JP2007036199A - Light-emitting apparatus - Google Patents

Light-emitting apparatus Download PDF

Info

Publication number
JP2007036199A
JP2007036199A JP2006153631A JP2006153631A JP2007036199A JP 2007036199 A JP2007036199 A JP 2007036199A JP 2006153631 A JP2006153631 A JP 2006153631A JP 2006153631 A JP2006153631 A JP 2006153631A JP 2007036199 A JP2007036199 A JP 2007036199A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
translucent
translucent part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006153631A
Other languages
Japanese (ja)
Other versions
JP4847793B2 (en
Inventor
Tomoya Tabuchi
智也 田淵
Toru Miyake
徹 三宅
Daisuke Sakumoto
大輔 作本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006153631A priority Critical patent/JP4847793B2/en
Publication of JP2007036199A publication Critical patent/JP2007036199A/en
Application granted granted Critical
Publication of JP4847793B2 publication Critical patent/JP4847793B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-emitting apparatus having high intensity of radiation light, on-axis luminous intensity and luminance by improving light extracting efficiency. <P>SOLUTION: The light-emitting apparatus is provided with a base 2; light-emitting element 4 mounted on the base; reflecting surface disposed on the base and surrounding the light-emitting element; first light transmissive section 5 provided on the inside of the reflecting surface so as to cover the light-emitting element and having a top surface formed in a concave shape; second light transmissive section 7 provided on the first light transmissive section and performing wavelength conversion for a light radiated from the light-emitting element; and third light transmissive section G provided between the first and second light transmissive sections. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、発光素子から発光される光を蛍光体で波長変換し、外部に放射する発光装置関する。   The present invention relates to a light emitting device that converts the wavelength of light emitted from a light emitting element with a phosphor and emits the light to the outside.

従来の発光ダイオード(LED)等の発光素子214を収容するための発光装置211を図18に示す。図18に示すように、発光装置は、上面の中央部に発光素子214を載置するための搭載部212aを有し、搭載部212aおよびその周辺から発光装置の内外を電気的に導通接続するリード端子やメタライズ配線等からなる配線導体(図示せず)が形成された絶縁体から成る基体212と、基体212の上面に接着固定され、中央部に発光素子214を収納するための貫通孔が形成された、金属、樹脂またはセラミックス等から成る枠体213とから主に構成される。   A light-emitting device 211 for accommodating a light-emitting element 214 such as a conventional light-emitting diode (LED) is shown in FIG. As shown in FIG. 18, the light emitting device has a mounting portion 212a for mounting the light emitting element 214 at the center of the upper surface, and electrically connects the inside and outside of the light emitting device from the mounting portion 212a and its periphery. A base 212 made of an insulator on which a wiring conductor (not shown) made of a lead terminal, metallized wiring or the like is formed, and a through hole for adhering and fixing to the upper surface of the base 212 and accommodating the light emitting element 214 in the center portion. It is mainly comprised from the formed frame 213 which consists of a metal, resin, or ceramics.

基体212は、酸化アルミニウム質焼結体(アルミナセラミックス)や窒化アルミニウム質焼結体、ムライト質焼結体、ガラスセラミックス等のセラミックス、またはエポキシ樹脂等の樹脂から成る。基体212がセラミックスから成る場合、その上面にメタライズ配線層がタングステン(W)、モリブデン(Mo)−マンガン(Mn)等から成る金属ペーストを高温で焼成して形成される。また、基体212が樹脂から成る場合、基体212をモールド成型する際に、銅(Cu)や鉄(Fe)−ニッケル(Ni)合金等から成るリード端子が基体212の内部に一端部が突出するように固定される。   The substrate 212 is made of an aluminum oxide sintered body (alumina ceramic), an aluminum nitride sintered body, a mullite sintered body, ceramics such as glass ceramics, or a resin such as an epoxy resin. When the substrate 212 is made of ceramics, the metallized wiring layer is formed on the upper surface by baking a metal paste made of tungsten (W), molybdenum (Mo) -manganese (Mn), or the like at a high temperature. When the base 212 is made of resin, when the base 212 is molded, a lead terminal made of copper (Cu), iron (Fe) -nickel (Ni) alloy or the like protrudes at one end into the base 212. To be fixed.

また、枠体213は、アルミニウム(Al)やFe−Ni−コバルト(Co)合金等の金属、アルミナ質焼結体等のセラミックスまたはエポキシ樹脂等の樹脂から成り、切削加工や金型成型、押し出し成型等により形成される。さらに、枠体213の中央部には上方に向かうに伴って外側に広がる貫通孔が形成されており、貫通孔の内周面の光の反射率を向上させる場合、この内周面にAl等の金属が蒸着法やメッキ法により被着される。そして、枠体213は、半田、銀ロウ等のロウ材または樹脂接着剤により、基体212の上面に接合される。   The frame body 213 is made of a metal such as aluminum (Al) or Fe-Ni-cobalt (Co) alloy, a ceramic such as an alumina sintered body, or a resin such as an epoxy resin. It is formed by molding or the like. Furthermore, a through hole is formed in the central portion of the frame body 213 so as to spread outward as it goes upward. To improve the light reflectance of the inner peripheral surface of the through hole, Al or the like is formed on the inner peripheral surface. The metal is deposited by vapor deposition or plating. The frame body 213 is bonded to the upper surface of the base body 212 with a solder material such as solder or silver solder or a resin adhesive.

そして、基体212表面に形成した配線導体(図示せず)と発光素子214の電極とをボンディングワイヤ(図示せず)を介して電気的に接続し、しかる後、発光素子214の表面に蛍光体層217を形成した後に、枠体213の内側に透明樹脂215を充填し熱硬化させることで、発光素子214からの光を蛍光体層217により波長変換し所望の波長スペクトルを有する光を取り出せる発光装置と成すことができる。また、発光素子214として発光波長が300〜400nmの紫外領域を含むものを選び、蛍光体層217に含まれる赤、青、緑の3原色の蛍光体粒子の混合比率を調整することで色調を自由に設計することができる。   Then, a wiring conductor (not shown) formed on the surface of the base 212 and the electrode of the light emitting element 214 are electrically connected via a bonding wire (not shown), and then the phosphor is applied to the surface of the light emitting element 214. After forming the layer 217, the inside of the frame body 213 is filled with a transparent resin 215 and thermally cured, so that the light emitted from the light emitting element 214 is converted by the phosphor layer 217 to extract light having a desired wavelength spectrum. Can be made with equipment. Further, the light emitting element 214 is selected to include an ultraviolet region having an emission wavelength of 300 to 400 nm, and the color tone is adjusted by adjusting the mixing ratio of phosphor particles of the three primary colors red, blue, and green contained in the phosphor layer 217. Can be designed freely.

また一般的に蛍光体粒子は粉体であり、蛍光体単独では蛍光体層217の形成が困難なため、樹脂もしくはガラスなどの透明部材中に蛍光体粒子を混入して発光素子214の表面に塗布し蛍光体層217とするのが一般的である。   In general, the phosphor particles are powder, and it is difficult to form the phosphor layer 217 with the phosphor alone. Therefore, the phosphor particles are mixed in a transparent member such as a resin or glass to form the surface of the light emitting element 214. Generally, the phosphor layer 217 is applied.

特許第3065263号公報Japanese Patent No. 30565263 特開2003−110146号公報JP 2003-110146 A

しかし、従来の発光装置211の場合、蛍光体層217で波長変換された後に蛍光体層217の下側に発光される光や、発光素子から発光された後に蛍光体層217の上面で下側に反射される光は、枠体213の内側で反射が繰り返されて減衰したり、基体212や発光素子214によって吸収され、その結果、光損失が著しく増加するという問題点を有していた。   However, in the case of the conventional light emitting device 211, the light emitted to the lower side of the phosphor layer 217 after wavelength conversion by the phosphor layer 217 or the lower side on the upper surface of the phosphor layer 217 after being emitted from the light emitting element. The light reflected by the light is repeatedly reflected inside the frame body 213 and attenuated, or is absorbed by the base body 212 and the light emitting element 214, resulting in a significant increase in light loss.

また、発光素子214から斜め上方向に発光された光は、枠体213で反射されることなく発光装置211の外側に大きな放射角度で放射されるため、放射角度が大きくなって軸上光度が低いという問題点も有していた。   In addition, light emitted obliquely upward from the light emitting element 214 is radiated to the outside of the light emitting device 211 without being reflected by the frame body 213, so that the radiation angle is increased and the axial luminous intensity is increased. It had the problem of being low.

したがって、本発明は上記従来の問題点に鑑みて完成されたものであり、その目的は、光取り出し効率を向上させ、放射光強度、軸上光度および輝度が高い発光装置および照明装置を提供することである。   Therefore, the present invention has been completed in view of the above-described conventional problems, and an object thereof is to provide a light emitting device and an illuminating device that improve light extraction efficiency and have high radiated light intensity, high on-axis luminous intensity, and luminance. That is.

本発明に係る発光装置は、基体と、
該基体上に搭載された発光素子と、
前記基体上に配置されており、前記発光素子を囲む反射面と、
該反射面の内側に前記発光素子を覆って設けられており、凹面状である上面を有する第1の透光性部と、
該第1の透光性部上に設けられており、前記発光素子から放射された光を波長変換する第2の透光性部と、
前記第1の透光性部と前記第2の透光性部との間に設けられた第3の透光性部と、を備える。
A light emitting device according to the present invention includes a base,
A light emitting device mounted on the substrate;
A reflective surface disposed on the substrate and surrounding the light emitting element;
A first translucent portion provided on the inner side of the reflective surface so as to cover the light emitting element and having a concave upper surface;
A second translucent part that is provided on the first translucent part and converts the wavelength of the light emitted from the light emitting element;
A third translucent part provided between the first translucent part and the second translucent part.

本発明において、前記第1の透光性部の屈折率をn1、第2の透光性部の屈折率をn2、第3の透光性部の屈折率をn3としたとき、n3<n1およびn3<n2の関係を満たすことが好ましい。   In the present invention, when the refractive index of the first translucent part is n1, the refractive index of the second translucent part is n2, and the refractive index of the third translucent part is n3, n3 <n1 And satisfying the relationship of n3 <n2.

また本発明において、前記第3の透光性部が気体層であることが好ましい。   Moreover, in this invention, it is preferable that a said 3rd translucent part is a gas layer.

また本発明において、前記第3の透光性部が、シリコーン樹脂と、該シリコーン樹脂に含有されており前記発光素子から放射された光の波長を変換する蛍光体と、からなることが好ましい。   In the present invention, it is preferable that the third translucent portion is composed of a silicone resin and a phosphor that is contained in the silicone resin and converts the wavelength of light emitted from the light emitting element.

また本発明において、前記発光素子が、近紫外域または紫外域に発光ピーク波長を有する発光ダイオードであり、前記蛍光体が、赤色蛍光体、緑色蛍光体および青色蛍光体からなることが好ましい。   Moreover, in this invention, it is preferable that the said light emitting element is a light emitting diode which has a light emission peak wavelength in a near ultraviolet region or an ultraviolet region, and the said fluorescent substance consists of a red fluorescent substance, a green fluorescent substance, and a blue fluorescent substance.

本発明によれば、例えば、蛍光体を含有する第2の透光性部は、第2の透光性部よりも屈折率の低い第3の透光性部に接しているため、第2の透光性部の中に含有される蛍光体で波長変換された後、蛍光体から下側方向に発せられる光および第2の透光性部の上面で下側方向に反射された光は第2の透光性部の下面によって全反射され、上方に向けて光を進行させることができる。従って、放射光強度が上がる。   According to the present invention, for example, the second translucent part containing the phosphor is in contact with the third translucent part having a refractive index lower than that of the second translucent part. After being wavelength-converted by the phosphor contained in the translucent part, the light emitted downward from the phosphor and the light reflected downward on the upper surface of the second translucent part are It is totally reflected by the lower surface of the second translucent part, and light can be advanced upward. Therefore, the emitted light intensity increases.

また、外部から発光装置内部へ入射する光は、第2の透光性部と第3の透光性部との界面で全反射されることから、外部光に起因する部材の劣化、例えば、第1の透光性部の強度や透過率、接着強度の劣化を抑制することができる。   In addition, since light incident on the inside of the light emitting device from the outside is totally reflected at the interface between the second light transmitting part and the third light transmitting part, deterioration of the member due to external light, for example, Deterioration of the strength, transmittance, and adhesive strength of the first translucent portion can be suppressed.

また、第1の透光性部全体を覆うように蛍光体含有の第2の透光性部が設けられていることから、発光素子から出た光が漏れなく第2の透光性部に入射して波長変換されるため、発光効率が上がる。また、さらに、第2の透光性部の一部だけで光を波長変換するのではなく、第2の透光性部の全面から波長変換した光を放射するため、発光面において光の色ムラを抑制できる。   In addition, since the phosphor-containing second light-transmitting part is provided so as to cover the entire first light-transmitting part, light emitted from the light-emitting element does not leak into the second light-transmitting part without leakage. Since the incident light is converted in wavelength, the light emission efficiency is increased. Furthermore, since the wavelength of the light is not converted by only a part of the second light-transmitting portion, but the wavelength-converted light is emitted from the entire surface of the second light-transmitting portion, the color of the light on the light emitting surface. Unevenness can be suppressed.

さらに、第3の透光性部として、屈折率が1.0前後の気体層で構成することが好ましく、屈折率が1.5前後である樹脂などを充填する場合と比べて、第2の透光性部中に含有される蛍光体で波長変換された後、蛍光体から下側方向に発せられる光および第2の透光性部の上面で下側方向に反射された光を第2の透光性部の下面でより多く全反射でき、上方に光を進行させることができる。   Furthermore, it is preferable that the third light-transmitting part is composed of a gas layer having a refractive index of about 1.0, and the second light-transmitting part has a second refractive index as compared with the case where a resin having a refractive index of about 1.5 is filled. After wavelength conversion with the phosphor contained in the translucent part, the light emitted downward from the phosphor and the light reflected downward on the upper surface of the second translucent part are secondly converted. More light can be totally reflected on the lower surface of the translucent part of the light, and light can be advanced upward.

また、外部環境から発光素子までの間に気体層を設けることにより、断熱効果が得られる。そのため外部環境からの熱が発光素子に伝達されることを抑制することができる。その結果、発光素子の温度変動に起因した波長変動が抑制され、発光装置から放出される光の色変動が抑制される。   Moreover, the heat insulation effect is acquired by providing a gas layer between an external environment and a light emitting element. Therefore, heat from the external environment can be suppressed from being transmitted to the light emitting element. As a result, wavelength variation due to temperature variation of the light emitting element is suppressed, and color variation of light emitted from the light emitting device is suppressed.

さらに、蛍光体を含有する第2の透光性部の下面に接するように、屈折率n4を持つ第4の透光性部を形成することによって、第2の透光性部の下面に蛍光体粒子が露出していたとしても、その露出した蛍光体粒子は第4の透光性部によって覆われる。従って、蛍光体から発せられた光は、第4の透光性部と第3の透光性部との界面で良好に反射するようになり、光の損失を防止できる。   Further, the fourth translucent part having a refractive index n4 is formed so as to be in contact with the lower surface of the second translucent part containing the phosphor, so that the lower surface of the second translucent part is fluorescent. Even if the body particles are exposed, the exposed phosphor particles are covered with the fourth translucent portion. Therefore, the light emitted from the phosphor is favorably reflected at the interface between the fourth translucent part and the third translucent part, and the loss of light can be prevented.

また、第2の透光性部の屈折率n2が第4の透光性部の屈折率n4より大きいことから、第2の透光性部と第4の透光性部との界面において上方へ進行する光の反射損失が少なくなるため、光の取り出し効率が上がる。   In addition, since the refractive index n2 of the second translucent part is larger than the refractive index n4 of the fourth translucent part, the upper part is at the interface between the second translucent part and the fourth translucent part. Since the reflection loss of the light traveling to the surface decreases, the light extraction efficiency increases.

また、第2の透光性部よりも屈折率が小さく、第3の透光性部よりも屈折率の大きい第4の透光性部を、第2の透光性部の下面に設けることによって、第2の透光性部で波長変換された後、下方へ進行する光の一部は、蛍光体を含有する第2の透光性部と第4の透光性部との界面で反射されずに、第4の透光性部へと進む。よって、第2の透光性部に閉じ込められる光の乱反射を緩和することができる。   In addition, a fourth light-transmitting portion having a refractive index smaller than that of the second light-transmitting portion and larger than that of the third light-transmitting portion is provided on the lower surface of the second light-transmitting portion. After the wavelength conversion by the second translucent part, part of the light traveling downward is at the interface between the second translucent part and the fourth translucent part containing the phosphor. It progresses to the 4th translucent part, without being reflected. Therefore, irregular reflection of light confined in the second light-transmitting portion can be reduced.

このため、乱反射した光が第2の透光性部に集中しなくなり、第2の透光性部の光劣化(耐湿性や透過率、接着強度などの劣化)が抑制される。さらに、第2の透光性部から第4の透光性部に入射した波長変換光は、気体層との界面において効率よく反射するため、例えば、第2の透光性部および第4の透光性部の周辺に反射部材を配置することによって、波長変換光を発光装置外部に効率よく取り出すことができる。   For this reason, the irregularly reflected light does not concentrate on the second translucent part, and light deterioration (deterioration of moisture resistance, transmittance, adhesive strength, etc.) of the second translucent part is suppressed. Furthermore, since the wavelength-converted light that has entered the fourth translucent part from the second translucent part is efficiently reflected at the interface with the gas layer, for example, the second translucent part and the fourth translucent part By arranging the reflecting member around the translucent part, the wavelength-converted light can be efficiently extracted outside the light emitting device.

さらに、第1の透光性部は、シリコーン樹脂で形成することが好ましい。シリコーン樹脂は、紫外光などに対し劣化し難いため、封止信頼性が向上し、発光効率の経年劣化が抑制される。   Furthermore, it is preferable that the first translucent part is formed of a silicone resin. Since the silicone resin does not easily deteriorate with respect to ultraviolet light or the like, the sealing reliability is improved, and aged deterioration of the light emission efficiency is suppressed.

さらに、第2の透光性部は、蛍光体を含有するシリコーン樹脂で形成することが好ましい。シリコーン樹脂は、紫外光などに対し劣化し難いため、封止信頼性が向上し、発光効率の経年劣化が抑制される。   Furthermore, it is preferable that the second translucent part is formed of a silicone resin containing a phosphor. Since the silicone resin does not easily deteriorate with respect to ultraviolet light or the like, the sealing reliability is improved, and aged deterioration of the light emission efficiency is suppressed.

さらに、基体の上面外周部に、前記発光素子を取り囲むように接合された反射部材を備え、該反射部材は光反射性の内周面を有することが好ましい。これにより発光素子から放出された光が光反射面で反射して、発光装置上方へ進行するようになるため、発光の指向性が向上する。   Furthermore, it is preferable that a reflective member joined so as to surround the light emitting element is provided on the outer peripheral portion of the upper surface of the base, and the reflective member has a light reflective inner peripheral surface. As a result, the light emitted from the light emitting element is reflected by the light reflecting surface and travels upward of the light emitting device, thereby improving the directivity of light emission.

また、反射部材は熱伝導性の材料で形成することが好ましく、これにより基体の放熱面積が増加することにより、発光装置の放熱性が向上する。   In addition, the reflecting member is preferably formed of a heat conductive material, which increases the heat dissipation area of the base, thereby improving the heat dissipation of the light emitting device.

さらに、第1の透光性部の上面形状は、凹面状であることが好ましい。これにより第1の透光性部と第3の透光性部との界面は、光を拡散する凹レンズとして機能するようになる。そのため発光素子からの光は、第2の透光性部全体を均等に照らすようになり、発光装置の発光分布が均一化される。   Furthermore, it is preferable that the upper surface shape of the 1st translucent part is concave shape. As a result, the interface between the first translucent part and the third translucent part functions as a concave lens that diffuses light. For this reason, the light from the light emitting element uniformly illuminates the entire second translucent portion, and the light emission distribution of the light emitting device is made uniform.

