JP2007035296A - Electrolyte membrane/electrode assembly and cell of fuel cell - Google Patents

Electrolyte membrane/electrode assembly and cell of fuel cell Download PDF

Info

Publication number
JP2007035296A
JP2007035296A JP2005212476A JP2005212476A JP2007035296A JP 2007035296 A JP2007035296 A JP 2007035296A JP 2005212476 A JP2005212476 A JP 2005212476A JP 2005212476 A JP2005212476 A JP 2005212476A JP 2007035296 A JP2007035296 A JP 2007035296A
Authority
JP
Japan
Prior art keywords
support frame
electrolyte membrane
separator
region
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005212476A
Other languages
Japanese (ja)
Inventor
Atsushi Miyazawa
篤史 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005212476A priority Critical patent/JP2007035296A/en
Publication of JP2007035296A publication Critical patent/JP2007035296A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte membrane/electrode assembly suitable for attaching it to a separator; and to provide a cell of a fuel cell. <P>SOLUTION: This electrolyte membrane/electrode assembly 2 is provided with: support frames 7 jointed to a circumferential annular part of a reaction area 4A of a solid polymer electrolyte membrane 4 from both its surfaces; and gas diffusion layers 6 stacked by covering the reaction area 4A of the solid polymer electrolyte membrane 4. The support frame 7 is formed into a structure having at least two layers comprising the electrolyte membrane side 10 and the surface side 11 stacked and jointed on/to it. The surface-side support frame 11 is provided with areas 14 and 16 without arranging a constituent material of the surface-side support frame 11 so as to fit with jointing projections 27 projecting from a circumferential edge parts of the separator 3; and, in the areas 14 and 16, an adhesive or a pressure-sensitive adhesive for jointing the surface-side support frame 11 to the support frame 10 on the electrolyte membrane side is arranged by being so exposed attachably to the separator 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電解質膜/電極積層体および燃料電池セルに関し、特に、電解質膜/電極積層体の支持枠とセパレータとを接着により一体化させるに好適な電解質膜/電極積層体および燃料電池セルに関するものである。   The present invention relates to an electrolyte membrane / electrode laminate and a fuel cell, and more particularly to an electrolyte membrane / electrode laminate and a fuel cell suitable for integrating a support frame of an electrolyte membrane / electrode laminate and a separator by bonding. Is.

従来から接着剤により電解質膜/電極積層体の支持枠と両側のセパレータとを一体化させた燃料電池セルの構造が提案されている(特許文献1参照)。   Conventionally, there has been proposed a structure of a fuel cell in which a support frame of an electrolyte membrane / electrode laminate and separators on both sides are integrated with an adhesive (see Patent Document 1).

これは、電解質膜、触媒層および拡散層の外周部の両面に支持枠を接着し、支持枠の両面を接着層を介在させてセパレータに接着することにより、接着剤シールがなされた燃料電池セルとしている。そして、ガスおよび冷媒のマニホールド開口を囲むガスケットが配置される部位においては、支持枠とセパレータとを接着させる接着層が形成されないようにして、セルを積層してスタックを構成した際の積層荷重によるクリープ変形を防止するようにしている。
特開2004−165125号公報
This is a fuel cell in which an adhesive seal is made by adhering a support frame to both surfaces of the outer periphery of the electrolyte membrane, catalyst layer, and diffusion layer, and adhering both surfaces of the support frame to a separator with an adhesive layer interposed It is said. Then, at the portion where the gasket surrounding the manifold opening of the gas and the refrigerant is disposed, the adhesive layer that adheres the support frame and the separator is not formed, and the stacking load when the cells are stacked to form the stack Creep deformation is prevented.
JP 2004-165125 A

しかしながら、上記従来例では、支持枠の表面に接着剤を塗布した接着層を形成してセパレータと接着するものであるため、支持枠表面に接着剤を塗布する工程を必要とし、しかも、接着層を形成しない表面は接着層が形成される部分より堰等により嵩上げされた形状とする必要があり、支持枠の形状が複雑となるものであった。   However, in the above-described conventional example, an adhesive layer coated with an adhesive is formed on the surface of the support frame and bonded to the separator. Therefore, a step of applying the adhesive to the surface of the support frame is required, and the adhesive layer The surface that does not form the substrate needs to have a shape raised by a weir or the like from the portion where the adhesive layer is formed, and the shape of the support frame becomes complicated.

そこで本発明は、上記問題点に鑑みてなされたもので、セパレータとの接着に好適な電解質膜/電極積層体および燃料電池セルを提供することを目的とする。   Accordingly, the present invention has been made in view of the above problems, and an object thereof is to provide an electrolyte membrane / electrode laminate and a fuel cell suitable for adhesion to a separator.

本発明は、固体高分子電解質膜の反応領域の外周環状部分に両面から接合させた支持枠と、前記固体高分子電解質膜の反応領域を覆って積層したガス拡散層と、を備える電解質膜/電極積層体であり、前記支持枠を電解質膜側とそれに積層して接合された表面側との少なくとも2層構造に構成し、前記表面側支持枠は、セパレータの外周縁部から突出する接合突起と嵌り合うよう表面側支持枠の構成材を配置しない領域を備え、この領域には表面側支持枠と電解質膜側の支持枠とを接合させるための接着剤若しくは粘着剤がセパレータと接着可能に露出させて配置されている。   The present invention relates to an electrolyte membrane / comprising a support frame joined from both sides to an outer peripheral annular portion of a reaction region of a solid polymer electrolyte membrane, and a gas diffusion layer laminated so as to cover the reaction region of the solid polymer electrolyte membrane It is an electrode laminate, and the support frame is configured in at least a two-layer structure of an electrolyte membrane side and a surface side laminated and bonded to the electrolyte membrane side, and the surface side support frame protrudes from the outer peripheral edge of the separator There is a region where the constituent material of the surface side support frame is not placed so as to fit with the adhesive, and in this region, an adhesive or an adhesive for joining the surface side support frame and the support frame on the electrolyte membrane side can be bonded to the separator It is placed exposed.

したがって、本発明では、固体高分子電解質膜の反応領域の外周環状部分に両面から接合させた支持枠を電解質膜側とそれに積層して接合された表面側との少なくとも2層構造に構成し、前記表面側支持枠にセパレータの外周縁部から突出する接合突起と嵌り合うよう表面側支持枠の構成材を配置しない領域を設け、この領域には表面側支持枠と電解質膜側の支持枠とを接合させるための接着剤若しくは粘着剤がセパレータと接着可能に露出させて配置されるため、セパレータ接合用に改めて接着剤を塗布することなくセパレータを接着して接合させることができる。   Therefore, in the present invention, the support frame bonded from both sides to the outer peripheral annular portion of the reaction region of the solid polymer electrolyte membrane is configured in at least a two-layer structure of the electrolyte membrane side and the surface side laminated and bonded thereto. The surface side support frame is provided with a region where the constituent material of the surface side support frame is not disposed so as to be fitted with the joint protrusion protruding from the outer peripheral edge of the separator, and in this region, the surface side support frame and the electrolyte membrane side support frame are provided. Since the adhesive or the pressure-sensitive adhesive for bonding is exposed so as to be capable of bonding to the separator, the separator can be bonded and bonded without applying the adhesive again for bonding the separator.

