JP2007033027A - Method of diagnosing ferrous material in concrete structure with ferrous material embedded therein - Google Patents

Method of diagnosing ferrous material in concrete structure with ferrous material embedded therein Download PDF

Info

Publication number
JP2007033027A
JP2007033027A JP2005211986A JP2005211986A JP2007033027A JP 2007033027 A JP2007033027 A JP 2007033027A JP 2005211986 A JP2005211986 A JP 2005211986A JP 2005211986 A JP2005211986 A JP 2005211986A JP 2007033027 A JP2007033027 A JP 2007033027A
Authority
JP
Japan
Prior art keywords
iron
magneto
impedance effect
based material
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005211986A
Other languages
Japanese (ja)
Other versions
JP4619884B2 (en
Inventor
Kazumi Toyoda
一実 豊田
Kazuyuki Izawa
和幸 井澤
Satoru Nakayama
哲 中山
Masanori Ikeda
正徳 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi High Tech Science Corp
Uchihashi Estec Co Ltd
Original Assignee
Tohoku Electric Power Co Inc
Uchihashi Estec Co Ltd
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Uchihashi Estec Co Ltd, SII NanoTechnology Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP2005211986A priority Critical patent/JP4619884B2/en
Publication of JP2007033027A publication Critical patent/JP2007033027A/en
Application granted granted Critical
Publication of JP4619884B2 publication Critical patent/JP4619884B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which enables the easy inspection or deterioration diagnosis of the reinforcing rod of a reinforced concrete structure using a magnetic impedance effect sensor. <P>SOLUTION: A sensor is constituted by providing a coil 7x for a bias magnetic field to a magnetic impedance effect element 1x so as to detect the output of the element through a detection circuit. This sensor is used to scan the surface of a ferrous material embedded concrete structure C while passing an exciting current through the magnetic impedance effect element to apply voltage to the bias magnetic field coil to inspect the ferrous material (g) or diagnosing the deterioration of the ferrous material (g). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は鉄系材埋設コンクリート構造物の鉄系材の診断方法に関し、例えば埋設鉄系パイプ、鉄筋等の埋設位置の探査や劣化診断に使用するものである。   The present invention relates to a method for diagnosing an iron-based material of an iron-based material-buried concrete structure, and is used, for example, for exploration of a buried position of a buried iron-based pipe, a reinforcing bar or the like and for deterioration diagnosis.

鉄筋コンクリートの鉄筋を探査する方法として、鉄筋に交流電流を通電し、鉄筋コンクリート表面におけるその電流に基づく交流磁界を測定し、磁界がピークとなるルートを探査していくことが、いわゆる電磁的鉄筋探査法として知られている。
また、鉄筋の腐食度を測定する方法として、自然電位測定法が知られており、図7に示すように、鉄筋gにリード電線wにより電位差計mを介して照合電極s(硫酸銅電極)を接続し、この照合電極sをコンクリートCの鉄筋埋設ルートに沿い移動させ、その移動中の電位を測定し、測定電位E(v)がほ0.20<Eの場合、90%以上の確率で腐食無し、ほ0.35≦E≦−0.20の場合、不確定、E<0.35の場合、90%以上の確率で腐食在りと診断している(例えば、非特許文献1)
The so-called electromagnetic rebar exploration method is a method of exploring reinforced concrete rebars by passing an alternating current through the rebar, measuring the alternating magnetic field based on the current on the reinforced concrete surface, and exploring the route where the magnetic field peaks. Known as.
As a method for measuring the corrosion degree of a reinforcing bar, a natural potential measuring method is known. As shown in FIG. 7, a reference electrode s (copper sulfate electrode) is connected to a reinforcing bar g by a lead wire w through a potentiometer m. Is connected, and the reference electrode s is moved along the reinforcing bar embedding route of the concrete C, and the electric potential during the movement is measured. When the measured electric potential E (v) is about 0.20 <E, the probability is 90% or more. No corrosion, approximately 0.35 ≦ E ≦ −0.20, uncertain, and when E <0.35, the presence of corrosion is diagnosed with a probability of 90% or more (for example, Non-Patent Document 1)

しかしながら、電磁的鉄筋探査法では、コンクリート埋設鉄系材への通電が可能な場合にしか適用できず、探査対象に制限がある。
また、自然電位測定法では、不確定範囲が広く、迷走電流の影響も受け易く問題がある。
近来、磁気センサとして磁気インピーダンス効果を利用したセンサが開発されている。 この磁気インピーダンス効果を利用したセンサは、ホールセンサ、磁気抵抗素子、フラックスゲートセンサ等に較べて小型、高感度、高空間分解能、高速応答性であり、このセンサを利用した磁気検出方法が提案されている。
この磁気インピーダンス効果センサを使用して漏洩磁束探傷試験法により鋼板内の欠陥を検出することも報告されている(非特許文献2)。
しかしながら、この方法では被検査体に磁界を印加する必要があり、検査対象に制限がある。
土木工学ハンドブックI,土木学会編,第9章維持管理,p1021 藤本 幸二、毛利 佳年雄,MAG−98−86,p39〜43
However, the electromagnetic rebar exploration method can be applied only when current can be applied to the concrete-embedded iron-based material, and the exploration target is limited.
In addition, the self-potential measurement method has a problem that it has a wide uncertainty range and is easily affected by stray current.
Recently, sensors using the magneto-impedance effect have been developed as magnetic sensors. Sensors using this magneto-impedance effect are smaller, more sensitive, have higher spatial resolution, and faster response than Hall sensors, magnetoresistive elements, fluxgate sensors, etc., and a magnetic detection method using this sensor has been proposed. ing.
It has also been reported that a defect in a steel plate is detected by a leakage magnetic flux testing method using this magneto-impedance effect sensor (Non-patent Document 2).
However, in this method, it is necessary to apply a magnetic field to the object to be inspected, and the inspection object is limited.
Civil Engineering Handbook I, Japan Society of Civil Engineers, Chapter 9, Maintenance Management, p1021 Koji Fujimoto, Yoshio Mohri, MAG-98-86, p39-43

ところで、本発明者等の鋭意検討結果によれば、鉄系の被検査体を磁化することなく磁気インピーダンス効果型センサでスキャニングするだけでも、被検査体の欠陥を充分な精度で検出できる。
漏洩磁束探傷試験方法とは異なり、磁化することなく欠陥を検出できることは、磁気インピーダンス効果素子に印加するバイアス磁界が磁性体である鉄系被検査体にバイパスし、被検査体の欠陥に応じた被検査体のリラクタンス変化によりそのバイアス磁界が変化してセンサ出力が変化されることが関与している。
By the way, according to the result of earnest examination by the present inventors, it is possible to detect the defect of the object to be inspected with sufficient accuracy even by scanning the iron-based object to be inspected by the magneto-impedance effect type sensor without magnetizing.
Unlike the magnetic flux leakage test method, the ability to detect defects without magnetizing means that the bias magnetic field applied to the magneto-impedance effect element bypasses the iron-based inspected object, which is a magnetic material, and responds to the defect in the inspected object. It is involved that the sensor output is changed by changing the bias magnetic field due to the reluctance change of the object to be inspected.

本発明の目的は、前記知見に基づき鉄筋コンクリート構造物の鉄筋の探査や劣化診断を磁気インピーダンス効果センサを使用して容易に行い得る方法を提供することにある。   An object of the present invention is to provide a method that can easily perform rebar search and deterioration diagnosis of a reinforced concrete structure using a magnetic impedance effect sensor based on the above knowledge.