さらに、第1の透光性部の上面形状は、凸面状であることが好ましい。これにより第1の透光性部と第3の透光性部との界面は、光を集光する凸レンズとして機能するようになる。そのため発光素子からの光は、第2の透光性部に効率よく入射するようになり、発光装置の発光強度が向上する。   Furthermore, it is preferable that the upper surface shape of the first translucent portion is a convex surface shape. Thereby, the interface between the first light transmitting part and the third light transmitting part functions as a convex lens that collects light. Therefore, light from the light emitting element is efficiently incident on the second light transmissive portion, and the light emission intensity of the light emitting device is improved.

さらに、第1の透光性部は、前記発光素子の上面および側面にのみ設けられることが好ましい。発光素子からの光の大部分は発光素子の上面および側面から発せられるため、上面および側面での反射を抑制することで、光の取り出し効率が上がる。   Furthermore, it is preferable that the first translucent portion is provided only on the upper surface and side surfaces of the light emitting element. Since most of the light from the light emitting element is emitted from the upper surface and the side surface of the light emitting element, the light extraction efficiency is increased by suppressing reflection on the upper surface and the side surface.

さらに、前記発光素子は、近紫外域または紫外域に主発光ピークを有すことが好ましい。これにより外部に放出される可視光は、全て第2の透光性部に含有されている蛍光体によって波長変換された光に由来することになる。その結果、光の混色割合を設計する際、発光素子からの光の影響が小さくなり、蛍光体の成分調整だけで済むようになる。   Furthermore, the light emitting element preferably has a main light emission peak in the near ultraviolet region or the ultraviolet region. As a result, all visible light emitted to the outside comes from light that has been wavelength-converted by the phosphor contained in the second light-transmitting portion. As a result, when designing the color mixture ratio of light, the influence of light from the light emitting element is reduced, and only the phosphor component adjustment is required.

また、本発明に係る発光装置を照明装置の光源として用いた場合、光取り出し効率を向上させ、放射光強度、軸上光度および輝度が高い照明装置を提供することができる。   Moreover, when the light-emitting device according to the present invention is used as a light source of a lighting device, it is possible to improve the light extraction efficiency and provide a lighting device with high radiated light intensity, high on-axis luminous intensity, and luminance.

(第1実施形態)
図1Aおよび図1Bは、本発明の第1実施形態を示す断面図である。まず図1Aに示すように、発光装置1は、基体2と、発光素子4と、第1の透光性部5と、第2の透光性部7と、第3の透光性部Gなどで構成される。
(First embodiment)
1A and 1B are cross-sectional views showing a first embodiment of the present invention. First, as illustrated in FIG. 1A, the light emitting device 1 includes a base 2, a light emitting element 4, a first light transmissive portion 5, a second light transmissive portion 7, and a third light transmissive portion G. Etc.

基体2は、上面から下面または側面にかけて、発光素子4に電流を供給するための配線導体が形成される。   In the base 2, a wiring conductor for supplying a current to the light emitting element 4 is formed from the upper surface to the lower surface or the side surface.

発光素子4は、基体2の配線導体と電気的に接続されるように、基体2の上面に搭載される。   The light emitting element 4 is mounted on the upper surface of the base 2 so as to be electrically connected to the wiring conductor of the base 2.

第1の透光性部5は、透光性材料で形成されており、発光素子4を被覆する。   The first light transmissive portion 5 is made of a light transmissive material and covers the light emitting element 4.

第2の透光性部7は、発光素子4が発光する光を波長変換する蛍光体を含有した透光性材料で形成されており、第1の透光性部5の上方に、第1の透光性部5を覆うように設けられる。   The second translucent portion 7 is formed of a translucent material containing a phosphor that converts the wavelength of light emitted from the light emitting element 4, and the first translucent portion 5 is disposed above the first translucent portion 5. It is provided so as to cover the translucent part 5.

第3の透光性部Gは、第1の透光性部5と第2の透光性部7との間に設けられる。   The third translucent part G is provided between the first translucent part 5 and the second translucent part 7.

第1の透光性部5、第2の透光性部7および第3の透光性部Gは、発光素子4を中心とした曲面状に形成している。   The first light transmissive part 5, the second light transmissive part 7, and the third light transmissive part G are formed in a curved shape centering on the light emitting element 4.

本実施形態では、第1の透光性部5の屈折率をn1、第2の透光性部7の屈折率をn2、第3の透光性部Gの屈折率をn3としたとき、n3<n1およびn3<n2の関係を満たすように、第1の透光性部5、第2の透光性部7および第3の透光性部Gの材質を選定している。   In the present embodiment, when the refractive index of the first light transmitting portion 5 is n1, the refractive index of the second light transmitting portion 7 is n2, and the refractive index of the third light transmitting portion G is n3, The material of the 1st translucent part 5, the 2nd translucent part 7, and the 3rd translucent part G is selected so that the relationship of n3 <n1 and n3 <n2 may be satisfy | filled.

具体的には、第1の透光性部5として、シリコーン樹脂(屈折率:1.41〜1.52)、エポキシ樹脂(屈折率:1.55〜1.61)、アクリル樹脂(屈折率:約1.48)、フッ素樹脂(屈折率:約1.31)、ポリカーボネート樹脂(屈折率:約1.59)、ポリイミド樹脂(屈折率:約1.68)等が使用できる。   Specifically, as the 1st translucent part 5, silicone resin (refractive index: 1.41-1.52), epoxy resin (refractive index: 1.55-1.61), acrylic resin (refractive index) : About 1.48), fluororesin (refractive index: about 1.31), polycarbonate resin (refractive index: about 1.59), polyimide resin (refractive index: about 1.68), etc. can be used.

また、第2の透光性部7として、シリコーン樹脂(屈折率:1.41〜1.52)、エポキシ樹脂(屈折率:1.55〜1.61)、アクリル樹脂(屈折率:約1.48)、フッ素樹脂(屈折率:約1.31)、ポリカーボネート樹脂(屈折率:約1.59)等が使用でき、さらに第2の透光性部7に含有される蛍光体として、LaS:Eu、LiEuW、ZnS:Ag、SrAl:Eu、ZnS:Cu,Al、ZnCdS:Ag、ZnS:Cu、(BaMgAl)1012:Eu、SrCaS:Eu、(Sr,Ca,Ba,Mg)10(POCl:Eu等が使用できる。 Moreover, as the 2nd translucent part 7, a silicone resin (refractive index: 1.41-1.52), an epoxy resin (refractive index: 1.55-1.61), an acrylic resin (refractive index: about 1). .48), fluororesin (refractive index: about 1.31), polycarbonate resin (refractive index: about 1.59), etc. can be used, and the phosphor contained in the second translucent portion 7 is La. 2 O 2 S: Eu, LiEuW 2 O 8 , ZnS: Ag, SrAl 2 O 4 : Eu, ZnS: Cu, Al, ZnCdS: Ag, ZnS: Cu, (BaMgAl) 10 O 12 : Eu, SrCaS: Eu, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu or the like can be used.

また、第3の透光性部Gとして、シリコーン樹脂やエポキシ樹脂、フッ素樹脂等が使用でき、あるいは空気等からなる気体層で構成することもできる。いずれの場合も、n3<n1およびn3<n2の関係を満たすよう材料を選定する。例えば、発光素子から発せられる光が紫外域から近紫外域に主発光ピークを有する場合、紫外域から近紫外域において透過率が高く、黄変や強度劣化の生じ難いシリコーン樹脂を用いるのがよく、この場合、第1および第2の透光性部5,7として、屈折率が1.52であるシリコーン樹脂を用い、第3の透光性部として、屈折率が1.41であるシリコーン樹脂を用いる。これにより、本発明の発光装置を構成することができる。   Moreover, as the 3rd translucent part G, a silicone resin, an epoxy resin, a fluororesin etc. can be used, or it can also be comprised by the gas layer which consists of air etc. In either case, the material is selected so as to satisfy the relationship of n3 <n1 and n3 <n2. For example, when the light emitted from the light emitting element has a main emission peak from the ultraviolet region to the near ultraviolet region, it is preferable to use a silicone resin that has a high transmittance in the ultraviolet region to the near ultraviolet region and hardly causes yellowing or strength deterioration. In this case, a silicone resin having a refractive index of 1.52 is used as the first and second light-transmitting portions 5 and 7, and a silicone having a refractive index of 1.41 is used as the third light-transmitting portion. Resin is used. Thereby, the light-emitting device of this invention can be comprised.

こうした構成によって、蛍光体を含有する第2の透光性部7は、第2の透光性部7よりも屈折率の低い第3の透光性部Gに接しているため、第2の透光性部7の中に含有される蛍光体で波長変換された後、蛍光体から下側方向に発せられる光および第2の透光性部7の上面で下側方向に反射された光の大部分は、全反射等によって第2の透光性部7の下面によって反射され、上方に向けて光を進行させることができる。   With such a configuration, the second translucent part 7 containing the phosphor is in contact with the third translucent part G having a refractive index lower than that of the second translucent part 7. After wavelength conversion by the phosphor contained in the translucent part 7, light emitted downward from the phosphor and light reflected downward by the upper surface of the second translucent part 7 Most of the light is reflected by the lower surface of the second translucent portion 7 due to total reflection or the like, and light can travel upward.

また、外部から発光装置内部へ入射する光の大部分は、全反射等によって第2の透光性部7と第3の透光性部Gとの界面で反射されることから、外部光に起因する部材の劣化、例えば、第1の透光性部5の強度や透過率、接着強度の劣化を抑制することができる。   In addition, most of the light incident from the outside to the inside of the light emitting device is reflected at the interface between the second translucent portion 7 and the third translucent portion G due to total reflection or the like, so that it is reflected in the external light. The deterioration of the member resulting from it, for example, the intensity | strength of the 1st translucent part 5, the transmittance | permeability, and deterioration of adhesive strength can be suppressed.

また、第1の透光性部5全体を覆うように蛍光体含有の第2の透光性部7が設けられていることから、発光素子4から出た光が漏れなく第2の透光性部7に入射して波長変換されるため、発光効率が上がる。   In addition, since the phosphor-containing second light-transmitting portion 7 is provided so as to cover the entire first light-transmitting portion 5, the light emitted from the light-emitting element 4 can be leaked without leaking. Since the light is incident on the active portion 7 and wavelength conversion is performed, the light emission efficiency is increased.

さらに、第3の透光性部Gとして、屈折率が1.0前後の気体層で構成することが好ましく、屈折率が1.5前後である樹脂などを充填する場合と比べて、第2の透光性部7の中に含有される蛍光体で波長変換された後、蛍光体から下側方向に発せられる光および第2の透光性部7の上面で下側方向に反射された光の大部分を第2の透光性部7の下面でより多く反射でき、上方に光を進行させることができる。   Furthermore, it is preferable that the third translucent portion G is composed of a gas layer having a refractive index of about 1.0, which is higher than that in the case where a resin having a refractive index of about 1.5 is filled. After being wavelength-converted by the phosphor contained in the translucent portion 7, the light emitted from the phosphor in the lower direction and reflected from the upper surface of the second translucent portion 7 in the lower direction Most of the light can be reflected more on the lower surface of the second translucent portion 7, and the light can travel upward.

また、外部環境から発光素子4までの間に第3の透光性部Gとして気体層を設けることにより、断熱効果が得られる。そのため外部環境からの熱が発光素子4に伝達されることを抑制することができる。その結果、発光素子4の温度変動に起因した波長変動が抑制され、発光装置から放出される光の色変動が抑制される。   Further, by providing a gas layer as the third translucent portion G between the external environment and the light emitting element 4, a heat insulating effect can be obtained. Therefore, heat from the external environment can be suppressed from being transmitted to the light emitting element 4. As a result, wavelength variation due to temperature variation of the light emitting element 4 is suppressed, and color variation of light emitted from the light emitting device is suppressed.

さらに本実施形態において、第3の透光性部Gの厚みは略一定であることが好ましい。第3の透光性部Gの厚みは、第1の透光性部5の上面と第2の透光性部7の下面との間の距離に相当し、全体として±5%の誤差の範囲であることが好ましい。   Furthermore, in this embodiment, it is preferable that the thickness of the 3rd translucent part G is substantially constant. The thickness of the third translucent portion G corresponds to the distance between the upper surface of the first translucent portion 5 and the lower surface of the second translucent portion 7, and has an error of ± 5% as a whole. A range is preferable.

仮に、第3の透光性部Gの上面または下面に凹凸などがあり、厚みが略一定でないとすると、上下面で屈折が起きて、光の強度分布が変動する可能性がある。そのため第3の透光性部Gの厚みを略一定とすることで、第1の透光性部5から第2の透光性部7に入射する光の強度分布が変動しなくなるため、第2の透光性部7で波長変換される光量分布もほぼ均一となり、発光面における色バラツキや色むらを抑制することができる。   If the upper surface or the lower surface of the third translucent portion G has irregularities and the thickness is not substantially constant, refraction occurs at the upper and lower surfaces, and the light intensity distribution may fluctuate. Therefore, by making the thickness of the third light transmitting portion G substantially constant, the intensity distribution of light incident on the second light transmitting portion 7 from the first light transmitting portion 5 does not fluctuate. The light quantity distribution converted in wavelength by the translucent portion 2 is almost uniform, and color variation and color unevenness on the light emitting surface can be suppressed.

次に図1Bにおいては、基体2の形状を工夫しており、発光素子4を搭載する基体2の上面はフラットで、発光素子4が搭載される基板1の上面から周辺に向かって上方に傾斜した円錐面を形成している。こうした傾斜面を設けることによって、発光素子4から放射された光は上方に指向するようになるため、光の利用効率が向上する。   Next, in FIG. 1B, the shape of the substrate 2 is devised, the upper surface of the substrate 2 on which the light emitting element 4 is mounted is flat, and is inclined upward from the upper surface of the substrate 1 on which the light emitting element 4 is mounted toward the periphery. A conical surface is formed. By providing such an inclined surface, the light emitted from the light emitting element 4 is directed upward, so that the light utilization efficiency is improved.

(第2実施形態)
図2は、本発明の第2実施形態を示す断面図である。発光装置1は、基体2と、枠体3と、発光素子4と、第1の透光性部5と、第2の透光性部7と、第3の透光性部Gなどで構成される。
(Second Embodiment)
FIG. 2 is a cross-sectional view showing a second embodiment of the present invention. The light emitting device 1 includes a base 2, a frame 3, a light emitting element 4, a first light transmitting part 5, a second light transmitting part 7, a third light transmitting part G, and the like. Is done.

基体2は、上面から下面または側面にかけて、発光素子4に電流を供給するための配線導体が形成される。   In the base 2, a wiring conductor for supplying a current to the light emitting element 4 is formed from the upper surface to the lower surface or the side surface.

発光素子4は、基体2の配線導体と電気的に接続されるように、基体2の上面に搭載される。   The light emitting element 4 is mounted on the upper surface of the base 2 so as to be electrically connected to the wiring conductor of the base 2.

枠体3は、基体2の上に固定され、発光素子4を取り囲むように上向きに傾斜した内面を有する。枠体3の内面は、光利用効率の点で光反射性であることが好ましい。   The frame 3 is fixed on the base 2 and has an inner surface that is inclined upward so as to surround the light emitting element 4. The inner surface of the frame 3 is preferably light reflective in terms of light utilization efficiency.

第1の透光性部5は、透光性材料で形成されており、発光素子4を被覆する。   The first light transmissive portion 5 is made of a light transmissive material and covers the light emitting element 4.

第2の透光性部7は、発光素子4が発光する光を波長変換する蛍光体を含有した透光性材料で形成されており、第1の透光性部5の上方に、第1の透光性部5を覆うように設けられる。   The second translucent portion 7 is formed of a translucent material containing a phosphor that converts the wavelength of light emitted from the light emitting element 4, and the first translucent portion 5 is disposed above the first translucent portion 5. It is provided so as to cover the translucent part 5.

第3の透光性部Gは、第1の透光性部5と第2の透光性部7との間に設けられる。   The third translucent part G is provided between the first translucent part 5 and the second translucent part 7.

第1の透光性部5、第2の透光性部7および第3の透光性部Gは、基体2の上面とほぼ平行な多層構成が得られるように、水平な界面を有する。   The first translucent part 5, the second translucent part 7, and the third translucent part G have a horizontal interface so that a multilayer configuration substantially parallel to the upper surface of the substrate 2 can be obtained.

本実施形態では、第1の透光性部5の屈折率をn1、第2の透光性部7の屈折率をn2、第3の透光性部Gの屈折率をn3としたとき、n3<n1およびn3<n2の関係を満たすように、第1の透光性部5、第2の透光性部7および第3の透光性部Gの材質を選定している。具体的な材質は、上述の実施形態で列挙したものが使用でき、これらの材質を適宜組合せることによって、n3<n1およびn3<n2の関係を満たすことが可能である。   In the present embodiment, when the refractive index of the first light transmitting portion 5 is n1, the refractive index of the second light transmitting portion 7 is n2, and the refractive index of the third light transmitting portion G is n3, The material of the 1st translucent part 5, the 2nd translucent part 7, and the 3rd translucent part G is selected so that the relationship of n3 <n1 and n3 <n2 may be satisfy | filled. Specific materials listed in the above embodiment can be used, and by appropriately combining these materials, the relationship of n3 <n1 and n3 <n2 can be satisfied.

こうした構成によって、蛍光体を含有する第2の透光性部7は、第2の透光性部7よりも屈折率の低い第3の透光性部Gに接しているため、第2の透光性部7の中に含有される蛍光体で波長変換された後、蛍光体から下側方向に発せられる光および第2の透光性部7の上面で下側方向に反射された光の大部分は、全反射等によって第2の透光性部7の下面によって反射され、上方に向けて光を進行させることができる。   With such a configuration, the second translucent part 7 containing the phosphor is in contact with the third translucent part G having a refractive index lower than that of the second translucent part 7. After wavelength conversion by the phosphor contained in the translucent part 7, light emitted downward from the phosphor and light reflected downward by the upper surface of the second translucent part 7 Most of the light is reflected by the lower surface of the second translucent portion 7 due to total reflection or the like, and light can travel upward.

また、外部から発光装置内部へ入射する光の大部分は、全反射等によって第2の透光性部7と第3の透光性部Gとの界面で反射されることから、外部光に起因する部材の劣化、例えば、第1の透光性部5の強度や透過率、接着強度の劣化を抑制することができる。   In addition, most of the light incident from the outside to the inside of the light emitting device is reflected at the interface between the second translucent portion 7 and the third translucent portion G due to total reflection or the like, so that it is reflected in the external light. The deterioration of the member resulting from it, for example, the intensity | strength of the 1st translucent part 5, the transmittance | permeability, and deterioration of adhesive strength can be suppressed.

また、第1の透光性部5全体を覆うように蛍光体含有の第2の透光性部7が設けられていることから、発光素子4から出た光が漏れなく第2の透光性部7に入射して波長変換されるため、発光効率が上がる。   In addition, since the phosphor-containing second light-transmitting portion 7 is provided so as to cover the entire first light-transmitting portion 5, the light emitted from the light-emitting element 4 can be leaked without leaking. Since the light is incident on the active portion 7 and wavelength conversion is performed, the light emission efficiency is increased.

さらに、第3の透光性部Gとして、屈折率が1.0前後の気体層で構成することが好ましく、屈折率が1.5前後である樹脂などを充填する場合と比べて、第2の透光性部7の中に含有される蛍光体で波長変換された後、蛍光体から下側方向に発せられる光および第2の透光性部7の上面で下側方向に反射された光の大部分を第2の透光性部7の下面でより多く反射でき、上方に光を進行させることができる。   Furthermore, it is preferable that the third translucent portion G is composed of a gas layer having a refractive index of about 1.0, which is higher than that in the case where a resin having a refractive index of about 1.5 is filled. After being wavelength-converted by the phosphor contained in the translucent portion 7, the light emitted from the phosphor in the lower direction and reflected from the upper surface of the second translucent portion 7 in the lower direction Most of the light can be reflected more on the lower surface of the second translucent portion 7, and the light can travel upward.

また、外部環境から発光素子4までの間に第3の透光性部Gとして気体層を設けることにより、断熱効果が得られる。そのため外部環境からの熱が発光素子4に伝達されることを抑制することができる。その結果、発光素子4の温度変動に起因した波長変動が抑制され、発光装置から放出される光の色変動が抑制される。   Further, by providing a gas layer as the third translucent portion G between the external environment and the light emitting element 4, a heat insulating effect can be obtained. Therefore, heat from the external environment can be suppressed from being transmitted to the light emitting element 4. As a result, wavelength variation due to temperature variation of the light emitting element 4 is suppressed, and color variation of light emitted from the light emitting device is suppressed.

さらに本実施形態において、第3の透光性部Gの厚みは略一定であることが好ましい。第3の透光性部Gの厚みは、第1の透光性部5の上面と第2の透光性部7の下面との間の距離に相当し、全体として±5%の誤差の範囲であることが好ましい。   Furthermore, in this embodiment, it is preferable that the thickness of the 3rd translucent part G is substantially constant. The thickness of the third translucent portion G corresponds to the distance between the upper surface of the first translucent portion 5 and the lower surface of the second translucent portion 7, and has an error of ± 5% as a whole. A range is preferable.

仮に、第3の透光性部Gの上面または下面に凹凸などがあり、厚みが略一定でないとすると、上下面で屈折が起きて、光の強度分布が変動する可能性がある。そのため第3の透光性部Gの厚みを略一定とすることで、第1の透光性部5から第2の透光性部7に入射する光の強度分布が変動しなくなるため、第2の透光性部7で波長変換される光量分布もほぼ均一となり、発光面における色バラツキや色むらを抑制することができる。   If the upper surface or the lower surface of the third translucent portion G has irregularities and the thickness is not substantially constant, refraction occurs at the upper and lower surfaces, and the light intensity distribution may fluctuate. Therefore, by making the thickness of the third light transmitting portion G substantially constant, the intensity distribution of light incident on the second light transmitting portion 7 from the first light transmitting portion 5 does not fluctuate. The light quantity distribution converted in wavelength by the translucent portion 2 is almost uniform, and color variation and color unevenness on the light emitting surface can be suppressed.

(第3実施形態)
図3Aおよび図3Bは、本発明の第3実施形態を示す断面図である。まず図3Aに示すように、発光装置1は、基体2と、枠体3と、発光素子4と、第1の透光性部5と、第2の透光性部7と、第3の透光性部Gなどで構成される。
(Third embodiment)
3A and 3B are cross-sectional views showing a third embodiment of the present invention. First, as illustrated in FIG. 3A, the light emitting device 1 includes a base body 2, a frame body 3, a light emitting element 4, a first light transmitting portion 5, a second light transmitting portion 7, and a third light emitting device 4. It is composed of a translucent part G and the like.

基体2は、上面から下面または側面にかけて、発光素子4に電流を供給するための配線導体が形成される。   In the base 2, a wiring conductor for supplying a current to the light emitting element 4 is formed from the upper surface to the lower surface or the side surface.

発光素子4は、基体2の配線導体と電気的に接続されるように、基体2の上面に搭載される。   The light emitting element 4 is mounted on the upper surface of the base 2 so as to be electrically connected to the wiring conductor of the base 2.

枠体3は、基体2の上に固定され、発光素子4を取り囲むように上向きに傾斜した内面を有する。枠体3の内面は、光利用効率の点で光反射性であることが好ましい。   The frame 3 is fixed on the base 2 and has an inner surface that is inclined upward so as to surround the light emitting element 4. The inner surface of the frame 3 is preferably light reflective in terms of light utilization efficiency.

第1の透光性部5は、透光性材料で形成されており、発光素子4を被覆する。   The first light transmissive portion 5 is made of a light transmissive material and covers the light emitting element 4.

第2の透光性部7は、発光素子4が発光する光を波長変換する蛍光体を含有した透光性材料で形成されており、第1の透光性部5の上方に、第1の透光性部5を覆うように設けられる。   The second translucent portion 7 is formed of a translucent material containing a phosphor that converts the wavelength of light emitted from the light emitting element 4, and the first translucent portion 5 is disposed above the first translucent portion 5. It is provided so as to cover the translucent part 5.

第3の透光性部Gは、第1の透光性部5と第2の透光性部7との間に設けられる。   The third translucent part G is provided between the first translucent part 5 and the second translucent part 7.

本実施形態では、第1の透光性部5の屈折率をn1、第2の透光性部7の屈折率をn2、第3の透光性部Gの屈折率をn3としたとき、n3<n1およびn3<n2の関係を満たすように、第1の透光性部5、第2の透光性部7および第3の透光性部Gの材質を選定している。具体的な材質は、上述の実施形態で列挙したものが使用でき、これらの材質を適宜組合せることによって、n3<n1およびn3<n2の関係を満たすことが可能である。こうした関係を満たすことによって、上述したように、光の利用効率が向上する。   In the present embodiment, when the refractive index of the first light transmitting portion 5 is n1, the refractive index of the second light transmitting portion 7 is n2, and the refractive index of the third light transmitting portion G is n3, The material of the 1st translucent part 5, the 2nd translucent part 7, and the 3rd translucent part G is selected so that the relationship of n3 <n1 and n3 <n2 may be satisfy | filled. Specific materials listed in the above embodiment can be used, and by appropriately combining these materials, the relationship of n3 <n1 and n3 <n2 can be satisfied. Satisfying such a relationship improves the light utilization efficiency as described above.

さらに、図3Aに示すように、第1の透光性部5の下面、第2の透光性部7の上面、第2の透光性部7と第3の透光性部Gの界面は、基体2の上面とほぼ平行な界面を有し、第1の透光性部5の上面形状は、凹面状であることが好ましい。これにより第1の透光性部5と第3の透光性部Gとの界面は、光を拡散する凹レンズとして機能するようになる。そのため発光素子4からの光は、第2の透光性部7全体を均等に照らすようになり、発光装置1の発光分布が均一化される。   Further, as shown in FIG. 3A, the lower surface of the first light transmitting portion 5, the upper surface of the second light transmitting portion 7, and the interface between the second light transmitting portion 7 and the third light transmitting portion G. Has an interface substantially parallel to the upper surface of the substrate 2, and the upper surface shape of the first translucent portion 5 is preferably concave. As a result, the interface between the first translucent part 5 and the third translucent part G functions as a concave lens that diffuses light. For this reason, the light from the light emitting element 4 uniformly illuminates the entire second translucent portion 7, and the light emission distribution of the light emitting device 1 is made uniform.

この代替として、図3Bに示すように、第1の透光性部5の上面形状は、凸面状であることが好ましい。これにより第1の透光性部5と第3の透光性部Gとの界面は、光を集光する凸レンズとして機能するようになる。そのため発光素子4からの光は、第2の透光性部7に効率よく入射するようになり、発光装置1の発光強度が向上する。   As an alternative to this, as shown in FIG. 3B, the upper surface shape of the first light-transmissive portion 5 is preferably a convex surface shape. As a result, the interface between the first translucent portion 5 and the third translucent portion G functions as a convex lens that collects light. Therefore, the light from the light emitting element 4 efficiently enters the second light transmissive portion 7, and the light emission intensity of the light emitting device 1 is improved.

以下、具体的な実施例について説明する。   Specific examples will be described below.

(実施例11)
発光素子が搭載される基体の上面から基体の外表面にかけて配線導体が形成された、幅15mm×奥行き15mm×厚さ1mmの板状のアルミナセラミックス基板を準備した。
(Example 11)
A plate-like alumina ceramic substrate having a width of 15 mm, a depth of 15 mm, and a thickness of 1 mm, in which a wiring conductor was formed from the upper surface of the substrate on which the light emitting element is mounted to the outer surface of the substrate, was prepared.

また、発光素子が搭載される基体は、上面に発光素子の電極と接続される一対の円形パッドを有しており、Mo−Mn粉末を焼成して得られたメタライズ層によって成形されている。   The substrate on which the light emitting element is mounted has a pair of circular pads connected to the electrodes of the light emitting element on the upper surface, and is formed by a metallized layer obtained by firing Mo-Mn powder.

またさらに、この一対の円形パッドの表面には、厚さ3μmのNiメッキ層と厚さ3μmのAuメッキ層とを電解メッキ法によって順次被着している。   Furthermore, a Ni plating layer having a thickness of 3 μm and an Au plating layer having a thickness of 3 μm are sequentially deposited on the surfaces of the pair of circular pads by an electrolytic plating method.

そして、上述の基体の上面に、発光素子を取り囲むように、アクリル樹脂から成る接着材を介して、15mm×15mm×厚さ5mmの表面を化学研磨したAl(アルミニウム)から成る枠状の反射部材を取着した。なお、この反射部材は、下端部の内周径φが5mm、上端部の内周径φが10mmの、内周面が上端部に向かうに従って広がる直線状の傾斜面が形成された貫通孔を有している。 Then, a frame-like reflecting member made of Al (aluminum) obtained by chemically polishing the surface of 15 mm × 15 mm × thickness 5 mm through an adhesive made of acrylic resin so as to surround the light emitting element on the upper surface of the above-mentioned substrate. Attached. Incidentally, the reflecting member has a through inner circumference phi 1 of the lower end 5 mm, the inner circumferential diameter phi 2 is 10mm at the upper end, straight inclined surface extending in accordance with the inner peripheral surface toward the upper end portion is formed It has a hole.

次に、上述の円形パッドにAgペーストを介して、405nmの波長にピークを有する近紫外光を発する、0.35mm×0.35mm×厚さ0.1mmの窒化物系化合物半導体から成る発光素子の一対の電極を接着固定した。   Next, a light emitting device composed of a nitride compound semiconductor of 0.35 mm × 0.35 mm × thickness 0.1 mm, which emits near ultraviolet light having a peak at a wavelength of 405 nm through Ag paste on the circular pad described above. A pair of electrodes were bonded and fixed.

その後、シリコーン樹脂から成る屈折率n1=1.41の第1の透光性部5を、ディスペンサーを用いて発光素子を覆うように反射部材の内側に厚さ2.5mmとなるように滴下し、熱硬化した。   Thereafter, the first translucent portion 5 made of silicone resin and having a refractive index n1 = 1.41 is dropped inside the reflecting member so as to have a thickness of 2.5 mm so as to cover the light emitting element using a dispenser. Heat cured.

一方、LaS:Eu(赤色蛍光体)、ZnS:Cu,Al(緑色蛍光体)、(BaMgAl)1012:Eu(青色蛍光体)をエポキシ樹脂に含有させた、屈折率n2=1.55で、厚み0.5mmの板状の第2の透光性部7を形成した。この第2の透光性部を、第1の透光性部5全体を覆うように、第1の透光性部5の上方に配置させ、反射部材に接着させることによって、発光装置を形成した。このとき、第1の透光性部5と第2の透光性部7とは、2mmの隙間を空けるようにして設けられており、この隙間が屈折率n3=1の第3の透光性部Gとして機能する。以下の実施例においても同様である。 On the other hand, a refractive index n2 in which La 2 O 2 S: Eu (red phosphor), ZnS: Cu, Al (green phosphor), (BaMgAl) 10 O 12 : Eu (blue phosphor) is contained in an epoxy resin. = 1.55, and a plate-like second light-transmitting portion 7 having a thickness of 0.5 mm was formed. A light emitting device is formed by disposing the second light-transmitting portion above the first light-transmitting portion 5 so as to cover the entire first light-transmitting portion 5 and bonding the second light-transmitting portion to the reflecting member. did. At this time, the first translucent portion 5 and the second translucent portion 7 are provided so as to leave a gap of 2 mm, and this gap is a third translucent light with a refractive index n3 = 1. It functions as the sex part G. The same applies to the following embodiments.

(実施例12)
厚みが0.5mmで、シリコーン樹脂から成る屈折率n4=1.41の板状に形成された第4の透光性部6を、第2の透光性部7の下面に密着させた以外は、実施例11と同様にして、発光装置を形成した。ここで、第4の透光性部6の屈折率n4が、第2の透光性部7の屈折率n2に比べて小さいことが、実施例11との違いである。
(Example 12)
Except that the fourth light-transmitting part 6 having a thickness of 0.5 mm and made of a silicone resin and having a refractive index n4 = 1.41 is adhered to the lower surface of the second light-transmitting part 7. Were the same as in Example 11 to form a light emitting device. Here, the difference from Example 11 is that the refractive index n4 of the fourth translucent portion 6 is smaller than the refractive index n2 of the second translucent portion 7.

(比較例11)
反射部材の内周面と第2の透光性部7で取り囲まれる発光装置の内部に第1の透光性部5を充填し、第3の透光性部Gおよび第4の透光性部6を設けない以外は、実施例12と同様にして発光装置を形成した。
(Comparative Example 11)
The first light transmissive part 5 is filled in the light emitting device surrounded by the inner peripheral surface of the reflecting member and the second light transmissive part 7, and the third light transmissive part G and the fourth light transmissive part are filled. A light emitting device was formed in the same manner as in Example 12 except that the portion 6 was not provided.

実施例11,12および比較例11の各全光束量を測定したところ、実施例11の全光束量は、比較例11に対して約3%程度多く、実施例12の全光束量は、比較例11に対し約7%程度多かった。よって、実施例11および実施例12は比較例11に比べて発光効率が良好であることが確認された。   When the total luminous fluxes of Examples 11 and 12 and Comparative Example 11 were measured, the total luminous flux of Example 11 was about 3% larger than that of Comparative Example 11, and the total luminous flux of Example 12 was compared. About 7% more than Example 11. Therefore, Example 11 and Example 12 were confirmed to have better luminous efficiency than Comparative Example 11.

(第4実施形態)
図4は、本発明の第4実施形態を示す断面図である。発光装置1は、基体2と、枠体3と、発光素子4と、第1の透光性部5と、第2の透光性部7と、第3の透光性部Gと、第4の透光性部6などで構成される。
(Fourth embodiment)
FIG. 4 is a cross-sectional view showing a fourth embodiment of the present invention. The light emitting device 1 includes a base 2, a frame 3, a light emitting element 4, a first light transmissive part 5, a second light transmissive part 7, a third light transmissive part G, 4 translucent portions 6 and the like.

基体2は、アルミナセラミックス,窒化アルミニウム質焼結体,ムライト質焼結体,ガラスセラミックス等のセラミックス、エポキシ樹脂等の樹脂、または金属から成り、発光素子4を支持する支持部材として機能する。   The substrate 2 is made of alumina ceramic, aluminum nitride sintered body, mullite sintered body, ceramic such as glass ceramic, resin such as epoxy resin, or metal, and functions as a support member that supports the light emitting element 4.

基体2がセラミックスの場合、発光素子4が電気的に接続されるための配線導体(図示せず)が基体2の上面やその周辺に形成されている。この配線導体が基体2の外表面に導出されて外部電気回路基板に接続されることにより、発光素子4と外部電気回路基板とが電気的に接続されることとなる。   When the substrate 2 is ceramic, a wiring conductor (not shown) for electrically connecting the light emitting element 4 is formed on the upper surface of the substrate 2 and its periphery. The wiring conductor is led out to the outer surface of the base 2 and connected to the external electric circuit board, whereby the light emitting element 4 and the external electric circuit board are electrically connected.

発光素子4を配線導体に接続する方法としては、ワイヤボンディング(図示せず)を介して接続する方法、または、発光素子4の下面で半田バンプ(図示せず)により接続するフリップチップボンディング方式を用いた方法等が用いられる。好ましくは、フリップチップボンディング方式により接続するのがよい。これにより、配線導体を発光素子4の直下に設けることができるため、発光素子4の周辺の基体2の上面に配線導体を設けるためのスペースを設ける必要がなくなる。よって、発光素子4から発光された光がこの基体2の配線導体用のスペースで吸収されて放射光強度が低下するのを有効に抑制することができるとともに発光装置1を小型にすることができる。   As a method of connecting the light emitting element 4 to the wiring conductor, a method of connecting via wire bonding (not shown) or a flip chip bonding method in which the lower surface of the light emitting element 4 is connected by solder bumps (not shown). The method used is used. Preferably, the connection is made by a flip chip bonding method. Thereby, since the wiring conductor can be provided directly under the light emitting element 4, it is not necessary to provide a space for providing the wiring conductor on the upper surface of the base 2 around the light emitting element 4. Therefore, it is possible to effectively suppress the light emitted from the light emitting element 4 from being absorbed in the space for the wiring conductor of the base body 2 to reduce the intensity of the emitted light, and to reduce the size of the light emitting device 1. .

この配線導体は、基体2がセラミックスから成る場合、例えば、W,Mo,Cu,銀(Ag)等の金属粉末のメタライズ層により形成される。または、配線導体が形成された絶縁体から成る入出力端子を基体2に設けた貫通孔に嵌着接合させることによって設けられる。また、基体2が樹脂から成る場合、例えば、Fe−Ni−Co合金等のリード端子を埋設することによって形成される。   When the base 2 is made of ceramic, the wiring conductor is formed of a metallized layer of metal powder such as W, Mo, Cu, silver (Ag), for example. Alternatively, an input / output terminal made of an insulator on which a wiring conductor is formed is provided by being fitted into a through hole provided in the base 2. Moreover, when the base | substrate 2 consists of resin, it forms, for example by embedding lead terminals, such as a Fe-Ni-Co alloy.

なお、配線導体の露出する表面には、Niや金(Au)等の耐食性に優れる金属を1〜20μm程度の厚さで被着させておくのが良く、配線導体の酸化腐食を有効に防止し得るともに、発光素子4と配線導体との接続を強固にし得る。したがって、配線導体の露出表面には、例えば、厚さ1〜10μm程度のNiメッキ層と厚さ0.1〜3μm程度のAuメッキ層とが電解メッキ法や無電解メッキ法により順次被着されているのがより好ましい。   It should be noted that a metal with excellent corrosion resistance, such as Ni or gold (Au), should be deposited on the exposed surface of the wiring conductor in a thickness of about 1 to 20 μm, effectively preventing oxidative corrosion of the wiring conductor. In addition, the connection between the light emitting element 4 and the wiring conductor can be strengthened. Therefore, for example, a Ni plating layer having a thickness of about 1 to 10 μm and an Au plating layer having a thickness of about 0.1 to 3 μm are sequentially deposited on the exposed surface of the wiring conductor by an electrolytic plating method or an electroless plating method. More preferably.

また、枠体3は、AlやFe−Ni−Co合金等の金属、アルミナセラミックス等のセラミックスまたはエポキシ樹脂等の樹脂から成り、切削加工、金型成型、押し出し成型等により形成される。   The frame 3 is made of metal such as Al or Fe-Ni-Co alloy, ceramics such as alumina ceramics, or resin such as epoxy resin, and is formed by cutting, die molding, extrusion molding, or the like.

また、枠体3の内周面の表面は、その表面の算術平均粗さRaが、0.1μm以下であるのが好ましく、これにより発光素子4の光を良好に発光装置1の上側に反射することができる。Raが0.1μmを超える場合、発光素子4の枠体3の内周面で光を上側に反射し難くなるとともに発光装置1の内部で乱反射し易くなる。その結果、発光装置1の内部における光の伝搬損失が大きく成り易いとともに、所望の放射角度で光を発光装置1の外部に出射することが困難になる。   Further, the surface of the inner peripheral surface of the frame body 3 preferably has an arithmetic average roughness Ra of the surface of 0.1 μm or less, whereby the light of the light emitting element 4 is favorably reflected to the upper side of the light emitting device 1. can do. When Ra exceeds 0.1 μm, it becomes difficult to reflect light upward on the inner peripheral surface of the frame 3 of the light emitting element 4 and to diffusely reflect inside the light emitting device 1. As a result, the propagation loss of light inside the light emitting device 1 tends to increase, and it becomes difficult to emit light outside the light emitting device 1 at a desired radiation angle.

また、第2の透光性部7は、エポキシ樹脂、シリコーン樹脂、アクリル樹脂、または、ガラス等の透光性部中に、例えば、赤、青、緑の3原色の蛍光体を混入して、第2の透光性部の上面に塗布または載置することで形成される。蛍光体としては様々な材料が用いられており、例えば、赤はLaS:Eu(EuドープLaS)の蛍光体、緑はZnS:Cu,Alの蛍光体、青は(BaMgAl)1012:Euの蛍光体等の粒子状のものを用いる。さらに、このような蛍光体は1種類に限らず、複数のものを任意の割合で配合することにより、所望の発光スペクトルと色を有する光を出力することができる。 In addition, the second translucent portion 7 includes, for example, phosphors of three primary colors of red, blue, and green in a translucent portion such as epoxy resin, silicone resin, acrylic resin, or glass. It is formed by applying or placing on the upper surface of the second translucent part. Various materials are used as the phosphor. For example, red is a phosphor of La 2 O 2 S: Eu (Eu-doped La 2 O 2 S), green is a phosphor of ZnS: Cu, Al, and blue is a phosphor. A particulate material such as a phosphor of (BaMgAl) 10 O 12 : Eu is used. Furthermore, such a phosphor is not limited to one type, and a light having a desired emission spectrum and color can be output by blending a plurality of phosphors at an arbitrary ratio.

また、第2の透光性部7の厚みは0.1〜1mmであるのが好ましい。これにより、発光素子4から発光された光を効率よく波長変換させることができる。蛍光体層7の厚みが0.1mm未満であると、発光素子4から発せられた光のうち、蛍光体層7で波長変換されずに蛍光体層7を透過する割合が高くなり、波長変換効率が低下しやすくなる。また、1mmを超えると、蛍光体層7で波長変換された光が蛍光体層7で吸収されやすくなり、放射光強度が低下しやすくなる。   Moreover, it is preferable that the thickness of the 2nd translucent part 7 is 0.1-1 mm. Thereby, the wavelength of the light emitted from the light emitting element 4 can be efficiently converted. When the thickness of the phosphor layer 7 is less than 0.1 mm, the ratio of the light emitted from the light emitting element 4 that is transmitted through the phosphor layer 7 without being wavelength-converted by the phosphor layer 7 is increased. Efficiency tends to decrease. On the other hand, if the thickness exceeds 1 mm, the light whose wavelength has been converted by the phosphor layer 7 is easily absorbed by the phosphor layer 7 and the intensity of radiated light tends to decrease.

また、第1の透光性部5は、発光素子4を覆うように形成されている。第1の透光性部5は、発光素子4との屈折率差が小さく、紫外線領域から可視光領域の光に対して透過率の高いものから成るのがよく、例えば、第1の透光性部5は、シリコーン樹脂,エポキシ樹脂等の透明樹脂や、低融点ガラス、ゾル−ゲルガラス等から成る。これにより、発光素子4と第1の透光性部5との屈折率差により光の反射損失が発生するのを有効に抑制することができる。   Further, the first light transmissive part 5 is formed so as to cover the light emitting element 4. The first light transmitting portion 5 is preferably made of a material having a small refractive index difference from the light emitting element 4 and having a high transmittance with respect to light in the ultraviolet region to the visible light region. The property part 5 consists of transparent resin, such as a silicone resin and an epoxy resin, low melting glass, sol-gel glass, etc. Thereby, it is possible to effectively suppress the occurrence of light reflection loss due to the difference in refractive index between the light emitting element 4 and the first light transmitting portion 5.

好ましくは、第1の透光性部5がシリコーン樹脂から成るのが好ましい。シリコーン樹脂は発光素子4から発せられる紫外光などの光に対して劣化しにくいため、封止の信頼性の高い発光装置を提供することができる。   Preferably, the first translucent part 5 is made of a silicone resin. Since the silicone resin does not easily deteriorate with respect to light such as ultraviolet light emitted from the light-emitting element 4, a light-emitting device with high sealing reliability can be provided.

また、図5に示すように、第1の透光性部5が半球状であるのが好ましい。これにより、発光素子4から発せられる光の進行方向は、第1の透光性部5の上面との間の角度を直交にすることができるため、第1の透光性部5の上面で全反射することなく光を効率よく取り出すことができ、放射光強度の高い発光装置1とすることができる。   Moreover, as shown in FIG. 5, it is preferable that the 1st translucent part 5 is hemispherical. Thereby, since the traveling direction of the light emitted from the light emitting element 4 can be orthogonal to the upper surface of the first translucent portion 5, the upper surface of the first translucent portion 5 Light can be efficiently extracted without being totally reflected, and the light emitting device 1 having high radiation light intensity can be obtained.

また、第3の透光性部Gとして、シリコーン樹脂やエポキシ樹脂、フッ素樹脂等が使用でき、あるいは空気等からなる気体層で構成することもできる。いずれの場合も、n3<n1およびn3<n2の関係を満たすよう材料を選定する。例えば、発光素子から発せられる光が紫外域から近紫外域に主発光ピークを有する場合、紫外域から近紫外域において透過率が高く、黄変や強度劣化の生じ難いシリコーン樹脂を用いるのがよく、この場合、第1および第2の透光性部5,7として、屈折率が1.52であるシリコーン樹脂を用い、第3の透光性部として、屈折率が1.41であるシリコーン樹脂を用いる。これにより、本発明の発光装置を構成することができる。   Moreover, as the 3rd translucent part G, a silicone resin, an epoxy resin, a fluororesin etc. can be used, or it can also be comprised by the gas layer which consists of air etc. In either case, the material is selected so as to satisfy the relationship of n3 <n1 and n3 <n2. For example, when the light emitted from the light emitting element has a main emission peak from the ultraviolet region to the near ultraviolet region, it is preferable to use a silicone resin that has a high transmittance in the ultraviolet region to the near ultraviolet region and hardly causes yellowing or strength deterioration. In this case, a silicone resin having a refractive index of 1.52 is used as the first and second light-transmitting portions 5 and 7, and a silicone having a refractive index of 1.41 is used as the third light-transmitting portion. Resin is used. Thereby, the light-emitting device of this invention can be comprised.

第2の透光性部7の下面に第4の透光性部6が形成されているのが好ましい。これにより、第2の透光性部7の下面に蛍光体が露出していたとしても、その露出した蛍光体を第4の透光性部6で覆うことにより、蛍光体から発せられた光を第4の透光性部6の下面で良好に全反射させて上側に光を進行させることができる。よって、蛍光体から直接隙間に光が発せられて光が基体2や発光素子4に吸収されるのを有効に防止し、より光取り出し効率を向上することが可能な発光装置1とすることができる。   It is preferable that the fourth translucent portion 6 is formed on the lower surface of the second translucent portion 7. Thereby, even if the phosphor is exposed on the lower surface of the second light-transmitting portion 7, the light emitted from the phosphor is covered by covering the exposed phosphor with the fourth light-transmitting portion 6. Can be totally reflected well on the lower surface of the fourth light-transmissive portion 6 to allow light to travel upward. Therefore, it is possible to effectively prevent the light from being directly emitted from the phosphor into the gap and absorbed by the substrate 2 and the light emitting element 4, and to obtain the light emitting device 1 that can further improve the light extraction efficiency. it can.

このような第4の透光性部6は、第1の透光性部5との間に隙間をあけて第1の透光性部5を覆うように設けられ、紫外線領域から可視光領域の光に対して透過率が高いものから成るのがよい。このように、第4の透光性部6が第1の透光性部との間に隙間をあけて第1の透光性部を覆うように設けられているので、第1の透光性部5の上面から広範囲に出射した光を第4の透光性部6の下面に入射する際に基体2に対して直角な上側方向に進行させることができる。よって、第2の透光性部7中を透過する光路長を第2の透光性部7全体において近似させて波長変換効率の差によって色むらが生じるのを有効に防止することができるとともに、発光装置1の軸上へ指向性よく光を放射させて放射光強度、軸上光度および輝度を高めることができる。   The fourth translucent part 6 is provided so as to cover the first translucent part 5 with a gap between the first translucent part 5 and the ultraviolet light region to the visible light region. It is good to consist of a thing with the high transmittance | permeability with respect to the light. Thus, since the 4th translucent part 6 is provided so that a clearance gap may be provided between the 1st translucent part and the 1st translucent part may be covered, the 1st translucent part is provided. The light emitted in a wide range from the upper surface of the conductive portion 5 can be advanced in the upper direction perpendicular to the base 2 when entering the lower surface of the fourth light transmissive portion 6. Therefore, it is possible to effectively prevent the occurrence of color unevenness due to the difference in wavelength conversion efficiency by approximating the optical path length transmitted through the second translucent portion 7 in the entire second translucent portion 7. The light can be emitted with good directivity onto the axis of the light emitting device 1 to increase the intensity of emitted light, the intensity of the axis, and the luminance.

さらに、第4の透光性部6の下面は、より屈折率の低い空気層等からなる第3の透光性部Gと接しているので、第2の透光性部7中の蛍光体から下側方向に発せられる光や、第2の透光性部7の上面で下側方向に反射された光の多くを第4の透光性部6の下面で全反射させることができ、光が枠体3の内側で反射を繰り返して減衰したり、基体2や発光素子4に吸収されるのを有効に防止して、光取り出し効率が低下するのを有効に抑制することができる。   Furthermore, since the lower surface of the fourth translucent part 6 is in contact with the third translucent part G made of an air layer or the like having a lower refractive index, the phosphor in the second translucent part 7 Most of the light emitted in the lower direction and the light reflected in the lower direction on the upper surface of the second translucent portion 7 can be totally reflected on the lower surface of the fourth translucent portion 6, It is possible to effectively prevent light from being repeatedly reflected and attenuated inside the frame body 3 and absorbed by the base 2 and the light emitting element 4, and to effectively suppress a decrease in light extraction efficiency.

なお、第3の透光性部G、即ち、第1の透光性部5と第2の透光性部7との間の隙間、または第1の透光性部5と第4の透光性部6との間の隙間は、第1の透光性部5や第4の透光性部6、蛍光体層を構成する第2の透光性部7の屈折率よりも小さくなっていればよく、必ずしも空気層である必要はない。例えば、他の気体の層であってもよく、低屈折率の透光性部の層であってもよい。   Note that the third translucent portion G, that is, the gap between the first translucent portion 5 and the second translucent portion 7, or the first translucent portion 5 and the fourth translucent portion. The gap between the light transmitting portion 6 is smaller than the refractive index of the first light transmitting portion 5, the fourth light transmitting portion 6, and the second light transmitting portion 7 constituting the phosphor layer. It does not have to be an air layer. For example, it may be a layer of another gas or a layer of a light-transmitting portion with a low refractive index.

第4の透光性部6は、第2の透光性部7との屈折率差が小さく、紫外線領域から可視光領域の光に対して透過率の高いものから成るのがよく、例えば、第4の透光性部6は、シリコーン樹脂,エポキシ樹脂等の透明樹脂や、低融点ガラス、ゾル−ゲルガラス等から成る。第4の透光性部6は、蛍光体層を構成する第2の透光性部7と同じ材料であるのが好ましい。これにより、第2の透光性部7と第4の透光性部6との界面で光を良好に透過させて光損失を小さくすることができるとともに、第2の透光性部7と第4の透光性部6との熱膨張係数差による応力でこれらが剥離するのを有効に防止できる。   The fourth translucent part 6 is preferably made of a material having a small difference in refractive index from the second translucent part 7 and having a high transmissivity with respect to light from the ultraviolet region to the visible light region. The fourth translucent portion 6 is made of a transparent resin such as a silicone resin or an epoxy resin, a low-melting glass, a sol-gel glass, or the like. It is preferable that the 4th translucent part 6 is the same material as the 2nd translucent part 7 which comprises a fluorescent substance layer. Thereby, while being able to permeate | transmit light favorably at the interface of the 2nd translucent part 7 and the 4th translucent part 6, light loss can be made small, and the 2nd translucent part 7 and These can be effectively prevented from being peeled off by stress due to a difference in thermal expansion coefficient from the fourth light-transmissive portion 6.

また、第1の透光性部5をシリコーン樹脂とするのが好ましい。シリコーン樹脂は発光素子4から発せられる紫外光などの光に対して劣化しにくいため、封止の信頼性の高い発光装置を提供することができる。   Moreover, it is preferable to make the 1st translucent part 5 into a silicone resin. Since the silicone resin does not easily deteriorate with respect to light such as ultraviolet light emitted from the light-emitting element 4, a light-emitting device with high sealing reliability can be provided.

また、第1の透光性部5の厚みや、第1の透光性部5と第2の透光性部7との間隔(隙間の幅)、第1の透光性部5と第4の透光性部6との間隔(隙間の幅)、第4の透光性部6の厚みは、第1の透光性部5と第2の透光性部7の界面や第1の透光性部5と第4の透光性部6の界面における反射効率を考慮して適切に選択すれば良い。   Further, the thickness of the first translucent part 5, the distance (gap width) between the first translucent part 5 and the second translucent part 7, the first translucent part 5 and the first translucent part 5. 4 (the width of the gap) and the thickness of the fourth translucent part 6 are the same as the interface between the first translucent part 5 and the second translucent part 7 or the first translucent part 6. The light-transmitting part 5 and the fourth light-transmitting part 6 may be appropriately selected in consideration of the reflection efficiency at the interface.

また、発光装置の厚みが同じと仮定した場合、好ましくは、図7に示すように、第3の透光性部Gの厚さ、即ち、第1の透光性部5の上面と第2の透光性部7との間隔(隙間の幅)、または第1の透光性部5の上面と第4の透光性部6との間隔(隙間の幅)は、第1の透光性部5の厚みよりも小さくするのがよい。これにより、隙間の熱膨張を小さくするとともに隙間の熱膨張による応力を第1の透光性部5で十分吸収して発光素子4に応力が生じて発光素子4の発光特性が変化するのを良好に防止できる。   Further, when it is assumed that the thickness of the light emitting device is the same, preferably, as shown in FIG. 7, the thickness of the third translucent part G, that is, the upper surface of the first translucent part 5 and the second upper part. The distance (gap width) between the first translucent part 7 and the upper surface of the first translucent part 5 and the fourth translucent part 6 (gap width) It is better to make it smaller than the thickness of the sex part 5. As a result, the thermal expansion of the light-emitting element 4 is changed by reducing the thermal expansion of the gap and sufficiently absorbing the stress due to the thermal expansion of the gap by the first light-transmitting portion 5 to generate stress in the light-emitting element 4. It can prevent well.

一方、光損失を低減するという観点からは、発光装置の厚みが同じと仮定した場合、第1の透光性部5と第2の透光性部6の厚みの合計(第2の透光性部6がない場合は、第1の透光性部5の厚み)が、隙間の幅(第1の透光性部5と第2の透光性部6との間隔、または第1の透光性部5と第2の透光性部7との間隔)よりも、小さくなっているのがよい。これにより、発光素子4から発光された光が外部に放出されるまでに通過する経路において、透過率が高い空気層の割合を大きくすることができ、発光装置内で閉じ込められたり、乱反射を繰り返すことによって生じる光の伝搬損失を抑制することができる   On the other hand, from the viewpoint of reducing light loss, when the thickness of the light emitting device is assumed to be the same, the total thickness of the first light transmissive part 5 and the second light transmissive part 6 (second light transmissive part). When there is no transmissive part 6, the thickness of the first translucent part 5) is the width of the gap (the distance between the first translucent part 5 and the second translucent part 6 or the first translucent part 6). It is preferable that the distance is smaller than the distance between the translucent part 5 and the second translucent part 7. Thereby, in the path through which the light emitted from the light emitting element 4 passes until it is emitted to the outside, the ratio of the air layer having a high transmittance can be increased, and it is confined in the light emitting device or repeatedly diffused. Light propagation loss caused by the

また、図6に示すように、枠体3の上面に、ガラス、サファイア、石英、またはエポキシ樹脂,シリコーン樹脂,アクリル樹脂、ポリカーボネート樹脂、ポリイミド樹脂等の樹脂(プラスチック)などの透明部材から成る蓋体8を載置固定しても良い。この場合、枠体3の内側に設置された、発光素子4、配線導体、ボンディングワイヤ、第1の透光性部5、第4の透光性部6を保護するとともに、発光装置1内部を気密に封止し、発光素子4を長期に安定した動作をさせることができる。また、蓋体8をレンズ状に形成して光学レンズの機能を付加することによって、光を集光または分散させて所望の放射角度、強度分布で光を発光装置1の外部に取りだすことができる。   Also, as shown in FIG. 6, a lid made of a transparent member such as glass, sapphire, quartz, or a resin (plastic) such as epoxy resin, silicone resin, acrylic resin, polycarbonate resin, polyimide resin, or the like on the upper surface of the frame 3 The body 8 may be placed and fixed. In this case, the light emitting element 4, the wiring conductor, the bonding wire, the first light transmitting part 5, and the fourth light transmitting part 6 installed inside the frame 3 are protected, and the inside of the light emitting device 1 is protected. The light emitting element 4 can be hermetically sealed, and the light emitting element 4 can be operated stably for a long time. Further, by forming the lid 8 in the shape of a lens and adding the function of an optical lens, it is possible to collect or disperse the light and extract the light outside the light emitting device 1 with a desired radiation angle and intensity distribution. .

また、本発明の発光装置1は、1個のものを所定の配置となるように設置して光源として用いたことにより、または複数個を、例えば、格子状や千鳥状,放射状,複数の発光装置から成る、円状や多角形状の発光装置群を同心状に複数群形成したもの等所定の配置となるように設置して光源として用いたことにより、本発明の照明装置とすることができる。これにより、光取り出し効率を向上させ、放射光強度、軸上光度および輝度が高い照明装置を提供することができる。   In addition, the light emitting device 1 of the present invention is a single light source set in a predetermined arrangement and used as a light source, or a plurality of light emitting devices, for example, a lattice shape, a staggered shape, a radial shape, or a plurality of light emission types. A lighting device according to the present invention can be obtained by installing a light emitting device group of a circular shape or a polygonal shape, which is composed of a plurality of devices, so as to have a predetermined arrangement, such as a concentric group of light emitting device groups. . Thereby, the light extraction efficiency can be improved, and an illuminating device with high radiated light intensity, high on-axis luminous intensity, and luminance can be provided.

また、半導体から成る発光素子4の電子の再結合による発光を利用しているため、従来の放電を用いた照明装置よりも低消費電力かつ長寿命とすることが可能であり、発熱の小さな小型の照明装置とすることができる。その結果、発光素子4から発生する光の中心波長の変動を抑制することができ、長期間にわたり安定した放射光強度かつ放射光角度(配光分布)で光を照射することができるとともに、照射面における色むらや照度分布の偏りが抑制された照明装置とすることができる。   In addition, since light emission by electron recombination of the light emitting element 4 made of a semiconductor is used, it is possible to achieve lower power consumption and longer life than a conventional lighting device using discharge, and a small size that generates less heat. It can be set as the illuminating device. As a result, fluctuations in the center wavelength of the light generated from the light emitting element 4 can be suppressed, and light can be emitted with a stable radiant light intensity and radiant light angle (light distribution distribution) over a long period of time. It can be set as the illuminating device by which the color nonuniformity in the surface and the bias of illuminance distribution were suppressed.

また、本発明の照明装置は、複数個の発光装置1を所定の配置となるように設置したものだけでなく、1個の発光装置1を所定の配置となるように設置したものでもよい。   Further, the lighting device of the present invention is not limited to one in which a plurality of light emitting devices 1 are installed in a predetermined arrangement, but may be one in which one light emitting device 1 is installed in a predetermined arrangement.

以下、具体的な実施例について説明する。   Specific examples will be described below.