以下、本発明の電解質膜/電極積層体および燃料電池セルを各実施形態に基づいて説明する。   Hereinafter, the electrolyte membrane / electrode laminate and the fuel cell of the present invention will be described based on each embodiment.

(第1実施形態)
図1〜図3は、本発明を適用した電解質膜/電極積層体および燃料電池セルの第1実施形態を示し、図1は燃料電池セルの断面図、図2は第1実施例の電解質膜/電極積層体の平面図、図3は第2実施例の電解質膜/電極積層体の断面図である。
(First embodiment)
1 to 3 show a first embodiment of an electrolyte membrane / electrode laminate and a fuel cell to which the present invention is applied, FIG. 1 is a cross-sectional view of the fuel cell, and FIG. 2 is an electrolyte membrane of the first example. FIG. 3 is a cross-sectional view of the electrolyte membrane / electrode laminate according to the second embodiment.

図1において、本実施形態における燃料電池セル1は、電解質膜4の両面に電極触媒5およびガス拡散層6(以下では、GDLと称する)が積層配置された電解質膜/電極積層体2と、この電解質膜/電極積層体2を挟持して、酸化剤極側に空気等の酸化剤ガスを供給流路3Aを介して供給する一方、燃料極側に水素等の燃料ガスを供給流路3Bを介して供給する、夫々ステンレス等の比較的耐食性のある金属材料で形成した一対のセパレータ3と、を備える。   In FIG. 1, a fuel cell 1 in this embodiment includes an electrolyte membrane / electrode laminate 2 in which an electrode catalyst 5 and a gas diffusion layer 6 (hereinafter referred to as GDL) are laminated on both surfaces of an electrolyte membrane 4, and While sandwiching the electrolyte membrane / electrode laminate 2, an oxidant gas such as air is supplied to the oxidant electrode side through the supply flow path 3A, while a fuel gas such as hydrogen is supplied to the fuel electrode side in the supply flow path 3B. And a pair of separators 3 each formed of a relatively corrosion-resistant metal material such as stainless steel.

前記電解質膜/電極積層体2は、固体高分子電解質膜4と、固体高分子電解質膜4の周縁部に両面から密着させて接着により貼付けられた、例えば、樹脂製からなる枠状の一対の支持枠7と、夫々の支持枠7で囲んだ電解質膜4表面(反応領域4A)に接合して夫々配置した酸化剤用電極触媒(触媒層)5Aおよび燃料用電極触媒(触媒層)5Bと、各電極触媒5を覆って各上面から接合させたGDL6と、を備える。   The electrolyte membrane / electrode laminate 2 is a pair of frame-shaped members made of, for example, a resin, which is adhered to both the solid polymer electrolyte membrane 4 and the peripheral edge of the solid polymer electrolyte membrane 4 by adhesion. A support frame 7; an oxidant electrode catalyst (catalyst layer) 5A and a fuel electrode catalyst (catalyst layer) 5B, which are disposed in contact with the surface of the electrolyte membrane 4 (reaction region 4A) surrounded by each support frame 7; And GDL 6 that covers each electrode catalyst 5 and is joined from each upper surface.

前記支持枠7は、電解質膜4の周縁をその両面から挟むように密着して一体化するものであるため、電解質膜4を補強する補強機能を備え、支持枠7で補強された電解質膜4は、そのハンドリング過程でしわや破損が防止でき、取り扱いが容易となる。前記支持枠7は、電解質膜に接合した内側支持枠10と表面側の外側支持枠11との2層構造に構成され、内外支持枠10、11は接着剤を介在させて接着されている。   Since the support frame 7 is integrated so that the periphery of the electrolyte membrane 4 is sandwiched from both sides, the support membrane 7 has a reinforcing function to reinforce the electrolyte membrane 4 and is reinforced by the support frame 7. Can be prevented from wrinkling and breakage in the handling process and easy to handle. The support frame 7 has a two-layer structure of an inner support frame 10 joined to an electrolyte membrane and an outer support frame 11 on the surface side, and the inner and outer support frames 10 and 11 are bonded with an adhesive interposed therebetween.

前記外側支持枠11は、図2に示すように、内周環状部12と外周環状部13とに分離され、両環状部12、13の間に予め設定した幅の環状の隙間領域14を形成し、この隙間領域14には内外支持枠10、11を接着する接着剤15が露出している構成としている。また、内周環状部12は、冷媒用マニホールド20およびガス用マニホールド21のいずれか一方を取囲んでマニホールド側に位置して内周環状部に対して予め設定した幅の環状の隙間領域16を形成してマニホールド形成部17を分離しており、この隙間領域16にも内外支持枠10、11を接着する接着剤15が露出している構成としている。前記外側支持枠11に形成した隙間領域14、16に露出する接着剤15の表面には、図示しないが、接着剤15の乾燥・硬化を抑制するフィルム等の保護膜で覆って、接着剤15の接着力の低下を防止している。   As shown in FIG. 2, the outer support frame 11 is separated into an inner ring portion 12 and an outer ring portion 13, and an annular gap region 14 having a preset width is formed between the ring portions 12 and 13. In this gap region 14, the adhesive 15 for bonding the inner and outer support frames 10 and 11 is exposed. The inner circumferential annular portion 12 surrounds one of the refrigerant manifold 20 and the gas manifold 21 and is located on the manifold side and has an annular gap region 16 having a width set in advance with respect to the inner circumferential annular portion. The manifold forming portion 17 is formed to be separated, and the adhesive 15 for bonding the inner and outer support frames 10 and 11 is also exposed to the gap region 16. Although not shown, the surface of the adhesive 15 exposed in the gap regions 14 and 16 formed on the outer support frame 11 is covered with a protective film such as a film that suppresses drying / curing of the adhesive 15, and the adhesive 15 This prevents a decrease in adhesive strength.

前記支持枠7に用いられる樹脂は、特にその種類が限定されるものではないが、固体高分子電解質膜に接触する内側支持枠10には、例えば、固体高分子電解質膜4として、Nafionを始めとしたパーフルオロスルホン酸型高分子膜が用いられる場合には、含水状態で強酸性を示すことから、耐酸性が要求される。また、60〜100℃前後の高温状態、ならびに、スチームに対する安定性も必要となる。また、内側支持枠10と外側支持枠11とを接合させる接着剤若しくは粘着材は、金属製のセパレータ3と内側支持枠10とを接合する機能を備えるものであれば、いずれの種類を使用しても構わないが、加水分解や水へのイオン溶出、燃料電池の作動温度の環境下での熱分解、反応ガスの透過性がないものであることが好ましい。   The type of resin used for the support frame 7 is not particularly limited, but the inner support frame 10 that contacts the solid polymer electrolyte membrane may include, for example, Nafion as the solid polymer electrolyte membrane 4. When the perfluorosulfonic acid type polymer membrane is used, acid resistance is required because it shows strong acidity in a water-containing state. Moreover, the high temperature state around 60-100 degreeC and the stability with respect to a steam are also required. The adhesive or pressure-sensitive adhesive for joining the inner support frame 10 and the outer support frame 11 may be any type as long as it has a function of joining the metal separator 3 and the inner support frame 10. However, it is preferable that it does not have hydrolysis, ion elution into water, thermal decomposition under the operating temperature of the fuel cell, and reaction gas permeability.