請求項1に係る鉄系材埋設コンクリート構造物の鉄系材の診断方法は、磁気インピーダンス効果素子にバイアス磁界用コイルを付設しその素子の出力を検波回路に通して検出するセンサを、磁気インピーダンス効果素子に励磁電流を通電しバイアス磁界用コイルに電圧を印加しつつ鉄系材埋設コンクリート構造物の表面にスキャニングさせて鉄系材を探査することを特徴とする。
請求項2に係る鉄系材埋設コンクリート構造物の鉄系材の診断方法は、磁気インピーダンス効果素子にバイアス磁界用コイルを付設しその素子の出力を検波回路に通して検出するセンサを、磁気インピーダンス効果素子に励磁電流を通電しバイアス磁界用コイルに電圧を印加しつつ鉄系材埋設コンクリート構造物の埋設鉄系材上の構造物表面にスキャニングさせて鉄系材の長手方向に沿っての劣化度を診断することを特徴とする。
請求項3に係る鉄系材埋設コンクリート構造物の鉄系材の診断方法は、請求項1または2の鉄系材埋設コンクリート構造物の鉄系材の診断方法において、軸方向を相互に異ならせて多数箇の磁気インピーダンス効果素子を組み合わせた多次元磁気インピーダンス効果素子を備えたセンサを使用することを特徴とする。
請求項4に係る鉄系材埋設コンクリート構造物の鉄系材の診断方法は、請求項1〜3の何れかの鉄系材埋設コンクリート構造物の鉄系材の診断方法において、1次元〜多次元の磁気インピーダンス効果素子を並設し、それら素子の検波出力を多チャンネル化することを特徴とする。
請求項5に係る鉄系材埋設コンクリート構造物の鉄系材の診断方法は、請求項1〜4の何れかの鉄系材埋設コンクリート構造物の鉄系材の診断方法において、各チャンネルの検出信号を空間的に離れた場所に無線で送信する送信手段を付設したことを特徴とする。
According to a first aspect of the present invention, there is provided a method for diagnosing an iron-based material of an iron-based material-embedded concrete structure, wherein a magnetic impedance effect element is provided with a bias magnetic field coil and a sensor for detecting the output of the element through a detection circuit is detected by a magnetic impedance. It is characterized in that the iron-based material is searched by scanning the surface of the iron-based material embedded concrete structure while applying an exciting current to the effect element and applying a voltage to the bias magnetic field coil.
According to a second aspect of the present invention, there is provided a method for diagnosing an iron-based material in an iron-based material-embedded concrete structure, wherein a magnetic impedance effect element is provided with a bias magnetic field coil, and a sensor for detecting the output of the element through a detection circuit is detected with a magnetic impedance. Deterioration along the longitudinal direction of the iron-based material by scanning the surface of the structure on the embedded iron-based material of the iron-based material embedded concrete structure while applying an excitation current to the effect element and applying a voltage to the bias magnetic field coil It is characterized by diagnosing the degree.
The method for diagnosing an iron-based material of an iron-based material embedded concrete structure according to claim 3 is the same as the method for diagnosing an iron-based material of an iron-based material embedded concrete structure according to claim 1 or 2, wherein the axial directions are different from each other. A sensor having a multi-dimensional magneto-impedance effect element in which a number of magneto-impedance effect elements are combined.
The method for diagnosing an iron-based material in an iron-based material-buried concrete structure according to claim 4 is the method for diagnosing an iron-based material in an iron-based material-buried concrete structure according to any one of claims 1 to 3, wherein Two-dimensional magneto-impedance effect elements are arranged in parallel, and the detection output of these elements is multi-channeled.
The method for diagnosing an iron-based material of an iron-based material-embedded concrete structure according to claim 5 is the method for detecting an iron-based material of an iron-based material-buried concrete structure according to any one of claims 1 to 4, wherein each channel is detected. Transmitting means for wirelessly transmitting a signal to a spatially separated place is provided.

(1)磁気インピーダンス効果素子としてのアモルファスワイヤにおいては、円周方向に易磁化性の外殻郭を有し、励磁電流による円周方向磁界が円周方向からずらされると、周方向透磁率μθが変化し、インダクタンス及び表皮効果に基づく抵抗の変化によりインピーダンスが変化し、磁気インピーダンス効果素子の出力が変化する。而るに、埋設鉄管や鉄筋が腐食・減肉されてその透磁性等の磁気特性が変化し、コンクリート表面に移動されつつある磁気インピーダンス効果素子の励磁電流による円周方向磁界が前記埋設鉄管や鉄筋の腐食・減肉による磁気インピーダンス効果素子近傍電磁場の透磁性の変化によりその円周方向からずらされて磁気インピーダンス効果素子の出力が変化される。従って、その出力変化を腐食・減肉情報として埋設鉄系材の腐食・減肉程度を判定できる。
(2)バイアス磁界用コイルが発生するバイアス磁界に対し、埋設鉄系材もその磁界の回路の一部となり、バイアス磁界の強さが埋設鉄系材の腐食・減肉の程度に応じて変化する。このバイアス磁界が磁気インピーダンス効果素子としてのアモルファスワイヤ内を軸方向に通過するから、励磁電流による円周方向磁界が円周方向からずらされ、そのずれの程度が埋設鉄系材の腐食・減肉の程度に応じて変化される。従って、磁気インピーダンス効果素子の出力変化が埋設鉄系材の腐食・減肉の程度に相関し、その出力変化から埋設鉄系材の腐食・減肉の程度を判定できる。
(3)磁気インピーダンス効果素子を多次元の構成として埋設鉄系材の腐食・減肉上方を多方向から得ているから、埋設鉄系材が鉄筋のような線状体であっても、腐食・減肉情報を高感度で得ることができる。
(4)磁気インピーダンス効果素子の複数箇を並列に配設しており、その配設方向と直交方向に劣化診断装置をスキャニングするにあたりスキャニング回数を少なくできるから、作業工数を減少できる。
(5)多チャンネル化しており、各チャンネルの検出信号を無線方式でコンピュータに送信して埋設鉄系材の劣化状態を遠隔から容易に検出できる。
(1) An amorphous wire as a magneto-impedance effect element has an easily magnetizable outer shell in the circumferential direction, and when the circumferential magnetic field due to the excitation current is shifted from the circumferential direction, the circumferential permeability μθ Changes, the impedance changes due to a change in resistance based on the inductance and skin effect, and the output of the magneto-impedance effect element changes. Therefore, the buried iron pipe and the reinforcing bar are corroded and thinned to change their magnetic properties such as permeability, and the circumferential magnetic field due to the excitation current of the magneto-impedance effect element being moved to the concrete surface is The output of the magneto-impedance effect element is changed by shifting from the circumferential direction due to the change in permeability of the electromagnetic field near the magneto-impedance effect element due to corrosion and thinning of the reinforcing bar. Therefore, it is possible to determine the degree of corrosion / thinning of the embedded iron-based material by using the output change as the corrosion / thinning information.
(2) With respect to the bias magnetic field generated by the bias magnetic field coil, the embedded iron material also becomes a part of the circuit of the magnetic field, and the strength of the bias magnetic field changes according to the degree of corrosion and thinning of the embedded iron material. To do. Since this bias magnetic field passes through the amorphous wire as the magneto-impedance effect element in the axial direction, the circumferential magnetic field due to the excitation current is shifted from the circumferential direction, and the degree of the shift is corrosion / thinning of the embedded iron-based material. It changes according to the degree. Accordingly, the output change of the magneto-impedance effect element correlates with the degree of corrosion / thinning of the embedded iron-based material, and the degree of corrosion / thinning of the embedded iron-based material can be determined from the output change.
(3) Since the magneto-impedance effect element has a multi-dimensional structure and the corrosion / thinning of the embedded iron material is obtained from multiple directions, even if the embedded iron material is a linear object such as a reinforcing bar・ Thinning information can be obtained with high sensitivity.
(4) Since a plurality of magneto-impedance effect elements are arranged in parallel and the deterioration diagnosis apparatus is scanned in the direction orthogonal to the arrangement direction, the number of scanning operations can be reduced, so that the number of work steps can be reduced.
(5) The number of channels is increased, and the detection signal of each channel can be transmitted to a computer in a wireless manner to easily detect the deterioration state of the embedded iron-based material from a remote location.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明において使用する磁気インピーダンス効果センサの回路図を示している。
図1において、1は磁気インピーダンス効果素子であり、自発磁化の方向がワイヤ周方向に対し互いに逆方向の磁区が交互に磁壁で隔てられた構成の外殻部を有する、零磁歪乃至は負磁歪のアモルファス合金ワイヤが使用される。かかる零磁歪乃至は負磁歪のアモルファス磁性ワイヤに高周波励磁電流を流したときに発生するワイヤ両端間出力電圧中のインダクタンス電圧分は、ワイヤの横断面内に生じる円周方向磁束によって上記の円周方向に易磁化性の外殻部が円周方向に磁化されることに起因して発生する。従って、周方向透磁率μθは同外殻部の円周方向の磁化に依存する。而るに、この通電中のアモルファスワイヤの軸方向に信号磁界を作用させると、上記通電による円周方向磁束と信号磁界磁束との合成により、上記円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずれ、それだけ円周方向への磁化が生じ難くなり、上記周方向透磁率μθが変化し、上記インダクタンス電圧分が変動することになる。この変動現象は磁気インダクタンス効果と称され、これは上記高周波励磁電流(搬送波)が信号磁界(信号波)で変調される現象ということができる。更に、上記通電電流の周波数がMHzオ−ダになると、高周波表皮効果が大きく現れ、表皮深さδ=(2ρ/wμθ1/2(μθは前記した通り円周方向透磁率、ρは電気抵抗率、wは角周波数をそれぞれ示す)がμθにより変化し、このμθが前記した通り、信号磁界によって変化するので、ワイヤ両端間出力電圧中の抵抗電圧分も信号磁界で変動するようになる。この変動現象は磁気インピーダンス効果と称され、これは上記高周波励磁電流(搬送波)が信号磁界(信号波)で変調される現象ということができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a circuit diagram of a magneto-impedance effect sensor used in the present invention.
In FIG. 1, reference numeral 1 denotes a magneto-impedance effect element, which has a zero magnetostriction or a negative magnetostriction having an outer shell portion in which magnetic domains whose spontaneous magnetization directions are opposite to each other in the circumferential direction of the wire are alternately separated by domain walls. Amorphous alloy wire is used. The inductance voltage component in the output voltage between both ends of the wire generated when a high-frequency excitation current is passed through an amorphous magnetic wire having zero magnetostriction or negative magnetostriction is obtained by the circumferential magnetic flux generated in the cross section of the wire. This occurs because the easily magnetizable outer shell is magnetized in the circumferential direction. Therefore, the circumferential permeability μ θ depends on the circumferential magnetization of the outer shell. Thus, when a signal magnetic field is applied in the axial direction of the amorphous wire being energized, the outer shell portion having the easily magnetizable property in the circumferential direction is obtained by synthesizing the circumferential magnetic flux and the signal magnetic field magnetic flux by the energization. direction of magnetic flux acting deviates from the circumferential direction, correspondingly hardly occur magnetization in the circumferential direction, the circumferential permeability mu theta changes, the inductance voltage content will vary to. This fluctuation phenomenon is called a magnetic inductance effect, which can be said to be a phenomenon in which the high-frequency excitation current (carrier wave) is modulated by a signal magnetic field (signal wave). Further, when the frequency of the energization current is in the order of MHz, a high-frequency skin effect appears greatly, and the skin depth δ = (2ρ / wμ θ ) 1/2θ is the circumferential permeability, ρ as described above. electrical resistivity, w is shows the angular frequency, respectively) is changed by mu theta, so changed by this as μθ is the signal magnetic field, the resistance voltage of the in wire ends between the output voltage also varies with the signal magnetic field It becomes like this. This fluctuation phenomenon is called a magneto-impedance effect, which can be said to be a phenomenon in which the high-frequency excitation current (carrier wave) is modulated by a signal magnetic field (signal wave).

図1において、2は磁気インピーダンス効果素子に高周波励磁電流を加えるための高周波電流源回路、3は磁気インピーダンス効果素子の軸方向に作用する信号磁界H(信号波)で前記高周波励磁電流(搬送波)を変調させた被変調波を復調する検波回路、4は復調波を増幅する増幅回路、5は出力端、6は負帰還用コイル、7はバイアス磁界用コイルである。
磁気インピーダンス効果素子1には、零磁歪乃至は負磁歪のアモルファスワイヤの外、アモルファスリボン、アモルファススパッタ膜等も使用できる。
In FIG. 1, 2 is a high-frequency current source circuit for applying a high-frequency excitation current to the magneto-impedance effect element, and 3 is a signal magnetic field H (signal wave) acting in the axial direction of the magneto-impedance effect element. 4 is an amplifier circuit for amplifying the demodulated wave, 5 is an output terminal, 6 is a negative feedback coil, and 7 is a bias magnetic field coil.
For the magneto-impedance effect element 1, an amorphous ribbon, an amorphous sputtered film, or the like can be used in addition to an amorphous wire having zero magnetostriction or negative magnetostriction.

磁気インピーダンス効果素子1においては、前記した通り励磁電流に基づく円周方向磁束と信号磁界による軸方向磁束との合成により、円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずらされるために、周方向透磁率μθが変化し、インダクタンスが変動され、この円周方向透磁率μθの高周波表皮効果の表皮深さの変化でインピーダンスが変動される。従って、信号磁界の±により上記合成磁界による周方向ずれφも±φになるが、周方向の磁界の減少倍率cos(±φ)は変わらず、従ってμθの減少度は信号磁界の方向の正負によっては変化されない。従って、信号磁界−出力特性は、図2の(イ)のように信号磁界をx軸に、出力をy軸にとると、y軸に対してほぼ左右対称となる。この信号磁界−出力特性は非線形である。非線形特性では、不安定であり、高感度の測定も困難である。そこで、負帰還用コイルで負帰還をかけて図2の(ロ)に示すように出力特性を直線化している。しかし、この出力特性では、信号磁界の極性判別を行ない得ないので、バイアス用コイル7でバイアス磁界をかけ、図2の(ハ)に示すように極性判別可能としている。すなわち、図2の(ロ)の特性を、図2の(ハ)に示すようにバイアス磁界−Hbによりx軸のマイナス方向に移動させ、信号磁界の最大検出範囲を単斜め線領域の範囲内−Hmax〜+Hmaxに納めている。
図2の(ハ)から、バイアス磁界の変化ΔHbによって信号磁界Hexが0のときの出力が変化することが理解できる。
In the magneto-impedance effect element 1, as described above, the direction of the magnetic flux acting on the outer shell portion that is easily magnetized in the circumferential direction is obtained by combining the circumferential magnetic flux based on the excitation current and the axial magnetic flux due to the signal magnetic field. Since the circumferential permeability μ θ is changed from the circumferential direction, the inductance is changed, and the impedance is changed by changing the skin depth of the high frequency skin effect of the circumferential permeability μ θ . Therefore, the circumferential displacement φ due to the composite magnetic field becomes ± φ due to ± of the signal magnetic field, but the reduction factor cos (± φ) of the circumferential magnetic field does not change, so the degree of decrease of μθ is positive or negative in the direction of the signal magnetic field. Does not change. Therefore, the signal magnetic field-output characteristic is substantially symmetrical with respect to the y axis when the signal magnetic field is taken on the x axis and the output is taken on the y axis as shown in FIG. This signal magnetic field-output characteristic is non-linear. Non-linear characteristics are unstable and high-sensitivity measurement is difficult. Therefore, negative feedback is applied by a negative feedback coil to linearize the output characteristics as shown in FIG. However, with this output characteristic, since the polarity of the signal magnetic field cannot be determined, a bias magnetic field is applied by the bias coil 7 so that the polarity can be determined as shown in FIG. That is, the characteristic of (b) in FIG. 2 is moved in the negative direction of the x-axis by the bias magnetic field -Hb as shown in (c) of FIG. 2, and the maximum detection range of the signal magnetic field is within the range of the single diagonal line region. -Hmax to + Hmax.
From FIG. 2C, it can be understood that the output when the signal magnetic field Hex is 0 is changed by the change ΔHb of the bias magnetic field.

上記磁気インピーダンス効果素子1としては、遷移金属と非金属の合金で非金属が10〜30原子%組成のもの、特に遷移金属と非金属との合金で非金属量が10〜30原子%を占め、遷移金属がFeとCoで非金属がBとSiであるかまたは遷移金属がFeで非金属がBとSiである組成のものを使用することができ、例えば、組成Co70.515Si10Fe4.5、長さ2000μm〜6000μm、外径30μm〜50μmφのものを使用できる。 The magneto-impedance effect element 1 is an alloy of transition metal and non-metal having a non-metal composition of 10 to 30 atomic%, particularly an alloy of transition metal and non-metal, and the amount of non-metal accounts for 10 to 30 atomic%. The transition metal is Fe and Co and the nonmetal is B and Si, or the transition metal is Fe and the nonmetal is B and Si. For example, the composition Co 70.5 B 15 can be used. Si 10 Fe 4.5 having a length of 2000 μm to 6000 μm and an outer diameter of 30 μm to 50 μmφ can be used.

上記において、高周波励磁電流には、例えば連続正弦波、パスル波、三角波等の通常の高周波を使用でき、高周波励磁電流源としては、例えばハートレー発振回路、コルピッツ発振回路、コレクタ同調発振回路、ベース同調発振回路のような通常の発振回路の外、水晶発振器の矩形波出力を直流分カットコンデンサを経て積分回路で積分しこの積分出力の三角波を増幅回路で増幅する三角波発生器、COMS−ICを発振部として使用した三角波発生器等を使用できる。   In the above, a normal high frequency such as a continuous sine wave, a pulse wave, or a triangular wave can be used as the high frequency excitation current, and examples of the high frequency excitation current source include a Hartley oscillation circuit, a Colpitts oscillation circuit, a collector tuning oscillation circuit, and a base tuning oscillation. In addition to a normal oscillation circuit such as an oscillation circuit, a square wave generator that integrates the square wave output of a crystal oscillator through a direct current cut capacitor with an integration circuit and amplifies the triangular wave of this integration output with an amplification circuit, and oscillates a COMS-IC The triangular wave generator etc. which were used as a part can be used.

上記の検波回路としては、例えば被変調波を演算増幅回路で半波整流しこの半波整流波を並列RC回路またはRCローパスフィルターで処理して半波整流波の包絡線出力を得る構成、被変調波をダイオードで半波整流しこの半波整流波を並列RC回路またはRCローパスフィルターで処理して半波整流波の包絡線出力を得る構成等を使用できる。
また、被変調波(周波数fs)に同調させた周波数fsの方形波を被変調波に乗算して信号波をサンプリングする同調検波を使用することができる。
上記の実施例では、被変調波の復調によって被検出磁界を取り出しているが、これに限定されず、磁気インピーダンス効果素子に作用する信号磁界(信号波)で変調された高周波励磁電流波(搬送波)から信号磁界を検波し得るものであれば、適宜の検波手段を使用できる。
As the above detection circuit, for example, a configuration in which a modulated wave is half-wave rectified by an operational amplifier circuit and this half-wave rectified wave is processed by a parallel RC circuit or an RC low-pass filter to obtain an envelope output of the half-wave rectified wave, A configuration in which the modulated wave is half-wave rectified by a diode and the half-wave rectified wave is processed by a parallel RC circuit or an RC low-pass filter to obtain an envelope output of the half-wave rectified wave can be used.
Further, it is possible to use tuning detection in which a signal wave is sampled by multiplying the modulated wave by a square wave having a frequency fs tuned to the modulated wave (frequency fs).
In the above embodiment, the detected magnetic field is extracted by demodulating the modulated wave. However, the present invention is not limited to this, and the high-frequency excitation current wave (carrier wave) modulated by the signal magnetic field (signal wave) acting on the magneto-impedance effect element. Any suitable detecting means can be used as long as it can detect the signal magnetic field.

前記負帰還用コイル及びバイアス磁界用コイルは磁気インピーダンス効果素子に巻き付けることができる。また、図3に示すように磁気インピーダンス効果素子とループ磁気回路を構成する鉄芯に負帰還用コイル及びバイアス磁界用コイルを巻き付けることもできる。 図3の(イ)は鉄芯コイル付き磁気インピーダンス効果ユニットの一例を示す側面図、図3の(ロ)は同じく底面図、図3の(ハ)は図3の(ロ)におけるハ−ハ断面図である。
図3において、100は基板チツプであり、例えばセラミックス板を使用できる。101は基板片の片面に設けた電極であり、磁気インピーダンス効果素子接続用突部102を備えている。この電極は導電ペースト、例えば銀ペーストの印刷・焼付けにより設けることができる。1xは電極101,101の突部102,102間にはんだ付けや溶接により接続した磁気インピーダンス効果素子であり、前記した通り零磁歪乃至負磁歪のアモルファスワイヤ、アモルファスリボン、スパッタ膜等を使用できる。103は鉄やフェライト等からなるC型鉄芯、6xはC型鉄芯に巻装した負帰還用コイル、7xは同じくバイアス磁界用コイルであり、磁気インピーダンス効果素子1xとC型鉄芯103とでループ磁気回路を構成するように、C型鉄芯103の両端を基板片100の他面に接着剤等で固定してある。鉄芯材料としては、残留磁束密度の小さい磁性体であればよく、例えば、パーマロイ、フェライト、鉄、アモルファス磁性合金の他、磁性体粉末混合プラスチック等を挙げることができる。
The negative feedback coil and the bias magnetic field coil can be wound around a magneto-impedance effect element. Further, as shown in FIG. 3, a negative feedback coil and a bias magnetic field coil can be wound around an iron core constituting a magneto-impedance effect element and a loop magnetic circuit. 3 (a) is a side view showing an example of a magneto-impedance effect unit with an iron core coil, FIG. 3 (b) is a bottom view, and FIG. 3 (c) is a cross-sectional view of FIG. It is sectional drawing.
In FIG. 3, reference numeral 100 denotes a substrate chip, and for example, a ceramic plate can be used. Reference numeral 101 denotes an electrode provided on one side of the substrate piece, and includes a magneto-impedance effect element connecting projection 102. This electrode can be provided by printing and baking a conductive paste, for example, a silver paste. 1x is a magneto-impedance effect element connected between the protrusions 102 and 102 of the electrodes 101 and 101 by soldering or welding, and an amorphous wire, amorphous ribbon, sputtered film, or the like having zero or negative magnetostriction can be used as described above. 103 is a C-type iron core made of iron or ferrite, 6x is a negative feedback coil wound around the C-type iron core, 7x is a bias magnetic field coil, and the magneto-impedance effect element 1x and the C-type iron core 103 The both ends of the C-type iron core 103 are fixed to the other surface of the substrate piece 100 with an adhesive or the like so as to constitute a loop magnetic circuit. The iron core material may be a magnetic material having a small residual magnetic flux density. Examples thereof include permalloy, ferrite, iron, amorphous magnetic alloy, magnetic powder mixed plastic, and the like.

