypass the condensation heat exchanger and the expansion means; and the bypass A heat pump heat source device comprising an on-off valve capable of opening and closing a passage and a blower for blowing air to the evaporative heat exchanger,
By the heat exchange between the refrigerant heated to a predetermined heating temperature and the hot water for heating the heating medium supplied to the heating terminal in the condensation heat exchanger, the temperature of the hot water is within a predetermined target temperature range. In a heat pump heat source machine that controls the rotation speed of the compressor and the opening of the expansion means,
When the compressor is operating at a set lower limit rotational speed, when the temperature of hot water becomes higher than the target temperature range, the on-off valve is opened.
前記開閉弁の開放中に湯水の温度が前記目標温度範囲より低温となった場合には、前記開閉弁を閉止することを特徴とする請求項1に記載のヒートポンプ熱源機。   The heat pump heat source apparatus according to claim 1, wherein when the temperature of the hot water becomes lower than the target temperature range while the on-off valve is open, the on-off valve is closed. 前記開閉弁の開放中に前記圧縮機から吐出される冷媒の温度が低下し始めた場合には、前記送風機の作動を停止させることを特徴とする請求項1又は2に記載のヒートポンプ熱源機。   3. The heat pump heat source device according to claim 1, wherein when the temperature of the refrigerant discharged from the compressor starts to decrease while the on-off valve is opened, the operation of the blower is stopped. 前記開閉弁の開放中に前記圧縮機から吐出される冷媒の温度が前記加熱温度より低温となった場合には、前記開閉弁を閉止することを特徴とする請求項1〜3の何れか1項に記載のヒートポンプ熱源機。   The open / close valve is closed when the temperature of the refrigerant discharged from the compressor becomes lower than the heating temperature while the open / close valve is open. The heat pump heat source machine according to item. 湯水を貯留する貯湯タンクと、前記貯湯タンクの湯水を給湯設定温度に調整して給湯するための給湯通路と、前記貯湯タンクの湯水と前記暖房熱媒との熱交換を行う暖房用熱交換器とを備えた貯湯給湯暖房装置の前記貯湯タンクに加熱した湯水を供給することを特徴とする請求項1〜4の何れか1項に記載のヒートポンプ熱源機。   A hot water storage tank for storing hot water, a hot water supply passage for supplying hot water by adjusting the hot water in the hot water storage tank to a set hot water temperature, and a heat exchanger for heating that exchanges heat between the hot water in the hot water storage tank and the heating heat medium Heated hot water is supplied to the hot water storage tank of a hot water storage hot water supply / heater device comprising: a heat pump heat source device according to any one of claims 1 to 4.
JP2017161146A 2017-08-24 2017-08-24 Heat pump heat source machine Active JP6969223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017161146A JP6969223B2 (en) 2017-08-24 2017-08-24 Heat pump heat source machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017161146A JP6969223B2 (en) 2017-08-24 2017-08-24 Heat pump heat source machine

Publications (2)

Publication Number Publication Date
JP2019039596A true JP2019039596A (en) 2019-03-14
JP6969223B2 JP6969223B2 (en) 2021-11-24

Family

ID=65725634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017161146A Active JP6969223B2 (en) 2017-08-24 2017-08-24 Heat pump heat source machine

Country Status (1)

Country Link
JP (1) JP6969223B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112629022A (en) * 2020-12-21 2021-04-09 珠海格力电器股份有限公司 Multi-split water heater control method and device and multi-split water heater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291868A (en) * 1985-06-18 1986-12-22 富士電機株式会社 Control system of operation of refrigerator
JP2014228214A (en) * 2013-05-23 2014-12-08 株式会社ノーリツ Heat pump water heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291868A (en) * 1985-06-18 1986-12-22 富士電機株式会社 Control system of operation of refrigerator
JP2014228214A (en) * 2013-05-23 2014-12-08 株式会社ノーリツ Heat pump water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112629022A (en) * 2020-12-21 2021-04-09 珠海格力电器股份有限公司 Multi-split water heater control method and device and multi-split water heater
CN112629022B (en) * 2020-12-21 2022-03-01 珠海格力电器股份有限公司 Multi-split water heater control method and device and multi-split water heater

Also Published As

Publication number Publication date
JP6969223B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
JP5171410B2 (en) Hot water supply system
JP5087484B2 (en) Hot water storage hot water heater
JP5097624B2 (en) Hot water supply system
JP5095295B2 (en) Water heater
JP2007322077A (en) Heat pump hot-water supply floor-heating device
JP5573757B2 (en) Hot water heater
JP7135493B2 (en) heat pump water heater
JP5176474B2 (en) Heat pump water heater
JP2010084975A (en) Heating device
JP6065606B2 (en) Heat pump water heater
JP6969223B2 (en) Heat pump heat source machine
JP4277836B2 (en) Heat pump water heater
JP2005315480A (en) Heat pump type water heater
JP2006003077A (en) Heat pump type hot water supply apparatus
JP2007322084A (en) Heat pump water heater
JP5321384B2 (en) Heat pump type hot water heater
JP2009216335A (en) Heat pump water heater
JP2010054145A (en) Heat pump water heater
JP2009085476A (en) Heat pump water heater
JP4169454B2 (en) Hot water storage hot water source
JP2019173976A (en) Hot water storage and supply device
JP2002295899A (en) Hot-water storage type water-heating heat source
JP4382309B2 (en) Hot water storage water heater
JP4194215B2 (en) Hot water storage hot water source
KR100801142B1 (en) Expansion control valve for heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R150 Certificate of patent or registration of utility model

Ref document number: 6969223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150