前記セパレータ3は、ステンレス合金等の耐蝕性の優れた金属により形成しており、CDL6へ燃料ガス若しくは酸化剤ガスを供給するための流路3A(3B)を形成する流路用リブ25が電解質膜4の反応領域4Aの全域に渡って等間隔に配置されて波形断面形状をなしている。前記セパレータ3の前記支持枠7と対面する周縁部には、前記外側支持枠11の内周環状部12の表面に当接する平面部26と、この平面部26の外周にあって平面部26から突出して前記各環状の隙間領域14、16に入り込むリブ27(接着用リブ)が形成されている。前記接着用リブ27の外周側は、再び電解質膜/電極積層体2から離れて、前記ガス流路3A、3Bの底部を構成する部分の高さに戻され、その外周側は平面のフランジ28に形成されている。前記接着用リブ27の平面部26からの高さは、前記外側支持枠11の板厚と略同一に形成されている。また、前記接着用リブ27の幅W1は、流路用リブ25の幅W2より大きく形成している。   The separator 3 is formed of a metal having excellent corrosion resistance, such as a stainless alloy, and a flow path rib 25 that forms a flow path 3A (3B) for supplying fuel gas or oxidant gas to the CDL 6 is an electrolyte. The film 4 is arranged at equal intervals over the entire reaction region 4A to form a waveform cross-sectional shape. At the peripheral edge of the separator 3 facing the support frame 7, there is a flat part 26 that contacts the surface of the inner peripheral annular part 12 of the outer support frame 11, and there is an outer periphery of the flat part 26 from the flat part 26. Ribs 27 (adhesive ribs) that protrude and enter the annular gap regions 14 and 16 are formed. The outer peripheral side of the bonding rib 27 is separated from the electrolyte membrane / electrode laminate 2 again and returned to the height of the portion constituting the bottom of the gas flow paths 3A and 3B. The outer peripheral side is a flat flange 28. Is formed. The height of the bonding rib 27 from the flat portion 26 is formed substantially the same as the plate thickness of the outer support frame 11. Further, the width W1 of the bonding rib 27 is formed larger than the width W2 of the flow path rib 25.

前記金属セパレータ3の表面には、金属製材料を使用する場合における問題、即ち、燃料電池内の雰囲気下で腐食が発生しやすく、電気抵抗の増大や金属イオンの溶出による電解質膜4の劣化等を克服するため、例えば、フッ素樹脂又はフッ化黒鉛粒子が共析した貴金属複合めっき皮膜を形成している。これにより、接触抵抗が低く、またガス流路3A(3B)の撥水性に優れ、良好なガス流通性が確保され、しかも、耐食性にも優れるようにしている。   On the surface of the metal separator 3, there is a problem in the case of using a metal material, that is, corrosion is likely to occur in the atmosphere in the fuel cell, an increase in electric resistance, deterioration of the electrolyte membrane 4 due to elution of metal ions, etc. In order to overcome this problem, for example, a noble metal composite plating film in which fluororesin or fluorinated graphite particles are co-deposited is formed. Thereby, the contact resistance is low, the water repellency of the gas flow path 3A (3B) is excellent, good gas flowability is ensured, and the corrosion resistance is also excellent.

前記外側支持枠11の板厚は、前記セパレータ3周縁の平面部26が接触するよう押付けられた際に、ガス流路3A(3B)を構成する流路用リブ25によりGDL6が、ガス拡散に最適な気孔率をもって押し潰される状態となる寸法に設定される。   The plate thickness of the outer support frame 11 is such that when the flat portion 26 at the periphery of the separator 3 is pressed against the GDL 6, the gas flow ribs 25 constituting the gas flow channel 3 </ b> A (3 </ b> B) can be It is set to a dimension that enables crushing with an optimal porosity.

以上の構成になる燃料電池セル1においては、電解質膜/電極積層体2の外側支持枠11の隙間領域14、16に露出する接着剤15を覆っている保護シートを剥がし、電解質膜/電極積層体2の両面にセパレータ3を配置すると、セパレータ3の流路用リブ25が反応領域4Aに配置されているGDL6の表面に接触し、セパレータ3の外周側の平面部26が外側支持枠11の内周環状部12の表面に対面し、平面部26の外周側にある接着用リブ27が外側支持枠11の隙間領域14、16に挿入される。   In the fuel cell 1 having the above configuration, the protective sheet covering the adhesive 15 exposed in the gap regions 14 and 16 of the outer support frame 11 of the electrolyte membrane / electrode laminate 2 is peeled off, and the electrolyte membrane / electrode laminate is removed. When the separators 3 are arranged on both surfaces of the body 2, the flow path ribs 25 of the separator 3 come into contact with the surface of the GDL 6 arranged in the reaction region 4 </ b> A, and the flat portion 26 on the outer peripheral side of the separator 3 is formed on the outer support frame 11. Adhesive ribs 27 facing the surface of the inner peripheral annular portion 12 and on the outer peripheral side of the flat portion 26 are inserted into the gap regions 14 and 16 of the outer support frame 11.

そして、前記三者を積層方向に押圧すると、前記セパレータ3周縁の平面部26が外側支持枠11の内周環状部12の表面に接触し、その状態で、外側支持枠11の板厚がガス流路3A(3B)を構成する流路用リブ25によりGDL6がガス拡散に最適な気孔率をもって押し潰され且つセパレータ3との接触抵抗も低減される。   When the three members are pressed in the laminating direction, the flat portion 26 at the periphery of the separator 3 comes into contact with the surface of the inner peripheral annular portion 12 of the outer support frame 11, and in this state, the plate thickness of the outer support frame 11 is the gas thickness. The GDL 6 is crushed with the optimal porosity for gas diffusion and the contact resistance with the separator 3 is reduced by the flow path ribs 25 constituting the flow path 3A (3B).

また、外側支持枠11の板厚と接着用リブ27の高さとは同一であるため、前記セパレータ3周縁の平面部26が外側支持枠11の内周環状部12の表面に接触させる時点では、前記隙間領域14、16に露出している接着剤に、接着用リブ27の先端面が接触して押付けられることになる。この場合における積層方向の荷重は、前記接着用リブ27と内側支持枠10との接触面および平面部26と内周環状部12の表面との接触面で受け止められ、それ以上にGDL6が流路用リブ25により押し潰されることを阻止するようにしている。接着用リブ27の先端面が接着剤により内側支持枠10に接着されることにより、接着用リブ27の内側と外側との間のシールが行われるとともに、各マニホールド20、21の周囲の環状隙間16にある接着剤に接着された図示しない接着用リブ27により各マニホールド20、21のシールが実行される。   Further, since the plate thickness of the outer support frame 11 and the height of the bonding rib 27 are the same, at the time when the flat portion 26 around the separator 3 contacts the surface of the inner peripheral annular portion 12 of the outer support frame 11, The tip surface of the bonding rib 27 comes into contact with and is pressed against the adhesive exposed in the gap regions 14 and 16. In this case, the load in the laminating direction is received by the contact surface between the bonding rib 27 and the inner support frame 10 and the contact surface between the flat surface portion 26 and the surface of the inner peripheral annular portion 12, and the GDL 6 is more than the flow path. The ribs 25 are prevented from being crushed. The tip end surface of the bonding rib 27 is bonded to the inner support frame 10 with an adhesive, whereby sealing between the inner side and the outer side of the bonding rib 27 is performed, and an annular gap around each manifold 20, 21. The manifolds 20 and 21 are sealed by an unillustrated bonding rib 27 bonded to the adhesive 16.

また、セパレータ3の接着用リブ27の幅W1を流路用リブ25の幅W2より大きくしているため、この接着部位の変形によるシール不良を防ぐことができる。即ち、接触抵抗の低減のため、流路用リブ25には一定以上の積層方向の荷重を掛ける必要があるが、この時、接着部位の接着用リブ27の幅W1を流路用リブ25の幅W2より大きくしておくことで、過度な荷重により電解質膜4や支持枠7の変形や破損、若しくは接着用リブ27の変形によるシール性低下を防止することができる。   Further, since the width W1 of the bonding rib 27 of the separator 3 is larger than the width W2 of the flow path rib 25, it is possible to prevent a sealing failure due to the deformation of the bonding portion. That is, in order to reduce the contact resistance, it is necessary to apply a load in the stacking direction of a certain level or more to the flow path rib 25. At this time, the width W1 of the bonding rib 27 of the bonding portion is set to the flow path rib 25. By making it larger than the width W2, it is possible to prevent deterioration of the sealing performance due to deformation or breakage of the electrolyte membrane 4 or the support frame 7 or deformation of the bonding rib 27 due to an excessive load.

以上のようにして形成した燃料電池セル1は、複数個毎に冷媒用セパレータを挟みながら所定数が積層され、積層端にターミナルおよびインシュレータが介在されて最端部にエンドプレートを配置して積層方向にスタッドボルト等により圧縮されて燃料電池スタックが構成される。   The fuel cells 1 formed as described above are stacked in a predetermined number with a plurality of refrigerant separators sandwiched between them, with a terminal and an insulator interposed at the stacking end and an end plate disposed at the end. The fuel cell stack is configured by being compressed in the direction by stud bolts or the like.

図3に示す第2実施例の電解質膜/電極積層体2では、内側支持枠10と外側支持枠11とがともに同一形状に形成されている。外側支持枠11には、内周環状部12および外周環状部13とその間の隙間領域14との境界部分に切り目加工30(ミシン目、切取り帯)若しくは半切込み加工を施して、隙間領域14に位置する外側支持枠11の構成部材を帯状に切取ることを可能にしている。また、同様にして、冷媒用マニホールド20およびガス用マニホールド21のいずれか一方を取囲んで環状に予め設定した幅をおいて、切り目加工30(ミシン目、切取り帯)若しくは半切込み加工を施して、外側支持枠11の構成部材を帯状に切取ることを可能にしている。   In the electrolyte membrane / electrode laminate 2 of the second embodiment shown in FIG. 3, the inner support frame 10 and the outer support frame 11 are both formed in the same shape. The outer support frame 11 is subjected to a cut process 30 (perforation, cut band) or a half cut process at a boundary portion between the inner peripheral annular part 12 and the outer peripheral annular part 13 and the gap area 14 therebetween, so that the gap area 14 is formed. It is possible to cut the constituent members of the outer support frame 11 located in a strip shape. Similarly, a cut 30 (perforation, cut band) or a half cut is applied to surround either one of the refrigerant manifold 20 and the gas manifold 21 with a predetermined width in an annular shape. The constituent members of the outer support frame 11 can be cut into a strip shape.

この電解質膜/電極積層体2では、セパレータ3と組合せて燃料電池セル1を組立てる場合には、先ず、外側支持枠11の切り目30に沿って帯状に隙間部分14、16の構成材料を取り外して、溝状に接着剤を露出させる。その後に、各セパレータ3を位置合せし、セパレータ3の接着用リブ27の先端面を露出させた接着剤に接触させて押付ければ接着剤によりセパレータ3と電解質膜/電極積層体2とが一体化でき、燃料電池セル1を組立てることができる。   In the electrolyte membrane / electrode laminate 2, when assembling the fuel battery cell 1 in combination with the separator 3, first, the constituent materials of the gap portions 14 and 16 are removed in a band shape along the cuts 30 of the outer support frame 11. Then, the adhesive is exposed in a groove shape. Thereafter, each separator 3 is aligned, and if the tip of the bonding rib 27 of the separator 3 is brought into contact with the exposed adhesive and pressed, the separator 3 and the electrolyte membrane / electrode laminate 2 are integrated by the adhesive. The fuel battery cell 1 can be assembled.

この電解質膜/電極積層体2の支持枠10、11同士の接着に用いる接着剤は、短時間に硬化するものであると、外側支持枠11を帯状に取り外すことができないため、ある程度硬化時間の長い接着剤を用いることが望ましい。また、接着剤の粘性が低い場合には、支持枠10、11同士の間から流れ出したり、セパレータ3の接着用リブ27先端面との接着時のシール性が劣ることが予想されるため、適度に粘性のある接着剤を選定する必要がある。   If the adhesive used for bonding the support frames 10 and 11 of the electrolyte membrane / electrode laminate 2 is cured in a short time, the outer support frame 11 cannot be removed in a strip shape, so that the curing time is somewhat. It is desirable to use a long adhesive. In addition, when the viscosity of the adhesive is low, it is expected that the adhesive will flow out from between the support frames 10 and 11 or the sealing performance at the time of bonding to the tip end surface of the bonding rib 27 of the separator 3 is inferior. It is necessary to select a viscous adhesive.

本実施形態においては、以下に記載する効果を奏することができる。   In the present embodiment, the following effects can be achieved.

(ア)固体高分子電解質膜4の反応領域4Aの外周環状部分に両面から接合させた支持枠7と、前記固体高分子電解質膜4の反応領域4Aを覆って積層したガス拡散層6と、を備える電解質膜/電極積層体2であり、前記支持枠7を電解質膜側10とそれに積層して接合された表面側11との少なくとも2層構造に構成し、前記表面側支持枠11は、セパレータ3の外周縁部から突出する接合突起27と嵌り合うよう表面側支持枠11の構成材を配置しない領域14、16を備え、この領域14、16には表面側支持枠11と電解質膜側の支持枠10とを接合させるための接着剤若しくは粘着剤がセパレータ3と接着可能に露出させて配置されているようにしたため、セパレータ3接合用に改めて接着剤を塗布することなくセパレータ3を接着して接合させることができる。   (A) a support frame 7 joined from both sides to the outer peripheral annular portion of the reaction region 4A of the solid polymer electrolyte membrane 4, a gas diffusion layer 6 laminated so as to cover the reaction region 4A of the solid polymer electrolyte membrane 4, The support frame 7 is configured to have at least a two-layer structure of an electrolyte membrane side 10 and a surface side 11 laminated and bonded thereto, and the surface side support frame 11 includes: The surface side support frame 11 and the electrolyte membrane side are provided in the regions 14 and 16 in which the constituent members of the surface side support frame 11 are not disposed so as to be fitted with the joint protrusions 27 protruding from the outer peripheral edge of the separator 3. Since the adhesive or pressure-sensitive adhesive for bonding the support frame 10 to the separator 3 is disposed so as to be capable of bonding to the separator 3, the separator 3 can be connected without applying the adhesive again for bonding the separator 3. It can be to bonding.

(イ)表面側支持枠11の領域14、16に露出させて配置されている接着剤もしくは粘着剤は、剥離可能な保護部材で保護されていることにより、接着剤の接着力の低下を抑制できる。   (A) The adhesive or pressure-sensitive adhesive that is exposed in the regions 14 and 16 of the front-side support frame 11 is protected by a peelable protective member, thereby suppressing a decrease in the adhesive strength of the adhesive. it can.

(ウ)表面側支持枠11の表面側支持枠11の構成材を配置しない領域14、16は、前記領域14、16の境界に切り目加工30若しくは半切込み加工を施した表面側支持枠11を電解質膜側の支持枠10に接合させるか、若しくは、接合させた状態の表面側支持枠11の前記領域14、16の境界に切り目加工30若しくは半切込み加工を施し、前記領域14、16の支持枠構成材を切り目若しくは半切込みに沿って取除いて形成することにより、表面側支持枠11として通常500[μm]以下の薄いシートであり、切り目30若しくは半切込みを入れた部位に沿って剥がすことで接着剤を露出させることができ、燃料電池セル1の組立性を向上させることができる。   (C) The regions 14 and 16 where the constituent members of the surface-side support frame 11 of the surface-side support frame 11 are not disposed are the surface-side support frame 11 that has been subjected to a cut 30 or a half-cut process at the boundary between the regions 14 and 16. The support frame 10 is joined to the support frame 10 on the electrolyte membrane side, or the boundary between the regions 14 and 16 of the surface-side support frame 11 in the joined state is subjected to a cut process 30 or a half-cut process. By removing and forming the frame constituent material along the cut or half cut, the surface side support frame 11 is usually a thin sheet of 500 [μm] or less, and is peeled off along the cut 30 or half cut. Thus, the adhesive can be exposed, and the assemblability of the fuel cell 1 can be improved.

(エ)固体高分子電解質膜4の反応領域4Aの外周環状部分に両面から支持枠7を接合させる一方、前記固体高分子電解質膜4の反応領域4Aを覆ってガス拡散層6を積層した電解質膜/電極積層体2と、電解質膜/電極積層体2の両側に積層されて前記支持枠7に外周縁部が接着により接合されるセパレータ3とを備えた燃料電池セル1において、前記支持枠7を電解質膜側10とそれに積層して接合された表面側11との少なくとも2層構造に構成し、前記表面側支持枠11に、セパレータ3の外周縁部から突出する接合突起27と嵌り合うよう表面側支持枠11の構成材を配置しない領域14、16を設け、この領域14、16には表面側支持枠11と電解質膜側の支持枠10とを接合させるための接着剤若しくは粘着剤を露出させ、前記領域14、16の接着剤若しくは粘着剤により電解質膜/電極積層体2とセパレータ3の外周縁部から突出する接合突起27とを接合させることにより、セパレータ3と電解質膜/電極積層体2とは接合できるだけでなく、接合部分でガスのシール機能も効果的に発揮させることができる。即ち、セパレータ3の周縁の平面部26と接着するよりも、接合突起による接着用リブ27を形成させることで、スタックとしてセル1を積層して積層方向に荷重をかけた際に、接着部位に前記積層荷重を作用させることができ、シール機能を向上できる。   (D) An electrolyte in which a support frame 7 is joined from both sides to the outer peripheral annular portion of the reaction region 4A of the solid polymer electrolyte membrane 4 while a gas diffusion layer 6 is laminated so as to cover the reaction region 4A of the solid polymer electrolyte membrane 4 In the fuel cell 1 comprising the membrane / electrode laminate 2 and the separator 3 laminated on both sides of the electrolyte membrane / electrode laminate 2 and having an outer peripheral edge bonded to the support frame 7 by adhesion. 7 is configured to have at least a two-layer structure of an electrolyte membrane side 10 and a surface side 11 laminated and bonded thereto, and is fitted to the surface side support frame 11 with a bonding protrusion 27 protruding from the outer peripheral edge of the separator 3. The regions 14 and 16 where the constituent material of the surface side support frame 11 is not disposed are provided, and the adhesives or pressure-sensitive adhesives for bonding the surface side support frame 11 and the support frame 10 on the electrolyte membrane side to these regions 14 and 16. To expose The separator 3 and the electrolyte membrane / electrode laminate 2 are bonded to each other by bonding the electrolyte membrane / electrode laminate 2 and the joint protrusion 27 protruding from the outer peripheral edge of the separator 3 with the adhesive or adhesive of the regions 14 and 16. Not only can be joined, but also a gas sealing function can be effectively exhibited at the joined portion. That is, rather than adhering to the flat portion 26 at the periphery of the separator 3, the bonding rib 27 is formed by the bonding protrusion, so that when the cells 1 are stacked as a stack and a load is applied in the stacking direction, The lamination load can be applied, and the sealing function can be improved.

(オ)セパレータ3の外周縁部から突出する接合突起27の幅は、反応領域4Aに反応ガスを供給するようセパレータ3に形成されたガス流路3A、3B間のリブ25の幅より大きく形成すると、この接着部位の変形によるシール不良、即ち、GDL6とセパレータ3との接触抵抗を低減するため、反応流路リブ25には一定以上の荷重を掛ける必要があるが、この時、接着部位のリブ27の幅を反応流路リブ25より大きくすることで過度な荷重により電解質膜4や支持枠7の変形や破損、もしくはリブ27の変形によるシール性低下を防止することができる。   (E) The width of the bonding protrusion 27 protruding from the outer peripheral edge of the separator 3 is larger than the width of the rib 25 between the gas flow paths 3A and 3B formed in the separator 3 so as to supply the reaction gas to the reaction region 4A. Then, in order to reduce the sealing failure due to the deformation of the adhesion part, that is, the contact resistance between the GDL 6 and the separator 3, it is necessary to apply a certain load to the reaction flow path rib 25. By making the width of the rib 27 larger than that of the reaction flow path rib 25, it is possible to prevent the electrolyte membrane 4 and the support frame 7 from being deformed or damaged by an excessive load, or the sealing performance from being lowered due to the deformation of the rib 27.

(カ)セパレータ3の外周縁部から突出する接合突起27の高さは、表面側支持枠11の板厚と同等に形成し、燃料電池セル1として電解質膜/電極積層体2に接合された際にセパレータ3のガス流路3A、3B間のリブ25による反応領域4Aに配置されたガス拡散層6の圧縮代を設定するようにすると、最適なGDL6の潰し量を決定することが可能になる。GDL6の潰し量が少ない、すなわちGDL6に加わる面圧が小さいとセパレータ3とGDL6間に発生する接触抵抗が大きくなり発電性能が低下する。一方、GDL6を潰しすぎるとGDL6のガス透過性や水の排水性が低下し、これも発電性能の低下に繋がる。   (F) The height of the joining protrusion 27 projecting from the outer peripheral edge of the separator 3 was formed to be equal to the plate thickness of the front-side support frame 11 and joined to the electrolyte membrane / electrode stack 2 as the fuel cell 1. When the compression allowance of the gas diffusion layer 6 disposed in the reaction region 4A by the rib 25 between the gas flow paths 3A and 3B of the separator 3 is set, it is possible to determine the optimum amount of GDL 6 to be crushed. Become. If the amount of crushing of the GDL 6 is small, that is, if the surface pressure applied to the GDL 6 is small, the contact resistance generated between the separator 3 and the GDL 6 is increased and the power generation performance is lowered. On the other hand, when GDL6 is crushed too much, the gas permeability of GDL6 and the drainage of water will fall, and this will also lead to the fall of power generation performance.

(第2実施形態)
図4は、本発明を適用した電解質膜/電極積層体および燃料電池セルの第2実施形態を示す燃料電池セルの断面図である。本実施形態においては、電解質膜/電極積層体の交換を容易にしたものである。なお、図1〜図3と同一部材には同一符号を付してその説明を省略ないし簡略化する。
(Second Embodiment)
FIG. 4 is a cross-sectional view of a fuel cell showing a second embodiment of an electrolyte membrane / electrode stack and a fuel cell to which the present invention is applied. In this embodiment, the exchange of the electrolyte membrane / electrode laminate is facilitated. In addition, the same code | symbol is attached | subjected to the same member as FIGS. 1-3, and the description is abbreviate | omitted or simplified.

図4において、本実施形態の燃料電池セル1においては、電解質膜/電極積層体2は、一方のセパレータ3に対しては第1実施形態と同様に接着により結合してシーリングするよう構成し、他方のセパレータ31に対しては接着することなく、ガスケット32によりシーリングするよう構成している。   In FIG. 4, in the fuel cell 1 of the present embodiment, the electrolyte membrane / electrode laminate 2 is configured to be bonded and sealed to one separator 3 by adhesion similarly to the first embodiment, The other separator 31 is sealed with a gasket 32 without being bonded.

前記ガスケット32は、セパレータ31若しくは外側支持枠11のいずれか一方に固定して配置するようにしてもよい。ガスケット32の位置としては、他方のセパレータ3の接着用リブ27が配置されている領域とすることにより、セル積層により燃料電池スタックを構成する際に加わるガスケット32を介在させて積層荷重が、接着用リブ27と接着剤との接触を強め、接着部位の気密性を向上させる。   The gasket 32 may be fixedly disposed on either the separator 31 or the outer support frame 11. The gasket 32 is positioned in the region where the bonding ribs 27 of the other separator 3 are disposed, so that the stacking load is bonded by interposing the gasket 32 applied when the fuel cell stack is formed by cell stacking. The contact between the ribs 27 and the adhesive is strengthened, and the airtightness of the bonded portion is improved.

なお、電解質膜/電極積層体2の支持枠7と接着されたセパレータ3の背面を隣接するセパレータ33と、セパレータ同士で形成された空間34に接着剤を充填して接着させてシールすると、隣接するセパレータ33との間に形成される流路35には、温調用媒体等を流すことができる。   In addition, when the back surface of the separator 3 bonded to the support frame 7 of the electrolyte membrane / electrode laminate 2 is bonded to the adjacent separator 33 and the space 34 formed between the separators is filled with an adhesive and sealed, it is adjacent. A temperature adjusting medium or the like can flow through the flow path 35 formed between the separator 33 and the separator 33.

この実施形態においては、電解質膜/電極積層体2の交換が必要となった場合には、該当部分の燃料電池セル1をガスケット32が存在する部分よりセパレータ31側と電解質膜/電極積層体2側とに分割し、次いで、接着されている電解質膜/電極積層体2を接着部分で分離させて取り外すことができる。その後、接着されていたセパレータ3の接着用リブ27の先端面に残っている接着剤を清掃により取除いて、交換用に用意した電解質膜/電極積層体2を接着させることにより、交換が完了する。なお、両側のセパレータ3と電解質膜/電極積層体2が接着されている場合には、両側のセパレータ3との接着部位を切り離す必要がある。   In this embodiment, when the electrolyte membrane / electrode stack 2 needs to be replaced, the fuel cell 1 of the relevant portion is separated from the portion where the gasket 32 is present on the separator 31 side and the electrolyte membrane / electrode stack 2. Then, the electrolyte membrane / electrode laminate 2 bonded to each other can be separated at the bonded portion and removed. Thereafter, the adhesive remaining on the front end surface of the bonding rib 27 of the separator 3 that has been bonded is removed by cleaning, and the electrolyte membrane / electrode laminate 2 prepared for replacement is bonded to complete the replacement. To do. When the separators 3 on both sides and the electrolyte membrane / electrode laminate 2 are bonded, it is necessary to cut off the bonding site between the separators 3 on both sides.

本実施形態においては、第1実施形態における効果(ア)〜(カ)に加えて以下に記載した効果を奏することができる。   In the present embodiment, in addition to the effects (a) to (f) in the first embodiment, the following effects can be achieved.

(キ)セパレータ3、31のいずれか一方(31)は、支持枠7とセパレータ31周縁部との間にガスケット32を介して接合されていることにより、電解質膜/電極積層体2の交換が容易となる。   (G) One of the separators 3 and 31 (31) is joined via the gasket 32 between the support frame 7 and the peripheral edge of the separator 31 so that the electrolyte membrane / electrode laminate 2 can be replaced. It becomes easy.

本発明の一実施形態を示す燃料電池セルの断面図。1 is a cross-sectional view of a fuel cell showing an embodiment of the present invention. 同じく第1実施例の電解質膜/電極積層体の平面図。The top view of the electrolyte membrane / electrode laminated body of 1st Example similarly. 同じく第2実施例の電解質膜/電極積層体の断面図。Similarly, sectional drawing of the electrolyte membrane / electrode laminated body of 2nd Example. 本発明の第2実施形態を示す燃料電池セルの断面図。Sectional drawing of the fuel battery cell which shows 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 燃料電池セル
2 電解質膜/電極積層体
3、31、33 セパレータ
4 電解質膜
5 触媒層
6 ガス拡散層、GDL
7 支持枠
10 内側支持枠
11 外側支持枠
12 内周環状部
13 外周環状部
14、16 領域、隙間領域
15 接着剤若しくは粘着剤
20、21 マニホールド
25 流路用リブ
26 平面部
27 接着用リブ
32 ガスケット
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Electrolyte membrane / electrode laminated body 3, 31, 33 Separator 4 Electrolyte membrane 5 Catalyst layer 6 Gas diffusion layer, GDL
7 Support frame 10 Inner support frame 11 Outer support frame 12 Inner peripheral annular portion 13 Outer peripheral annular portion 14, 16 region, gap region 15 Adhesive or adhesive 20, 21 Manifold 25 Channel rib 26 Planar portion 27 Adhesive rib 32 gasket

Claims (7)

固体高分子電解質膜の反応領域の外周環状部分に両面から接合させた支持枠と、
前記固体高分子電解質膜の反応領域を覆って積層したガス拡散層と、を備える電解質膜/電極積層体であり、
前記支持枠を電解質膜側とそれに積層して接合された表面側との少なくとも2層構造に構成し、
前記表面側支持枠は、セパレータの外周縁部から突出する接合突起と嵌り合うよう表面側支持枠の構成材を配置しない領域を備え、この領域には表面側支持枠と電解質膜側の支持枠とを接合させるための接着剤若しくは粘着剤がセパレータと接着可能に露出させて配置されていることを特徴とする燃料電池セルの電解質膜/電極積層体。
A support frame joined from both sides to the outer peripheral annular portion of the reaction region of the solid polymer electrolyte membrane;
An electrolyte membrane / electrode laminate comprising a gas diffusion layer laminated over the reaction region of the solid polymer electrolyte membrane,
The support frame is configured in an at least two-layer structure of an electrolyte membrane side and a surface side laminated and bonded thereto,
The surface-side support frame includes a region in which the constituent material of the surface-side support frame is not disposed so as to be fitted to the joint protrusion protruding from the outer peripheral edge of the separator, and in this region, the surface-side support frame and the electrolyte membrane side support frame An electrolyte membrane / electrode laminate for a fuel cell, wherein an adhesive or a pressure-sensitive adhesive for bonding to the separator is exposed so as to be able to adhere to the separator.
前記表面側支持枠の領域に露出させて配置されている接着剤もしくは粘着剤は、剥離可能な保護部材で保護されていることを特徴とする請求項1に記載の燃料電池セルの電解質膜/電極積層体。   2. The electrolyte membrane / fuel cell of claim 1, wherein the adhesive or pressure-sensitive adhesive that is exposed in the region of the front-side support frame is protected by a peelable protective member. Electrode laminate. 前記表面側支持枠の表面側支持枠の構成材を配置しない領域は、前記領域の境界に切り目加工若しくは半切込み加工を施した表面側支持枠を電解質膜側の支持枠に接合させるか、若しくは、接合させた状態の表面側支持枠の前記領域の境界に切り目加工若しくは半切込み加工を施し、前記領域の支持枠構成材を切り目若しくは半切込みに沿って取除いて形成することを特徴とする請求項1に記載の燃料電池セルの電解質膜/電極積層体。   In the region where the constituent material of the surface side support frame of the surface side support frame is not disposed, the surface side support frame subjected to the cut processing or the half cut processing at the boundary of the region is joined to the support frame on the electrolyte membrane side, or The boundary of the region of the surface-side support frame in the joined state is cut or half-cut, and the support frame constituent material in the region is removed along the cut or half-cut. The electrolyte membrane / electrode laminate of the fuel cell according to claim 1. 固体高分子電解質膜の反応領域の外周環状部分に両面から支持枠を接合させる一方、前記固体高分子電解質膜の反応領域を覆ってガス拡散層を積層した電解質膜/電極積層体と、電解質膜/電極積層体の両側に積層されて前記支持枠に外周縁部が接着により接合されるセパレータとを備えた燃料電池セルにおいて、
前記支持枠を電解質膜側とそれに積層して接合された表面側との少なくとも2層構造に構成し、
前記表面側支持枠に、セパレータの外周縁部から突出する接合突起と嵌り合うよう表面側支持枠の構成材を配置しない領域を設け、この領域には表面側支持枠と電解質膜側の支持枠とを接合させるための接着剤若しくは粘着剤を露出させ、
前記領域の接着剤若しくは粘着剤により電解質膜/電極積層体とセパレータの外周縁部から突出する接合突起とを接合させることを特徴とする燃料電池セル。
An electrolyte membrane / electrode laminate in which a support frame is joined from both sides to an outer peripheral annular portion of a reaction region of a solid polymer electrolyte membrane, and a gas diffusion layer is laminated to cover the reaction region of the solid polymer electrolyte membrane, and an electrolyte membrane In a fuel cell comprising: a separator that is laminated on both sides of an electrode laminate and has an outer peripheral edge bonded to the support frame by bonding;
The support frame is configured in an at least two-layer structure of an electrolyte membrane side and a surface side laminated and bonded thereto,
The surface-side support frame is provided with a region in which the constituent material of the surface-side support frame is not disposed so as to be fitted to the joint protrusion protruding from the outer peripheral edge of the separator, and in this region, the surface-side support frame and the electrolyte membrane side support frame To expose the adhesive or adhesive to join
A fuel battery cell comprising: an electrolyte membrane / electrode laminate and a joining protrusion protruding from an outer peripheral edge of a separator by an adhesive or a pressure sensitive adhesive in the region.
前記セパレータの外周縁部から突出する接合突起の幅は、反応領域に反応ガスを供給するようセパレータに形成されたガス流路間のリブ幅より大きく形成したことを特徴とする請求項4に記載の燃料電池セル。   The width of the joint protrusion protruding from the outer peripheral edge of the separator is formed larger than the rib width between the gas flow paths formed in the separator so as to supply the reaction gas to the reaction region. Fuel cell. 前記セパレータの外周縁部から突出する接合突起の高さは、表面側支持枠の板厚と同等に形成し、燃料電池セルとして電解質膜/電極積層体に接合された際にセパレータのガス流路間のリブによる反応領域に配置されたガス拡散層の圧縮代を設定するものであることを特徴とする請求項4または請求項5に記載の燃料電池セル。   The height of the joint protrusion protruding from the outer peripheral edge of the separator is formed to be equal to the plate thickness of the front-side support frame, and when the fuel cell is joined to the electrolyte membrane / electrode laminate, the separator gas flow path 6. The fuel cell according to claim 4 or 5, wherein a compression allowance of a gas diffusion layer disposed in a reaction region by a rib therebetween is set. 前記セパレータのいずれか一方は、支持枠とセパレータ周縁部との間にガスケットを介して接合されていることを特徴とする請求項4から請求項6のいずれか一つに記載の燃料電池セル。   The fuel cell according to any one of claims 4 to 6, wherein any one of the separators is joined between a support frame and a peripheral edge of the separator via a gasket.
JP2005212476A 2005-07-22 2005-07-22 Electrolyte membrane/electrode assembly and cell of fuel cell Pending JP2007035296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005212476A JP2007035296A (en) 2005-07-22 2005-07-22 Electrolyte membrane/electrode assembly and cell of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005212476A JP2007035296A (en) 2005-07-22 2005-07-22 Electrolyte membrane/electrode assembly and cell of fuel cell

Publications (1)

Publication Number Publication Date
JP2007035296A true JP2007035296A (en) 2007-02-08

Family

ID=37794316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005212476A Pending JP2007035296A (en) 2005-07-22 2005-07-22 Electrolyte membrane/electrode assembly and cell of fuel cell

Country Status (1)

Country Link
JP (1) JP2007035296A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080437A (en) * 2008-08-27 2010-04-08 Dainippon Printing Co Ltd Electrolyte membrane-catalyst layer laminate with reinforcing sheet and polymer electrolyte fuel cell equipped with the same
JP2010272474A (en) * 2009-05-25 2010-12-02 Nissan Motor Co Ltd Fuel cell module and its manufacturing method
WO2011114811A1 (en) * 2010-03-17 2011-09-22 日産自動車株式会社 Fuel cell
WO2012137773A1 (en) * 2011-04-05 2012-10-11 日産自動車株式会社 Fuel cell
WO2012165257A1 (en) * 2011-05-30 2012-12-06 トヨタ車体 株式会社 Fuel cell separator plate, fuel cell separator, fuel cell, and method for manufacturing fuel cell separator plate
WO2013141079A1 (en) * 2012-03-21 2013-09-26 日産自動車株式会社 Fuel cell
JP2015103407A (en) * 2013-11-26 2015-06-04 本田技研工業株式会社 Fuel cell
EP2584636A4 (en) * 2010-06-15 2015-11-04 Nissan Motor Fuel cell
EP2924787A4 (en) * 2012-11-21 2015-12-16 Nissan Motor Fuel-cell single cell
JP2016058156A (en) * 2014-09-05 2016-04-21 トヨタ車体株式会社 Fuel cell stack
JP2018125258A (en) * 2017-02-03 2018-08-09 本田技研工業株式会社 Metal separator for fuel cell and power generation cell
WO2021019974A1 (en) * 2019-07-30 2021-02-04 Nok株式会社 Fuel cell and method for manufacturing fuel cell
JP2022144978A (en) * 2021-03-19 2022-10-03 本田技研工業株式会社 Adhesive selection method and power generation cell
US12003005B2 (en) 2021-03-19 2024-06-04 Honda Motor Co., Ltd. Method of selecting adhesive and power generation cell

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080437A (en) * 2008-08-27 2010-04-08 Dainippon Printing Co Ltd Electrolyte membrane-catalyst layer laminate with reinforcing sheet and polymer electrolyte fuel cell equipped with the same
JP2010272474A (en) * 2009-05-25 2010-12-02 Nissan Motor Co Ltd Fuel cell module and its manufacturing method
WO2011114811A1 (en) * 2010-03-17 2011-09-22 日産自動車株式会社 Fuel cell
CN102484264A (en) * 2010-03-17 2012-05-30 日产自动车株式会社 Fuel cell
US10033058B2 (en) 2010-03-17 2018-07-24 Nissan Motor Co., Ltd. Fuel cell
JP5445986B2 (en) * 2010-03-17 2014-03-19 日産自動車株式会社 Fuel cell
US9190692B2 (en) 2010-03-17 2015-11-17 Nissan Motor Co., Ltd. Fuel cell
EP2584636A4 (en) * 2010-06-15 2015-11-04 Nissan Motor Fuel cell
WO2012137773A1 (en) * 2011-04-05 2012-10-11 日産自動車株式会社 Fuel cell
JP2012221619A (en) * 2011-04-05 2012-11-12 Nissan Motor Co Ltd Fuel battery cell
US10256486B2 (en) 2011-04-05 2019-04-09 Nissan Motor Co., Ltd. Fuel cell
JP2012248472A (en) * 2011-05-30 2012-12-13 Toyota Auto Body Co Ltd Fuel cell separator plate, fuel cell separator, fuel cell, and manufacturing method of fuel cell separator plate
WO2012165257A1 (en) * 2011-05-30 2012-12-06 トヨタ車体 株式会社 Fuel cell separator plate, fuel cell separator, fuel cell, and method for manufacturing fuel cell separator plate
EP2830130A4 (en) * 2012-03-21 2015-03-25 Nissan Motor Fuel cell
JPWO2013141079A1 (en) * 2012-03-21 2015-08-03 日産自動車株式会社 Fuel cell
EP2830130A1 (en) * 2012-03-21 2015-01-28 Nissan Motor Co., Ltd. Fuel cell
CN104205450A (en) * 2012-03-21 2014-12-10 日产自动车株式会社 Fuel cell
WO2013141079A1 (en) * 2012-03-21 2013-09-26 日産自動車株式会社 Fuel cell
US9318753B2 (en) 2012-03-21 2016-04-19 Nissan Motor Co., Ltd. Fuel cell
US9812728B2 (en) 2012-11-21 2017-11-07 Nissan Motor Co., Ltd. Fuel-cell single cell
EP2924787A4 (en) * 2012-11-21 2015-12-16 Nissan Motor Fuel-cell single cell
JP2015103407A (en) * 2013-11-26 2015-06-04 本田技研工業株式会社 Fuel cell
JP2016058156A (en) * 2014-09-05 2016-04-21 トヨタ車体株式会社 Fuel cell stack
JP2018125258A (en) * 2017-02-03 2018-08-09 本田技研工業株式会社 Metal separator for fuel cell and power generation cell
US11329297B2 (en) 2017-02-03 2022-05-10 Honda Motor Co., Ltd. Fuel cell metal separator and power generation cell
WO2021019974A1 (en) * 2019-07-30 2021-02-04 Nok株式会社 Fuel cell and method for manufacturing fuel cell
JPWO2021019974A1 (en) * 2019-07-30 2021-02-04
JP7181409B2 (en) 2019-07-30 2022-11-30 Nok株式会社 FUEL BATTERY CELL AND METHOD FOR MANUFACTURING FUEL BATTERY CELL
JP2022144978A (en) * 2021-03-19 2022-10-03 本田技研工業株式会社 Adhesive selection method and power generation cell
US12003005B2 (en) 2021-03-19 2024-06-04 Honda Motor Co., Ltd. Method of selecting adhesive and power generation cell

Similar Documents

Publication Publication Date Title
JP2007035296A (en) Electrolyte membrane/electrode assembly and cell of fuel cell
EP1624515B1 (en) Unitized electrochemical cell sub-assembly and the method of making the same
CA2732724C (en) Electrolyte membrane/electrode structure and fuel cell
EP1341249B1 (en) Constituent part for fuel cell
JP5186754B2 (en) Fuel cell
JP5683433B2 (en) Fuel cell stack
JP5482991B2 (en) Fuel cell sealing structure
US6743542B2 (en) Interfacial and edge seals for unitized electrode assemblies of fuel cell stack assembly
JP2002151112A (en) Fuel cell and its disassembling method
JP2005317505A (en) Fuel cell and its separator
JP2007207644A (en) Fuel cell, and method of manufacturing same
JP2008078050A (en) Metallic separator for fuel cell and fuel cell stack
JP2007048568A (en) Membrane/electrode assembly of fuel cell, fuel cell, and manufacturing method of membrane/electrode assembly
JP2007018958A (en) Electrolyte membrane/electrode stack and cell of fuel cell
JP2010040169A (en) Fuel cell and manufacturing method of same
JP2008146932A (en) Membrane-electrode assembly, and polymer electrolyte fuel cell equipped with this
JP2007103152A (en) Fuel cell
JP2006216400A (en) Seal structure of separator for fuel cell, seal structure between two or more members
US10056619B2 (en) Fuel cell having a recess in the separator
JP5604404B2 (en) Fuel cell
JP5447777B2 (en) Fuel cell
JP2009158241A (en) Fuel cell
JP2008226682A (en) Fuel cell, its manufacturing method, and fuel cell stack
JP2006351342A (en) Fuel cell stack, seal member of fuel cell stack, and manufacturing method of fuel cell stack
JP5242189B2 (en) Fuel cell