本発明により鉄系材埋設コンクリート構造物の埋設鉄系材、例えば鉄パイプを探査するには、図4−1の(イ)〔平面図〕及び(ロ)〔図4−1の(イ)におけるロ−ロ断面図〕に示すように鉄系材埋設コンクリート構造物Cの表面に沿い前記の磁気インピーダンス効果センサSeをスキャニングさせていく。
図4−2はスキャニング中でのバイアス磁界の作用状態を示している。
図4−1及び4−2において、1xは図3に示した鉄芯コイル付き磁気インピーダンス効果ユニットの磁気インピーダンス効果素子を、103は鉄芯を、7xはバイアス磁界用コイルを、gは鉄パイプをそれぞれ示しており、鉄パイプgが磁性体であるから、鉄パイプgにバイアス磁界がバイパスされる。
鉄芯103のリラクタンスをR103、磁気インピーダンス効果素子1xのリラクタンスをR、鉄パイプgのリラクタンスをR、磁気インピーダンス効果素子端と鉄パイプ間のリラクタンスをR、バイアス電流をI、バイアス磁界用コイル7xの巻数をN、磁気インピーダンス効果素子1xを通るバイアス磁束をBとすると、そのバイアス磁束は図4−3に示す等価回路の電流Bで与えられ、バイアス磁界Hbは磁気インピーダンス効果素子の透磁率をμとして
Hb=B/μ
で与えられる。
According to the present invention, in order to search for an embedded iron-based material of an iron-based material embedded concrete structure, for example, an iron pipe, (a) [plan view] and (b) in FIG. As shown in FIG. 2, the magneto-impedance effect sensor Se is scanned along the surface of the iron-based material embedded concrete structure C.
FIG. 4B shows the action state of the bias magnetic field during scanning.
4A and 4B, 1x is the magneto-impedance effect element of the magneto-impedance effect unit with iron core coil shown in FIG. 3, 103 is the iron core, 7x is the coil for the bias magnetic field, and g is the iron pipe. Since the iron pipe g is a magnetic body, a bias magnetic field is bypassed to the iron pipe g.
The reluctance of the iron core 103 is R 103 , the reluctance of the magneto-impedance effect element 1x is R 1 , the reluctance of the iron pipe g is R g , the reluctance between the end of the magneto-impedance effect element and the iron pipe is R C , the bias current is I, the bias When the number of turns of the field coil 7x N, the bias magnetic flux passing through the magnetic impedance effect element 1x and B 1, the bias magnetic flux is given by the current B 1 of the equivalent circuit shown in Figure 4-3, the bias magnetic field Hb is magnetic impedance Hb = B 1 / μ where μ is the magnetic permeability of the effect element
Given in.

本発明者等の検証結果によれば、図4−1に示す距離xの大小に応じて検出出力が変動する。
これは、バイアス磁界B/μ(Hb)が変化して図2の(ハ)に示した外部磁界Hex=0のときの検出出力Eoutが変動するためであると認められる。
図4−1における距離xが大になると、検出出力の変動は生じない。これは磁気インピーダンス効果素子端と鉄パイプ間のリラクタンスRが大となり、鉄パイプ(リラクタンスR)にバイアス磁界がバイパスされずに磁気インピーダンス効果素子を通るバイアス磁束Bが一定になるためと認められる。
図4−1において、距離xを0とするように磁気インピーダンス効果センサSeをスキャニングさせていけば、そのスキャニング軌跡が鉄系パイプgの直上となり、そのときの検出出力は最大となる。従って、検出出力を最大とするように磁気インピーダンス効果センサをスキャニングさせていけば、鉄パイプの埋設ルートを探査できる。
According to the verification results of the present inventors, the detection output varies depending on the magnitude of the distance x shown in FIG.
This is considered to be because the detection output Eout when the bias magnetic field B 1 / μ (Hb) changes and the external magnetic field Hex = 0 shown in FIG.
When the distance x in FIG. 4A increases, the detection output does not fluctuate. This is because the reluctance RC between the end of the magneto-impedance effect element and the iron pipe is large, and the bias magnetic flux B 1 passing through the magneto-impedance effect element is constant without bypassing the bias magnetic field to the iron pipe (reluctance R g ). Is recognized.
In FIG. 4A, if the magneto-impedance effect sensor Se is scanned so that the distance x is 0, the scanning locus is immediately above the iron pipe g, and the detection output at that time is maximized. Therefore, if the magneto-impedance effect sensor is scanned so as to maximize the detection output, the buried route of the iron pipe can be searched.

この場合、鉄パイプに腐食・減肉等の劣化が生じていると、その劣化の程度に応じてリラクタンスが変化し、そのリラクタンスの変化に応じ前記最大検出出力が変動して劣化情報が発信される。前記では鉄系材の長手方向のみからからリラクタンス変化を把握しているが、この長手方向をz方向としてx方向やy方向など多次元的にリラクタンス変化を把握すれば、より高精度の劣化情報を得ることができる。
従って、3個の磁気インピーダンス効果素子をx軸方向、y軸方向、z軸方向に向けて組む合わせた3次元磁気インピーダンス効果センサを使用することが好ましい。
図5は3次元磁気インピーダンス効果センサの一例の要部を示し、フレキシブル基板pの片面に鉄芯コイル付き磁気インピーダンス効果ユニットU1zをz軸方向に、同フレキシブル基板pの他面に鉄芯コイル付き磁気インピーダンス効果ユニットU1xをx軸方向に、同フレキシブル基板pの折曲げ立上げ面p’に鉄芯コイル付き磁気インピーダンス効果ユニットU1yをy軸方向にそれぞれ装着し、これら3個の鉄芯コイル付き磁気インピーダンス効果ユニットの磁気インピーダンス効果、バイアス磁界用コイル、負帰還用コイルのそれぞれを直列に接続してある。
In this case, if the steel pipe has deteriorated due to corrosion, thinning, etc., the reluctance changes according to the degree of the deterioration, and the maximum detection output fluctuates according to the change of the reluctance and the deterioration information is transmitted. The In the above description, the change in reluctance is grasped only from the longitudinal direction of the iron-based material. However, if this longitudinal direction is defined as the z direction and the reluctance change is grasped in a multidimensional manner such as the x direction and the y direction, deterioration information with higher accuracy can be obtained. Can be obtained.
Therefore, it is preferable to use a three-dimensional magneto-impedance effect sensor in which three magneto-impedance effect elements are combined in the x-axis direction, the y-axis direction, and the z-axis direction.
FIG. 5 shows a main part of an example of a three-dimensional magneto-impedance effect sensor. A magnetic impedance effect unit U1z with an iron core coil is placed on one side of a flexible substrate p in the z-axis direction, and an iron core coil is placed on the other surface of the flexible substrate p. The magnetic impedance effect unit U 1x with a magnetic core is mounted in the x-axis direction, and the magnetic impedance effect unit U 1y with an iron core coil is mounted in the y-axis direction on the bent rising surface p ′ of the flexible substrate p. The magnetic impedance effect, the bias magnetic field coil, and the negative feedback coil of the magnetic impedance effect unit with a core coil are connected in series.

