JP2005009724A - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP2005009724A
JP2005009724A JP2003172756A JP2003172756A JP2005009724A JP 2005009724 A JP2005009724 A JP 2005009724A JP 2003172756 A JP2003172756 A JP 2003172756A JP 2003172756 A JP2003172756 A JP 2003172756A JP 2005009724 A JP2005009724 A JP 2005009724A
Authority
JP
Japan
Prior art keywords
hot water
water
water storage
storage tank
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003172756A
Other languages
Japanese (ja)
Other versions
JP3890322B2 (en
Inventor
Shuuton Rimu
シュウトン リム
Akinobu Okamura
哲信 岡村
Makoto Motoyoshi
誠 元吉
Kenichi Saito
健一 齊藤
Seiichi Sunaga
成一 須永
Kenji Mitsusaka
賢司 三坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2003172756A priority Critical patent/JP3890322B2/en
Publication of JP2005009724A publication Critical patent/JP2005009724A/en
Application granted granted Critical
Publication of JP3890322B2 publication Critical patent/JP3890322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems in a conventional heat pump water heater running out of hot water and causing the temperature drop of stored hot water as well as requiring a large-sized hot water storage tank because the whole hot water quantity used in the daytime is boiled with electric power at night and stored. <P>SOLUTION: This heat pump type water heater is provided with a heat pump circuit connecting a compressor, a condenser, a pressure reducing device and an evaporator for exchanging heat between air and a refrigerant, sequentially through refrigerant piping; and a stored hot water supply circuit connecting a water supply source, a hot water storage tank, a circulating pump, a water heat exchanger for exchanging heat with the condenser, a selector valve, a hot water supply valve and a water use terminal through water piping. After the use of hot water supply at the water use terminal, tank hot water storage operation is performed, and operation is stopped after storing a prescribed quantity of hot water of prescribed temperature in the hot water storage tank. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプ式給湯機に関わり、特に水熱交換器で加熱した水を直接水使用端末に供給する瞬間給湯方式において、運転開始時の水熱交換器の出湯温度が低い間の給湯を行なうための貯湯タンクを備えたヒートポンプ式給湯機に好適なものである。
【0002】
【従来の技術】
従来の給湯機には、貯湯タンクを持たずにガス等を燃焼させて、その強力な燃焼熱で瞬間的に水を沸き上げて湯を供給する燃焼式給湯機や、大容量の貯湯タンクを持ち夜間割引の安い電力を利用して夜の間に電気ヒータで加熱した大量の湯を貯湯タンクに貯蔵し、その貯蔵した湯を日中に使う電気温水器等があった。
【0003】
さらに、最近では電気温水器に比較してエネルギー効率が良いと云われるヒートポンプ給湯機が普及し始めてきた。ヒートポンプ式給湯機は、熱源に冷媒の状態変化を利用しているので、電気ヒータよりエネルギー効率が数倍良く、またガス等を燃焼しないのでCO2を排出せず地球環境にやさしい給湯機と云われている。
【0004】
しかし、ガス等を燃焼したときのように強力な熱量がないため、電気温水器と同様に大容量の貯湯タンクを設け、夜間の安価な電力を使って夜中にヒートポンプ回路で湯を沸き上げて貯湯タンクに貯蔵し、貯蔵した湯を日中に使うものが一般的であった。
【0005】
係る従来のヒートポンプ式給湯機としては、下記の特許文献1に開示されたものがあり、これを図4に示して説明する。
【0006】
図4に示すヒートポンプ式給湯機は、圧縮機101、凝縮器102、減圧装置103、蒸発器104から構成されたヒートポンプ回路と、大容量の貯湯タンク105とを別個の装置として設けている。また、ヒートポンプ式給湯機は、貯湯タンク105の下部から循環ポンプ112を介してヒートポンプ回路の凝縮器102と熱交換的に配置した水熱交換器113に水配管を接続し、水熱交換器113の出口と貯湯タンク105の上部に温水配管を接続した貯給湯回路を設けている。
【0007】
そして、このヒートポンプ給湯機は、夜間の安価な電力を利用してエネルギー効率の良いヒートポンプ回路を運転し、貯湯タンク105内の水を循環ポンプ112で循環させながら水熱交換器113で所定の湯温になるまで徐々に温め、所定の湯温に達したことを温度検知器114で検知してヒートポンプ回路の運転を停止するようにしている。日中、使用端末118で湯を使用する際にはミキシングバルブ117で水道水と良く混合して適当な温度に薄めて供給する。貯湯タンク105に貯蔵する湯の温度をできるだけ高くすることにより、ミキシングバルブ117により薄める水道水の量を多くし、貯湯タンク105から取り出す湯の量を少なくするようにしている。
【0008】
【特許文献1】
特開平9−126547号公報
【0009】
【発明が解決しようとする課題】
従来のヒートポンプ式給湯機は、大容量の貯湯タンクを有するため、ヒートポンプ式給湯機を設置するための充分な広さの設置スペースが必要となっていた。また、貯湯タンクの容量一杯に湯を溜めた場合を考えると、その質量は一般的なヒートポンプ式給湯機では400kgを超える重さになるので、設置場所の基礎工事を行なって充分な強度を確保しなければならず、また、アパートやマンションのベランダのような狭い場所や強度の不十分な場所に据付ることが困難であり、さらには、ヒートポンプ式給湯機を顧客の設置場所に運搬する際にもその費用や手間を多く要するものであった。
【0010】
そして、従来のヒートポンプ式給湯機は、夜間の割引電気料金を利用するように夜中にヒートポンプ回路を運転し、高温の湯にして貯湯タンクに蓄えておき、日中はヒートポンプ回路を運転しないで、貯湯タンクに溜まっている湯を使用するという使い方をしている。このため時には貯湯タンクの湯を使いきってしまい、直ぐには沸き上げることが出来ずに湯切れを起こすことがあった。また、空気温度より高い温度の大量の湯を貯蔵しておくため、貯湯タンクの大きな表面から熱が放射されてエネルギーの無駄使いになり、それによって温度が下がる分を夜間に余裕をもって温めておく必要があった。
【0011】
本発明の目的は、小型及び軽量で輸送性及び据付性に優れると共に、常に貯湯タンクに満杯に貯湯しておくことにより湯切れを起こすことがなくエネルギー効率に優れたヒートポンプ式給湯機を提供することにある。
【0012】
なお、本発明のその他の目的と有利点は以下の記述から明らかにされる。