(実施例21)
まず、基体2となるアルミナセラミックス基板を準備した。基体2は、幅8mm×奥行き8mm×厚さ0.5mmの直方体とした。
(Example 21)
First, an alumina ceramic substrate to be the base 2 was prepared. The substrate 2 was a rectangular parallelepiped having a width of 8 mm, a depth of 8 mm, and a thickness of 0.5 mm.

また、発光素子4が搭載される基体2の上面から基体2の外表面にかけて配線導体を形成した。発光素子4が搭載される基体2の上面の配線導体は、Mo−Mn粉末からなるメタライズ層により直径0.1mmの円形パッドに成形され、その表面には厚さ3μmのNiメッキ層が被着された。また、基体2内部の配線導体は、貫通導体からなる電気接続部、いわゆるスルーホールによって形成された。このスルーホールについてもMo−Mn粉末からなるメタライズ導体で成形された。   Further, a wiring conductor was formed from the upper surface of the substrate 2 on which the light emitting element 4 is mounted to the outer surface of the substrate 2. The wiring conductor on the upper surface of the substrate 2 on which the light emitting element 4 is mounted is formed into a circular pad having a diameter of 0.1 mm by a metallized layer made of Mo—Mn powder, and a Ni plating layer having a thickness of 3 μm is deposited on the surface. It was done. Moreover, the wiring conductor inside the base body 2 was formed by an electrical connection portion made of a through conductor, a so-called through hole. This through hole was also formed with a metallized conductor made of Mo-Mn powder.

さらに、基体2と枠体3を接着剤で接合し、しかる後、屈折率が1.61のエポキシ系樹脂から成る第1の透光性部5を、発光素子4を覆うように枠体3の内部に半径0.4mmの半球形状となるように載置し、さらに、その半球形状の天頂部より高さ方向へ1.1mmの隙間を設け、その上方に屈折率が1.41のシリコーン樹脂から成る、厚みが0.1mmの板状の第4の透光性部6を、第1の透光性部5を覆うように枠体3の内側に接着した。そして、第4の透光性部6の上面に、赤はLaS:Eu、緑はZnS:Cu,Al、青は(BaMgAl)1012:Euから成る蛍光体をシリコーン樹脂から成る透光性部材に含有して成る第2の透光性部7を被覆させることで本発明の発光装置1を構成した。 Further, the base body 2 and the frame body 3 are bonded with an adhesive, and then the first light-transmissive portion 5 made of an epoxy resin having a refractive index of 1.61 is covered with the frame body 3 so as to cover the light emitting element 4. Is placed in a hemispherical shape with a radius of 0.4 mm, and a gap of 1.1 mm is provided in the height direction from the hemispherical zenith, and the refractive index is 1.41 above the silicone. A plate-like fourth translucent part 6 made of resin and having a thickness of 0.1 mm was adhered to the inside of the frame 3 so as to cover the first translucent part 5. Then, the upper surface of the fourth light transmitting portion 6, red La 2 O 2 S: Eu, green ZnS: Cu, Al, blue (BaMgAl) 10 O 12: phosphor silicone resin consisting of Eu The light-emitting device 1 of the present invention was configured by covering the second light-transmitting portion 7 contained in the light-transmitting member.

(比較例21)
一方、比較例21として、枠体3の内部に、第1の透光性部5を厚さ1.5mmで充填して構成したこと以外は、実施例21と同一条件のものを構成した。
(Comparative Example 21)
On the other hand, as Comparative Example 21, the same conditions as in Example 21 were configured except that the frame 3 was filled with the first translucent portion 5 with a thickness of 1.5 mm.

このようにして作製した実施例21と比較例21について、各全光束量を測定したところ、実施例21の全光束量が、比較例21に対し約10%程度多くなり、実施例21の方が優れていることが分かった。   When the total luminous flux was measured for Example 21 and Comparative Example 21 produced in this manner, the total luminous flux of Example 21 was increased by about 10% compared to Comparative Example 21. Was found to be excellent.

(第5実施形態)
図8〜図10は、本発明の第5実施形態を示す断面図である。発光装置1は、基体2と、発光素子4と、第1の透光性部5と、第2の透光性部7と、第3の透光性部Gなどで構成される。
(Fifth embodiment)
8-10 is sectional drawing which shows 5th Embodiment of this invention. The light emitting device 1 includes a base 2, a light emitting element 4, a first light transmissive part 5, a second light transmissive part 7, a third light transmissive part G, and the like.

基体2は、アルミナセラミックス,窒化アルミニウム質焼結体,ムライト質焼結体,ガラスセラミックス等のセラミックス、エポキシ樹脂等の樹脂、または金属から成り、発光素子4を支持する支持部材として機能する。   The substrate 2 is made of alumina ceramic, aluminum nitride sintered body, mullite sintered body, ceramic such as glass ceramic, resin such as epoxy resin, or metal, and functions as a support member that supports the light emitting element 4.

基体2がセラミックスの場合、発光素子4が電気的に接続されるための配線導体(図示せず)基体2の上面やその周辺に形成されている。この配線導体が基体2の外表面に導出されて外部電気回路基板に接続されることにより、発光素子4と外部電気回路基板とが電気的に接続されることとなる。   When the substrate 2 is ceramic, a wiring conductor (not shown) for electrically connecting the light emitting element 4 is formed on the upper surface of the substrate 2 and its periphery. The wiring conductor is led out to the outer surface of the base 2 and connected to the external electric circuit board, whereby the light emitting element 4 and the external electric circuit board are electrically connected.

第1の透光性部5は、透光性材料で形成されており、発光素子4の上面を被覆する。   The first light transmissive portion 5 is made of a light transmissive material and covers the upper surface of the light emitting element 4.

第2の透光性部7は、発光素子4が発光する光を波長変換する蛍光体を含有した透光性材料で形成されており、第1の透光性部5の上方に、第1の透光性部5を覆うように設けられる。   The second translucent portion 7 is formed of a translucent material containing a phosphor that converts the wavelength of light emitted from the light emitting element 4, and the first translucent portion 5 is disposed above the first translucent portion 5. It is provided so as to cover the translucent part 5.

第3の透光性部Gは、第1の透光性部5と第2の透光性部7との間に設けられる。   The third translucent part G is provided between the first translucent part 5 and the second translucent part 7.

本実施形態では、第1の透光性部5の屈折率をn1、第2の透光性部7の屈折率をn2、第3の透光性部Gの屈折率をn3としたとき、n3<n1およびn3<n2の関係を満たすように、第1の透光性部5、第2の透光性部7および第3の透光性部Gの材質を選定している。具体的な材質は、上述の実施形態で列挙したものが使用でき、これらの材質を適宜組合せることによって、n3<n1およびn3<n2の関係を満たすことが可能である。こうした関係を満たすことによって、上述したように、光の利用効率が向上する。   In the present embodiment, when the refractive index of the first light transmitting portion 5 is n1, the refractive index of the second light transmitting portion 7 is n2, and the refractive index of the third light transmitting portion G is n3, The material of the 1st translucent part 5, the 2nd translucent part 7, and the 3rd translucent part G is selected so that the relationship of n3 <n1 and n3 <n2 may be satisfy | filled. Specific materials listed in the above embodiment can be used, and by appropriately combining these materials, the relationship of n3 <n1 and n3 <n2 can be satisfied. Satisfying such a relationship improves the light utilization efficiency as described above.

また、図8〜図10において、基体2の表面や内部には、発光装置1の内外を電気的に導通接続するためのW、Mo、Mn等の金属粉末を用いたメタライズ等の導電路18が形成されており、この導電路18の基体2の上面に露出した部位に発光素子4の電極が電気的に接続される。また、この導電路18は基体2の下面等の外部に露出した部位が、Cu、Fe−Ni合金等の金属から成るリード端子などを介して外部電気回路に接続される。これにより、発光素子4が導電路18を介して外部電気回路と電気的に接続される。   8 to 10, a conductive path 18 such as metallization using a metal powder such as W, Mo, or Mn for electrically connecting the inside and outside of the light emitting device 1 to the surface or inside of the substrate 2. The electrode of the light emitting element 4 is electrically connected to a portion of the conductive path 18 exposed on the upper surface of the base 2. Further, the conductive path 18 is connected to an external electric circuit at a portion exposed to the outside such as the lower surface of the base 2 via a lead terminal made of a metal such as Cu or Fe—Ni alloy. Thereby, the light emitting element 4 is electrically connected to the external electric circuit via the conductive path 18.

なお、導電路18は、その露出する表面にNiや金(Au)等の耐食性に優れる金属を1〜20μm程度の厚みで被着させておくのがよく、導電路18が酸化腐食するのを有効に防止できるとともに、導電路18と発光素子4との電気的な接続および導電路18と導電性接着部材17との接続を強固にすることができる。従って、導電路18の露出表面には、厚さ1〜10μm程度のNiメッキ層と厚さ0.1〜3μm程度のAuメッキ層とが電解メッキ法や無電解メッキ法により順次被着されていることがより好ましい。   The conductive path 18 is preferably coated with a metal having excellent corrosion resistance, such as Ni or gold (Au), with a thickness of about 1 to 20 μm on the exposed surface, and the conductive path 18 is subject to oxidative corrosion. While being able to prevent effectively, the electrical connection between the conductive path 18 and the light emitting element 4 and the connection between the conductive path 18 and the conductive adhesive member 17 can be strengthened. Accordingly, a Ni plating layer having a thickness of about 1 to 10 μm and an Au plating layer having a thickness of about 0.1 to 3 μm are sequentially deposited on the exposed surface of the conductive path 18 by an electrolytic plating method or an electroless plating method. More preferably.

枠体3は、アルミニウム(Al)やFe−Ni−コバルト(Co)合金等の金属、アルミナ質焼結体等のセラミックスまたはエポキシ樹脂等の樹脂から成り、切削加工や金型成形、押し出し成型等の成形技術により枠状に形成される。また、枠体3の中央部は、上方に向かうに伴って外側に広がる貫通孔が形成されており、貫通孔の内周面は光反射面とされている。   The frame 3 is made of a metal such as aluminum (Al) or Fe-Ni-cobalt (Co) alloy, a ceramic such as an alumina-based sintered body, or a resin such as an epoxy resin, and includes cutting, die molding, extrusion molding, and the like. It is formed into a frame shape by the molding technique. Moreover, the through-hole which spreads outside is formed in the center part of the frame 3 as it goes upwards, and let the internal peripheral surface of a through-hole be a light reflection surface.

このような光反射面は、切削加工や金型成形、押し出し成型等の成形技術により内周面を平滑化したり、内周面にAl等の金属を蒸着法やメッキ法により被着したりすることにより形成される。そして、枠体3は、半田、銀ロウ等のロウ材または樹脂接着剤により、基体2の上側主面に接合される。   Such a light reflecting surface is smoothed on the inner peripheral surface by molding techniques such as cutting, mold forming, and extrusion molding, or a metal such as Al is deposited on the inner peripheral surface by vapor deposition or plating. Is formed. Then, the frame 3 is joined to the upper main surface of the base 2 by a brazing material such as solder, silver brazing, or a resin adhesive.

本発明の発光素子4は、図8〜図10に示すようにAu−Sn共晶半田などの導電性接着部材17を介したフリップチップボンディングにより、基体2の上面に形成された導電路18に接続されることによって基体2に搭載される。あるいは基体2の上面に半田やゾルゲルガラス,低融点ガラスなどの無機接着剤、もしくはエポキシ樹脂などの有機接着剤で取り付けられ、発光素子4の電極がボンディングワイヤを介して導電路18に電気的に接続される。   As shown in FIGS. 8 to 10, the light-emitting element 4 of the present invention has a conductive path 18 formed on the upper surface of the substrate 2 by flip chip bonding via a conductive adhesive member 17 such as Au—Sn eutectic solder. It is mounted on the base 2 by being connected. Alternatively, it is attached to the upper surface of the substrate 2 with an inorganic adhesive such as solder, sol-gel glass or low-melting glass, or an organic adhesive such as epoxy resin, and the electrode of the light emitting element 4 is electrically connected to the conductive path 18 via a bonding wire. Connected.

そして、図8〜図10に示すように、発光素子4が導電路18にフリップチップ実装される場合、発光素子4の下面側には第1の透光性部5が存在せず、第1の透光性部5よりも小さい屈折率を有し、シリコーン樹脂等から成る第3の透光性部Gが形成されているのがよい。これにより、発光素子4から発せられる光は、屈折率差の大きい発光素子4の下面から第3の透光性部Gへ進行するよりも、屈折率差の小さい発光素子4の上面または側面から第1の透光性部5へ進行し、第3の透光性部Gへと進行しやすくなる。その結果、発光素子4から発せられた光が、発光素子の下方にある電極と導電路18とを接続する、例えばAu−Sn合金のようなAuを含有したろう材等の導電性接着部材17に吸収されて発光効率が低下するのを有効に防止できる。   As shown in FIGS. 8 to 10, when the light emitting element 4 is flip-chip mounted on the conductive path 18, the first translucent portion 5 does not exist on the lower surface side of the light emitting element 4, and the first It is preferable that a third translucent part G made of silicone resin or the like has a refractive index smaller than that of the translucent part 5. Thereby, the light emitted from the light emitting element 4 is transmitted from the upper surface or the side surface of the light emitting element 4 having a small refractive index difference, rather than traveling from the lower surface of the light emitting element 4 having a large refractive index difference to the third translucent portion G. It progresses to the 1st translucent part 5, and it becomes easy to advance to the 3rd translucent part G. As a result, the light emitted from the light-emitting element 4 connects the electrode below the light-emitting element and the conductive path 18, and the conductive adhesive member 17 such as a brazing material containing Au such as an Au—Sn alloy. It is possible to effectively prevent the light emission efficiency from being absorbed by the light.

また、図8は、発光素子4の上面に第1の透光性部5が設けられ、この第1の透光性部の上方に第1の透光性部全体を覆うように第2の透光性部が設けられている。これにより、発光素子4から発せられる光を発光素子4の上方へ良好に進行させて、導電性接着部材17に吸収されるのを抑制するとともに、n3<n1およびn3<n2の関係をみたすことによって、発光素子4からの光をより効率よく放出させることができる。   Further, in FIG. 8, the first light transmissive portion 5 is provided on the upper surface of the light emitting element 4, and the second light transmissive portion is entirely covered above the first light transmissive portion. A translucent part is provided. Accordingly, the light emitted from the light emitting element 4 is allowed to travel well above the light emitting element 4 and is prevented from being absorbed by the conductive adhesive member 17, and the relationship of n3 <n1 and n3 <n2 is satisfied. Thus, light from the light emitting element 4 can be emitted more efficiently.

また、図9および図10では、発光素子4の上面および側面が第1の透光性部5によって被覆されている。これにより、発光素子4から発せられる光を発光素子4の上方および側方に良好に進行させることができるので、導電性接着部材17に吸収されるのを抑制するとともに、n3<n1およびn3<n2の関係をみたすことによって、発光素子4からの光をより効率よく放出させることができる。   9 and 10, the upper surface and the side surface of the light emitting element 4 are covered with the first translucent portion 5. Thereby, since the light emitted from the light emitting element 4 can be favorably advanced upward and to the side of the light emitting element 4, it is suppressed from being absorbed by the conductive adhesive member 17, and n3 <n1 and n3 < By considering the relationship of n2, the light from the light emitting element 4 can be emitted more efficiently.

また、上述の図8〜図10において、第3の透光性部Gを気体層とするのが好ましい。すなわち、発光素子4の下側に第3の透光性部Gとして樹脂等から成る透明材料が配置される場合と比べて、発光素子4から生じる熱によって発光素子4の下方に形成された第3の透光性部Gが熱膨張すること等がなく、これにより、第3の透光性部Gの熱膨脹によって生じる応力により発光素子4が導電路18から剥がされることを抑制でき、電気的な導通を良好とし、発光装置を正常に作動させることができる。   In addition, in FIGS. 8 to 10 described above, it is preferable that the third translucent portion G is a gas layer. That is, as compared with the case where a transparent material made of resin or the like is disposed as the third light-transmitting portion G below the light-emitting element 4, the first light-emitting element 4 formed below the light-emitting element 4 by heat generated from the light-emitting element 4. The light-transmitting portion G of the third light-transmitting portion G is not thermally expanded, so that the light-emitting element 4 can be prevented from being peeled off from the conductive path 18 due to the stress generated by the thermal expansion of the third light-transmitting portion G. Therefore, the light-emitting device can be operated normally.

第2の透光性部7は、第1の透光性部5全体を覆うように形成され、その設置方法としては、蛍光体を透明材料に含有して成る第2の透光性部7を予め所望の形状に成形した後、第1の透光性部5の上に隙間を空けて搭載することによって、または第1の透光性部5の上に第3の透光性部Gとなるシリコーン樹脂等を所望の厚さまで塗布するとともに順次熱硬化させ、その上に、蛍光体と透明材料とを混練後、液状の波長変換部材前駆体の状態でディスペンサを用いて第2の透光性部7を形成し、オーブンで硬化させる方法等によって行われる。   The second translucent part 7 is formed so as to cover the entire first translucent part 5, and the second translucent part 7 is formed by containing a phosphor in a transparent material. Is molded into a desired shape in advance, and then mounted on the first light-transmitting part 5 with a gap, or the third light-transmitting part G on the first light-transmitting part 5. A silicone resin or the like to be applied is applied to a desired thickness and thermally cured sequentially, and after the phosphor and the transparent material are kneaded, the second transparent material is used in a liquid wavelength conversion member precursor state using a dispenser. This is performed by a method of forming the optical part 7 and curing it in an oven.

また、第1の透光性部5は、発光素子4を基体2に接合する前に発光素子4に被着させておいたほうが簡易に形成でき、より好ましい。例えば、サファイア等の透明基板のウエハ上にn型窒化ガリウムおよびp型窒化ガリウムなどの発光層を形成するための半導体をエピ成長し、その後、電極を形成し発光素子4のウエハを得ることができる。そして、紫外線硬化フィルムなどの支持部材上にサファイアウエハを貼り付けた状態で第1の透光性部5となる液状の透光性部材前駆体をスピンコータ法や、スプレー法で塗布することで一度に大量の発光素子4上に第1の透光性部5を被着させることができる。その後、サファイアウエハをダイサーにより個片に切断し基体2に設置することで上面に第1の透光性部5が形成された発光素子4を容易かつ低コストに再現性良く得ることができる。   In addition, it is more preferable that the first light-transmitting portion 5 is formed by simply attaching the light-emitting element 4 to the light-emitting element 4 before bonding the light-emitting element 4 to the base 2. For example, a semiconductor for forming a light emitting layer such as n-type gallium nitride and p-type gallium nitride is epitaxially grown on a transparent substrate wafer such as sapphire, and then an electrode is formed to obtain a wafer of the light-emitting element 4. it can. Then, a liquid translucent member precursor to be the first translucent portion 5 is applied by a spin coater method or a spray method in a state where a sapphire wafer is attached to a support member such as an ultraviolet curable film. In addition, the first translucent portion 5 can be deposited on a large number of light emitting elements 4. Thereafter, the sapphire wafer is cut into individual pieces with a dicer and placed on the substrate 2, whereby the light emitting element 4 having the first translucent portion 5 formed on the upper surface can be obtained easily and at low cost with good reproducibility.

または、上記発光素子4のウエハを切断して互いに間隔をあけて個々の発光素子4に分離した状態で第1の透光性部5を個々の発光素子4に一度に設けることにより、容易かつ低コストに再現性良く発光素子4の上面または上面と側面とを第1の透光性部5で取り囲むことができる。   Alternatively, the first light-transmitting portion 5 can be easily provided in each light-emitting element 4 in a state where the wafer of the light-emitting element 4 is cut and separated into individual light-emitting elements 4 at intervals. The upper surface or the upper surface and the side surface of the light emitting element 4 can be surrounded by the first light-transmitting portion 5 with good reproducibility at low cost.

このように第1の透光性部5を、発光素子4を基体2に接合する前に発光素子4に被着させておくことにより、個々の発光素子4を発光素子収納用パッケージに搭載した後に第1の透光性部5を形成した場合のように第1の透光性部5の厚みが所望のものとならずに不良品となって、発光素子4だけでなく発光素子収納用パッケージまで無駄となるのを防止でき、製造歩留まりを向上させることができる。   As described above, the first light-transmitting portion 5 is attached to the light-emitting element 4 before the light-emitting element 4 is bonded to the base 2, so that each light-emitting element 4 is mounted on the light-emitting element storage package. As in the case where the first light-transmitting portion 5 is formed later, the thickness of the first light-transmitting portion 5 does not become a desired one but becomes a defective product. It is possible to prevent the package from being wasted and to improve the manufacturing yield.

また、本実施形態において、第1の透光性部5は、図9に示すように発光素子4上の領域を含む表面の少なくとも一部が曲面状であるのが好ましい。より好ましくは、第1の透光性部5の全体形状が発光素子4の発光部の重心を中心とした半球状であるのがよい。これにより、発光素子4から第1の透光性部5に放出された光の進行方向と第1の透光性部5および第3の透光性部Gの界面との成す角度を90度に近づけることができ、光がこの界面で反射される確率を格段に低くすることができる。   Further, in the present embodiment, it is preferable that at least a part of the surface including the region on the light emitting element 4 has a curved surface, as shown in FIG. More preferably, the overall shape of the first translucent part 5 is hemispherical with the center of gravity of the light emitting part of the light emitting element 4 as the center. As a result, the angle formed between the traveling direction of the light emitted from the light emitting element 4 to the first translucent part 5 and the interface between the first translucent part 5 and the third translucent part G is 90 degrees. And the probability that light is reflected at this interface can be significantly reduced.

このような半球状の第1の透光性部5は、液状の透光性材料前駆体を発光素子4の上面から側面にかけて被着させ、発光素子4の角部に働く表面張力を利用することで、容易に発光素子4を中心とした半球状とすることができ、これを硬化させて第1の透光性部5とすることができる。なお、第1の透光性部5の形状は発光素子4の直方体形状をできる限り半球状に近づけることができればよく、ここで言う半球状とは図10に示すような、半球を歪めた、曲面形状も含まれる。   Such a hemispherical first light-transmitting part 5 applies a liquid light-transmitting material precursor from the upper surface to the side surface of the light-emitting element 4 and uses surface tension acting on the corners of the light-emitting element 4. Thus, a hemispherical shape with the light emitting element 4 as the center can be easily obtained, and this can be cured to form the first translucent portion 5. The shape of the first translucent portion 5 is only required to make the rectangular parallelepiped shape of the light-emitting element 4 as close to a hemisphere as possible. The hemisphere referred to here is a distorted hemisphere as shown in FIG. Curved shapes are also included.

また、本発明の発光装置1は、1個のものを所定の配置となるように設置し、本発明の発光装置1を光源として用いたことにより、または複数個を、例えば、格子状や千鳥状,放射状,複数の発光装置から成る、円状や多角形状の発光装置群を同心状に複数群形成したもの等所定の配置となるように設置し、本発明の発光装置1を光源として用いたことにより、照明装置とすることができる。これにより、半導体から成る発光素子4の電子の再結合による発光を利用しているため、従来の放電を用いた照明装置よりも低消費電力かつ長寿命とすることが可能であり、発熱の小さな小型の照明装置とすることができる。その結果、発光素子4から発生する光の中心波長の変動を抑制することができ、長期間にわたり安定した放射光強度かつ放射光角度(配光分布)で光を照射することができるとともに、照射面における色むらや照度分布の偏りが抑制された照明装置とすることができる。   Moreover, the light-emitting device 1 of this invention is installed so that one thing may become predetermined arrangement | positioning, and the light-emitting device 1 of this invention is used as a light source, or a plurality, for example, a grid | lattice form or zigzag The light emitting device 1 of the present invention is used as a light source. The light emitting device 1 is used as a light source. Therefore, the lighting device can be obtained. Thereby, since light emission by electron recombination of the light emitting element 4 made of a semiconductor is used, it is possible to achieve lower power consumption and longer life than a conventional lighting device using discharge, and generate less heat. It can be set as a small illuminating device. As a result, fluctuations in the center wavelength of the light generated from the light emitting element 4 can be suppressed, and light can be emitted with a stable radiant light intensity and radiant light angle (light distribution distribution) over a long period of time. It can be set as the illuminating device by which the color nonuniformity in the surface and the bias of illuminance distribution were suppressed.

(第6実施形態)
図11は、本発明の第6実施形態を示す断面図である。発光装置1は、基体2と、枠体3と、発光素子4と、第1の透光性部5と、第2の透光性部7と、第3の透光性部Gと、弾性部材14などで構成され、全体として発光素子収納パッケージを構成している。
(Sixth embodiment)
FIG. 11 is a cross-sectional view showing a sixth embodiment of the present invention. The light emitting device 1 includes a base 2, a frame 3, a light emitting element 4, a first light transmissive part 5, a second light transmissive part 7, a third light transmissive part G, and an elasticity. It consists of the member 14 etc., and comprises the light emitting element accommodation package as a whole.

枠体3は、基体2の上面に取着され、発光素子4を取り囲む反射面3aを有する。枠体3の外周面と下面との間には、切り欠き部3bが形成される。   The frame body 3 is attached to the upper surface of the base 2 and has a reflection surface 3 a surrounding the light emitting element 4. A notch 3 b is formed between the outer peripheral surface and the lower surface of the frame 3.

弾性部材14は、逆L字状の断面を有するリング状部材であり、弾性部材14の上部は切り欠き部3bに埋入されるとともに、弾性部材14の下部は基体2の側方に配置される。   The elastic member 14 is a ring-shaped member having an inverted L-shaped cross section. The upper portion of the elastic member 14 is embedded in the cutout portion 3 b, and the lower portion of the elastic member 14 is disposed on the side of the base 2. The

第1の透光性部5は、透光性材料で形成されており、発光素子4を被覆する。   The first light transmissive portion 5 is made of a light transmissive material and covers the light emitting element 4.

第2の透光性部7は、発光素子4が発光する光を波長変換する蛍光体を含有した透光性材料で形成されており、第1の透光性部5の上方に、第1の透光性部5を覆うように設けられる。   The second translucent portion 7 is formed of a translucent material containing a phosphor that converts the wavelength of light emitted from the light emitting element 4, and the first translucent portion 5 is disposed above the first translucent portion 5. It is provided so as to cover the translucent part 5.

第3の透光性部Gは、第1の透光性部5と第2の透光性部7との間に設けられる。   The third translucent part G is provided between the first translucent part 5 and the second translucent part 7.

本実施形態では、第1の透光性部5の屈折率をn1、第2の透光性部7の屈折率をn2、第3の透光性部Gの屈折率をn3としたとき、n3<n1およびn3<n2の関係を満たすように、第1の透光性部5、第2の透光性部7および第3の透光性部Gの材質を選定している。具体的な材質は、上述の実施形態で列挙したものが使用でき、これらの材質を適宜組合せることによって、n3<n1およびn3<n2の関係を満たすことが可能である。こうした関係を満たすことによって、上述したように、光の利用効率が向上する。   In the present embodiment, when the refractive index of the first light transmitting portion 5 is n1, the refractive index of the second light transmitting portion 7 is n2, and the refractive index of the third light transmitting portion G is n3, The material of the 1st translucent part 5, the 2nd translucent part 7, and the 3rd translucent part G is selected so that the relationship of n3 <n1 and n3 <n2 may be satisfy | filled. Specific materials listed in the above embodiment can be used, and by appropriately combining these materials, the relationship of n3 <n1 and n3 <n2 can be satisfied. Satisfying such a relationship improves the light utilization efficiency as described above.

基体2は、発光素子4を支持し搭載するための支持部材および発光素子4の熱を放熱させるための放熱部材として機能する。基体2の上面には、発光素子4が樹脂接着剤や錫(Sn)−鉛(Pb)半田、Au−Sn等の低融点ロウ材等を介して取着される。そして、発光素子4の熱は、樹脂接着剤や低融点ロウ材を介して基体2に伝達され、外部に効率よく放散されることにより、発光素子4の作動性を良好に維持する。また、発光素子4から出射される光は、反射面3aで反射されて外部に放射される。   The base 2 functions as a support member for supporting and mounting the light emitting element 4 and a heat dissipation member for dissipating the heat of the light emitting element 4. The light emitting element 4 is attached to the upper surface of the base 2 via a resin adhesive, tin (Sn) -lead (Pb) solder, a low melting point brazing material such as Au-Sn, or the like. And the heat | fever of the light emitting element 4 is maintained to the favorable operation | movement of the light emitting element 4 by being transmitted to the base | substrate 2 via a resin adhesive and a low melting-point brazing material, and being efficiently dissipated outside. Further, the light emitted from the light emitting element 4 is reflected by the reflecting surface 3a and emitted to the outside.

また、基体2は、酸化アルミニウム質焼結体(アルミナセラミックス)、窒化アルミニウム質焼結体、ガラスセラミックス等のセラミックス等から成る。また、発光素子4が搭載される基体2の上面の近傍からは、発光素子収納パッケージの外側にかけて導出する配線導体が形成されている。   The substrate 2 is made of ceramics such as an aluminum oxide sintered body (alumina ceramics), an aluminum nitride sintered body, and glass ceramics. Further, a wiring conductor led out from the vicinity of the upper surface of the base 2 on which the light emitting element 4 is mounted to the outside of the light emitting element storage package is formed.

また、基体2に形成した配線導体は、例えば、W,Mo,Mn,Cu等のメタライズ層で形成しており、例えば、W等の粉末に有機溶剤、溶媒を添加混合して得た金属ペーストを、所定パターンに印刷塗布し焼成することによって基体2に形成させる。この配線導体の表面には、酸化防止のためとボンディングワイヤ(図示せず)を強固に接続するために、厚さ0.5〜9μmのNi層や厚さ0.5〜5μmのAu層等の金属層をメッキ法により被着させておくことが好ましい。   The wiring conductor formed on the substrate 2 is formed of, for example, a metallized layer such as W, Mo, Mn, or Cu. For example, a metal paste obtained by adding and mixing an organic solvent or solvent to a powder such as W. Is formed on the substrate 2 by printing, coating and baking in a predetermined pattern. In order to prevent oxidation and to firmly connect a bonding wire (not shown) on the surface of the wiring conductor, a Ni layer having a thickness of 0.5 to 9 μm, an Au layer having a thickness of 0.5 to 5 μm, etc. It is preferable to deposit the metal layer by plating.

また、枠体3は、基体2の上面に発光素子4を取り囲むように形成されており、枠体3の下面と外周面との間には、切り欠き部3bが形成されている。そして、枠体3は、Al,ステンレス(SUS),Ag,鉄(Fe)−Ni−コバルト(Co)合金,Fe−Ni合金等の金属や樹脂、セラミックス等からなり、枠体3が金属からなる場合、内周面を研磨等の方法で鏡面化することにより、内周面を発光素子4から発せられる可視光を良好に反射することのできる反射面3aとすることができる。   The frame 3 is formed on the upper surface of the base 2 so as to surround the light emitting element 4, and a notch 3 b is formed between the lower surface of the frame 3 and the outer peripheral surface. The frame 3 is made of metal such as Al, stainless steel (SUS), Ag, iron (Fe) -Ni-cobalt (Co) alloy, Fe-Ni alloy, resin, ceramics, etc., and the frame 3 is made of metal. In this case, the inner peripheral surface can be made a mirror surface by a method such as polishing, so that the inner peripheral surface can be a reflecting surface 3a that can favorably reflect visible light emitted from the light emitting element 4.

また、枠体3が樹脂やセラミックスからなる場合、内周面にメッキや蒸着等で金属層を形成することにより、内周面を発光素子4から発せられる可視光を良好に反射することのできる反射面3aとすることができる。発光素子4からの可視光の反射効率の高い反射面3aをより簡単に製造することができるという観点、および酸化等による腐食を防止することができるという観点からは、枠体3はAlやSUSから成ることが好ましい。   Further, when the frame 3 is made of resin or ceramics, visible light emitted from the light emitting element 4 can be favorably reflected on the inner peripheral surface by forming a metal layer on the inner peripheral surface by plating or vapor deposition. It can be set as the reflective surface 3a. From the viewpoint that the reflecting surface 3a having high reflection efficiency of visible light from the light emitting element 4 can be more easily manufactured and that corrosion due to oxidation or the like can be prevented, the frame 3 is made of Al or SUS. Preferably it consists of.

また、このような枠体3は、金属からなる場合、その材料のインゴットに切削加工、圧延加工や打ち抜き加工等の従来周知の金属加工を施すことによって、上記の所定形状に形成される。   In addition, when such a frame 3 is made of metal, the frame 3 is formed in the above-described predetermined shape by applying conventionally known metal processing such as cutting, rolling, and punching to the ingot of the material.

本発明の弾性部材14は、その縦弾性率が枠体3の縦弾性率よりも小さい材料から成る。好ましくは、弾性部材14の縦弾性率が枠体3の縦弾性率の1/5倍以下であるのがよい。枠体3よりも小さい縦弾性率を有することにより、基体2および枠体3に、発光素子4が作動時に発生する熱や外部環境の温度変化等が繰り返し印加されて、基体2および枠体3が膨張あるいは収縮しても、歪みによって生じる応力を弾性部材14により有効に緩和して、枠体3に及ぼす影響を非常に低減することができる。   The elastic member 14 of the present invention is made of a material whose longitudinal elastic modulus is smaller than that of the frame 3. Preferably, the longitudinal elastic modulus of the elastic member 14 is not more than 1/5 times the longitudinal elastic modulus of the frame 3. By having a longitudinal elastic modulus smaller than that of the frame 3, heat generated during operation of the light emitting element 4, temperature change of the external environment, and the like are repeatedly applied to the base 2 and the frame 3. Even if it expands or contracts, the stress caused by the strain can be effectively relaxed by the elastic member 14, and the influence on the frame 3 can be greatly reduced.

また、弾性部材14は、枠体3の切り欠き部3bに上部を埋入させるとともに、下部を基体2の側方に配して枠体3に取着させており、例えば、エポキシ樹脂や液晶ポリマー(LCP)などの高耐熱性の熱硬化性樹脂や熱可塑性樹脂から成り、弾性部材14の縦弾性率は10[MPa]〜20[MPa]の値をもつのがよい。なぜなら、上記のような縦弾性率の値をもつことによって、弾性部材14が緩衝材となり、発光素子4の作動時に発生する熱や、外部環境の温度変化等が基体2に繰り返し印加されたとしても、大きな熱応力が発生することは抑制されるので、基体2にクラックが生じたり、基体2と枠体3とが剥離することを有効に防止できるからである。   The elastic member 14 has an upper portion embedded in the cutout portion 3b of the frame 3, and a lower portion disposed on the side of the base 2 to be attached to the frame 3. For example, an epoxy resin or a liquid crystal It is made of a highly heat-resistant thermosetting resin such as a polymer (LCP) or a thermoplastic resin, and the elastic modulus of the elastic member 14 is preferably 10 [MPa] to 20 [MPa]. This is because the elastic member 14 becomes a buffer material by having the value of the longitudinal elastic modulus as described above, and heat generated when the light emitting element 4 is operated, temperature change of the external environment, and the like are repeatedly applied to the base 2. However, since generation of a large thermal stress is suppressed, it is possible to effectively prevent cracks in the base 2 and separation of the base 2 and the frame 3.

その結果、配線導体等に断線等の電気的接続不良が生じることを抑制でき、発光素子4から発せられて枠体3で反射される光束(光ビーム)のパターンが一定になり、光の放射角度が安定で、単一の光束またはそれらの集合体で表される光強度分布を所望の値およびパターンとできる。   As a result, it is possible to suppress an electrical connection failure such as disconnection in the wiring conductor and the like, and the pattern of the light beam (light beam) emitted from the light emitting element 4 and reflected by the frame 3 becomes constant, and light emission The light intensity distribution represented by a single light beam or an aggregate thereof having a stable angle can be set to a desired value and pattern.

なお、弾性部材14の縦弾性率が70[MPa]よりも大きい値であると、発光素子4の発熱時に基体2と枠体3とに生じる応力を緩和し難く不向きとなる傾向がある。また、弾性部材14の縦弾性率が5[MPa]よりも小さい値であると、枠体3を弾性部材14が支持する効果が小さくなり、枠体3を基体2上に安定に固定できなくなる傾向がある。よって、弾性部材14の縦弾性率は、5[MPa]〜70[MPa]が好ましく、より好適には10[MPa]〜20[MPa]の値とするのが良い。   When the longitudinal elastic modulus of the elastic member 14 is greater than 70 [MPa], it is difficult to relieve stress generated in the base 2 and the frame 3 when the light emitting element 4 generates heat. Moreover, when the longitudinal elastic modulus of the elastic member 14 is a value smaller than 5 [MPa], the effect of the elastic member 14 supporting the frame 3 is reduced, and the frame 3 cannot be stably fixed on the base 2. Tend. Therefore, the longitudinal elastic modulus of the elastic member 14 is preferably 5 [MPa] to 70 [MPa], and more preferably 10 [MPa] to 20 [MPa].

また、図11で示すように、弾性部材14を基体2の上面に接着させ、熱伝導率が枠体3よりも低い弾性部材14を用いる場合、基体2から枠体3への熱伝導を、熱伝導率の低い弾性部材によって抑制でき、枠体3が熱により歪むのを特に有効に防止でき好ましい。たとえ、発光素子4の熱によって基体2が歪んだとしても、歪みによって生じる応力を基体2と枠体3とに接着された弾性部材14により緩和して、枠体3におよぼす影響を非常に低減することができる。従って、発光素子収納パッケージから放出される光の強度分布や照射面における照度分布にムラが生じず、安定した光を出力し、発光装置を長期間にわたり高信頼性でかつ安定して作動することができる。   Further, as shown in FIG. 11, when the elastic member 14 is bonded to the upper surface of the base 2 and the elastic member 14 having a thermal conductivity lower than that of the frame 3 is used, the heat conduction from the base 2 to the frame 3 is It can be suppressed by an elastic member having a low thermal conductivity, and the frame 3 is particularly preferably prevented from being distorted by heat. Even if the base 2 is distorted by the heat of the light emitting element 4, the stress caused by the strain is relaxed by the elastic member 14 bonded to the base 2 and the frame 3, and the influence on the frame 3 is greatly reduced. can do. Therefore, there is no unevenness in the intensity distribution of light emitted from the light emitting element storage package and the illuminance distribution on the irradiated surface, and stable light is output, and the light emitting device can be operated with high reliability and stability over a long period of time. Can do.

また、発光素子収納パッケージを外部接続基板と接続する際には、基体2の下面に、一端部が平面視で基体2より外方に飛び出すように外部接続端子を設けて接続したり、あるいは基体2の下面に形成した接続パッドに直接、導電性接合材を設けて接続する場合が多い。これらのうち、例えば、図13に示すように、外部接続端子としてL字型のリード端子21を、基体2と弾性部材14の下面に設けた場合では、たとえ発光素子4の発熱時に生じた応力でL字型のリード端子21が基体2にぶつかろうとしても、L字型のリード端子21は、基体2の側方に形成された弾性部材14と接触して基体2との接触が防止され、あるいはぶつかったとしてもその応力が弾性部材14によって緩衝されるため、L字型のリード端子21と基体2との接触による基体2の欠けや割れ、クラック等の発生を有効に防止できるからである。その結果、発光素子4を気密に収容することができ、発光素子4を長期間にわたり正常かつ安定に作動させることができる。   When the light emitting element storage package is connected to the external connection substrate, an external connection terminal is provided on the lower surface of the base 2 so that one end portion protrudes outward from the base 2 in plan view, or the base is connected. In many cases, a conductive bonding material is provided directly on the connection pad formed on the lower surface of the connector 2. Among these, for example, as shown in FIG. 13, when an L-shaped lead terminal 21 is provided as an external connection terminal on the lower surface of the base 2 and the elastic member 14, the stress generated when the light emitting element 4 generates heat. Even if the L-shaped lead terminal 21 tries to collide with the base 2, the L-shaped lead terminal 21 comes into contact with the elastic member 14 formed on the side of the base 2 to prevent contact with the base 2. Even if it collides, the stress is buffered by the elastic member 14, so that the occurrence of chipping, cracking, cracking, etc. of the base 2 due to contact between the L-shaped lead terminal 21 and the base 2 can be effectively prevented. It is. As a result, the light emitting element 4 can be accommodated in an airtight manner, and the light emitting element 4 can be operated normally and stably over a long period of time.

また、このようにL字型のリード端子21を基体2の下面に設ける場合には、図13に示したように、基体2の中央部よりもリード端子21の接合部が上方に位置するように段差部を設け、その段差部にL字型のリード端子21を接続するのが好ましい。段差部にL字型のリード端子21を設けることで、外部接続基板とL字型のリード端子21との短絡を抑制することができる。   Further, when the L-shaped lead terminal 21 is provided on the lower surface of the base 2 in this way, the joint portion of the lead terminal 21 is positioned above the center of the base 2 as shown in FIG. It is preferable to provide a step portion on the L-shaped lead terminal 21 and connect the L-shaped lead terminal 21 to the step portion. By providing the L-shaped lead terminal 21 at the stepped portion, a short circuit between the external connection substrate and the L-shaped lead terminal 21 can be suppressed.

また、基体2の下面に形成した接続パッドに直接、導電性接合材を設けて発光素子収納パッケージと外部接続基板とを取着させる場合、導電性接合材を溶融したときに、たとえ外部接続基板と発光素子収納パッケージの間から導電性接合材がはみ出し、基体2を伝わって這い上がろうとしても、従来では枠体3であった部分に本発明では弾性部材14が存在するため、枠体3と導電性接合材は接触しにくい。よって、枠体3が金属等からなるとしても、枠体3と導電性接合材が容易には接触しないため、電気的な短絡を有効に防止できる。   Further, when the conductive bonding material is provided directly on the connection pad formed on the lower surface of the base 2 to attach the light emitting element storage package and the external connection substrate, even when the conductive bonding material is melted, the external connection substrate Even if the conductive bonding material protrudes from between the light emitting element storage package and travels up through the base 2, the elastic member 14 is present in the portion of the frame body 3 in the present invention. 3 and the conductive bonding material are difficult to contact. Therefore, even if the frame 3 is made of metal or the like, the frame 3 and the conductive bonding material are not easily in contact with each other, so that an electrical short circuit can be effectively prevented.

また、基体2がセラミックスからなる場合においては、弾性部材14の下部を基体2の側方に配して枠体3に取着させたことにより、側方にある弾性部材14の下部によってセラミック基体2の側面から外部に漏れ出ていた光は進行を妨げられ、外部に漏れ出るのを防ぐことができる。その結果、本発明の発光装置を表示装置として用いても、光がぼやけず良好な視認性を得ることができる。   When the base 2 is made of ceramics, the lower portion of the elastic member 14 is disposed on the side of the base 2 and attached to the frame 3, so that the lower portion of the elastic member 14 on the side causes the ceramic base to be attached. The light leaking to the outside from the side surface of 2 is prevented from traveling and can be prevented from leaking to the outside. As a result, even when the light-emitting device of the present invention is used as a display device, light is not blurred and good visibility can be obtained.

また、弾性部材14の下部と基体2の側方との間に隙間が設けられていることが好ましく、発光素子4から発生した熱が基体2に伝わり、基体2と弾性部材14の隙間から、その熱を放熱することができるためよい。また、放熱性が高まることによって、発光素子4の劣化を防止し、さらに熱による発光素子収納パッケージの変形も有効に防止できるため、より好ましいといえる。   In addition, a gap is preferably provided between the lower portion of the elastic member 14 and the side of the base 2, and heat generated from the light emitting element 4 is transmitted to the base 2, and from the gap between the base 2 and the elastic member 14, It is good because the heat can be dissipated. Moreover, it can be said that it is more preferable because the heat dissipation increases, so that the deterioration of the light emitting element 4 can be prevented and the deformation of the light emitting element storage package due to heat can be effectively prevented.

また、さらに好ましくは、枠体3の切り欠き部3bは、枠体3の外周面に沿って環状に周設されているのがよい。これにより、基体2と枠体3の間に、環状に切り欠き部3bが周設される前よりも容量の大きい外気層が存在することとなり、発光素子4の作動時に発生する熱が基体2から枠体3に伝達するのを有効に防止できる。その結果、枠体3から基体2に伝わる曲げモーメントを抑制でき、基体2にクラックや割れが発生するのを有効に防止できる。   More preferably, the cutout portion 3 b of the frame body 3 is annularly provided along the outer peripheral surface of the frame body 3. As a result, an outside air layer having a larger capacity than that before the notch 3b is annularly formed exists between the base 2 and the frame 3, and heat generated during the operation of the light emitting element 4 is generated by the base 2 Can be effectively prevented from being transmitted to the frame 3. As a result, the bending moment transmitted from the frame 3 to the base 2 can be suppressed, and cracks and cracks can be effectively prevented from occurring in the base 2.

また更に、枠体3の体積を小さくし、基体2と枠体3との接する面積を小さくすることができ、発光装置を作動させる際に発光素子4より発生する熱により、基体2や枠体3との接合部に集中する応力が抑制される。その結果、基体2や、基体2と枠体3との接合部におけるクラックや剥離をさらに抑制できる。   Furthermore, the volume of the frame body 3 can be reduced, the area where the base body 2 and the frame body 3 are in contact with each other can be reduced, and the base body 2 and the frame body can be formed by heat generated from the light emitting element 4 when the light emitting device is operated. 3 is restrained from being concentrated at the joint portion. As a result, it is possible to further suppress cracks and peeling at the base 2 and the joint between the base 2 and the frame 3.

また、弾性部材14を枠体3の外周面に沿って環状に周設すると、基体2の下面に一端部が平面視で基体2より外方に飛び出すように外部接続端子を設けて、発光素子収納パッケージを外部接続基板接合した場合に、たとえ発光素子4の発熱時に生じた応力等で外部接続端子がどのような位置にずれたとしても、弾性部材14が基体2にぶつかって生じる応力は、環状に形成された弾性部材14によって緩衝されるため、さらに好ましい。その結果、基体2や基体2の外周部に生じる欠けや割れ、クラック等の発生を、より有効に防止でき、発光素子4を気密に収容して、発光素子4を長期間にわたり正常かつ安定に作動させることができる。   Further, when the elastic member 14 is annularly provided along the outer peripheral surface of the frame 3, an external connection terminal is provided on the lower surface of the base body 2 so that one end portion protrudes outward from the base body 2 in a plan view. When the storage package is bonded to the external connection substrate, the stress caused by the elastic member 14 hitting the base 2 is no matter what position the external connection terminal is displaced due to the stress generated when the light emitting element 4 generates heat. Since it is buffered by the elastic member 14 formed in an annular shape, it is more preferable. As a result, it is possible to more effectively prevent the occurrence of chips, cracks, cracks, and the like generated on the base 2 and the outer peripheral portion of the base 2, and the light-emitting element 4 is accommodated in an airtight manner so that the light-emitting element 4 is normal and stable over a long period. Can be operated.

また、枠体3は、切り欠き部3bの上面のみが弾性部材14に接合されているのが好ましい。これにより、枠体3が適度に変形しやすくなり、弾性部材14による拘束を適度に開放することができる。その結果、弾性部材14や基体2が歪んだとしてもその歪みによって枠体3も歪むのを有効に抑制できる。また、枠体3の下面の弾性部材14よりも内側に位置する部位と、基体2の上面との間に隙間を形成するのがよい。これにより、基体2から反射面3aに熱が伝わり難くすることができるため好ましい。   Moreover, it is preferable that the frame 3 has only the upper surface of the notch 3b joined to the elastic member 14. Thereby, the frame 3 is easily deformed moderately, and the restraint by the elastic member 14 can be released moderately. As a result, even if the elastic member 14 and the base body 2 are distorted, the distortion of the frame 3 due to the distortion can be effectively suppressed. Further, it is preferable to form a gap between a portion located on the inner side of the elastic member 14 on the lower surface of the frame 3 and the upper surface of the base 2. This is preferable because heat can be hardly transmitted from the base 2 to the reflecting surface 3a.

また、反射面3aは、基体2の上面に対して35〜70度の角度で傾斜しているのが好ましい。これにより、基体2の上面に搭載した発光素子4の光を、傾斜した反射面3aで良好に反射させ、外部に放射角度45度以内の範囲で光を良好に放射することができ、本発明の発光素子収納パッケージを使用した発光装置の発光効率や輝度、光度を極めて高いものとすることができる。なお、光の放射角度とは、発光素子4の中心を通る基体2に直交する平面上での光の広がりの角度のことであり、枠体3の横断面における開口形状が円形状であれば放射角度は、反射面3aの全周にわたって一定である。また、枠体3の横断面における開口形状が楕円形状などの偏りがある場合は、放射角度はその最大値である。   The reflecting surface 3 a is preferably inclined at an angle of 35 to 70 degrees with respect to the upper surface of the base 2. Thereby, the light of the light emitting element 4 mounted on the upper surface of the substrate 2 can be favorably reflected by the inclined reflecting surface 3a, and the light can be radiated to the outside within the range of the radiation angle within 45 degrees. The light emission efficiency, brightness, and luminous intensity of the light emitting device using the light emitting element storage package can be made extremely high. The light emission angle is an angle of light spread on a plane orthogonal to the base 2 passing through the center of the light emitting element 4, and if the opening shape in the cross section of the frame 3 is circular. The radiation angle is constant over the entire circumference of the reflecting surface 3a. Moreover, when the opening shape in the cross section of the frame 3 is biased such as an elliptical shape, the radiation angle is the maximum value.

また、反射面3aは、基体2の上面となす角度が35度未満になると、放射角度が45度を超えて広がり、分散した光の量が多くなり、光の輝度や光度が低下しやすくなる。一方、角度が70度を超えると、発光素子収納パッケージの外部に発光素子4の光が良好に放射されずに発光素子収納パッケージ内で乱反射しやすくなる。   In addition, when the angle between the reflecting surface 3a and the upper surface of the base 2 is less than 35 degrees, the radiation angle spreads beyond 45 degrees, the amount of dispersed light increases, and the luminance and luminous intensity of the light tend to decrease. . On the other hand, when the angle exceeds 70 degrees, the light from the light-emitting element 4 is not emitted well outside the light-emitting element storage package and is easily diffusely reflected in the light-emitting element storage package.

なお、反射面3aの形状が逆円錐状である場合は、反射面3aと基体2の上面とのなす角度を全周にわたって35〜70度とするのが好ましい。また、反射面3aの形状が四角錐状である場合は、少なくとも一対の対向する内面が基体2の上面に対して35〜70度で傾斜しているのが好ましい。内面の全面が基体2の上面に対して35〜70度で傾斜することにより、発光効率をきわめて高いものとすることができる。   In addition, when the shape of the reflective surface 3a is an inverted conical shape, it is preferable that the angle formed by the reflective surface 3a and the upper surface of the substrate 2 is 35 to 70 degrees over the entire circumference. Moreover, when the shape of the reflective surface 3a is a quadrangular pyramid, it is preferable that at least a pair of opposed inner surfaces be inclined with respect to the upper surface of the substrate 2 by 35 to 70 degrees. Since the entire inner surface is inclined at 35 to 70 degrees with respect to the upper surface of the substrate 2, the luminous efficiency can be made extremely high.

また、反射面3aの算術平均粗さRaは、0.004〜4μmとするのが好ましい。即ち、反射面3aの算術平均粗さRaが4μmを超える場合、発光素子収納パッケージに収容された発光素子4の光を正反射させて発光素子収納パッケージの上方に出射させることが困難になり、光強度が減衰したり偏りが発生しやすくなる。また、反射面3aの算術平均粗さRaが0.004μm未満の場合、このような面を安定かつ効率よく形成することが困難となるとともに、製品コストが高くなりやすい。なお、反射面3aのRaを上記の範囲とするには、従来周知の電解研磨加工,化学研磨加工もしくは切削加工により形成することができる。また、金型の面精度を利用した転写加工により形成する方法を用いてもよい。   Moreover, it is preferable that arithmetic mean roughness Ra of the reflective surface 3a shall be 0.004-4 micrometers. That is, when the arithmetic average roughness Ra of the reflecting surface 3a exceeds 4 μm, it becomes difficult to regularly reflect the light of the light emitting element 4 accommodated in the light emitting element accommodation package and to emit it above the light emitting element accommodation package. Light intensity is easily attenuated or biased. In addition, when the arithmetic average roughness Ra of the reflecting surface 3a is less than 0.004 μm, it is difficult to form such a surface stably and efficiently, and the product cost tends to increase. In addition, in order to make Ra of the reflective surface 3a into said range, it can form by a conventionally well-known electrolytic polishing process, a chemical polishing process, or a cutting process. Further, a method of forming by transfer processing using the surface accuracy of the mold may be used.

さらに枠体3と弾性部材14との接合や、枠体3と基体2との接合は、シリコーン系やエポキシ系等の樹脂接着剤や、Ag−Cuロウ等の金属ロウ材やPb−Au−Sn−Au−Sn−ケイ素(Si),Sn−Ag−Cu等の半田等により行われる。なお、このような接着剤や半田等の接合材は、基体2、弾性部材14および枠体3の材質や熱膨張係数等を考慮して適宜選定すればよく、特に限定されるものではない。また、基体2と弾性部材14、および弾性部材14と枠体3との接合の高信頼性が必要とされる場合、好ましくは金属ロウ材や半田により接合するのがよい。   Further, the bonding between the frame 3 and the elastic member 14 and the bonding between the frame 3 and the base 2 are performed by using a resin adhesive such as silicone or epoxy, a metal brazing material such as Ag-Cu brazing, or Pb-Au-. This is performed by using solder such as Sn-Au-Sn-silicon (Si) and Sn-Ag-Cu. Such a bonding material such as an adhesive or solder may be appropriately selected in consideration of the material, thermal expansion coefficient, and the like of the base 2, the elastic member 14, and the frame 3, and is not particularly limited. In addition, when high reliability of bonding between the base body 2 and the elastic member 14 and between the elastic member 14 and the frame body 3 is required, it is preferable to bond them with a metal brazing material or solder.

また、発光装置の特性を重要視する場合は、接合材によって枠体3と弾性部材14がずれるのを防止するため、かしめ方法により接合するのがよい。かしめ方法では、枠体3の位置決めが一義的に行なわれ、発光素子収納パッケージの製造工程における枠体3の位置ずれや傾きを抑制できるとともに、弾性部材14と枠体3との中心軸とを高精度に一致させ接合できる。その結果、発光素子4の光軸と光を反射する枠体3の中心軸とを発光素子収納パッケージ製造工程において高精度に一致させることができる。従って、所望の光強度分布や照度分布、発光色が得られる発光装置を製造することができる。   Further, when importance is attached to the characteristics of the light emitting device, it is preferable to join by a caulking method in order to prevent the frame 3 and the elastic member 14 from being displaced by the joining material. In the caulking method, the positioning of the frame 3 is uniquely performed, the positional deviation and inclination of the frame 3 in the manufacturing process of the light emitting element storage package can be suppressed, and the central axis of the elastic member 14 and the frame 3 is set. Can be joined with high accuracy. As a result, the optical axis of the light emitting element 4 and the central axis of the frame 3 that reflects light can be matched with high accuracy in the manufacturing process of the light emitting element storage package. Accordingly, it is possible to manufacture a light emitting device that can obtain a desired light intensity distribution, illuminance distribution, and emission color.

また、弾性部材14と枠体3との熱膨張係数の関係式は、弾性部材14の熱膨張係数をα1、枠体3の熱膨張係数をα2としたときに、α1<α2であることがよい。これにより、枠体3と基体2との熱膨張係数差を弾性部材14により緩和して、熱膨張差による応力が基体2や枠体3、弾性部材14に生じるのを有効に抑制することができる。よって、発光素子収納パッケージの製造工程や発光装置を作動させる際の熱膨張、熱吸収により生じる応力を緩和できるとともに、枠体3の傾きや変形を抑制することができる。   Further, the relational expression of the thermal expansion coefficient between the elastic member 14 and the frame 3 may be α1 <α2 when the thermal expansion coefficient of the elastic member 14 is α1 and the thermal expansion coefficient of the frame 3 is α2. Good. Thereby, the thermal expansion coefficient difference between the frame 3 and the base 2 is relaxed by the elastic member 14, and it is possible to effectively suppress the stress due to the thermal expansion difference from being generated in the base 2, the frame 3, and the elastic member 14. it can. Therefore, it is possible to relieve stress caused by thermal expansion and heat absorption when the light emitting element storage package is manufactured and the light emitting device is operated, and it is possible to suppress inclination and deformation of the frame 3.

かくして、本発明の発光素子収納パッケージは、基体2の上面に発光素子4を搭載するとともに、発光素子4をAuやAl等のボンディングワイヤおよび配線導体を介して発光素子収納パッケージの外部の外部電気回路に電気的に導通させることができる。そして、枠体3の内側に透明樹脂等の透光性材料を充填し硬化させて、発光素子4の側面や上面、あるいは、発光素子4全体を覆うように、第1の透光性部5を形成する。そして、第1の透光性部5と隙間を空けて第2の透光性部7を形成し、必要に応じて枠体3の上面に透光性の蓋体(図示せず)を半田や樹脂接着剤等で接合することにより本発明の発光装置となる。または、第1の透光性部5を形成した後、シリコーン樹脂等から成る第3の透光性部Gを形成し、その上に、第1の透光性部5全体を覆うようにして第2の透光性部7を形成し、必要に応じて、枠体3の上面に透光性の蓋体を半田や樹脂接着剤等で接合することにより、発光素子4の光を蛍光体により波長変換し、所望の波長スペクトルを有する光を取り出すことができる発光装置となる。   Thus, in the light emitting element storage package of the present invention, the light emitting element 4 is mounted on the upper surface of the substrate 2, and the light emitting element 4 is connected to the external electric power outside the light emitting element storage package via the bonding wires and wiring conductors such as Au and Al. The circuit can be electrically conducted. Then, a transparent material such as a transparent resin is filled inside the frame body 3 and cured to cover the side surface or the upper surface of the light emitting element 4 or the entire light emitting element 4. Form. And the 2nd translucent part 7 is formed in the 1st translucent part 5 with a clearance gap, and a translucent cover body (not shown) is soldered to the upper surface of the frame 3 as needed. The light emitting device of the present invention is obtained by bonding with a resin adhesive or the like. Or after forming the 1st translucent part 5, the 3rd translucent part G which consists of silicone resin etc. is formed, and it covers the 1st translucent part 5 whole on it The second light-transmitting portion 7 is formed, and if necessary, a light-transmitting lid is joined to the upper surface of the frame 3 with solder, resin adhesive, or the like, so that the light of the light-emitting element 4 is emitted from the phosphor. Thus, the light emitting device can convert the wavelength and extract light having a desired wavelength spectrum.

また、本発明の発光装置は、1個のものを光源として所定の配置となるように設置したことにより、または複数個を、例えば、格子状や千鳥状,放射状,複数の発光装置から成る、円状や多角形状の発光装置群を同心状に複数群形成したもの等の所定の配置となるように設置したことにより、照明装置とすることができる。これにより、従来の照明装置よりも強度ムラの抑制されたものとすることができる。   In addition, the light emitting device of the present invention is provided by arranging one light source as a predetermined light source, or a plurality of light emitting devices, for example, a lattice shape, a staggered shape, a radial shape, or a plurality of light emitting devices. A lighting device can be obtained by installing the light emitting device groups in a circular shape or a polygonal shape so as to have a predetermined arrangement such as a plurality of concentric groups. Thereby, intensity unevenness can be suppressed as compared with the conventional lighting device.

また、本発明の発光装置を光源として所定の配置に設置するとともに、これらの発光装置の周囲に任意の形状に光学設計した反射治具や光学レンズ、光拡散板等を設置することにより、任意の配光分布の光を放射できる照明装置とすることができる。   In addition, the light emitting device of the present invention is installed in a predetermined arrangement as a light source, and by installing a reflection jig, an optical lens, a light diffusing plate, etc. optically designed in an arbitrary shape around these light emitting devices, It can be set as the illuminating device which can radiate | emit the light of this light distribution.

なお、本発明は上記の実施の形態に限定されず、本発明の要旨を逸脱しない範囲内で種々の変更を行うことは何等支障ない。例えば、発光装置より出射される光を任意に集光し拡散させる光学レンズや平板状の透光性の蓋体を半田や樹脂接合剤等で接合することにより、所望する放射角度で光を取り出すことができ長期信頼性が向上する。また、ボンディングワイヤによる光損失を抑制するために、基板1にメタライズ配線を形成し、そのメタライズ配線に半田を介して発光素子3を電気的に接続するフリップチップ実装をした発光装置でもよい。   It should be noted that the present invention is not limited to the above-described embodiment, and various modifications are possible without departing from the scope of the present invention. For example, light is extracted at a desired radiation angle by joining an optical lens that arbitrarily collects and diffuses light emitted from the light emitting device or a flat light-transmitting lid with solder or a resin bonding agent. Long term reliability can be improved. Further, in order to suppress light loss due to the bonding wire, a light emitting device in which metallized wiring is formed on the substrate 1 and the light emitting element 3 is electrically connected to the metallized wiring via solder may be used.

上述した各実施形態に係る発光装置1は、光源として所定の配置に設置するとともに、これらの発光装置1の周囲に任意の形状に光学設計した反射治具や光学レンズ、光拡散板等を設置することにより、任意の配光分布の光を放射できる照明装置とすることができる。   The light emitting device 1 according to each embodiment described above is installed in a predetermined arrangement as a light source, and a reflecting jig, an optical lens, a light diffusing plate, and the like optically designed in an arbitrary shape are installed around the light emitting device 1. By doing so, it can be set as the illuminating device which can radiate | emit light of arbitrary light distribution.

例えば、図14に示す平面図および図15に示す断面図のように、複数個の発光装置1が発光装置駆動回路基板10に複数列に配置され、発光装置1の周囲に任意の形状に光学設計した反射治具9が設置されて成る照明装置の場合、隣接する一列上に配置された複数個の発光装置1において、隣り合う発光装置1との間隔が最短に成らないような配置、いわゆる千鳥状とすることが好ましい。   For example, as shown in the plan view shown in FIG. 14 and the cross-sectional view shown in FIG. 15, a plurality of light emitting devices 1 are arranged in a plurality of rows on the light emitting device driving circuit board 10, and are optically formed in an arbitrary shape around the light emitting device 1. In the case of an illuminating device in which the designed reflecting jig 9 is installed, in a plurality of light emitting devices 1 arranged on one adjacent row, an arrangement in which the interval between adjacent light emitting devices 1 is not shortest, so-called. A staggered pattern is preferred.

即ち、発光装置1が格子状に配置される際には、光源となる発光装置1が直線上に配列されることによりグレアが強くなり、このような照明装置が人の視覚に入ってくることにより、不快感を起こしやすくなるのに対し、千鳥状とすることにより、グレアが抑制され人間の目に対しても不快感を低減することができる。   That is, when the light-emitting devices 1 are arranged in a grid, the light-emitting devices 1 serving as light sources are arranged on a straight line, so that glare is strong, and such a lighting device enters human vision. Thus, discomfort is likely to occur, but the staggered pattern suppresses glare and can also reduce discomfort for human eyes.

さらに、隣り合う発光装置1間の距離が長くなることにより、隣接する発光装置1間の熱的な干渉が有効に抑制され、発光装置1が実装された発光装置駆動回路基板10内における熱のこもりが抑制され、発光装置1の外部に効率よく熱が放散される。その結果、人の目に対しても不快感を与えずに長期間にわたり光学特性の安定した長寿命の照明装置を作製することができる。   Furthermore, since the distance between the adjacent light emitting devices 1 is increased, thermal interference between the adjacent light emitting devices 1 is effectively suppressed, and heat in the light emitting device driving circuit board 10 on which the light emitting device 1 is mounted is reduced. Clouding is suppressed and heat is efficiently dissipated outside the light emitting device 1. As a result, it is possible to manufacture a long-life lighting device with stable optical characteristics over a long period of time without causing discomfort to human eyes.

また、照明装置が、図16に示す平面図および図17に示す断面図のように、発光装置駆動回路基板10上に複数の発光装置1から成る円状や多角形状の発光装置1群を、同心状に複数群形成した照明装置の場合、1つの円状や多角形状の発光装置1群における発光装置1の配置数を照明装置の中央側より外周側ほど多くすることが好ましい。これにより、発光装置1同士の間隔を適度に保ちながら発光装置1をより多く配置することができ、照明装置の照度をより向上させることができる。   In addition, as shown in the plan view of FIG. 16 and the cross-sectional view of FIG. 17, the lighting device includes a group of circular or polygonal light emitting devices 1 including a plurality of light emitting devices 1 on the light emitting device driving circuit board 10. In the case of a lighting device in which a plurality of groups are concentrically formed, it is preferable that the number of light emitting devices 1 in one circular or polygonal light emitting device group 1 is increased from the center side of the lighting device to the outer peripheral side. Thereby, more light-emitting devices 1 can be arranged while keeping the interval between the light-emitting devices 1 moderately, and the illuminance of the illumination device can be further improved.

また、照明装置の中央部の発光装置1の密度を低くして発光装置駆動回路基板10の中央部における熱のこもりを抑制することができる。よって、発光装置駆動回路基板10内における温度分布が一様となり、照明装置を設置した外部電気回路基板やヒートシンクに効率よく熱が伝達され、発光装置1の温度上昇を抑制することができる。その結果、発光装置1は長期間にわたり安定して動作することができるとともに長寿命の照明装置を作製することができる。   Moreover, the density of the light-emitting device 1 in the central part of the lighting device can be lowered to suppress heat accumulation in the central part of the light-emitting device driving circuit board 10. Therefore, the temperature distribution in the light emitting device driving circuit board 10 becomes uniform, heat is efficiently transmitted to the external electric circuit board and the heat sink on which the lighting device is installed, and the temperature rise of the light emitting device 1 can be suppressed. As a result, the light emitting device 1 can operate stably over a long period of time, and a long-life lighting device can be manufactured.

このような照明装置としては、例えば、室内や室外で用いられる、一般照明用器具、シャンデリア用照明器具、住宅用照明器具、オフィス用照明器具、店装,展示用照明器具、街路用照明器具、誘導灯器具及び信号装置、舞台及びスタジオ用の照明器具、広告灯、照明用ポール、水中照明用ライト、ストロボ用ライト、スポットライト、電柱等に埋め込む防犯用照明、非常用照明器具、懐中電灯、電光掲示板等や、調光器、自動点滅器、ディスプレイ等のバックライト、動画装置、装飾品、照光式スイッチ、光センサ、医療用ライト、車載ライト等が挙げられる。   Examples of such lighting devices include general lighting fixtures, chandelier lighting fixtures, residential lighting fixtures, office lighting fixtures, store lighting, display lighting fixtures, street lighting fixtures, used indoors and outdoors. Guide light fixtures and signaling devices, stage and studio lighting fixtures, advertising lights, lighting poles, underwater lighting lights, strobe lights, spotlights, security lights embedded in power poles, emergency lighting fixtures, flashlights, Examples include electronic bulletin boards and the like, backlights for dimmers, automatic flashers, displays and the like, moving image devices, ornaments, illuminated switches, optical sensors, medical lights, in-vehicle lights, and the like.

なお、本発明は以上の実施の形態の例および実施例に限定されず、本発明の要旨を逸脱しない範囲内であれば種々の変更を行なうことは何等支障ない。   It should be noted that the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the scope of the present invention.

本発明によれば、高い光取り出し効率、放射光強度、軸上光度および輝度を有する発光装置を提供することができ、産業上極めて有用である。   ADVANTAGE OF THE INVENTION According to this invention, the light-emitting device which has high light extraction efficiency, radiated light intensity, on-axis luminous intensity, and a brightness | luminance can be provided, and it is very useful industrially.

本発明の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of this invention. 本発明の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of this invention. 本発明の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of this invention. 本発明の第3実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of this invention. 本発明の第3実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of this invention. 本発明の第4実施形態を示す断面図である。It is sectional drawing which shows 4th Embodiment of this invention. 第1の透光性部が半球状である例を示す断面図である。It is sectional drawing which shows the example whose 1st translucent part is hemispherical. レンズ状の蓋体を載置した例を示す断面図である。It is sectional drawing which shows the example which mounted the lens-shaped cover body. 第3の透光性部が薄い例を示す断面図である。It is sectional drawing which shows the example whose 3rd translucent part is thin. 本発明の第5実施形態を示す断面図である。It is sectional drawing which shows 5th Embodiment of this invention. 透光性部材が半球状である例を示す断面図である。It is sectional drawing which shows the example whose translucent member is hemispherical. 透光性部材が曲面形状である例を示す断面図である。It is sectional drawing which shows the example whose translucent member is a curved surface shape. 本発明の第6実施形態を示す断面図である。It is sectional drawing which shows 6th Embodiment of this invention. 図11に示す発光装置の各透光性部を省略した破断斜視図である。It is the fracture | rupture perspective view which abbreviate | omitted each translucent part of the light-emitting device shown in FIG. L字型のリード端子を基体下面に設けた例を示す断面図である。It is sectional drawing which shows the example which provided the L-shaped lead terminal in the base | substrate lower surface. 本発明に係る発光装置をアレイ状に配列した照明装置の一例を示す平面図である。It is a top view which shows an example of the illuminating device which arranged the light-emitting device based on this invention in the array form. 図14に示す照明装置の断面図である。It is sectional drawing of the illuminating device shown in FIG. 本発明に係る発光装置を円形状に配列した照明装置の他の例を示す平面図である。It is a top view which shows the other example of the illuminating device which arranged the light-emitting device based on this invention in circular shape. 図16に示す照明装置の断面図である。It is sectional drawing of the illuminating device shown in FIG. 従来の発光装置の一例を示す断面図である。It is sectional drawing which shows an example of the conventional light-emitting device.

符号の説明Explanation of symbols

1 発光装置
2 基体
3 枠体
3a 反射面
3b 切り欠き部
4 発光素子
5 第1の透光性部
6 第4の透光性部
7 第2の透光性部
G 第3の透光性部
9 反射治具
10 発光装置駆動回路基板
14 弾性部材
17 導電性接着部材
18 導電路
21 リード端子

DESCRIPTION OF SYMBOLS 1 Light-emitting device 2 Base | substrate 3 Frame 3a Reflecting surface 3b Notch part 4 Light emitting element 5 1st translucent part 6 4th translucent part 7 2nd translucent part G 3rd translucent part DESCRIPTION OF SYMBOLS 9 Reflecting jig 10 Light-emitting device drive circuit board 14 Elastic member 17 Conductive adhesive member 18 Conductive path 21 Lead terminal

Claims (5)

基体と、
該基体上に搭載された発光素子と、
前記基体上に配置されており、前記発光素子を囲む反射面と、
該反射面の内側に前記発光素子を覆って設けられており、凹面状である上面を有する第1の透光性部と、
該第1の透光性部上に設けられており、前記発光素子から放射された光を波長変換する第2の透光性部と、
前記第1の透光性部と前記第2の透光性部との間に設けられた第3の透光性部と、を備えた発光装置。
A substrate;
A light emitting device mounted on the substrate;
A reflective surface disposed on the substrate and surrounding the light emitting element;
A first translucent portion provided on the inner side of the reflective surface so as to cover the light emitting element and having a concave upper surface;
A second translucent part that is provided on the first translucent part and converts the wavelength of the light emitted from the light emitting element;
A light emitting device comprising: a third light transmissive portion provided between the first light transmissive portion and the second light transmissive portion.
前記第1の透光性部の屈折率をn1、第2の透光性部の屈折率をn2、第3の透光性部の屈折率をn3としたとき、n3<n1およびn3<n2の関係を満たす、請求項1記載の発光装置。   When the refractive index of the first light transmitting part is n1, the refractive index of the second light transmitting part is n2, and the refractive index of the third light transmitting part is n3, n3 <n1 and n3 <n2 The light emitting device according to claim 1, satisfying the relationship: 前記第3の透光性部が気体層である、請求項1または2記載の発光装置。   The light emitting device according to claim 1, wherein the third light transmissive portion is a gas layer. 前記第3の透光性部が、シリコーン樹脂と、該シリコーン樹脂に含有されており前記発光素子から放射された光の波長を変換する蛍光体と、からなる請求項1〜3のいずれかに記載の発光装置。   The said 3rd translucent part consists of a silicone resin and the fluorescent substance which is contained in this silicone resin and converts the wavelength of the light radiated | emitted from the said light emitting element. The light emitting device described. 前記発光素子が、近紫外域または紫外域に発光ピーク波長を有する発光ダイオードであり、前記蛍光体が、赤色蛍光体、緑色蛍光体および青色蛍光体からなる、請求項4記載の発光装置。

The light emitting device according to claim 4, wherein the light emitting element is a light emitting diode having a light emission peak wavelength in a near ultraviolet region or an ultraviolet region, and the phosphor is composed of a red phosphor, a green phosphor and a blue phosphor.

JP2006153631A 2006-06-01 2006-06-01 Light emitting device Active JP4847793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006153631A JP4847793B2 (en) 2006-06-01 2006-06-01 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006153631A JP4847793B2 (en) 2006-06-01 2006-06-01 Light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005217626A Division JP3978451B2 (en) 2005-07-27 2005-07-27 Light emitting device

Publications (2)

Publication Number Publication Date
JP2007036199A true JP2007036199A (en) 2007-02-08
JP4847793B2 JP4847793B2 (en) 2011-12-28

Family

ID=37795018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006153631A Active JP4847793B2 (en) 2006-06-01 2006-06-01 Light emitting device

Country Status (1)

Country Link
JP (1) JP4847793B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008636A2 (en) 2007-07-06 2009-01-15 Lg Innotek Co., Ltd Light emitting device package
CN102588752A (en) * 2011-01-07 2012-07-18 晶元光电股份有限公司 Light emitting device
CN102588816A (en) * 2011-01-07 2012-07-18 晶元光电股份有限公司 Luminous device, light-mixing device and manufacturing method of luminous device
JP2012529766A (en) * 2009-06-09 2012-11-22 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー LED with remote phosphor layer and reflective submount
CN102956626A (en) * 2011-08-19 2013-03-06 王大强 LED structure
JP2014096562A (en) * 2012-11-12 2014-05-22 Genesis Photonics Inc Wavelength converting material, wavelength converting gel and light emitting device
US8796723B2 (en) 2010-11-29 2014-08-05 Epistar Corporation Light-emitting device
EP2685496A3 (en) * 2012-07-09 2016-01-27 LG Innotek Co., Ltd. Light emitting apparatus
JP2021184391A (en) * 2015-09-02 2021-12-02 ルミレッズ ホールディング ベーフェー LED module and lighting module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003110149A (en) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd Light-emitting unit and illuminator using the light- emitting unit
JP2003110146A (en) * 2001-07-26 2003-04-11 Matsushita Electric Works Ltd Light-emitting device
JP2003249689A (en) * 2001-12-18 2003-09-05 Nichia Chem Ind Ltd Light emitting device
JP2005158949A (en) * 2003-11-25 2005-06-16 Matsushita Electric Works Ltd Light emitting device
JP2005166733A (en) * 2003-11-28 2005-06-23 Matsushita Electric Works Ltd Light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003110146A (en) * 2001-07-26 2003-04-11 Matsushita Electric Works Ltd Light-emitting device
JP2003110149A (en) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd Light-emitting unit and illuminator using the light- emitting unit
JP2003249689A (en) * 2001-12-18 2003-09-05 Nichia Chem Ind Ltd Light emitting device
JP2005158949A (en) * 2003-11-25 2005-06-16 Matsushita Electric Works Ltd Light emitting device
JP2005166733A (en) * 2003-11-28 2005-06-23 Matsushita Electric Works Ltd Light emitting device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8610255B2 (en) 2007-07-06 2013-12-17 Lg Innotek Co., Ltd. Light emitting device package
WO2009008636A3 (en) * 2007-07-06 2009-03-05 Lg Innotek Co Ltd Light emitting device package
US9368697B2 (en) 2007-07-06 2016-06-14 Lg Innotek Co., Ltd. Light emitting device package
US8890297B2 (en) 2007-07-06 2014-11-18 Lg Innotek Co., Ltd. Light emitting device package
WO2009008636A2 (en) 2007-07-06 2009-01-15 Lg Innotek Co., Ltd Light emitting device package
EP2624317A3 (en) * 2007-07-06 2013-08-28 LG Innotek Co., Ltd. Light emitting device package
JP2012529766A (en) * 2009-06-09 2012-11-22 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー LED with remote phosphor layer and reflective submount
US8796723B2 (en) 2010-11-29 2014-08-05 Epistar Corporation Light-emitting device
CN102588816A (en) * 2011-01-07 2012-07-18 晶元光电股份有限公司 Luminous device, light-mixing device and manufacturing method of luminous device
CN102588752A (en) * 2011-01-07 2012-07-18 晶元光电股份有限公司 Light emitting device
CN102956626A (en) * 2011-08-19 2013-03-06 王大强 LED structure
EP2685496A3 (en) * 2012-07-09 2016-01-27 LG Innotek Co., Ltd. Light emitting apparatus
US9347650B2 (en) 2012-07-09 2016-05-24 Lg Innotek Co., Ltd. Light emitting apparatus using medium layer between wavelength conversion layer and transparent layer
JP2014096562A (en) * 2012-11-12 2014-05-22 Genesis Photonics Inc Wavelength converting material, wavelength converting gel and light emitting device
JP2021184391A (en) * 2015-09-02 2021-12-02 ルミレッズ ホールディング ベーフェー LED module and lighting module

Also Published As

Publication number Publication date
JP4847793B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP3978451B2 (en) Light emitting device
KR101114305B1 (en) Light-emitting device and illuminating device
JP5036222B2 (en) Light emitting device
JP4789672B2 (en) Light emitting device and lighting device
KR100620844B1 (en) Light-emitting apparatus and illuminating apparatus
JP4675906B2 (en) Light-emitting element mounting substrate, light-emitting element storage package, light-emitting device, and lighting device
JP3898721B2 (en) Light emitting device and lighting device
JP2007194675A (en) Light emitting device
JP4847793B2 (en) Light emitting device
JP2006237264A (en) Light emitting device and lighting apparatus
JP3872490B2 (en) Light emitting element storage package, light emitting device, and lighting device
KR20060107428A (en) Light-emitting apparatus
JP2007214592A (en) Light emitting apparatus
JP2006049814A (en) Light emitting device and illumination system
JP4948841B2 (en) Light emitting device and lighting device
JP3921474B2 (en) Light emitting device and lighting device
JP2007123576A (en) Light emitting device and illumination apparatus
JP2005210042A (en) Light emitting apparatus and illumination apparatus
JP2006295230A (en) Light emitting device and lighting apparatus
JP2006066657A (en) Light emitting device and lighting device
JP2005039194A (en) Package for housing light emitting element, light emitting device, and luminair
JP4624069B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
JP2012009723A (en) Optical semiconductor device and method of manufacturing the same
JP4593974B2 (en) Light emitting device and lighting device
JP2007208292A (en) Light-emitting device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4847793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150