図6−1は本発明において使用する前記とは別のセンサの回路図を、図6−2はセンサの外観図をそれぞれ示している。
図6−1において、C1〜Cnは複数箇のチャンネル検出系であり、11〜1nは磁気インピーダンス効果素子を、71〜7nは各磁気インピーダンス効果素子に対するバイアス磁界用コイルを、31〜3nは各磁気インピーダンス効果素子に対する検波回路を、41〜4nは増幅回路を、61〜6nは負帰還用コイルをそれぞれ示している。
811〜81nは各チャンネルの検出信号をディジタル化し各ディジタル信号で各チャンネルの周波数の搬送波を変調する多チャンネルA/D変換・変調器、82は変調信号波を無線方式で送信する多チャンネル送信器、83は受信器、84は受信波を復調してディジタル信号を取出したうえで解析するコンピュータである。
利用できる無線の方式としては、SS無線、ブルーテゥース、無線LAN、赤外線等を挙げることができ、特に、無線LANの使用が好ましい。
FIG. 6A is a circuit diagram of another sensor used in the present invention, and FIG. 6B is an external view of the sensor.
6A, C1 to Cn are a plurality of channel detection systems, 11 to 1n are magneto-impedance effect elements, 71 to 7n are bias magnetic field coils for the magneto-impedance effect elements, and 31 to 3n are each In the detection circuit for the magneto-impedance effect element, reference numerals 41 to 4n denote amplification circuits, and reference numerals 61 to 6n denote negative feedback coils.
811 to 81n are multi-channel A / D converters / modulators that digitize detection signals of the respective channels and modulate the carrier waves of the frequencies of the respective channels with the respective digital signals, and 82 is a multi-channel transmitter that transmits the modulated signal wave in a wireless manner. 83 is a receiver, and 84 is a computer that demodulates the received wave and extracts a digital signal for analysis.
Examples of wireless systems that can be used include SS wireless, Bluetooth, wireless LAN, infrared, and the like, and the use of wireless LAN is particularly preferable.

図6−2において、Pは基板である。1u1〜1unは図3に示した鉄芯コイル付の磁気インピーダンス効果ユニットであり、チャンネル数分の本数を基板Pの縁端部に縦方向の向きで並列に配設してある。Bは励磁電流源回路や全チャンネルの検波回路及び増幅回路を集積したIC回路、Eは励磁電流源回路に対する+Vcc電源やバイアス磁界用コイルの+Vcc電源や増幅回路の+Vcc電源としてのバッテリーである。810は各チャンネルの検出信号をディジタル化する多チャンネルA/D変換器、820は各ディジタル信号で各チャンネルの周波数の搬送波を変調して無線方式で送信する無線式送信器、834は変調波を受信し復調してディジタル信号を取出し解析するコンピュータである。 In FIG. 6B, P is a substrate. Reference numerals 1 u1 to 1 un denote magneto-impedance effect units with iron core coils shown in FIG. 3, and the number corresponding to the number of channels is arranged in parallel in the vertical direction at the edge of the substrate P. B is an IC circuit in which an exciting current source circuit and all-channel detection circuits and amplifier circuits are integrated, and E is a battery as a + Vcc power source for the exciting current source circuit, a + Vcc power source for a bias magnetic field coil, and a + Vcc power source for an amplifier circuit. 810 is a multi-channel A / D converter that digitizes the detection signal of each channel, 820 is a wireless transmitter that modulates the carrier wave of each channel frequency with each digital signal and transmits it in a wireless manner, and 834 is a modulated wave. It is a computer that receives and demodulates and extracts and analyzes the digital signal.

このセンサを使用して本発明により鉄系材埋設コンクリート構造物の埋設鉄系材を探査するには、センサで鉄系材埋設コンクリート構造物の表面をスキャニングしていく。
出力変化が生じたチャンネルの磁気インピーダンス効果素子が通過した経路に鉄系材が埋設されていることを知り得、その出力を解析することによりその鉄系材の劣化程度を診断できる。また、チャンネルに対応した周波数の搬送波をこの各チャンネルの検出信号で変調して無線方式でコンピュータに送信し、各チャンネルの変調波を復調して各チャンネルの信号をコンピュータで解析しており、遠隔から探査・診断できる。
図6−3は埋設鉄系材が排水鉄パイプのような単一条の場合の診断方法を示し、センサを鉄パイプ埋設コンクリート構造物の表面に沿い鉄パイプの長手方向にスキャンニングさせていき、図6−3の(イ)に示すように鉄パイプgに最も近い距離をとる磁気インピーダンス効果ユニットが1umであるとすると、図6−3の(ロ)に示すようにチャンネルmにのみ鉄系材探査情報を出力させることができ、その出力変動を解析して鉄パイプの劣化程度を診断できる。
図6−4は埋設鉄系材が鉄筋のような平行多数条の場合の診断方法を示し、センサを鉄筋コンクリート構造物の表面に沿い鉄筋の長手方向にスキャンニングさせていき、図6−4の(イ)に示すように鉄筋gに近い距離をとる磁気インピーダンス効果ユニットが1u3,1u7,1u11であるとすると、図6−4の(ロ)に示すようにチャンネル3,7,11に鉄系材探査情報を出力させることができ、その出力変動を解析して鉄筋の劣化程度を診断できる。この場合、磁気インピーダンス効果ユニットの間隔は鉄筋の間隔よりも充分に狭く設定することが有効であり、通常、3mm〜30mmとされる。
In order to search for an embedded iron-based material of an iron-based material embedded concrete structure according to the present invention using this sensor, the surface of the iron-based material embedded concrete structure is scanned by the sensor.
It can be known that the iron-based material is embedded in the path through which the magneto-impedance effect element of the channel where the output change has occurred, and the degree of deterioration of the iron-based material can be diagnosed by analyzing the output. In addition, the carrier wave of the frequency corresponding to the channel is modulated with the detection signal of each channel and transmitted to the computer by radio, the modulated wave of each channel is demodulated, and the signal of each channel is analyzed by the computer. Exploration and diagnosis from
FIG. 6-3 shows a diagnostic method in the case where the embedded iron system material is a single strip such as a drainage iron pipe, and the sensor is scanned along the surface of the iron pipe embedded concrete structure in the longitudinal direction of the iron pipe, If the magneto-impedance effect unit that takes the closest distance to the iron pipe g as shown in FIG. 6-3 (a) is 1 um , only the channel m as shown in FIG. System material exploration information can be output, and the output fluctuation can be analyzed to diagnose the degree of deterioration of the iron pipe.
FIG. 6-4 shows a diagnostic method when the embedded iron-based material is a parallel multiple strip such as a reinforcing bar. The sensor is scanned in the longitudinal direction of the reinforcing bar along the surface of the reinforced concrete structure. When the magnetic impedance effect unit to take the distance close to the rebar g as shown in (b) is assumed to be 1 u3, 1 u7, 1 u11 , channel as shown in (b) of FIG. 6-4 3, 7, 11 Can output iron-based material exploration information, and can analyze the output fluctuation to diagnose the degree of deterioration of the reinforcing bars. In this case, it is effective to set the interval between the magnetic impedance effect units to be sufficiently narrower than the interval between the reinforcing bars, and is usually set to 3 mm to 30 mm.

図6−5はチャンネル出力の実測結果の一例を示し、スキャニング距離1000mmの間で出力が変化しており、この出力変化位置から鉄系構造物埋設壁面の位置を特定することにより鉄系構造物の欠陥位置を探知できる。   FIG. 6-5 shows an example of the actual measurement result of the channel output. The output changes between the scanning distances of 1000 mm, and the iron-based structure is identified by specifying the position of the iron-based structure embedded wall surface from this output change position. Can detect the position of defects.

上記の例では、1チャンネルに対して一個の一次元または多次元磁気インピーダンス効果素子を使用しているが、スキャンニング方向に対して所定の距離を隔てて配置した二箇の一次元または多次元磁気インピーダンス効果素子を1チャンネルに対し用い、両磁気インピーダンス効果素子の出力を差動増幅するようにすることもできる。図4−2において、磁気インピーダンス効果素子の方向を縦方向とすれば、例えば、縦方向の二個並設、横方向の二個並設、横方向の二個従属とすることができる。このようにすれば、外部磁界ノイズや内部ノイズを差動のために打ち消すことができる。   In the above example, one one-dimensional or multidimensional magneto-impedance effect element is used for one channel, but two one-dimensional or multidimensional magnetic elements arranged at a predetermined distance with respect to the scanning direction. An impedance effect element can be used for one channel, and the outputs of both magneto-impedance effect elements can be differentially amplified. In FIG. 4B, if the direction of the magneto-impedance effect element is the vertical direction, for example, two vertical arrangements, two horizontal arrangements, and two horizontal subordinates can be used. In this way, external magnetic field noise and internal noise can be canceled for differential.

本発明は鉄筋コンクリート構造物(例えば原子力発電所の基礎、ダム)やブロック塀の鉄筋の探査や劣化診断、鉄筋コンクリート住宅における配管鉄パイプの探査や劣化診断に特に好適に使用できる。   INDUSTRIAL APPLICABILITY The present invention can be particularly suitably used for exploration and deterioration diagnosis of reinforced concrete structures (for example, foundations and dams of nuclear power plants) and block fences, and exploration and deterioration diagnosis of pipes and pipes in reinforced concrete houses.

本発明において使用する磁気インピーダンス効果センサを示す回路図である。It is a circuit diagram which shows the magneto-impedance effect sensor used in this invention. 磁気インピーダンス効果素子の検出特性を示す図面である。It is drawing which shows the detection characteristic of a magnetoimpedance effect element. 前記磁気インピーダンス効果センサにおいて使用する鉄芯コイル付き磁気インピーダンス効果ユニットを示す図面である。It is drawing which shows the magnetic impedance effect unit with an iron core coil used in the said magnetic impedance effect sensor. 本発明に係る鉄系材埋設コンクリート構造の埋設鉄系材の診断方法を説明するために使用した図面である。It is drawing used in order to demonstrate the diagnostic method of the embedded iron-type material of the iron-type material embedded concrete structure which concerns on this invention. 本発明におけるスキャニング中でのバイアス磁界の作用状態を示す図面である。3 is a diagram illustrating an action state of a bias magnetic field during scanning in the present invention. 本発明におけるスキャニング中でのバイアス磁界の磁気回路と等価の電流回路を示す図面である。3 is a diagram showing a current circuit equivalent to a magnetic circuit of a bias magnetic field during scanning in the present invention. 本発明において使用する磁気インピーダンス効果センサの別例の要部を示す図面である。It is drawing which shows the principal part of another example of the magneto-impedance effect sensor used in this invention. 本発明において使用する磁気インピーダンス効果センサ装置の回路図である。It is a circuit diagram of the magneto-impedance effect sensor device used in the present invention. 同上磁気インピーダンス効果センサ装置の外観を示す図面である。It is drawing which shows the external appearance of a magnetic impedance effect sensor apparatus same as the above. 同上磁気インピーダンス効果センサ装置を使用した本発明の実施例を示す図面である。It is drawing which shows the Example of this invention using a magnetic impedance effect sensor apparatus same as the above. 同上磁気インピーダンス効果センサ装置を使用した本発明の別実施例を示す図面である。It is drawing which shows another Example of this invention using a magneto-impedance effect sensor apparatus same as the above. 同上磁気インピーダンス効果センサ装置の検出波形の一例を示す図面である。It is drawing which shows an example of the detection waveform of a magnetic impedance effect sensor apparatus same as the above. 従来例を示す図面である。It is drawing which shows a prior art example.

符号の説明Explanation of symbols

1 磁気インピーダンス効果素子
2 励磁電流源回路
3 検波回路
4 増幅回路
C 鉄系材埋設コンクリート構造物
g 埋設鉄系材
C1〜Cn 一チャンネル分の検出回路
11〜1n 磁気インピーダンス効果素子
71〜7n バイアス磁界用コイル
811〜81n A/D変換・変調器
82 無線式送信器
83 受信器
84 コンピュータ
DESCRIPTION OF SYMBOLS 1 Magneto-impedance effect element 2 Excitation current source circuit 3 Detection circuit 4 Amplifying circuit C Iron-based material embedded concrete structure g Embedded iron-based material C1-Cn Detection circuit for 1 channel 11-1n Magneto-impedance effect element 71-7n Bias magnetic field Coils 811-81n A / D converter / modulator 82 Wireless transmitter 83 Receiver 84 Computer

Claims (5)

磁気インピーダンス効果素子にバイアス磁界用コイルを付設しその素子の出力を検波回路に通して検出するセンサを、磁気インピーダンス効果素子に励磁電流を通電しバイアス磁界用コイルに電圧を印加しつつ鉄系材埋設コンクリート構造物の表面にスキャニングさせて鉄系材を探査することを特徴とする鉄系材埋設コンクリート構造物の鉄系材の診断方法。 A magnetic field effect coil is attached to the magneto-impedance effect element, and a sensor that detects the output of the element through a detection circuit is applied to the iron-based material while applying an excitation current to the magneto-impedance effect element and applying a voltage to the bias field coil. A method for diagnosing an iron-based material in an iron-based material buried concrete structure, wherein the surface of the buried concrete structure is scanned to search for the iron-based material. 磁気インピーダンス効果素子にバイアス磁界用コイルを付設しその素子の出力を検波回路に通して検出するセンサを、磁気インピーダンス効果素子に励磁電流を通電しバイアス磁界用コイルに電圧を印加しつつ鉄系材埋設コンクリート構造物の埋設鉄系材上の構造物表面にスキャニングさせて鉄系材の長手方向に沿っての劣化度を診断することを特徴とする鉄系材埋設コンクリート構造物の鉄系材の診断方法。 A magnetic field effect coil is attached to the magneto-impedance effect element, and a sensor that detects the output of the element through a detection circuit is applied to the iron-based material while applying an excitation current to the magneto-impedance effect element and applying a voltage to the bias magnetic field coil. It is possible to scan the surface of a structure on an embedded iron material of an embedded concrete structure and diagnose the degree of deterioration along the longitudinal direction of the iron material. Diagnostic method. 軸方向を相互に異ならせて多数箇の磁気インピーダンス効果素子を組み合わせた多次元磁気インピーダンス効果素子を備えたセンサを使用することを特徴とする請求項1または2記載の鉄系材埋設コンクリート構造物の鉄系材の診断方法。 3. An iron-based material-embedded concrete structure according to claim 1, wherein a sensor having a multidimensional magneto-impedance effect element in which a plurality of magneto-impedance effect elements are combined with different axial directions is used. Of iron-based materials. 1次元〜多次元の磁気インピーダンス効果素子を並設し、それら素子の検波出力を多チャンネル化することを特徴とする請求項1〜3何れか記載の鉄系材埋設コンクリート構造物の鉄系材の診断方法。 The iron-based material of an iron-based material-embedded concrete structure according to any one of claims 1 to 3, wherein one-dimensional to multi-dimensional magneto-impedance effect elements are juxtaposed and the detection output of these elements is multi-channeled Diagnosis method. 各チャンネルの検出信号を空間的に離れた場所に無線で送信する送信手段を付設することを特徴とする請求項1〜4何れか記載の鉄系材埋設コンクリート構造物の鉄系材の診断方法。 5. A method for diagnosing an iron-based material in an iron-based material-embedded concrete structure according to any one of claims 1 to 4, further comprising a transmission means for wirelessly transmitting a detection signal of each channel to a spatially separated place. .
JP2005211986A 2005-07-22 2005-07-22 Diagnosis method for ferrous materials in concrete structures embedded in ferrous materials Expired - Fee Related JP4619884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005211986A JP4619884B2 (en) 2005-07-22 2005-07-22 Diagnosis method for ferrous materials in concrete structures embedded in ferrous materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005211986A JP4619884B2 (en) 2005-07-22 2005-07-22 Diagnosis method for ferrous materials in concrete structures embedded in ferrous materials

Publications (2)

Publication Number Publication Date
JP2007033027A true JP2007033027A (en) 2007-02-08
JP4619884B2 JP4619884B2 (en) 2011-01-26

Family

ID=37792497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005211986A Expired - Fee Related JP4619884B2 (en) 2005-07-22 2005-07-22 Diagnosis method for ferrous materials in concrete structures embedded in ferrous materials

Country Status (1)

Country Link
JP (1) JP4619884B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016109510A (en) * 2014-12-04 2016-06-20 日本電信電話株式会社 Deterioration measuring apparatus of lower branch line rod, and method of measuring deterioration of lower branch line rod
CN109997038A (en) * 2016-12-01 2019-07-09 东京制纲株式会社 The damage evaluation method and Damage Evaluation device of magnetic threadlike body
CN110023747A (en) * 2016-12-01 2019-07-16 东京制纲株式会社 The damage evaluation method and Damage Evaluation device of magnetic threadlike body
JP2020024173A (en) * 2018-08-08 2020-02-13 日本精工株式会社 Magnetic sensor device
JP7445372B2 (en) 2015-09-01 2024-03-07 ゼネラル・エレクトリック・カンパニイ Multi-axis magnetoresistive sensor package

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302913A (en) * 1992-04-28 1993-11-16 Ishikawajima Harima Heavy Ind Co Ltd Remote flaw detection tester for piping
JP2000235019A (en) * 1999-02-12 2000-08-29 Genshiryoku Engineering:Kk Eddy-current flaw detecting probe
JP2002022706A (en) * 2000-07-12 2002-01-23 Uchihashi Estec Co Ltd Magnetic sensor, magnetic leakage flux flaw detection method, and its device
JP2002048850A (en) * 2000-08-03 2002-02-15 Alps Electric Co Ltd Magnetic impedance effect element and its manufacturing method
JP2005127963A (en) * 2003-10-27 2005-05-19 Shikoku Res Inst Inc Nondestructive inspection method and its apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302913A (en) * 1992-04-28 1993-11-16 Ishikawajima Harima Heavy Ind Co Ltd Remote flaw detection tester for piping
JP2000235019A (en) * 1999-02-12 2000-08-29 Genshiryoku Engineering:Kk Eddy-current flaw detecting probe
JP2002022706A (en) * 2000-07-12 2002-01-23 Uchihashi Estec Co Ltd Magnetic sensor, magnetic leakage flux flaw detection method, and its device
JP2002048850A (en) * 2000-08-03 2002-02-15 Alps Electric Co Ltd Magnetic impedance effect element and its manufacturing method
JP2005127963A (en) * 2003-10-27 2005-05-19 Shikoku Res Inst Inc Nondestructive inspection method and its apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016109510A (en) * 2014-12-04 2016-06-20 日本電信電話株式会社 Deterioration measuring apparatus of lower branch line rod, and method of measuring deterioration of lower branch line rod
JP7445372B2 (en) 2015-09-01 2024-03-07 ゼネラル・エレクトリック・カンパニイ Multi-axis magnetoresistive sensor package
CN109997038A (en) * 2016-12-01 2019-07-09 东京制纲株式会社 The damage evaluation method and Damage Evaluation device of magnetic threadlike body
CN110023747A (en) * 2016-12-01 2019-07-16 东京制纲株式会社 The damage evaluation method and Damage Evaluation device of magnetic threadlike body
KR20190089027A (en) * 2016-12-01 2019-07-29 도쿄 세이꼬 가부시키가이샤 Damage evaluation method and damage evaluation device of magnetic cord
KR102167975B1 (en) * 2016-12-01 2020-10-21 도쿄 세이꼬 가부시키가이샤 Magnetic shipboard damage evaluation method and damage evaluation device
US11016060B2 (en) 2016-12-01 2021-05-25 Tokyo Rope Manufacturing Co., Ltd. Method and apparatus for evaluating damage to magnetic linear body
CN110023747B (en) * 2016-12-01 2023-01-13 东京制纲株式会社 Method and apparatus for evaluating damage to magnetic linear body
JP2020024173A (en) * 2018-08-08 2020-02-13 日本精工株式会社 Magnetic sensor device
JP7170257B2 (en) 2018-08-08 2022-11-14 日本精工株式会社 Magnetic sensor device

Also Published As

Publication number Publication date
JP4619884B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
EP1991862B1 (en) Method and device for non destructive evaluation of defects in a metallic object
US7495433B2 (en) Device for detecting defects in electrically conductive materials in a nondestructive manner
JP4619884B2 (en) Diagnosis method for ferrous materials in concrete structures embedded in ferrous materials
US5446379A (en) Method and system for searching and sensing reinforcing steel in concrete by employing an oscillator driver sensor coil
JP4495635B2 (en) Magneto-impedance effect sensor and method of using magneto-impedance effect sensor
JP2009204342A (en) Eddy current type sample measurement method and eddy current sensor
CN103675094A (en) Non-destructive testing device
JP4917812B2 (en) Deterioration diagnosis method for iron-based structures
Wang et al. Multi-frequency imaging with non-linear calibration of magnetoresistance sensors for surface and buried defects inspection
JP6843430B2 (en) Reinforcing bar diameter and fog measuring device for reinforced concrete
GB2575695A (en) Method and system for detecting a material response
CN113093289A (en) High-resolution nondestructive testing device for parameters of metal body in embedded structure
JP4476746B2 (en) Corrosion / thinning inspection method for the back of steel walls
JP2005127963A (en) Nondestructive inspection method and its apparatus
JP2000028695A (en) Method and apparatus for measurement of magnetism
JP4608666B2 (en) Deterioration diagnosis device for iron-based structures
JPH0815229A (en) High resolution eddy current flaw detector
Wang et al. Detection of a rectangular crack in martensitic stainless steel using a magnetoreactance sensing system
JP4865343B2 (en) Inspection method for iron-based structures
JP4520188B2 (en) Method for detecting conductor defects in electric wires
JP4286693B2 (en) Method for detecting conductor defects in electric wires
JP4286686B2 (en) Sensor for detecting conductor defects in electric wires
JP4698958B2 (en) Sensor for detecting conductor defects in electric wires
JP2006337040A (en) Defect-detecting method of metal body, and scanning type magnetic detector
JP4619864B2 (en) Defect detection method for metal body and scanning magnetic detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees