JP2011232000A - Heat pump water heater using co2 refrigerant - Google Patents

Heat pump water heater using co2 refrigerant Download PDF

Info

Publication number
JP2011232000A
JP2011232000A JP2010103827A JP2010103827A JP2011232000A JP 2011232000 A JP2011232000 A JP 2011232000A JP 2010103827 A JP2010103827 A JP 2010103827A JP 2010103827 A JP2010103827 A JP 2010103827A JP 2011232000 A JP2011232000 A JP 2011232000A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
heat pump
water supply
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010103827A
Other languages
Japanese (ja)
Other versions
JP5705455B2 (en
Inventor
Takuya Okada
拓也 岡田
Shigeru Yoshida
茂 吉田
Yoichi Kamifuji
陽一 上藤
Minemasa Omura
峰正 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010103827A priority Critical patent/JP5705455B2/en
Priority to EP11774847.5A priority patent/EP2581682A4/en
Priority to PCT/JP2011/059492 priority patent/WO2011136064A1/en
Publication of JP2011232000A publication Critical patent/JP2011232000A/en
Application granted granted Critical
Publication of JP5705455B2 publication Critical patent/JP5705455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump water heater using a CO2 refrigerant, which can achieve an increase in capacity while keeping the size of a container for a component equal to or smaller than a fixed size specified by the High Pressure Gas Safety Act.SOLUTION: The heat pump water heater using the CO2 refrigerant includes refrigerant circulation circuits 3A and 3B using the CO2 refrigerant, which include compressors 4A and 4B, radiators 6A and 6B, decompression means 10A and 10B, and heat absorbers 13A and 13B, respectively, and a heat exchanger 19 for hot-water supply, which includes a water channel 19A for exchanging heat with the radiators 6A and 6B. In the heat pump water heater 1, a plurality of systems of the refrigerant circulation circuits 3A and 3B are provided in parallel for the heat exchanger 19. All inside diameters of the containers for the components of the heat pumps 2A and 2B, which include the plurality of systems of the refrigerant circulation circuits 3A and 3B, respectively, are set at 160 mm or less, and the total freezing capacity thereof is set at 3 refrigeration tons or more.

Description

本発明は、給湯用熱交換器に対して、冷媒循環回路が複数系統パラレルに設けられているCO2冷媒を用いたヒートポンプ給湯装置に関するものである。   The present invention relates to a heat pump hot water supply apparatus using CO2 refrigerant in which a refrigerant circulation circuit is provided in parallel in a plurality of systems with respect to a hot water supply heat exchanger.

冷凍装置または空調装置を大容量化する手法として、(1)熱源機を複数台並列に接続する方法、(2)一台の熱源機内に圧縮機を複数台並列に設置する方法、の2通りが一般的である。(1)の方法は、均油用の配管や制御が必要となるが、容易に大容量化することができる。しかし、コストメリットはあまり期待できない。一方、(2)の方法は、同一ユニット内に冷媒回路を設けることができるため、キャビネットが一つで済み、コスト低減を期待することができる。しかし、冷媒は一つの回路に合流させて使われるため、冷媒量が倍となり、圧縮機、オイルセパレータ、レシーバ等の容器を大型化しなければならない。   There are two methods for increasing the capacity of a refrigeration apparatus or air conditioner: (1) a method of connecting a plurality of heat source devices in parallel, and (2) a method of installing a plurality of compressors in one heat source device in parallel. Is common. The method (1) requires piping and control for oil equalization, but can easily increase the capacity. However, the cost merit cannot be expected very much. On the other hand, since the refrigerant circuit can be provided in the same unit in the method (2), only one cabinet is required, and cost reduction can be expected. However, since the refrigerant is used by being combined in one circuit, the amount of the refrigerant is doubled, and a container such as a compressor, an oil separator, or a receiver must be enlarged.

CO2冷媒を用いたヒートポンプ給湯装置においても、今後、大容量化が進むと予想されるが、現状は、(1)の方法が主体である。理由は、R410A冷媒の場合、設計圧力が高圧側4.15MPa、低圧側2.21MPaであるのに対し、CO2冷媒の場合、設計圧力が高圧側14MPa、低圧側8.5MPaと数倍高くなるためである。それにも係わらず、(2)の方法として、特許文献1,2に示されるように、圧縮機を複数台並列に接続した超臨界サイクルのヒートポンプ給湯装置、あるいは圧縮機、放熱器、減圧手段、吸熱器、放熱器と熱交換する水流路を備えた給湯用熱交換器、水流路等の少なくともいずれか一つが複数設けられるCO2冷媒を用いたヒートポンプ給湯装置が提案されている。   Even in a heat pump hot water supply apparatus using a CO2 refrigerant, it is expected that the capacity will increase in the future. However, at present, the method (1) is mainly used. The reason is that in the case of the R410A refrigerant, the design pressure is 4.15 MPa on the high pressure side and 2.21 MPa on the low pressure side, whereas in the case of the CO2 refrigerant, the design pressure is several times higher, 14 MPa on the high pressure side and 8.5 MPa on the low pressure side. Because. Nevertheless, as a method of (2), as shown in Patent Documents 1 and 2, a supercritical cycle heat pump hot water supply apparatus in which a plurality of compressors are connected in parallel, or a compressor, a radiator, a decompression means, There has been proposed a heat pump hot water supply apparatus using a CO2 refrigerant in which at least one of a heat absorber, a heat exchanger for hot water supply having a water flow path for exchanging heat with a radiator, and a plurality of water flow paths is provided.

特許第4016875号公報Japanese Patent No. 4016875 特開2003−343914号公報JP 2003-343914 A

しかしながら、特許文献1に示されるように、単に圧縮機を複数台並列に接続した構成とした場合、設計圧力が低圧側でも8.5MPaと高く、圧縮機、オイルセパレータ、レシーバ、アキュームレータ等について、容器の肉厚を厚くしなければならず、大容量化する程その傾向が強くなるため、大きなコストアップ要因となるとともに、製造上の難易度が高くなるという課題があった。特に、冷凍能力が3トン以上になると、高圧ガス保安法に準拠する必要があり、内径が160mm以上の容器については、高圧ガス保安法で規定される容器に該当することから、製造コストや試験費用が大幅にアップし、大容量化する上でのネックとなっている。   However, as shown in Patent Document 1, when a configuration in which a plurality of compressors are simply connected in parallel, the design pressure is as high as 8.5 MPa even on the low pressure side, and the compressor, oil separator, receiver, accumulator, etc. The thickness of the container must be increased, and the tendency to increase as the capacity increases. This increases the cost, and increases the manufacturing difficulty. In particular, if the refrigerating capacity is 3 tons or more, it is necessary to comply with the High Pressure Gas Safety Law, and containers with an inner diameter of 160 mm or more fall under the container specified by the High Pressure Gas Safety Law. Costs have increased significantly, and this has become a bottleneck in increasing capacity.

一方、特許文献2に示されるように、圧縮機を複数台とした場合でも、冷媒を合流させずに、圧縮機毎に独立した複数系統の冷媒循環回路を構成(図9参照)すれば、オイルセパレータ、レシーバ、アキュームレータ等の容器をあまり大きくせずに、大容量化することができる。しかし、個々のヒートポンプの冷凍能力が大きくなり、必要冷媒量が多くなると、各容器のサイズを内径160mm以上に大きくせざるを得なくなり、高圧ガス保安法に準拠する必要が生じるため、熱交換器の大型化を含め、CO2冷媒を用いたヒートポンプ給湯装置を如何にして大容量化するかが一つの課題となっている。   On the other hand, as shown in Patent Document 2, even when a plurality of compressors are used, if a plurality of independent refrigerant circulation circuits are configured for each compressor without joining the refrigerant (see FIG. 9), Capacities can be increased without enlarging containers such as oil separators, receivers, and accumulators. However, if the refrigeration capacity of individual heat pumps increases and the amount of refrigerant required increases, the size of each container must be increased to an inner diameter of 160 mm or more, and it becomes necessary to comply with the High Pressure Gas Safety Law. One of the issues is how to increase the capacity of the heat pump water heater using CO2 refrigerant.

本発明は、このような事情に鑑みてなされたものであって、構成機器の容器を高圧ガス保安法で規定される一定サイズ以下の大きさに抑えたまま、大容量化することができるCO2冷媒を用いたヒートポンプ給湯装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is possible to increase the capacity of CO2 while keeping the container of the component equipment to a size equal to or less than a certain size specified by the High Pressure Gas Safety Law. It aims at providing the heat pump hot-water supply apparatus using a refrigerant | coolant.

上記課題を解決するために、本発明のCO2冷媒を用いたヒートポンプ給湯装置は、以下の手段を採用する。
すなわち、本発明にかかるCO2冷媒を用いたヒートポンプ給湯装置は、圧縮機、放熱器、減圧手段および吸熱器を含むCO2冷媒を用いた冷媒循環回路と、前記放熱器と熱交換する水流路を有する給湯用熱交換器と、を備え、前記給湯用熱交換器に対して前記冷媒循環回路が複数系統パラレルに設けられているCO2冷媒を用いたヒートポンプ給湯装置において、前記複数系統の冷媒循環回路により構成される各ヒートポンプの各々の構成機器の容器サイズが全て内径160mm以下とされ、そのトータルの冷凍能力が3冷凍トン以上とされていることを特徴とする。
In order to solve the above problems, the heat pump water heater using the CO2 refrigerant of the present invention employs the following means.
That is, the heat pump water heater using the CO2 refrigerant according to the present invention has a refrigerant circulation circuit using the CO2 refrigerant including a compressor, a radiator, a decompression means, and a heat absorber, and a water flow path for exchanging heat with the radiator. A heat pump for hot water supply, and a heat pump hot water supply apparatus using CO2 refrigerant in which the refrigerant circulation circuit is provided in parallel with a plurality of systems with respect to the heat exchanger for hot water supply. The container sizes of the constituent devices of the respective heat pumps are all set to an inner diameter of 160 mm or less, and the total refrigeration capacity is set to 3 refrigeration tons or more.

本発明によれば、給湯用熱交換器に対して冷媒循環回路が複数系統パラレルに設けられているCO2冷媒を用いたヒートポンプ給湯装置において、複数系統の冷媒循環回路により構成される各ヒートポンプの各々の構成機器の容器サイズが全て内径160mm以下とされ、そのトータルの冷凍能力が3冷凍トン以上とされているため、CO2冷媒を用いたヒートポンプ給湯装置を大容量化する場合、給湯用熱交換器に対して、冷媒循環回路を構成する機器の容器サイズを全て内径160mm以下の容器としたヒートポンプを2系統以上パラレルに接続して構成することによって、トータルの冷凍能力が3冷凍トン以上の大容量のCO2冷媒を用いたヒートポンプ給湯装置を構成することができる。従って、設計圧力が高圧側14MPa、低圧側で8.5MPaと高いCO2冷媒を用いたヒートポンプを構成する機器の容器を一定サイズ以下の大きさに抑えたまま、CO2冷媒を用いたヒートポンプ給湯装置を大容量化することができ、容器の大型化に伴う様々な問題を解消することができる。しかも、個々のヒートポンプを構成する機器の容器サイズが全て内径160mm以下の容器とされているため、高圧ガス保安法に規定する容器に該当せず、製造工程の簡素化、各種試験の省略化等により製造コストを大幅に低減することができる。さらに、複数系統の冷媒循環回路がパラレルに設けられているため、複数台の圧縮機間の均油機構や均油制御を不要化し、構成の簡素化および個々のヒートポンプの信頼性向上を図ることができる。   According to the present invention, in a heat pump hot water supply apparatus using CO2 refrigerant in which a refrigerant circulation circuit is provided in parallel with a plurality of systems with respect to a hot water supply heat exchanger, each of the heat pumps configured with a plurality of refrigerant circulation circuits. Since all the container sizes of the component equipment are 160 mm inner diameter or less and the total refrigeration capacity is 3 refrigeration tons or more, when increasing the capacity of the heat pump water heater using CO2 refrigerant, the heat exchanger for hot water supply On the other hand, the total refrigeration capacity is 3 capacities of 3 tons or more by connecting two or more heat pumps connected in parallel to each other in a size of 160 mm or less in the size of the equipment constituting the refrigerant circuit. The heat pump hot water supply apparatus using the CO2 refrigerant of the above can be configured. Accordingly, a heat pump hot water supply apparatus using CO2 refrigerant is maintained while keeping the container of the equipment constituting the heat pump using CO2 refrigerant having a high design pressure of 14 MPa on the high pressure side and 8.5 MPa on the low pressure side to a certain size or less. The capacity can be increased, and various problems associated with the increase in the size of the container can be solved. Moreover, since the container sizes of the devices constituting the individual heat pumps are all containers with an inner diameter of 160 mm or less, they do not fall under the container stipulated in the High Pressure Gas Safety Law, simplify the manufacturing process, omit various tests, etc. Thus, the manufacturing cost can be greatly reduced. In addition, since multiple refrigerant circulation circuits are provided in parallel, the oil leveling mechanism and oil leveling control between the multiple compressors are no longer required, the configuration is simplified, and the reliability of individual heat pumps is improved. Can do.

さらに、本発明のCO2冷媒を用いたヒートポンプ給湯装置は、上記のCO2冷媒を用いたヒートポンプ給湯装置において、前記複数系統の冷媒循環回路の前記圧縮機は、それぞれ2段圧縮機とされ、前記放熱器の下流側に設けられている中間圧レシーバで分離されたガス冷媒を中間圧に圧縮された冷媒中にインジェクションするガスインジェクション回路を備えていることを特徴とする。   Furthermore, the heat pump water heater using the CO2 refrigerant of the present invention is the above-described heat pump water heater using the CO2 refrigerant, wherein the compressors of the plurality of refrigerant circulation circuits are each a two-stage compressor, and the heat dissipation And a gas injection circuit for injecting the gas refrigerant separated by the intermediate pressure receiver provided on the downstream side of the vessel into the refrigerant compressed to the intermediate pressure.

本発明によれば、複数系統の冷媒循環回路の圧縮機は、それぞれ2段圧縮機とされ、放熱器の下流側に設けられている中間圧レシーバで分離されたガス冷媒を中間圧に圧縮された冷媒中にインジェクションするガスインジェクション回路を備えているため、CO2冷媒を2段圧縮することによる圧縮効率の向上とガスインジェクション回路によるエコノマイザ効果とにより、ヒートポンプの加熱能力および成績係数(COP)の向上を図ることができ、従って、給湯性能を一段と向上することができる。また、ガスインジェクション回路も冷媒循環回路毎にそれぞれ設けられるため、各圧縮機に対して略同等にガスインジェクションすることができ、圧縮機間のガスインジェクション量のアンバランスを解消することができる。   According to the present invention, the compressors of the refrigerant circulation circuits of a plurality of systems are each a two-stage compressor, and the gas refrigerant separated by the intermediate pressure receiver provided on the downstream side of the radiator is compressed to an intermediate pressure. Because it has a gas injection circuit that injects into the refrigerant, the heat pump's heating capacity and coefficient of performance (COP) are improved by improving the compression efficiency by compressing the CO2 refrigerant in two stages and the economizer effect by the gas injection circuit Therefore, the hot water supply performance can be further improved. In addition, since the gas injection circuit is also provided for each refrigerant circulation circuit, gas injection can be performed almost equally to each compressor, and the imbalance of the gas injection amount between the compressors can be eliminated.

さらに、本発明のCO2冷媒を用いたヒートポンプ給湯装置は、上述のいずれかのCO2冷媒を用いたヒートポンプ給湯装置において、前記複数系統の冷媒循環回路のうち、2系統の冷媒循環回路にて構成されるヒートポンプと前記給湯用熱交換器とが一体化されてメインユニットとしてモジュール化され、3系統目以降のヒートポンプは、それぞれサブユニットとしてモジュール化され、必要な冷凍能力に応じて前記メインユニットと組み合わされて用いられることを特徴とする。   Furthermore, the heat pump water heater using the CO2 refrigerant of the present invention is constituted by two refrigerant circulation circuits among the plurality of refrigerant circulation circuits in the heat pump water heater using any one of the above-described CO2 refrigerants. The heat pump for hot water supply and the heat exchanger for hot water supply are integrated into a module as a main unit, and the third and subsequent heat pumps are respectively modularized as sub-units and combined with the main unit according to the required refrigeration capacity. It is characterized by being used.

本発明によれば、複数系統の冷媒循環回路のうち、2系統の冷媒循環回路にて構成されるヒートポンプと給湯用熱交換器とが一体化されてメインユニットとしてモジュール化され、3系統目以降のヒートポンプが、それぞれサブユニットとしてモジュール化され、必要な冷凍能力に応じてメインユニットと組み合わされて用いられるため、給湯装置を冷凍能力毎にシリーズ化する場合、サブユニットの組み合わせ台数を変えるだけで冷凍能力を変えシリーズ化することができる。従って、容易に大容量化することが可能となり、生産性を向上することができる。   According to the present invention, the heat pump constituted by two refrigerant circulation circuits of a plurality of refrigerant circulation circuits and the heat exchanger for hot water supply are integrated into a module as a main unit. Since each heat pump is modularized as a subunit and used in combination with the main unit according to the required refrigeration capacity, when changing the hot water supply system to each refrigeration capacity, simply change the number of subunits combined. The refrigeration capacity can be changed to make a series. Therefore, it is possible to easily increase the capacity, and productivity can be improved.

さらに、本発明のCO2冷媒を用いたヒートポンプ給湯装置は、上記のCO2冷媒を用いたヒートポンプ給湯装置において、前記メインユニットは、平面形状またはL字形状もしくはコの字形状に折り曲げ形成された空気熱交換器により構成される2台の吸熱器が、他の機器が収容される下部ユニット上に互いに対向配置されて四方形状に組立てられた構成とされ、前記サブユニットは、コの字形状に折り曲げて形成された空気熱交換器により構成される吸熱器が、他の機器が収容される下部ユニット上に配置された構成とされ、前記メインユニットおよび前記サブユニットが適宜台数並設されて用いられることを特徴とする。   Furthermore, the heat pump water heater using the CO2 refrigerant according to the present invention is the above-described heat pump water heater using the CO2 refrigerant, wherein the main unit is air heat formed by being bent into a planar shape, an L shape, or a U shape. Two heat absorbers composed of exchangers are arranged in a quadrilateral shape so as to be opposed to each other on a lower unit in which other equipment is accommodated, and the subunit is folded into a U-shape. The heat absorber constituted by the air heat exchanger formed in this manner is arranged on the lower unit in which other devices are accommodated, and the main unit and the subunits are used in parallel as appropriate. It is characterized by that.

本発明によれば、メインユニットは、平面形状またはL字形状もしくはコの字形状に折り曲げ形成された空気熱交換器により構成される2台の吸熱器が、他の機器が収容される下部ユニット上に互いに対向配置されて四方形状に組立てられた構成とされ、サブユニットは、コの字形状に折り曲げて形成された空気熱交換器により構成される吸熱器が、他の機器が収容される下部ユニット上に配置された構成とされ、メインユニットおよびサブユニットが適宜台数並設されて用いられるため、サブユニットの幅寸法をメインユニットの幅寸法の概ね半分の寸法に構成して、それぞれのユニットをモジュール化することができる。従って、冷凍能力毎の給湯装置の大きさを予め規定でき、据付けスペースの確保や据付けを容易化することができる。   According to the present invention, the main unit is a lower unit in which two heat absorbers configured by an air heat exchanger bent into a planar shape, an L shape, or a U shape are accommodated with other devices. The sub unit is configured to be assembled in a quadrilateral shape so as to be opposed to each other, and the subunit is a heat absorber constituted by an air heat exchanger formed by bending in a U shape, and other devices are accommodated. Since the number of main units and sub-units is appropriately arranged in parallel, the width of the sub-units is configured to be approximately half the width of the main unit. Units can be modularized. Therefore, the size of the hot water supply apparatus for each refrigeration capacity can be defined in advance, and installation space can be secured and installation can be facilitated.

本発明によると、CO2冷媒を用いたヒートポンプ給湯装置を大容量化する場合、給湯用熱交換器に対して、冷媒循環回路を構成する機器の容器サイズを全て内径160mm以下の容器としたヒートポンプを2系統以上パラレルに接続して構成することによって、トータルの冷凍能力が3冷凍トン以上の大容量のCO2冷媒を用いたヒートポンプ給湯装置を構成することができるため、設計圧力が高圧側14MPa、低圧側で8.5MPaと高いCO2冷媒を用いたヒートポンプを構成する機器の容器を一定サイズ以下の大きさに抑えたまま、CO2冷媒を用いたヒートポンプ給湯装置を大容量化することができ、容器の大型化に伴う様々な問題を解消することができる。しかも、個々のヒートポンプを構成する機器の容器サイズが全て内径160mm以下の容器とされているため、高圧ガス保安法に規定する容器に該当せず、製造工程の簡素化、各種試験の省略化等により製造コストを大幅に低減することができる。さらに、複数系統の冷媒循環回路がパラレルに設けられているため、複数台の圧縮機間の均油機構や均油制御を不要化し、構成の簡素化および個々のヒートポンプの信頼性向上を図ることができる。   According to the present invention, when the capacity of a heat pump water heater using CO2 refrigerant is increased, the heat pump having all the container sizes of the equipment constituting the refrigerant circulation circuit as a container having an inner diameter of 160 mm or less is compared with the heat exchanger for hot water supply. By connecting two or more systems in parallel, it is possible to construct a heat pump water heater using a large capacity CO2 refrigerant with a total refrigeration capacity of 3 refrigeration tons or more. The capacity of the heat pump water heater using the CO2 refrigerant can be increased while the container of the equipment constituting the heat pump using the CO2 refrigerant as high as 8.5 MPa on the side is kept to a certain size or less. Various problems associated with the increase in size can be solved. Moreover, since the container sizes of the devices constituting the individual heat pumps are all containers with an inner diameter of 160 mm or less, they do not fall under the container stipulated in the High Pressure Gas Safety Law, simplify the manufacturing process, omit various tests, etc. Thus, the manufacturing cost can be greatly reduced. In addition, since multiple refrigerant circulation circuits are provided in parallel, the oil leveling mechanism and oil leveling control between the multiple compressors are no longer required, the configuration is simplified, and the reliability of individual heat pumps is improved. Can do.

本発明の第1実施形態に係るCO2冷媒を用いたヒートポンプ給湯装置の回路構成図である。It is a circuit block diagram of the heat pump hot-water supply apparatus using the CO2 refrigerant | coolant which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るCO2冷媒を用いたヒートポンプ給湯装置のユニット構成例の分解斜視図である。It is a disassembled perspective view of the unit structural example of the heat pump hot-water supply apparatus using the CO2 refrigerant | coolant which concerns on 2nd Embodiment of this invention. 図2に示すユニット構成例の変形例の分解斜視図である。It is a disassembled perspective view of the modification of the unit structural example shown in FIG. 図2に示すユニット構成例の他の変形例の分解斜視図である。It is a disassembled perspective view of the other modification of the unit structural example shown in FIG.

以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
以下、本発明の第1実施形態について、図1を用いて説明する。
図1には、本発明の第1実施形態に係るCO2冷媒を用いたヒートポンプ給湯装置の回路構成図が示されている。
本実施形態に係るCO2冷媒を用いたヒートポンプ給湯装置1は、独立した複数系統の冷媒循環回路3A,3Bにて構成されるCO2冷媒を用いた超臨界サイクルのヒートポンプ2A,2Bを備えている。
Embodiments according to the present invention will be described below with reference to the drawings.
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a circuit configuration diagram of a heat pump water heater using a CO 2 refrigerant according to the first embodiment of the present invention.
A heat pump hot water supply apparatus 1 using CO2 refrigerant according to the present embodiment includes supercritical cycle heat pumps 2A and 2B using CO2 refrigerant constituted by independent refrigerant circulation circuits 3A and 3B.

各ヒートポンプ2A,2Bは、例えば低段側がロータリ圧縮機構、高段側がスクロール圧縮機構とされている冷媒を2段圧縮する2段圧縮機4A,4Bと、冷媒ガス中の潤滑油を分離するオイルセパレータ5A,5Bと、冷媒ガスを放熱する放熱器(ガスクーラ)6A,6Bと、放熱器6A,6Bの出口側冷媒温度をコントロールする第1電子膨張弁(減圧手段)7A,7Bと、冷媒を気液分離する中間圧レシーバ8A,8Bと、中間圧冷媒と圧縮機4A,4Bへの吸入冷媒ガスとを熱交換するインタークーラ9A,9Bと、中間圧冷媒を減圧する第2電子膨張弁(減圧手段)10A,10Bと、過冷却コイル11A,11Bと、ファン12A,12Bからの外気と冷媒とを熱交換する吸熱器(空気熱交換器)13A,13Bとをこの順に冷媒配管にて接続した閉サイクルの冷媒循環回路3A,3Bにより構成されている。   Each of the heat pumps 2A and 2B includes, for example, a two-stage compressor 4A and 4B that compresses the refrigerant in two stages, a rotary compression mechanism on the lower stage side and a scroll compression mechanism on the higher stage side, and oil that separates the lubricating oil in the refrigerant gas. Separators 5A and 5B, radiators (gas coolers) 6A and 6B for radiating refrigerant gas, first electronic expansion valves (decompression means) 7A and 7B for controlling the outlet side refrigerant temperature of the radiators 6A and 6B, and refrigerant Intermediate pressure receivers 8A and 8B that perform gas-liquid separation, intercoolers 9A and 9B that exchange heat between the intermediate pressure refrigerant and the refrigerant gas sucked into the compressors 4A and 4B, and a second electronic expansion valve that depressurizes the intermediate pressure refrigerant ( Pressure reducing means) 10A, 10B, supercooling coils 11A, 11B, and heat absorbers (air heat exchangers) 13A, 13B for exchanging heat between the outside air from the fans 12A, 12B and the refrigerant are cooled in this order. Refrigerant circuit 3A closed cycles connected by piping, it is constructed by 3B.

また、各ヒートポンプ2A,2Bには、オイルセパレータ5A,5Bで分離された油を2段圧縮機4A,4Bに戻す油戻し回路14A,14Bと、低外気温時、吸熱器(空気熱交換器)13A,13Bに堆積した霜を、2段圧縮機4A,4Bから吐出されたホットガス冷媒を吸熱器(空気熱交換器)13A,13Bに導入して除霜する電磁弁15A,15Bを備えたホットガスバイパス回路16A,16Bと、中間圧レシーバ8A,8Bで分離された中間圧の冷媒ガスを2段圧縮機4A,4Bの高段側のスクロール圧縮機構に吸込まれる中間圧の冷媒ガス中にインジェクション(注入)する電磁弁17A,17Bを備えたガスインジェクション回路18A,18Bと、が設けられている。   Each of the heat pumps 2A and 2B includes an oil return circuit 14A and 14B for returning the oil separated by the oil separators 5A and 5B to the two-stage compressors 4A and 4B, and a heat absorber (air heat exchanger) at a low outside temperature. ) Electromagnetic valves 15A and 15B for defrosting frost accumulated on 13A and 13B by introducing hot gas refrigerant discharged from two-stage compressors 4A and 4B into heat absorbers (air heat exchangers) 13A and 13B are provided. The intermediate-pressure refrigerant gas that is separated by the hot gas bypass circuits 16A and 16B and the intermediate-pressure receivers 8A and 8B is sucked into the high-stage scroll compression mechanism of the two-stage compressors 4A and 4B. Gas injection circuits 18A and 18B provided with electromagnetic valves 17A and 17B for injection (injection) are provided.

上記ヒートポンプ2A,2Bの放熱器(ガスクーラ)6A,6Bは、水流路19A側を流れる水と冷媒とを熱交換させ、水を加熱して温水を製造する給湯用熱交換器19を構成している。この給湯用熱交換器19は、その水流路19Aと貯湯タンク20とが水循環ポンプ21および電磁弁22を備えた水循環回路23を介して接続され、貯湯タンク20から水循環ポンプ21を介して循環される水を所定温度の温水に加熱し、貯湯タンク20内に蓄えるように構成されている。なお、水循環回路23には、水道水等の給水配管(図示省略)が接続されるとともに、貯湯タンク20には、温水を所要箇所に給水するための給湯配管(図示省略)が接続されるようになっている。   The radiators (gas coolers) 6A and 6B of the heat pumps 2A and 2B constitute a hot water supply heat exchanger 19 that heat-exchanges the water flowing through the water flow path 19A and the refrigerant and heats the water to produce hot water. Yes. The hot water supply heat exchanger 19 is connected to a water flow path 19A and a hot water storage tank 20 via a water circulation circuit 23 having a water circulation pump 21 and an electromagnetic valve 22, and is circulated from the hot water storage tank 20 via the water circulation pump 21. The water is heated to a predetermined temperature of warm water and stored in the hot water storage tank 20. The water circulation circuit 23 is connected to a water supply pipe (not shown) such as tap water, and the hot water storage tank 20 is connected to a hot water supply pipe (not shown) for supplying hot water to a required location. It has become.

このように、本実施形態のヒートポンプ給湯装置1は、給湯用熱交換器19に対して、それぞれ独立した複数系統のヒートポンプ2A,2Bの冷媒循環回路3A,3Bがパラレルに接続された構成とされており、各ヒートポンプ2A,2Bの放熱器6A,6Bを介して給湯用熱交換器19で水を加熱できるようになっている。また、個々のヒートポンプ2A,2Bは、冷媒循環回路3A,3Bを構成する2段圧縮機4A,4B、オイルセパレータ5A,5B、中間圧レシーバ8A,8B、図示省略のアキュームレータ等の容器サイズが全て内径160mm以下の容器とされている。そして、ヒートポンプ給湯装置1を大容量化する場合において、その冷凍能力が3冷凍トン以上とされるときは、それぞれ冷媒循環回路3A,3Bを構成する機器の容器サイズを全て内径160mm以下の容器としたヒートポンプ2A,2Bを少なくとも2台以上、パラレルに接続して大容量のヒートポンプ給湯装置1を構成するようにしている。   Thus, the heat pump hot water supply apparatus 1 of the present embodiment is configured such that the refrigerant circulation circuits 3A and 3B of a plurality of independent heat pumps 2A and 2B are connected in parallel to the hot water supply heat exchanger 19, respectively. The water can be heated by the heat exchanger 19 for hot water supply via the radiators 6A and 6B of the heat pumps 2A and 2B. The individual heat pumps 2A and 2B have all the container sizes such as the two-stage compressors 4A and 4B, the oil separators 5A and 5B, the intermediate pressure receivers 8A and 8B, and the accumulator (not shown) constituting the refrigerant circulation circuits 3A and 3B. The container has an inner diameter of 160 mm or less. When the capacity of the heat pump water heater 1 is increased and the refrigeration capacity is 3 refrigeration tons or more, the container sizes of the devices constituting the refrigerant circulation circuits 3A and 3B are all containers having an inner diameter of 160 mm or less. At least two or more heat pumps 2A, 2B are connected in parallel to form a large-capacity heat pump water heater 1.

以上に説明の構成により、本実施形態によれば、以下の作用効果を奏する。
上記のCO2冷媒を用いたヒートポンプ給湯装置1において、2段圧縮機4A,4Bで2段圧縮された冷媒は、オイルセパレータ5A,5Bで冷媒中の油が分離された後、放熱器(ガスクーラ)6A,6Bに導入され、ここで給湯用熱交換器19の水流路19A側を流れる水と熱交換される。この水は、冷媒からの放熱により加熱、昇温された後、貯湯タンク20に戻り、貯湯タンク20内の温水温度が所定の温度に到達するまで、貯湯タンク20と給湯用熱交換器19との間を循環され、温水温度が所定の温度に到達した時点で貯湯運転が終了される。
With the configuration described above, according to the present embodiment, the following operational effects can be obtained.
In the heat pump water heater 1 using the CO2 refrigerant, the refrigerant compressed in the second stage by the two-stage compressors 4A and 4B is separated from the oil in the refrigerant by the oil separators 5A and 5B, and then the radiator (gas cooler). 6A and 6B, where heat is exchanged with water flowing on the water flow path 19A side of the hot water supply heat exchanger 19. This water is heated and heated by heat radiation from the refrigerant, and then returns to the hot water storage tank 20 until the hot water temperature in the hot water storage tank 20 reaches a predetermined temperature, and the hot water storage tank 20 and the hot water supply heat exchanger 19. The hot water storage operation is terminated when the hot water temperature reaches a predetermined temperature.

給湯用熱交換器19で水と熱交換して冷却された冷媒は、第1電子膨張弁(減圧手段)7A,7Bで減圧され、中間圧レシーバ8A,8Bに至り、気液分離される。ここで分離されたガス冷媒は、電磁弁17A,17Bおよびガスインジェクション回路18A,18Bを介して2段圧縮機4A,4Bの低段側圧縮機構で中間圧に圧縮された冷媒ガス中にインジェクションされる。一方、液冷媒は冷却された後、インタークーラ9A,9Bを経て第2電子膨張弁(減圧手段)10A,10Bにより減圧され、低温低圧の冷媒となって吸熱器(空気熱交換器)13A,13Bに流入される。このガスインジェクションによるエコノマイザ効果により、各ヒートポンプ2A,2Bの加熱能力および成績係数(COP)の向上を図り、給湯性能を向上することができる。   The refrigerant cooled by exchanging heat with water in the hot water supply heat exchanger 19 is depressurized by the first electronic expansion valves (decompression means) 7A and 7B, reaches the intermediate pressure receivers 8A and 8B, and is separated into gas and liquid. The separated gas refrigerant is injected into the refrigerant gas compressed to an intermediate pressure by the low-stage compression mechanism of the two-stage compressors 4A and 4B via the electromagnetic valves 17A and 17B and the gas injection circuits 18A and 18B. The On the other hand, after the liquid refrigerant is cooled, it is depressurized by the second electronic expansion valves (decompression means) 10A and 10B through the intercoolers 9A and 9B, and becomes a low-temperature and low-pressure refrigerant to the heat absorber (air heat exchanger) 13A, 13B. By the economizer effect by this gas injection, the heat capacity and coefficient of performance (COP) of each heat pump 2A, 2B can be improved, and hot water supply performance can be improved.

吸熱器(空気熱交換器)13A,13Bに流入した冷媒は、ファン12A,12Bを介して送風される外気と熱交換され、外気から吸熱して蒸発ガス化される。このガス化された冷媒は、インタークーラ9A,9Bを経て2段圧縮機4A,4Bに吸い込まれ、再圧縮される。以下、同様の動作を繰り返すことにより、温水の製造に供される。なお、貯湯運転時、低外気温により吸熱器13A,13Bに霜が堆積した場合、電磁弁15A,15Bを開とし、2段圧縮機4A,4Bで圧縮された高温高圧のホットガスをホットガスバイパス回路16A,16Bを介して吸熱器13A,13Bに導入することにより、除霜運転が行われることになる。   The refrigerant that has flowed into the heat absorbers (air heat exchangers) 13A and 13B exchanges heat with the outside air blown through the fans 12A and 12B, and absorbs heat from the outside air to be evaporated into gas. The gasified refrigerant is sucked into the two-stage compressors 4A and 4B through the intercoolers 9A and 9B and is recompressed. Thereafter, the same operation is repeated to provide hot water. During hot water storage operation, when frost accumulates on the heat absorbers 13A and 13B due to low outside air temperature, the solenoid valves 15A and 15B are opened, and the hot and hot hot gas compressed by the two-stage compressors 4A and 4B is used as the hot gas. A defrosting operation is performed by introducing the heat absorbers 13A and 13B via the bypass circuits 16A and 16B.

しかして、上記CO2冷媒を用いたヒートポンプ給湯装置1を大容量化する場合、給湯用熱交換器に対して、冷媒循環回路3A,3Bを構成する機器の容器サイズを全て内径160mm以下の容器としたヒートポンプ2A,2Bを2系統以上パラレルに接続した構成とすることによって、トータルの冷凍能力が3冷凍トン以上の大容量のヒートポンプ給湯装置1を構成することができる。これによって、設計圧力が高圧側14MPa、低圧側で8.5MPaと高いCO2冷媒を用いたヒートポンプ2A,2Bを構成する機器の容器を一定サイズ以下の大きさに抑えたまま、CO2冷媒を用いたヒートポンプ給湯装置を大容量化することができ、各容器サイズを大型化することに伴う肉厚増大等による耐圧強度アップ、製造の難易度向上、コスト上昇等の様々な問題を解消することができる。   Thus, when the capacity of the heat pump water heater 1 using the CO2 refrigerant is increased, all the container sizes of the devices constituting the refrigerant circulation circuits 3A and 3B are set to containers having an inner diameter of 160 mm or less with respect to the hot water supply heat exchanger. By adopting a configuration in which two or more heat pumps 2A and 2B are connected in parallel, a large-capacity heat pump hot water supply apparatus 1 having a total refrigeration capacity of 3 refrigeration tons or more can be configured. As a result, the CO2 refrigerant was used while the containers of the devices constituting the heat pumps 2A and 2B using the CO2 refrigerant having a high design pressure of 14 MPa on the high pressure side and 8.5 MPa on the low pressure side were kept to a certain size or less. The capacity of the heat pump hot water supply device can be increased, and various problems such as an increase in pressure resistance due to an increase in wall thickness due to an increase in the size of each container, an improvement in manufacturing difficulty, and an increase in cost can be solved. .

しかも、個々のヒートポンプ2A,2Bを構成する機器の容器サイズが全て内径160mm以下の容器とされているため、高圧ガス保安法に規定する容器に該当せず、製造工程の簡素化、各種試験の省略化等によって製造コストを大幅に低減することができる。さらに、冷媒循環回路3A,3Bが複数系統パラレルに接続された構成とされているため、複数台の2段圧縮機4A,4B間の均油機構、均油制御等を不要とし、構成の簡素化および個々のヒートポンプ2A,2Bに対する信頼性の向上を図ることができる。   Moreover, since the container sizes of the devices constituting the individual heat pumps 2A and 2B are all containers having an inner diameter of 160 mm or less, they do not fall under the container stipulated in the High Pressure Gas Safety Law, simplify the manufacturing process, and perform various tests. Manufacturing costs can be significantly reduced by omission. Further, since the refrigerant circulation circuits 3A and 3B are configured to be connected in parallel to a plurality of systems, an oil leveling mechanism, oil leveling control, etc. between the plurality of two-stage compressors 4A and 4B are unnecessary, and the configuration is simple. And the reliability of the individual heat pumps 2A and 2B can be improved.

また、複数系統の冷媒循環回路3A,3Bが、それぞれ中間圧レシーバ8A,8Bで分離されたガス冷媒を2段圧縮機4A,4Bで中間圧の冷媒ガス中にインジェクションするガスインジェクション回路18A,18Bを備えているため、CO2冷媒を2段圧縮することによる圧縮効率の向上とガスインジェクション回路18A,18Bによるエコノマイザ効果とによって、ヒートポンプ2A,2Bの加熱能力および成績係数(COP)の向上を図ることができる。従って、給湯性能を一段と向上することができるとともに、ガスインジェクション回路18A,18Bも冷媒循環回路3A,3B毎に設けられるため、各2段圧縮機4A,4Bに対して略同等にガスインジェクションすることができ、各圧縮機間のガスインジェクション量のアンバランスを解消することができる。   Further, a plurality of refrigerant circulation circuits 3A, 3B inject gas refrigerant separated by the intermediate pressure receivers 8A, 8B into intermediate pressure refrigerant gas by the two-stage compressors 4A, 4B, respectively. Therefore, the heat capacity and coefficient of performance (COP) of the heat pumps 2A and 2B are improved by improving the compression efficiency by compressing the CO2 refrigerant in two stages and the economizer effect by the gas injection circuits 18A and 18B. Can do. Accordingly, the hot water supply performance can be further improved, and the gas injection circuits 18A and 18B are also provided for the refrigerant circulation circuits 3A and 3B. Therefore, the gas injection is performed almost equally to the two-stage compressors 4A and 4B. It is possible to eliminate the imbalance in the amount of gas injection between the compressors.

[第2実施形態]
次に、本発明の第2実施形態について、図2ないし図4を用いて説明する。
本実施形態は、上記した第1実施形態に対して、CO2冷媒を用いたヒートポンプ給湯装置1を具体的にユニット化する場合の構成を示している点で異なる。その他の点については、第1実施形態と同様であるので説明は省略する。
本実施形態においては、2系統の冷媒循環回路3A,3Bにて構成される、各々の構成機器の容器が内径160mm以下の容器とされたヒートポンプ2A,2Bと、給湯用熱交換器19とが一体化されることにより、図2ないし図4に示されるように、メインユニット30としてモジュール化され、3系統目以降の構成機器の容器が内径160mm以下の容器とされたヒートポンプ3C(図示省略)は、サブユニット31としてモジュール化され、必要な冷凍能力に応じて適宜台数、メインユニット30と組み合わされて用いられる構成とされている。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS.
This embodiment is different from the above-described first embodiment in that a configuration in the case where the heat pump hot water supply device 1 using the CO 2 refrigerant is specifically unitized is shown. Since other points are the same as those in the first embodiment, description thereof will be omitted.
In the present embodiment, heat pumps 2A and 2B, each of which is constituted by two refrigerant circulation circuits 3A and 3B, each having a container having an inner diameter of 160 mm or less, and a hot water supply heat exchanger 19 are provided. By integrating, as shown in FIGS. 2 to 4, the heat pump 3C (not shown) is modularized as the main unit 30 and the containers of the third and subsequent components are containers having an inner diameter of 160 mm or less. Is modularized as a subunit 31 and is configured to be used in combination with the main unit 30 as appropriate in accordance with the required refrigeration capacity.

メインユニット30は、上部ユニット30A内に、ファン12A,12Bと、図2に示されるように、L字形状に折り曲げ形成された空気熱交換器により構成される2台の吸熱器13A,13B、または図3に示されるように、平面形状とされた空気熱交換器からなる2台の吸熱器13A’,13B’、もしくは図4に示されるように、コの字形状に折り曲げ形成された空気熱交換器からなる2台の吸熱器13A’’,13B’’が互いに対向配置されて四方形状に組立てられ、その下部に設置される下部ユニット30B内に、その他の機器類が収容配設される構成とされている。また、サブユニット31は、ファン12C(図示省略)およびコの字形状に折り曲げて形成された空気熱交換器により構成される吸熱器13Cが上部ユニット31A内に収容配置され、その下部に設置される下部ユニット30B内に、その他の機器類が収容配設される構成とされている。   The main unit 30 includes, in the upper unit 30A, two heat absorbers 13A and 13B, each of which includes fans 12A and 12B and an air heat exchanger that is bent into an L shape as shown in FIG. Alternatively, as shown in FIG. 3, two heat absorbers 13A ′ and 13B ′ composed of a planar air heat exchanger, or air bent into a U-shape as shown in FIG. Two heat absorbers 13A ″, 13B ″ composed of heat exchangers are arranged to face each other and assembled into a quadrilateral shape, and other devices are accommodated in the lower unit 30B installed at the lower part thereof. It is set as the structure. Further, the sub unit 31 includes a fan 12C (not shown) and an air heat exchanger 13C formed by bending it into a U-shape and accommodated in the upper unit 31A, and is installed in the lower part. In the lower unit 30B, other devices are accommodated and arranged.

上記のように、パラレルに接続される複数系統の冷媒循環回路3A,3Bのうち、2系統の冷媒循環回路3A,3Bにて構成される、各々の構成機器の容器が内径160mm以下の容器とされたヒートポンプ2A,2Bと給湯用熱交換器19とが一体化されてメインユニット30としてモジュール化され、3系統目以降の構成機器の容器が内径160mm以下の容器とされたヒートポンプ3C(図示省略)が、サブユニット31としてモジュール化され、必要な冷凍能力に応じメインユニット30と組み合わせ使用する構成とすることにより、ヒートポンプ給湯装置1を冷凍能力毎にシリーズ化する場合、サブユニット31の組み合わせ台数を変えるだけで冷凍能力を変えシリーズ化することができる。これによって、容易に大容量化することが可能となり、生産性を向上することができる。   As described above, among the plurality of refrigerant circulation circuits 3A and 3B connected in parallel, the containers of the respective constituent devices configured by the two refrigerant circulation circuits 3A and 3B have an inner diameter of 160 mm or less. The heat pumps 2A and 2B and the heat exchanger 19 for hot water supply are integrated into a module as a main unit 30, and the heat pump 3C in which the containers of the third and subsequent components are containers having an inner diameter of 160 mm or less (not shown) ) Is modularized as the subunit 31 and is used in combination with the main unit 30 according to the required refrigeration capacity, so that when the heat pump water heater 1 is serialized for each refrigeration capacity, the number of combinations of the subunits 31 is Just by changing the refrigeration capacity can be changed into a series. As a result, the capacity can be easily increased, and the productivity can be improved.

また、メインユニット30は、平面形状またはL字形状もしくはコの字形状に折り曲げ形成された空気熱交換器によって構成される2台の吸熱器13A,13B、13A’,13B’、13A’’,13B’’が、他の機器が収容される下部ユニット30B上に互いに対向配置されて四方形状に組立てられた構成とされ、サブユニット31は、コの字形状に折り曲げて形成された空気熱交換器により構成される吸熱器13Cが、他の機器が収容される下部ユニット31B上に配置された構成とされ、これらメインユニット30およびサブユニット31が適宜台数並設されて用いられる構成とされているため、サブユニット31の幅寸法をメインユニット30の幅寸法の概ね半分の寸法とし、各々のユニット30,31をモジュール化することができる。従って、冷凍能力毎のヒートポンプ給湯装置1の大きさを予め規定でき、据付けスペースの確保や据付けを容易化することができる。   The main unit 30 includes two heat absorbers 13A, 13B, 13A ′, 13B ′, 13A ″, which are constituted by air heat exchangers that are bent into a planar shape, an L shape, or a U shape. 13B ″ is configured to be arranged in a quadrilateral shape so as to be opposed to each other on the lower unit 30B in which other devices are accommodated, and the sub-unit 31 is an air heat exchange formed by being folded into a U-shape. The heat absorber 13 </ b> C configured by a vessel is configured to be disposed on the lower unit 31 </ b> B in which other devices are accommodated, and the main unit 30 and the subunits 31 are appropriately arranged in parallel and used. Therefore, the width dimension of the sub-unit 31 is approximately half the width dimension of the main unit 30, and each unit 30, 31 is modularized. It can be. Therefore, the size of the heat pump water heater 1 for each refrigeration capacity can be defined in advance, and installation space can be secured and installation can be facilitated.

なお、本発明は、上記実施形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。例えば、上記実施形態では、各ヒートポンプ2A,2Bに2段圧縮機4A,4Bを用いた例について説明したが、圧縮機は単段圧縮機であってもよい。また、ガスインジェクション回路18A,18Bは、必須のものではなく、ガスインジェクション回路なしの構成としてもよい。更には、ガスインジェクション回路18A,18Bとして気液分離器(中間圧レシーバ8A,8B)を用いた例について説明したが、これに代えて中間熱交換器を用いた構成としてもよい。   In addition, this invention is not limited to the invention concerning the said embodiment, In the range which does not deviate from the summary, it can change suitably. For example, in the above-described embodiment, an example in which the two-stage compressors 4A and 4B are used for the heat pumps 2A and 2B has been described, but the compressor may be a single-stage compressor. Further, the gas injection circuits 18A and 18B are not essential and may be configured without a gas injection circuit. Furthermore, although the example which used the gas-liquid separator (intermediate pressure receiver 8A, 8B) was demonstrated as gas injection circuit 18A, 18B, it may replace with this and may be set as the structure using an intermediate heat exchanger.

1 CO2冷媒を用いたヒートポンプ給湯装置
2A,2B ヒートポンプ
3A,3B 冷媒循環回路
4A,4B 2段圧縮機
6A,6B 放熱器
7A,7B 第1電子膨張弁(減圧手段)
8A,8B 中間圧レシーバ
10A,10B 第2電子膨張弁(減圧手段)
13A,13A’,13A’’,13B,13B’,13B’’,13C 吸熱器
18A,18B ガスインジェクション回路
19 給湯用熱交換器
19A 水流路
30 メインユニット
30B 下部ユニット
31 サブユニット
31B 下部ユニット
1 Heat pump water heater 2A, 2B using CO2 refrigerant Heat pump 3A, 3B Refrigerant circulation circuit 4A, 4B Two-stage compressor 6A, 6B Radiator 7A, 7B First electronic expansion valve (pressure reduction means)
8A, 8B Intermediate pressure receiver 10A, 10B Second electronic expansion valve (pressure reduction means)
13A, 13A ′, 13A ″, 13B, 13B ′, 13B ″, 13C Heat absorbers 18A, 18B Gas injection circuit 19 Heat exchanger for hot water supply 19A Water flow path 30 Main unit 30B Lower unit 31 Sub unit 31B Lower unit

Claims (4)

圧縮機、放熱器、減圧手段および吸熱器を含むCO2冷媒を用いた冷媒循環回路と、前記放熱器と熱交換する水流路を有する給湯用熱交換器と、を備え、
前記給湯用熱交換器に対して前記冷媒循環回路が複数系統パラレルに設けられているCO2冷媒を用いたヒートポンプ給湯装置において、
前記複数系統の冷媒循環回路により構成される各ヒートポンプの各々の構成機器の容器サイズが全て内径160mm以下とされ、そのトータルの冷凍能力が3冷凍トン以上とされていることを特徴とするCO2冷媒を用いたヒートポンプ給湯装置。
A refrigerant circulation circuit using CO2 refrigerant including a compressor, a radiator, a decompression means and a heat absorber, and a heat exchanger for hot water supply having a water flow path for exchanging heat with the radiator,
In the heat pump hot water supply apparatus using CO2 refrigerant in which the refrigerant circulation circuit is provided in parallel with a plurality of systems with respect to the hot water supply heat exchanger,
CO2 refrigerant characterized in that the container size of each component of each heat pump constituted by the plurality of refrigerant circulation circuits is set to an inner diameter of 160 mm or less, and its total refrigeration capacity is 3 refrigeration tons or more. Heat pump water heater using
前記複数系統の冷媒循環回路の前記圧縮機は、それぞれ2段圧縮機とされ、前記放熱器の下流側に設けられている中間圧レシーバで分離されたガス冷媒を中間圧に圧縮された冷媒中にインジェクションするガスインジェクション回路を備えていることを特徴とする請求項1に記載のCO2冷媒を用いたヒートポンプ給湯装置。   Each of the compressors of the plurality of refrigerant circulation circuits is a two-stage compressor, and the gas refrigerant separated by the intermediate pressure receiver provided on the downstream side of the radiator is compressed into an intermediate pressure. The heat pump hot-water supply apparatus using the CO2 refrigerant according to claim 1, further comprising a gas injection circuit for injecting the gas into the heat pump. 前記複数系統の冷媒循環回路のうち、2系統の冷媒循環回路にて構成されるヒートポンプと前記給湯用熱交換器とが一体化されてメインユニットとしてモジュール化され、3系統目以降のヒートポンプは、それぞれサブユニットとしてモジュール化され、必要な冷凍能力に応じて前記メインユニットと組み合わされて用いられることを特徴とする請求項1または2に記載のCO2冷媒を用いたヒートポンプ給湯装置。   Of the plurality of refrigerant circulation circuits, a heat pump configured by two refrigerant circulation circuits and the hot water heat exchanger are integrated into a module as a main unit. The heat pump hot-water supply apparatus using CO2 refrigerant according to claim 1 or 2, wherein each unit is modularized and used in combination with the main unit according to a required refrigeration capacity. 前記メインユニットは、平面形状またはL字形状もしくはコの字形状に折り曲げ形成された空気熱交換器により構成される2台の吸熱器が、他の機器が収容される下部ユニット上に互いに対向配置されて四方形状に組立てられた構成とされ、前記サブユニットは、コの字形状に折り曲げて形成された空気熱交換器により構成される吸熱器が、他の機器が収容される下部ユニット上に配置された構成とされ、前記メインユニットおよび前記サブユニットが適宜台数並設されて用いられることを特徴とする請求項3に記載のCO2冷媒を用いたヒートポンプ給湯装置。
In the main unit, two heat absorbers composed of an air heat exchanger bent into a planar shape, L-shape or U-shape are arranged opposite to each other on a lower unit in which other devices are accommodated. The sub-unit has a heat sink composed of an air heat exchanger formed by bending it into a U-shape on a lower unit in which other devices are accommodated. The heat pump hot water supply apparatus using CO2 refrigerant according to claim 3, wherein the heat pump water heater is configured to be arranged, and the number of the main units and the sub units are appropriately arranged in parallel.
JP2010103827A 2010-04-28 2010-04-28 Heat pump water heater using CO2 refrigerant Active JP5705455B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010103827A JP5705455B2 (en) 2010-04-28 2010-04-28 Heat pump water heater using CO2 refrigerant
EP11774847.5A EP2581682A4 (en) 2010-04-28 2011-04-18 Heat pump water heater using co2 refrigerant
PCT/JP2011/059492 WO2011136064A1 (en) 2010-04-28 2011-04-18 Heat pump water heater using co2 refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010103827A JP5705455B2 (en) 2010-04-28 2010-04-28 Heat pump water heater using CO2 refrigerant

Publications (2)

Publication Number Publication Date
JP2011232000A true JP2011232000A (en) 2011-11-17
JP5705455B2 JP5705455B2 (en) 2015-04-22

Family

ID=44861371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010103827A Active JP5705455B2 (en) 2010-04-28 2010-04-28 Heat pump water heater using CO2 refrigerant

Country Status (3)

Country Link
EP (1) EP2581682A4 (en)
JP (1) JP5705455B2 (en)
WO (1) WO2011136064A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534714A (en) * 2014-11-24 2015-04-22 合肥圣三松冷热技术有限公司 CO2 heat pump system and control method thereof
EP3136020A1 (en) 2015-08-27 2017-03-01 Mitsubishi Heavy Industries, Ltd. Two-stage compression refrigeration system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109458758A (en) * 2018-11-02 2019-03-12 赵昕 The air source heat pump of multi-energy complementation
DE102018222555A1 (en) * 2018-12-20 2020-06-25 Yack S.A.S. Arrangement for heat generation
CN111023627B (en) * 2019-12-02 2021-10-01 苏州荣轩环保有限公司 Heat pump normal-pressure single-effect evaporator and using method thereof
CN111023628B (en) * 2019-12-02 2021-10-01 苏州荣轩环保有限公司 Normal-pressure double-effect low-temperature evaporator of heat pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231724A (en) * 1991-08-23 1993-09-07 Thermo King Corp Refrigerator and operation thereof
JPH09236357A (en) * 1996-02-29 1997-09-09 Denso Corp Reversible receiver for heat pump cycle
JP2006009713A (en) * 2004-06-28 2006-01-12 Hitachi Ltd Cogeneration system and energy supply system
JP2007040590A (en) * 2005-08-02 2007-02-15 Hitachi Appliances Inc Heat pump water heater
JP2008076014A (en) * 2006-09-25 2008-04-03 Noritz Corp Storable heat source device and storable heat source system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938973A (en) 1982-08-28 1984-03-03 Sony Corp Disk reproducer
JPS62233645A (en) * 1986-03-31 1987-10-14 三菱電機株式会社 Refrigeration cycle
US4918942A (en) * 1989-10-11 1990-04-24 General Electric Company Refrigeration system with dual evaporators and suction line heating
KR100567488B1 (en) * 2002-02-12 2006-04-03 마츠시타 덴끼 산교 가부시키가이샤 Heat pump water heater
JP3742356B2 (en) * 2002-03-20 2006-02-01 株式会社日立製作所 Heat pump water heater
JP2003343914A (en) 2002-05-29 2003-12-03 Matsushita Electric Ind Co Ltd Heat pump type water heater
US6923011B2 (en) * 2003-09-02 2005-08-02 Tecumseh Products Company Multi-stage vapor compression system with intermediate pressure vessel
JP4284290B2 (en) * 2005-03-24 2009-06-24 日立アプライアンス株式会社 Heat pump water heater
EP2149018A4 (en) * 2007-04-24 2012-09-12 Carrier Corp Refrigerant vapor compression system with dual economizer circuits
US8627674B2 (en) * 2008-05-15 2014-01-14 Mark PLATT Modular outboard heat exchanger air conditioning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231724A (en) * 1991-08-23 1993-09-07 Thermo King Corp Refrigerator and operation thereof
JPH09236357A (en) * 1996-02-29 1997-09-09 Denso Corp Reversible receiver for heat pump cycle
JP2006009713A (en) * 2004-06-28 2006-01-12 Hitachi Ltd Cogeneration system and energy supply system
JP2007040590A (en) * 2005-08-02 2007-02-15 Hitachi Appliances Inc Heat pump water heater
JP2008076014A (en) * 2006-09-25 2008-04-03 Noritz Corp Storable heat source device and storable heat source system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534714A (en) * 2014-11-24 2015-04-22 合肥圣三松冷热技术有限公司 CO2 heat pump system and control method thereof
EP3136020A1 (en) 2015-08-27 2017-03-01 Mitsubishi Heavy Industries, Ltd. Two-stage compression refrigeration system

Also Published As

Publication number Publication date
WO2011136064A1 (en) 2011-11-03
JP5705455B2 (en) 2015-04-22
EP2581682A4 (en) 2013-11-27
EP2581682A1 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
CN101946137B (en) Refrigerant vapor compression system
US9103571B2 (en) Refrigeration apparatus
JP6022156B2 (en) Vehicle capacitors
CN101939601B (en) Refrigerating system and method for refrigerating
CN102132112A (en) Charge management in refrigerant vapor compression systems
JP5705455B2 (en) Heat pump water heater using CO2 refrigerant
US20050198996A1 (en) Refrigerating machine
JP5851771B2 (en) Supercritical cycle and heat pump water heater using the same
JP6045489B2 (en) Air conditioner
US20130055754A1 (en) Air conditioner
CN102301189A (en) Air Conditioner And Method Of Returning Refrigerating Machine Oil
JP2012132586A (en) Refrigeration cycle device
WO2013146415A1 (en) Heat pump-type heating device
JP6064744B2 (en) Refrigeration cycle equipment
JP2010078164A (en) Refrigeration and air conditioning device
US11519645B2 (en) Air conditioning apparatus
JP6253370B2 (en) Refrigeration cycle equipment
JP2010078165A (en) Refrigeration and air conditioning device
EP2565562B1 (en) Refrigerant circuit system
EP2525168B1 (en) Supercritical steam compression heat pump and hot-water supply unit
JP2017161164A (en) Air-conditioning hot water supply system
CN106996653B (en) Air conditioner
CN108775727B (en) Refrigerating circulation system
CN103216964A (en) Refrigerating system and method used for refrigerating
JP2018179352A (en) Water heater, and binary hot water generation unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141112

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150225

R151 Written notification of patent or utility model registration

Ref document number: 5705455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350