【0013】
【課題を解決するための手段】
前記目的を達成するために、請求項1に記載の本発明では、ヒートポンプ式給湯機は、圧縮機、凝縮器、減圧装置、空気と冷媒との熱交換を行なう蒸発器を、冷媒配管を介して順次接続したヒートポンプ回路と、給水源、貯湯タンク、循環ポンプ、前記凝縮器と熱交換する水熱交換器、切換弁、給湯弁および水使用端末を、水配管を介して接続した貯給湯回路と、前記圧縮機、循環ポンプ、切換弁、給湯弁の動作を制御する運転制御手段とを備え、前記運転制御手段は、前記切換弁の切換えによって、貯湯タンク、循環ポンプ、水熱交換器に水を循環させて貯湯タンクに貯湯するタンク貯湯運転と、前記貯湯タンクから給湯弁を通して水使用端末に給湯するタンク給湯運転と、前記水熱交換器から給湯弁を通して水使用端末に給湯する水加熱給湯運転を制御すると共に、水使用端末における給湯使用後は、タンク貯湯運転を行なってから運転停止する毎回貯湯運転機能を有することを特徴とするものである。
【0014】
上述した別の目的を達成するために、請求項2に記載の本発明では、請求項1に加え、前記毎回貯湯運転機能は貯湯タンク内の湯量および湯温が所定値以上になるまでタンク貯湯運転を行なった後運転停止することを特徴とするものである。
【0015】
上述した別の目的を達成するために、請求項3に記載の本発明では、請求項1に加え、前記毎回貯湯運転機能は貯湯タンク内の湯量および湯温が所定値以上になっている場合はタンク貯湯運転を行なわずに運転停止することを特徴とするものである。
【0016】
上述した別の目的を達成するために、請求項4に記載の本発明では、請求項1に加え、前記運転制御手段は水使用端末における給湯使用時に水熱交換器の出湯温度が所定値以上になるまでの間は貯湯タンクの湯を使用し、水熱交換器の出湯温度が所定値以上になった後は、水熱交換器からの出湯を使用することを特徴とするものである。
【0017】
上述した別の目的を達成するために、請求項5に記載の本発明では、請求項1に加え、前記運転制御手段は水使用端末における給湯使用時で貯湯タンクの湯を使用中に湯量が所定値以下になった場合は貯湯タンクからの給湯を停止し、水熱交換器からの給湯のみに切換えることを特徴とするものである。
【0018】
【発明の実施の形態】
以下、本発明の実施例を図1から図3を用いて説明する。
【0019】
ヒートポンプ式給湯機50は、ヒートポンプ回路30、給湯回路40、および運転制御手段21を備えて構成されている。このヒートポンプ回路30、給湯回路40および運転制御手段21は、小容量の貯湯タンク10を用いて、1つの筐体50a内に収納されるようになっている。これによって、ヒートポンプ回路30および給湯回路40が別体の筐体に収納されている従来の一般的なヒートポンプ式給湯機に比較して、輸送性、据付け性を良好なものにすることができる。
【0020】
ヒートポンプ回路30は、冷媒配管5a〜5dを介して圧縮機1、凝縮器2a、減圧装置3、蒸発器4を順次接続して構成されており、その中に冷媒が封入されている。
【0021】
圧縮機1は、容量制御が可能で、多量の給湯を行なう際に大きな容量で運転される。ここで、圧縮機1は、PWM制御、電圧制御(例えばPAM制御)及びこれらの組合せ制御により、低速(例えば2000回転/分)から高速(例えば8000回転/分)まで回転数制御されるようになっている。特に、第1水熱交換器2bから直接給湯する水加熱給湯運転の際(換言すれば、第2給湯回路で給湯する際)には、圧縮機1が高速で運転される。
【0022】
水冷媒熱交換器2は凝縮器2a、第1水熱交換器2bおよび第2水熱交換器2cを備えて構成されている。凝縮器2aは第1水熱交換器2bおよび第2水熱交換器2cと熱交換を行なうように構成されている。また、蒸発器4は空気と冷媒との熱交換を行なう空気冷媒熱交換器で構成されている。
【0023】
除霜用電磁弁6は電磁コイルによる開閉弁で構成されており、圧縮機1から吐出される高温高圧の冷媒ガスを蒸発器4の入口側にバイパスして導くためのものである。除霜用電磁弁6の一端は、冷媒配管7aを介して圧縮機1の吐出側()凝縮器2aの入口側)に接続され、除霜用電磁弁6の他端は、冷媒配管7bを介して蒸発器4の入口側(減圧装置3の出口側)に接続されている。
【0024】
給湯回路40は貯給湯回路41および風呂追焚回路42を備えて構成されている。貯給湯回路41は、減圧弁9、貯湯タンク10、循環ポンプ11、逆止弁12、第1水熱交換器2b、切換弁13、給湯弁14および水比例弁15が水配管を介し接続されて構成されている。給湯回路41内には、給水源8から水が供給されて充満される。風呂追焚回路42は、風呂循環ポンプ20、第2水熱交換器2cが水配管を介し接続されて構成されている。また風呂追焚回路42には浴槽19の湯が循環される。なお、本発明の説明において、水は冷水と温水とを含むものであり、冷水は温水になる前の状態であり、温水は冷水が加熱された状態(湯とも言う)である。
【0025】
運転制御手段21は、図2に示すように、前記圧縮機1、減圧装置3、除霜用電磁弁6、循環ポンプ11、切換弁13、給湯弁14、水比例弁15、風呂循環ポンプ20の動作を制御するものである。
【0026】
また、運転制御手段21は、前記圧縮機の回転数を制御し、運転開始直後には所定の高速回転数で運転するよう制御する。
【0027】
更に、水使用端末における給湯使用後は、タンク貯湯運転を行ってから運転停止する毎回貯湯運転機能を有している。
【0028】
ヒートポンプ式給湯機には、給湯機の温度状態を検出する温度センサを備えている。給湯回路40側には、給湯弁14の前後の給湯管41b、第1水熱交換器2bと切換弁13との間の水配管、減圧弁9の出口側の給水管41a、風呂循環ポンプ20の出口側の水配管にそれぞれ温度センサが設けられ、運転制御手段21に検出信号が入力されるように構成されている。また、ヒートポンプ回路30側には、外気温度を検出する外気温度センサが設けられ、運転制御手段21に検出信号が入力されるように構成されている。運転制御手段21はこれらの信号に基づいて各機器を制御するものである。
【0029】
貯給湯回路41は、切換弁13の切換えによって、貯湯タンク10、循環ポンプ11、第1水熱交換器2b、切換弁13に水を循環させて貯湯タンク10に貯湯する貯湯回路と、給水源8の給水を受けながら貯湯タンク10から切換弁13および給湯弁14を通して給湯する第1給湯回路と、給水源8の給水を受けながら水熱交換器2bから切換弁13および給湯弁14を通して給湯する第2給湯回路とを形成するように水配管を介して構成されている。風呂追焚回路42は風呂循環ポンプ20、第2水熱交換器2cに浴槽19の湯を循環するように水配管を介して構成されている。
【0030】
貯給湯回路41は、給水管41aを給水源に接続して給水源8から給水されると共に、給湯管41bを使用端末である台所蛇口16、風呂蛇口17、シャワー18へ給湯されるようになっている。
【0031】
給水管41aは入口側に減圧弁9を設けている。給水管41aは、減圧弁9の出口側で3つに分岐されて、貯湯タンク10に直接的に接続され、第1水熱交換器2bに逆止弁12を介して接続され、給湯弁14に水比例弁15を介して接続されている。
【0032】
逆止弁12は、圧力差によって→方向にのみ水を流通させるものであり、循環ポンプ11と並列に接続され、第2給湯回路を構成する際に給水源8の冷水を、循環ポンプ11をバイパスして導くように構成されている。
【0033】
切換弁13は、第1給湯回路における第1水熱交換器2bの出口側、第2給湯回路における貯湯タンク10の出口側、および貯湯回路における第1水熱交換器2bと貯湯タンク10との間に位置して設けられている。切換弁13は、三方弁で構成されており、ステッピングモータの動作により流通口13a,13b,13c間の連通、閉塞が行われる。流通口13aは貯湯タンク10に接続され、流通口13bは第1水熱交換器2bに接続され、流通口13cは給湯弁14aに接続されている。
【0034】
給湯弁14は、給湯管41bの出口側に設けられ、流量を調整して所定温度の給湯を行なうために設けられている。給湯弁14は、二方弁で構成され、ステッピングモータの動作により流通口14aと14bとの間の連通、閉塞および流量の調整が行われる。流通口14aは切換弁13を介して貯湯タンク10に接続されると共に、水比例弁15を介して給水源8に接続されている。流通口14bは台所蛇口16、風呂蛇口17およびシャワー18に接続されている。
【0035】
水比例弁15は給水源8の冷水を貯湯タンク10および第1水熱交換器2bをバイパスして直接、給湯弁14の入口側に導くように給水管41aと給湯管41bとの間に接続されている。水比例弁15から冷水を給湯弁14の入口側に導くことにより、給湯流量を確保しながら給湯温度を調節することができる。水比例弁15は、二方弁で構成され、ステッピングモータの動作により弁体が移動して流通口15a,15b間の連通、閉塞および流量の調整が行われる。
【0036】
貯湯タンク10は円筒状で縦長に形成された小容量のタンクで構成されおり、従来貯湯方式の貯湯タンクに比べ3分の1程度の小さな貯湯タンクである。
【0037】
このような構成において、本実施例のヒートポンプ給湯機は、電気温水器に比較してエネルギー効率が300〜500%良いといわれるヒートポンプ回路30を利用して、水熱交換器2bで焚き上げた湯を直接使用端末に供給すると共に、浴槽19の湯を第2水熱交換器2cで追焚きしようとするものである。
【0038】
次に、本ヒートポンプ給湯機の運転動作について図1の部品構成を参照にしながら、図3及び図4のフローチャートに基づいて説明する。
【0039】
図3は、据付時の運転動作を示すフローチャートの一実施例である。ヒートポンプ給湯機50は、製造場所から運搬されて使用者の希望する設置場所に据付られ(ステップ60)、給水管41aが水道等の給水源8に接続され給水源8の元栓が開放される(ステップ61)と、給水源8から給水が開始され(ステップ62)、水は減圧弁9によって一定圧力に減圧調整された後、貯湯タンク10および第1水熱交換器2b並びに各配水管内に流入し満水状態になる(ステップ63)。なお、ヒートポンプ給湯機50の据付時の各機器は次のような初期状態に設定されている。即ち、切換弁13は流通口13aと流通口13bとが連通され、水比例弁15は閉じられた状態となっている。
【0040】
次に電源スイッチが投入されると、運転制御手段21の制御によりヒートポンプ回路30および貯給湯回路41の運転が開始され、タンク貯湯運転が行なわれる(ステップ64)。このタンク貯湯運転では、圧縮機1の運転が開始され、圧縮機1内のガス状冷媒が圧縮加熱され高温高圧の冷媒となって凝縮器2aに送り込まれる。これによって、水冷媒熱交換器2では、凝縮器2aの冷媒回路を流れる高温冷媒と第1水熱交換器2bの水回路を流れる水とが熱交換し、冷媒は放熱し、水は加熱される。放熱された冷媒は減圧装置3で減圧され、更に蒸発器4で膨脹蒸発してガス状となり再び圧縮機1に戻る。このヒートポンプ運転を続けることにより、第1水熱交換器2b内を通過する水が加熱される。
【0041】
タンク貯湯運転においては、上記ヒートポンプ運転と共に、貯給湯回路において循環ポンプ11の運転が開始され、貯湯タンク10の下部の通水口から、循環ポンプ11、第1水熱交換器2b、切換弁13、貯湯タンク10の上部の通水口13aへ水が循環する。これにより、水冷媒熱交換器2で加熱された温水が貯湯タンク10の上部より貯湯されてゆき、貯湯タンク10全体が沸き上がった状態に達すると貯湯完了と判定し(ステップ65)、運転を停止する(ステップ66)。
【0042】
なお、タンク満水判定は、例えば水位センサ67や圧力センサ等で満水状態を検知して判定を行い、貯湯完了判定は、例えばサーミスタ68で貯湯タンク10の上中下各部の水温を検知して判定するものである(図1には図示せず)。
【0043】
図4は、湯水使用時の動作を示すフローチャートの一実施例である。
【0044】
使用端末16〜18で蛇口が開けられ、湯が使われる(ステップ70)と、運転制御手段21は、圧縮機1を起動させヒートポンプ回路30の運転を開始すると共に、給水源8、減圧弁9、逆止弁12、第1水熱交換器2b、切換弁13、給湯弁14、使用端末16〜18の水回路により水加熱給湯運転(ステップ71)を行なう。同時に、給水源8、減圧弁9、貯湯タンク10、切換弁13、給湯弁14、使用端末16〜18の水回路によりタンク給湯を行なう(ステップ72)。
【0045】
ここで、ヒートポンプ回路30は、圧縮機1で圧縮された高温冷媒を凝縮器2aに送り込み、第1水熱交換器2b内の水を加熱するが、運転立ち上り時は凝縮器2aに送り込まれてくる冷媒が充分に高温高圧となり切らず温度が低く、かつ水冷媒熱交換器2全体が冷えているため、第1水熱交換器2b内の水を加熱する加熱能力が充分でない。時間の経過と共に冷媒は高温高圧となり、それに従って発生する凝縮熱が増加して第1水熱交換器2b内の水の加熱能力が増加してゆく。
【0046】
また、ヒートポンプ運転の加熱能力が高温安定状態に達するまでの時間は通常約5、6分掛かるため、運転制御手段21は、運転開始直後の高温安定状態に達するまでの所定時間は、圧縮機の回転数を通常より高速回転にして運転制御し、水加熱給湯運転の立上時間を約2〜3分程度に短縮する。
【0047】
そして、運転開始直後の所定時間(約2〜3分程度)貯湯タンクから湯を供給するタンク給湯を行なった後は、運転制御手段21が動作して第1給湯回路によるタンク給湯を停止して、第2給湯回路による加熱給湯のみに切換えられる(ステップ75)。即ち、第2給湯回路は、給水源8からの冷水を、第1水熱交換器2bを通して加熱し、切換弁13および給湯弁14を通して使用端末16〜18に供給する。
【0048】
このように運転開始時は貯湯タンク2から過渡的に給湯し、その後は水加熱器11から給湯するようにしているので、運転立ち上り時の加熱遅れを解消できると共に、貯湯タンク10の容量を従来例と比較して格段に小さくできる。なお、水加熱器11に貯溜している水の温度を出来るだけ速く上昇させて、貯湯タンク10の湯を使用する過渡的な給湯回路を使用する時間を短縮することが貯湯タンク10の容量を一層小さくすることになるのでヒートポンプ回路30の能力、特に圧縮機出力を従来一般に用いられている5kW程度より3倍以上の15kW程度に大きくすることが望ましい。
【0049】
なお、使用端末の台所蛇口16、風呂蛇口17、シャワー18で同時に出湯した場合は、同時に給水源8から同量の水が供給され、給湯タンク10および給湯回路40は常に満水となるように構成されている。また、この同時給湯における給湯量が極端に多い場合には、切換弁13の弁体を中間位置に動作させて第1水熱交換器2bからの給湯に加えて貯湯タンク10からの給湯も併用できるようになっている。
【0050】
なお、運転制御手段は、貯湯タンク10の残湯量が所定値以下になった時には、貯湯タンクからの給湯を停止し、水加熱交換器2bからの給湯のみにするようになっている。
【0051】
次に、湯水使用が終了して使用端末の蛇口が閉じられる(ステップ76)と、湯水使用直後でタンク給湯と水加熱給湯が行われている場合は、タンク給湯及び水加熱給湯の両方を停止し、タンク給湯が停止され水加熱給湯のみであれば水加熱給湯を停止する(ステップ77)。
【0052】
更に運転制御手段21は、タンク給湯運転及び水加熱給湯運転を共に停止した後、必ずタンク貯湯運転を開始し(ステップ78)、サーミスタ等によって貯湯完了を検知し貯湯完了を判定した(ステップ79)後に運転を終了する(ステップ80)。
【0053】
但し、サーミスタ83によるタンク貯湯状態の検知は、常時行われており、極めて短時間使用のため水加熱給湯運転停止後でも貯湯タンクに湯温、湯量共に貯湯完了状態とほぼ同等に残っている場合は貯湯完了と判定されタンク貯湯運転は行われない。
【0054】
以上のように、運転制御手段21には、あらゆる運転において目的とする運転を終了した後に、必ず貯湯完了するまでタンク貯湯運転を行なう毎回貯湯運転機能を有しているので、貯湯タンクには常に所定温度の湯が満杯になっており、運転立上がり時の湯温低下や使用途中の湯切れの心配が解消できる。
【0055】
【発明の効果】
以上説明したように、本発明によれば、運転制御手段は、タンク貯湯運転と、タンク給湯運転と、水加熱給湯運転を制御すると共に、水使用端末による給湯使用後はタンク貯湯運転を行ってから運転停止する毎回貯湯運転機能を有しているから、貯湯タンクには常に湯が貯湯されており、貯湯タンクが大幅に小型化できると共に、運転立上がり時の湯温低下や使用途中の湯切れの心配が解消できる。
【0056】
次の発明によれば、前記毎回貯湯運転機能は、貯湯タンクに所定温度の湯が所定量溜まるまでタンク貯湯運転を行った後運転停止するから、貯湯タンクには常に所定温度の湯が所定量蓄えられており、貯湯タンクの貯湯熱量を最大とすることができるため、貯湯タンクをより一層有効に活用できる。
【0057】
次の発明によれば、前記毎回貯湯運転機能は、貯湯タンク内の湯量及び湯温が所定値以上になっている場合はタンク貯湯運転を行なわず運転停止するため、不要な運転・停止を行なわないで済み、ヒートポンプ回路の寿命や省電力に有利な効果を有する。
【0058】
次の発明によれば、前記運転制御手段は、水使用端末における給湯使用時に水熱交換器の出湯温度が所定値以上になるまでの間は貯湯タンクの湯を使用し、水熱交換器の出湯温度が所定値以上になった後は、水熱交換器からの出湯を使用するため、運転開始直後の湯温低下及び貯湯タンク湯の使用量節約を図ることができる。
【0059】
本発明によれば、前記運転制御手段は、水使用端末における給湯使用時で貯湯タンクの湯を使用中に、湯量が所定値以下になった場合は貯湯タンクからの給湯を停止し、水熱交換器からの給湯のみに切換えるため、給湯使用直後であっても貯湯タンクには急場における必要最小限の湯量が蓄えられており、急場にも対応できる極めて有効な給湯機となし得る。
【図面の簡単な説明】
【図1】本発明のヒートポンプ式給湯機における、ヒートポンプ回路、貯給湯回路、及び部品の概略構成の一実施例を示す模式図である。
【図2】本発明の運転制御手段と制御される機能部品の相関性の一実施例を示す模式図である。
【図3】本発明のヒートポンプ式給湯機における、据付時の動作を示すフローチャートである。
【図4】本発明のヒートポンプ式給湯機における、湯水使用時の動作を示すフローチャートである。
【符号の説明】
1…圧縮機、2…水冷媒熱交換器、2a…凝縮器、2b…第1水熱交換器、2c…第2水熱交換器、3…減圧装置、4…蒸発器、5a,5b,5c,5d…冷媒配管、6…除霜用電磁弁、7a,7b…冷媒配管、8…給水源、9…減圧弁、10…貯湯タンク、11…循環ポンプ、12…逆止弁、13…切換弁、13a,13b,13c…流通口、14…給湯弁、14a,14b…流通口、15…水比例弁、16…台所蛇口、17…風呂蛇口、18…シャワー、19…浴槽、20…風呂循環ポンプ、21…運転制御手段、30…ヒートポンプ回路、40…給湯回路、41…貯給湯回路、41a…給水管、42b…給湯管、50…給湯機、50a…筐体。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump type hot water heater, and in particular, in an instantaneous hot water supply system in which water heated by a water heat exchanger is directly supplied to a water use terminal, hot water supply is performed while the tapping temperature of the water heat exchanger at the start of operation is low. It is suitable for a heat pump type hot water heater provided with a hot water storage tank for performing.
[0002]
[Prior art]
Conventional hot water heaters have a combustion water heater that does not have a hot water tank, burns gas, etc., instantaneously boiles water with its powerful combustion heat, and supplies hot water, and a large capacity hot water tank. There were electric water heaters that stored a large amount of hot water heated by an electric heater during the night in a hot water storage tank using cheap electricity with discounts at night and used that hot water during the day.
[0003]
Furthermore, recently, heat pump water heaters that are said to be more energy efficient than electric water heaters have begun to spread. The heat pump type hot water heater uses a change in the state of the refrigerant as a heat source, so it is said that it is several times better in energy efficiency than an electric heater and does not burn gas etc., so it does not emit CO2 and is friendly to the global environment. ing.
[0004]
However, since there is no strong heat as when gas is burned, a large-capacity hot water storage tank is installed like an electric water heater, and hot water is boiled in the heat pump circuit at night using cheap electricity. It was common to store in a hot water storage tank and use the stored hot water during the day.
[0005]
As such a conventional heat pump type water heater, there is one disclosed in Patent Document 1 below, which will be described with reference to FIG.
[0006]
The heat pump type hot water heater shown in FIG. 4 includes a heat pump circuit including a compressor 101, a condenser 102, a decompression device 103, and an evaporator 104, and a large-capacity hot water storage tank 105 as separate devices. In addition, the heat pump type water heater connects a water pipe from a lower part of the hot water storage tank 105 to a water heat exchanger 113 arranged in a heat exchange manner with the condenser 102 of the heat pump circuit via a circulation pump 112, and the water heat exchanger 113. A hot water storage circuit in which a hot water pipe is connected to the outlet of the hot water storage tank 105 is provided.
[0007]
This heat pump water heater operates an energy efficient heat pump circuit using cheap electric power at night, and circulates the water in the hot water storage tank 105 by the circulation pump 112, and the predetermined heat is supplied by the water heat exchanger 113. The temperature is gradually increased until the temperature reaches a predetermined temperature, and the temperature detector 114 detects that the temperature has reached a predetermined hot water temperature, and the operation of the heat pump circuit is stopped. During the day, when hot water is used at the use terminal 118, it is mixed well with tap water by the mixing valve 117 and supplied after being diluted to an appropriate temperature. By increasing the temperature of hot water stored in the hot water storage tank 105 as much as possible, the amount of tap water diluted by the mixing valve 117 is increased, and the amount of hot water taken out from the hot water storage tank 105 is decreased.
[0008]
[Patent Document 1]
JP-A-9-126547 [0009]
[Problems to be solved by the invention]
Since the conventional heat pump type hot water heater has a large-capacity hot water storage tank, a sufficiently large installation space is required for installing the heat pump type hot water heater. Considering the case where hot water is stored to the full capacity of the hot water storage tank, the mass of the heat pump type hot water heater exceeds 400 kg. In addition, it is difficult to install in a confined place such as an apartment or condominium veranda, or in a place with insufficient strength. Furthermore, when transporting a heat pump water heater to the customer's installation location However, it requires a lot of cost and labor.
[0010]
And the conventional heat pump type water heater operates the heat pump circuit at night so as to use the discounted electricity charge at night, stores it in hot water storage tank as hot water, and does not operate the heat pump circuit during the day. The hot water stored in the hot water storage tank is used. For this reason, sometimes the hot water in the hot water storage tank was used up, and it was not possible to boil it up immediately, causing hot water to run out. Also, since a large amount of hot water at a temperature higher than the air temperature is stored, heat is radiated from the large surface of the hot water storage tank, resulting in wasted energy, so that the temperature drop can be warmed up at night. There was a need.
[0011]
An object of the present invention is to provide a heat pump type hot water heater that is small and light and excellent in transportability and installation, and that is always energy-saving without causing hot water shortage by always storing hot water in a hot water storage tank. There is.
[0012]
Other objects and advantages of the present invention will become apparent from the following description.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention according to claim 1, a heat pump type hot water heater includes a compressor, a condenser, a decompression device, and an evaporator that performs heat exchange between air and a refrigerant via a refrigerant pipe. A heat pump circuit connected in sequence, a water supply source, a hot water storage tank, a circulation pump, a water heat exchanger for exchanging heat with the condenser, a switching valve, a hot water supply valve and a water use terminal via a water pipe. And an operation control means for controlling operations of the compressor, the circulation pump, the switching valve, and the hot water supply valve, and the operation control means is provided in the hot water storage tank, the circulation pump, and the water heat exchanger by switching the switching valve. Tank hot water operation that circulates water and stores hot water in the hot water storage tank, tank hot water operation that supplies hot water from the hot water storage tank to the water use terminal through the hot water supply valve, and water heating that supplies hot water from the water heat exchanger to the water use terminal through the hot water supply valve Controls the hot water operation, after the hot water used in the water used terminal is characterized in that it has each time hot water storage operation function to shutdown after performing the tank hot water storage operation.
[0014]
In order to achieve another object described above, in the present invention according to claim 2, in addition to claim 1, the hot water storage operation function is performed every time until the amount of hot water in the hot water storage tank and the hot water temperature reach a predetermined value or more. The operation is stopped after the operation is performed.
[0015]
In order to achieve another object described above, in the present invention according to claim 3, in addition to claim 1, the hot water storage operation function is performed when the amount of hot water in the hot water storage tank and the hot water temperature are not less than a predetermined value. Is characterized in that the operation is stopped without performing the tank hot water storage operation.
[0016]
In order to achieve another object described above, in the present invention according to claim 4, in addition to claim 1, the operation control means is characterized in that the tapping temperature of the water heat exchanger is not less than a predetermined value when hot water is used at the water use terminal. The hot water in the hot water storage tank is used until the temperature reaches, and the hot water from the water heat exchanger is used after the hot water temperature of the water heat exchanger reaches a predetermined value or more.
[0017]
In order to achieve another object described above, in the present invention according to claim 5, in addition to claim 1, the operation control means is configured so that the amount of hot water during use of hot water in a hot water storage tank is in use when hot water is used at a water use terminal. When the temperature falls below a predetermined value, the hot water supply from the hot water storage tank is stopped, and only the hot water supply from the water heat exchanger is switched.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS.
[0019]
The heat pump hot water heater 50 includes a heat pump circuit 30, a hot water supply circuit 40, and operation control means 21. The heat pump circuit 30, the hot water supply circuit 40, and the operation control means 21 are accommodated in one casing 50a using a small-capacity hot water storage tank 10. Thereby, compared with the conventional general heat pump type hot water heater in which the heat pump circuit 30 and the hot water supply circuit 40 are housed in separate housings, the transportability and the installation property can be improved.
[0020]
The heat pump circuit 30 is configured by sequentially connecting the compressor 1, the condenser 2a, the decompression device 3, and the evaporator 4 via the refrigerant pipes 5a to 5d, and the refrigerant is enclosed therein.
[0021]
The compressor 1 is capable of capacity control and is operated with a large capacity when a large amount of hot water is supplied. Here, the rotation speed of the compressor 1 is controlled from a low speed (for example, 2000 rotations / minute) to a high speed (for example, 8000 rotations / minute) by PWM control, voltage control (for example, PAM control) and combination control thereof. It has become. In particular, during a water heating hot water supply operation in which hot water is supplied directly from the first water heat exchanger 2b (in other words, when hot water is supplied in the second hot water supply circuit), the compressor 1 is operated at a high speed.
[0022]
The water refrigerant heat exchanger 2 includes a condenser 2a, a first water heat exchanger 2b, and a second water heat exchanger 2c. The condenser 2a is configured to exchange heat with the first water heat exchanger 2b and the second water heat exchanger 2c. Moreover, the evaporator 4 is comprised with the air refrigerant | coolant heat exchanger which performs heat exchange with air and a refrigerant | coolant.
[0023]
The defrosting electromagnetic valve 6 is constituted by an open / close valve using an electromagnetic coil, and is for bypassing the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 to the inlet side of the evaporator 4. One end of the defrosting electromagnetic valve 6 is connected to the discharge side of the compressor 1 (the inlet side of the condenser 2a) via the refrigerant pipe 7a, and the other end of the defrosting electromagnetic valve 6 is connected to the refrigerant pipe 7b. To the inlet side of the evaporator 4 (the outlet side of the decompression device 3).
[0024]
The hot water supply circuit 40 includes a hot water storage circuit 41 and a bath chase circuit 42. In the hot water storage circuit 41, a pressure reducing valve 9, a hot water storage tank 10, a circulation pump 11, a check valve 12, a first water heat exchanger 2b, a switching valve 13, a hot water supply valve 14, and a water proportional valve 15 are connected via a water pipe. Configured. The hot water supply circuit 41 is filled with water from the water supply source 8. The bath remedy circuit 42 is configured by connecting the bath circulation pump 20 and the second water heat exchanger 2c via a water pipe. Further, hot water from the bathtub 19 is circulated in the bath memorial circuit 42. In the description of the present invention, water includes cold water and hot water, the cold water is in a state before becoming hot water, and the hot water is in a state where the cold water is heated (also referred to as hot water).
[0025]
As shown in FIG. 2, the operation control means 21 includes the compressor 1, the pressure reducing device 3, the defrosting electromagnetic valve 6, the circulation pump 11, the switching valve 13, the hot water supply valve 14, the water proportional valve 15, and the bath circulation pump 20. It controls the operation.
[0026]
Further, the operation control means 21 controls the rotation speed of the compressor, and controls to operate at a predetermined high speed immediately after the start of operation.
[0027]
Furthermore, it has a hot water storage operation function every time the operation is stopped after the tank hot water storage operation is performed after using the hot water supply in the water use terminal.
[0028]
The heat pump water heater is provided with a temperature sensor that detects the temperature state of the water heater. On the hot water supply circuit 40 side, the hot water supply pipe 41b before and after the hot water supply valve 14, the water pipe between the first water heat exchanger 2b and the switching valve 13, the water supply pipe 41a on the outlet side of the pressure reducing valve 9, the bath circulation pump 20 Each of the water pipes on the outlet side is provided with a temperature sensor, and a detection signal is input to the operation control means 21. Further, on the heat pump circuit 30 side, an outside air temperature sensor for detecting the outside air temperature is provided, and a detection signal is input to the operation control means 21. The operation control means 21 controls each device based on these signals.
[0029]
The hot water storage circuit 41 includes a hot water storage circuit that circulates water through the hot water storage tank 10, the circulation pump 11, the first water heat exchanger 2 b, the switching valve 13 and stores hot water in the hot water storage tank 10, and a water supply source. The first hot water supply circuit for supplying hot water from the hot water storage tank 10 through the switching valve 13 and the hot water supply valve 14 while receiving the 8 water supply, and the hot water supply from the water heat exchanger 2b through the switching valve 13 and the hot water supply valve 14 while receiving the water supply from the water supply source 8 It is configured via a water pipe so as to form a second hot water supply circuit. The bath remedy circuit 42 is configured through a water pipe so as to circulate the hot water in the bathtub 19 to the bath circulation pump 20 and the second water heat exchanger 2c.
[0030]
The hot water storage circuit 41 connects the water supply pipe 41a to the water supply source and is supplied with water from the water supply source 8, and the hot water supply pipe 41b is supplied to the kitchen faucet 16, the bath faucet 17 and the shower 18 which are used terminals. ing.
[0031]
The water supply pipe 41a is provided with a pressure reducing valve 9 on the inlet side. The water supply pipe 41a is branched into three on the outlet side of the pressure reducing valve 9, is directly connected to the hot water storage tank 10, is connected to the first water heat exchanger 2b via the check valve 12, and the hot water supply valve 14 is connected. Is connected through a water proportional valve 15.
[0032]
The check valve 12 circulates water only in the → direction due to the pressure difference, and is connected in parallel with the circulation pump 11, and when the second hot water supply circuit is configured, the cold water from the water supply source 8 is supplied to the circulation pump 11. It is configured to bypass and guide.
[0033]
The selector valve 13 is connected to the outlet side of the first water heat exchanger 2b in the first hot water supply circuit, the outlet side of the hot water storage tank 10 in the second hot water supply circuit, and the first water heat exchanger 2b and the hot water storage tank 10 in the hot water storage circuit. It is located in between. The switching valve 13 is constituted by a three-way valve, and the communication ports 13a, 13b, and 13c are connected and closed by the operation of the stepping motor. The circulation port 13a is connected to the hot water storage tank 10, the circulation port 13b is connected to the first water heat exchanger 2b, and the circulation port 13c is connected to the hot water supply valve 14a.
[0034]
The hot water supply valve 14 is provided on the outlet side of the hot water supply pipe 41b, and is provided for adjusting the flow rate and supplying hot water at a predetermined temperature. The hot water supply valve 14 is constituted by a two-way valve, and the communication between the flow ports 14a and 14b, the closing and the flow rate are adjusted by the operation of the stepping motor. The circulation port 14 a is connected to the hot water storage tank 10 via the switching valve 13 and is connected to the water supply source 8 via the water proportional valve 15. The circulation port 14 b is connected to the kitchen tap 16, the bath tap 17 and the shower 18.
[0035]
The water proportional valve 15 is connected between the water supply pipe 41a and the hot water supply pipe 41b so as to guide the cold water of the water supply source 8 directly to the inlet side of the hot water supply valve 14 by bypassing the hot water storage tank 10 and the first water heat exchanger 2b. Has been. By introducing cold water from the water proportional valve 15 to the inlet side of the hot water supply valve 14, the hot water supply temperature can be adjusted while ensuring the hot water flow rate. The water proportional valve 15 is composed of a two-way valve, and the valve body is moved by the operation of the stepping motor, and the communication between the flow ports 15a and 15b, the closing and the flow rate are adjusted.
[0036]
The hot water storage tank 10 is formed of a small tank having a cylindrical shape that is vertically long, and is a small hot water storage tank that is about one-third of the hot water storage tank of the conventional hot water storage system.
[0037]
In such a configuration, the heat pump water heater of the present embodiment uses the heat pump circuit 30 that is said to be 300 to 500% better in energy efficiency than the electric water heater, and hot water pumped up by the water heat exchanger 2b. Is directly supplied to the use terminal, and the hot water in the bathtub 19 is to be chased by the second water heat exchanger 2c.
[0038]
Next, the operation of the heat pump water heater will be described based on the flowcharts of FIGS. 3 and 4 with reference to the component configuration of FIG.
[0039]
FIG. 3 is an example of a flowchart showing an operation operation during installation. The heat pump water heater 50 is transported from the manufacturing site and installed at the installation location desired by the user (step 60), the water supply pipe 41a is connected to the water supply source 8 such as water supply, and the main plug of the water supply source 8 is opened ( In step 61), water supply is started from the water supply source 8 (step 62), and the water is depressurized and adjusted to a constant pressure by the pressure reducing valve 9, and then flows into the hot water storage tank 10, the first water heat exchanger 2b, and each distribution pipe. The water is full (step 63). In addition, each apparatus at the time of installation of the heat pump water heater 50 is set to the following initial states. That is, the switching valve 13 communicates with the circulation port 13a and the circulation port 13b, and the water proportional valve 15 is closed.
[0040]
Next, when the power switch is turned on, the operation of the heat pump circuit 30 and the hot water storage circuit 41 is started under the control of the operation control means 21, and the tank hot water storage operation is performed (step 64). In the tank hot water storage operation, the operation of the compressor 1 is started, and the gaseous refrigerant in the compressor 1 is compressed and heated to be fed into the condenser 2a as a high-temperature and high-pressure refrigerant. As a result, in the water refrigerant heat exchanger 2, the high-temperature refrigerant flowing through the refrigerant circuit of the condenser 2a and the water flowing through the water circuit of the first water heat exchanger 2b exchange heat, the refrigerant dissipates heat, and the water is heated. The The radiated refrigerant is decompressed by the decompression device 3, further expanded and evaporated by the evaporator 4, becomes gaseous, and returns to the compressor 1 again. By continuing this heat pump operation, the water passing through the first water heat exchanger 2b is heated.
[0041]
In the tank hot water storage operation, together with the heat pump operation, the operation of the circulation pump 11 is started in the hot water storage circuit, and the circulation pump 11, the first water heat exchanger 2 b, the switching valve 13, Water circulates to the water inlet 13 a at the top of the hot water storage tank 10. Thereby, the hot water heated by the water-refrigerant heat exchanger 2 is stored from the upper part of the hot water storage tank 10, and when the entire hot water storage tank 10 reaches a boiling state, it is determined that the hot water storage is completed (step 65), and the operation is stopped. (Step 66).
[0042]
For example, the tank full level determination is performed by detecting a full water level using, for example, a water level sensor 67 or a pressure sensor, and the hot water storage completion determination is performed by detecting the water temperatures of the upper, middle, and lower parts of the hot water storage tank 10 using, for example, the thermistor 68. (Not shown in FIG. 1).
[0043]
FIG. 4 is an example of a flowchart showing the operation when hot water is used.
[0044]
When the faucets are opened at the use terminals 16 to 18 and hot water is used (step 70), the operation control means 21 activates the compressor 1 and starts the operation of the heat pump circuit 30, as well as the water supply source 8 and the pressure reducing valve 9. The water heating hot water supply operation (step 71) is performed by the check valve 12, the first water heat exchanger 2b, the switching valve 13, the hot water supply valve 14, and the water circuits of the use terminals 16-18. At the same time, tank hot water supply is performed by the water circuit of the water supply source 8, the pressure reducing valve 9, the hot water storage tank 10, the switching valve 13, the hot water supply valve 14, and the use terminals 16-18 (step 72).
[0045]
Here, the heat pump circuit 30 sends the high-temperature refrigerant compressed by the compressor 1 to the condenser 2a and heats the water in the first water heat exchanger 2b, but is sent to the condenser 2a at the start of operation. Since the coming refrigerant is sufficiently hot and high in pressure, the temperature is low and the water refrigerant heat exchanger 2 as a whole is cold, the heating capacity for heating the water in the first water heat exchanger 2b is not sufficient. As the time elapses, the refrigerant becomes high temperature and pressure, and the heat of condensation generated accordingly increases and the heating capacity of the water in the first water heat exchanger 2b increases.
[0046]
In addition, since the time required for the heating capacity of the heat pump operation to reach the high temperature stable state usually takes about 5 to 6 minutes, the operation control means 21 determines that the predetermined time until the high temperature stable state immediately after the operation starts reaches the compressor. The operation is controlled at a rotational speed higher than usual, and the startup time of the water heating hot water supply operation is shortened to about 2 to 3 minutes.
[0047]
And after performing the tank hot water supply which supplies hot water from a hot water storage tank for a predetermined time (about 2 to 3 minutes) immediately after the start of operation, the operation control means 21 operates to stop the tank hot water supply by the first hot water supply circuit. Only the hot water supply by the second hot water supply circuit is switched (step 75). That is, the second hot water supply circuit heats the cold water from the water supply source 8 through the first water heat exchanger 2 b and supplies the cold water from the water supply source 8 to the use terminals 16 to 18 through the switching valve 13 and the hot water supply valve 14.
[0048]
As described above, since hot water is transiently supplied from the hot water storage tank 2 at the start of operation and then hot water is supplied from the water heater 11, the heating delay at the start of operation can be eliminated and the capacity of the hot water storage tank 10 can be increased. Compared to the example, it can be much smaller. It is to be noted that increasing the temperature of the water stored in the water heater 11 as quickly as possible to shorten the time for using the transient hot water supply circuit that uses the hot water in the hot water storage tank 10 will reduce the capacity of the hot water storage tank 10. Since it will be further reduced, it is desirable to increase the capacity of the heat pump circuit 30, particularly the compressor output, to about 15 kW, which is three times or more than about 5 kW that is generally used conventionally.
[0049]
When hot water is simultaneously discharged from the kitchen faucet 16, bath faucet 17, and shower 18 of the terminal used, the same amount of water is supplied from the water supply source 8 at the same time, and the hot water supply tank 10 and the hot water supply circuit 40 are always full. Has been. In addition, when the amount of hot water supply in this simultaneous hot water supply is extremely large, the valve body of the switching valve 13 is moved to an intermediate position to use hot water from the hot water storage tank 10 in addition to hot water from the first water heat exchanger 2b. It can be done.
[0050]
The operation control means stops the hot water supply from the hot water storage tank when the remaining hot water amount in the hot water storage tank 10 becomes a predetermined value or less, and only supplies hot water from the water heating exchanger 2b.
[0051]
Next, when the use of hot water is completed and the faucet of the terminal used is closed (step 76), both tank hot water supply and water heating hot water supply are stopped when tank hot water supply and water heating hot water supply are performed immediately after hot water use. If the tank hot water supply is stopped and only the water heating hot water supply is supplied, the water heating hot water supply is stopped (step 77).
[0052]
Further, after stopping both the tank hot water supply operation and the water heating hot water supply operation, the operation control means 21 always starts the tank hot water storage operation (step 78), detects the completion of hot water storage by a thermistor or the like, and determines the completion of hot water storage (step 79). Later, the operation is terminated (step 80).
[0053]
However, the detection of the hot water storage state of the tank by the thermistor 83 is always performed, and the hot water temperature and the amount of hot water remain in the hot water storage tank almost equal to the hot water storage completion state even after the water heating hot water supply operation is stopped because it is used for an extremely short time. Is determined to be hot water storage completion and tank hot water storage operation is not performed.
[0054]
As described above, the operation control means 21 has a hot water storage operation function every time the hot water storage operation is performed until the hot water storage is completed after the target operation is completed in every operation. The hot water of a predetermined temperature is full, so that the fear of a drop in hot water at the start of operation and running out of hot water during use can be solved.
[0055]
【The invention's effect】
As described above, according to the present invention, the operation control means controls the tank hot water storage operation, the tank hot water supply operation, and the water heating hot water supply operation, and performs the tank hot water storage operation after using the hot water supply by the water use terminal. Since it has a hot water storage operation function every time it stops operating, hot water is always stored in the hot water storage tank, which can greatly reduce the size of the hot water storage tank, reduce the temperature of the hot water at the start of operation, and run out of hot water during use You can eliminate the worry.
[0056]
According to the next invention, since the hot water storage operation function is stopped after the tank hot water storage operation is performed until a predetermined amount of hot water is accumulated in the hot water storage tank, the predetermined amount of hot water is always stored in the hot water storage tank. Since it is stored and the amount of hot water stored in the hot water storage tank can be maximized, the hot water storage tank can be used more effectively.
[0057]
According to the next invention, since the hot water storage operation function is stopped without performing the tank hot water storage operation when the amount of hot water and the hot water temperature in the hot water storage tank are equal to or higher than the predetermined values, unnecessary operation / stop is performed. This has an advantageous effect on the life of the heat pump circuit and power saving.
[0058]
According to the next invention, the operation control means uses hot water in the hot water storage tank until the hot water temperature of the water heat exchanger reaches a predetermined value or more when using hot water at the water use terminal. Since the hot water from the water heat exchanger is used after the hot water temperature becomes equal to or higher than a predetermined value, it is possible to reduce the hot water temperature immediately after the start of operation and to save the amount of hot water stored in the storage tank.
[0059]
According to the present invention, the operation control means stops the hot water supply from the hot water storage tank when the hot water amount becomes a predetermined value or less while using the hot water in the hot water storage terminal at the time of using the hot water supply at the water use terminal. Since only the hot water supply from the exchanger is used, the minimum required amount of hot water is stored in the hot water storage tank even immediately after using the hot water supply.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of a schematic configuration of a heat pump circuit, a hot water storage circuit, and components in a heat pump hot water supply apparatus of the present invention.
FIG. 2 is a schematic diagram showing an example of the correlation between the operation control means of the present invention and the controlled functional components.
FIG. 3 is a flowchart showing an operation at the time of installation in the heat pump type water heater of the present invention.
FIG. 4 is a flowchart showing an operation when hot water is used in the heat pump type hot water heater of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Water refrigerant | coolant heat exchanger, 2a ... Condenser, 2b ... 1st water heat exchanger, 2c ... 2nd water heat exchanger, 3 ... Decompression device, 4 ... Evaporator, 5a, 5b, 5c, 5d ... refrigerant piping, 6 ... solenoid valve for defrosting, 7a, 7b ... refrigerant piping, 8 ... water supply source, 9 ... pressure reducing valve, 10 ... hot water storage tank, 11 ... circulation pump, 12 ... check valve, 13 ... Switching valve, 13a, 13b, 13c ... distribution port, 14 ... hot water supply valve, 14a, 14b ... distribution port, 15 ... water proportional valve, 16 ... kitchen faucet, 17 ... bath faucet, 18 ... shower, 19 ... bathtub, 20 ... Bath circulation pump, 21 ... operation control means, 30 ... heat pump circuit, 40 ... hot water supply circuit, 41 ... hot water storage circuit, 41a ... hot water supply pipe, 42b ... hot water supply pipe, 50 ... hot water supply machine, 50a ... housing.

Claims (5)

圧縮機、凝縮器、減圧装置、空気と冷媒との熱交換を行なう蒸発器を、冷媒配管を介して順次接続したヒートポンプ回路と、
給水源、貯湯タンク、循環ポンプ、前記凝縮器と熱交換する水熱交換器、切換弁、給湯弁および水使用端末を、水配管を介して接続した貯給湯回路とを備え、
水使用端末における給湯使用後は、タンク貯湯運転を行なってから運転停止するヒートポンプ式給湯機。
A heat pump circuit in which a compressor, a condenser, a decompression device, an evaporator for performing heat exchange between air and a refrigerant are sequentially connected via a refrigerant pipe;
A water supply source, a hot water storage tank, a circulation pump, a water heat exchanger for exchanging heat with the condenser, a switching valve, a hot water supply valve, and a water use terminal connected via a water pipe,
A heat pump type hot water heater that stops operation after performing hot water storage operation after using hot water at a water terminal.
前記毎回貯湯運転機能は、水使用端末における給湯使用後の前記タンク貯湯運転において、貯湯タンクに所定温度の湯を所定量蓄えることを特徴とする請求項1記載のヒートポンプ式給湯機。2. The heat pump hot water heater according to claim 1, wherein the hot water storage operation function stores a predetermined amount of hot water at a predetermined temperature in the hot water storage tank in the tank hot water storage operation after use of hot water at a water use terminal. 前記毎回貯湯運転機能は、貯湯タンク内の湯量および湯温が所定値以上になっている場合はタンク貯湯運転を行なわずに運転停止することを特徴とする請求項1記載のヒートポンプ式給湯機。2. The heat pump type hot water heater according to claim 1, wherein the hot water storage operation function is stopped without performing the tank hot water storage operation when the amount of hot water in the hot water storage tank and the hot water temperature are not less than a predetermined value. 前記運転制御手段は、水使用端末における給湯使用時に水熱交換器の出湯温度が所定値以上になるまでの間は貯湯タンクの湯を使用し、水熱交換器の出湯温度が所定値以上になった後は、水熱交換器からの出湯を使用することを特徴とする請求項1記載のヒートポンプ式給湯機。The operation control means uses hot water in the hot water storage tank until the hot water temperature of the water heat exchanger reaches a predetermined value or higher when hot water is used at the water use terminal, and the hot water temperature of the water heat exchanger exceeds the predetermined value. 2. The heat pump type hot water heater according to claim 1, wherein the hot water discharged from the water heat exchanger is used after becoming. 前記運転制御手段は、水使用端末における給湯使用時で貯湯タンクの湯を使用中に、湯量が所定値以下になった場合は貯湯タンクからの給湯を停止し、水熱交換器からの給湯のみに切換えることを特徴とする請求項1記載のヒートポンプ式給湯機。The operation control means stops the hot water supply from the hot water storage tank when the hot water amount falls below a predetermined value while using the hot water in the hot water storage terminal at the water use terminal, and only hot water from the water heat exchanger. The heat pump type water heater according to claim 1, wherein
JP2003172756A 2003-06-18 2003-06-18 Heat pump water heater Expired - Fee Related JP3890322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003172756A JP3890322B2 (en) 2003-06-18 2003-06-18 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003172756A JP3890322B2 (en) 2003-06-18 2003-06-18 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2005009724A true JP2005009724A (en) 2005-01-13
JP3890322B2 JP3890322B2 (en) 2007-03-07

Family

ID=34096778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003172756A Expired - Fee Related JP3890322B2 (en) 2003-06-18 2003-06-18 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3890322B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057206A (en) * 2005-08-26 2007-03-08 Denso Corp Heat pump type water heater and control device for heat pump type water heater
JP2008138925A (en) * 2006-12-01 2008-06-19 Hitachi Appliances Inc Heat pump water heater
JP2013194974A (en) * 2012-03-19 2013-09-30 Noritz Corp Bath water heater system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900416B (en) * 2010-08-06 2012-07-04 江苏天舒电器有限公司 Constant-temperature variable energy-saving water heater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057206A (en) * 2005-08-26 2007-03-08 Denso Corp Heat pump type water heater and control device for heat pump type water heater
JP4501815B2 (en) * 2005-08-26 2010-07-14 株式会社デンソー Heat pump type hot water supply apparatus and control device for heat pump type hot water supply apparatus
JP2008138925A (en) * 2006-12-01 2008-06-19 Hitachi Appliances Inc Heat pump water heater
JP2013194974A (en) * 2012-03-19 2013-09-30 Noritz Corp Bath water heater system

Also Published As

Publication number Publication date
JP3890322B2 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
JP4958460B2 (en) Heat pump water heater
EP2515050A1 (en) Hot water supply system
JP5082536B2 (en) Heat pump water heater
JP4231863B2 (en) Heat pump water heater bathroom heating dryer
JP3887781B2 (en) Heat pump water heater
JP3909311B2 (en) Heat pump water heater
JP5034569B2 (en) Heat pump water heater
JP3890322B2 (en) Heat pump water heater
JP2005315480A (en) Heat pump type water heater
JP3843066B2 (en) Heat pump water heater
JP2007040590A (en) Heat pump water heater
JP3896378B2 (en) Heat pump water heater
JP2002364912A (en) Multifunctional water-heater
JP2008045826A (en) Hot-water storage type hot water supply heater
JP3840456B2 (en) Heat pump water heater
JP3909312B2 (en) Heat pump water heater
JP2005016759A (en) Heat pump type water heater
JP3663942B2 (en) Heat pump water heater
JP3692813B2 (en) Heat pump water heater
JP2008196846A (en) Heat pump hot water supply machine
JP2007333335A (en) Hot water storage type hot water supply heating apparatus
JP4988521B2 (en) Heat pump water heater
JP3690155B2 (en) Cold / hot water supply equipment
JP4045266B2 (en) Heat pump water heater
JP3909310B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees