JP2000235019A - Eddy-current flaw detecting probe - Google Patents

Eddy-current flaw detecting probe

Info

Publication number
JP2000235019A
JP2000235019A JP11034446A JP3444699A JP2000235019A JP 2000235019 A JP2000235019 A JP 2000235019A JP 11034446 A JP11034446 A JP 11034446A JP 3444699 A JP3444699 A JP 3444699A JP 2000235019 A JP2000235019 A JP 2000235019A
Authority
JP
Japan
Prior art keywords
detection
coil
magnetic field
excitation
multiplexer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11034446A
Other languages
Japanese (ja)
Inventor
Yutaka Harada
豊 原田
Sumisato Shimone
純理 下根
Hardy Florian
ハーディ フローリアン
Samson Lock
サムソン ロック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GENSHIRYOKU ENGINEERING KK
R and D Tech Inc
Original Assignee
GENSHIRYOKU ENGINEERING KK
R and D Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GENSHIRYOKU ENGINEERING KK, R and D Tech Inc filed Critical GENSHIRYOKU ENGINEERING KK
Priority to JP11034446A priority Critical patent/JP2000235019A/en
Priority to US09/350,183 priority patent/US6344739B1/en
Priority to PCT/CA2000/000135 priority patent/WO2000047986A1/en
Priority to AU25300/00A priority patent/AU2530000A/en
Priority to AU25301/00A priority patent/AU2530100A/en
Priority to KR1020017010220A priority patent/KR100756763B1/en
Priority to AT00903465T priority patent/ATE391292T1/en
Priority to DE60038483T priority patent/DE60038483T2/en
Priority to EP00903465A priority patent/EP1153289B1/en
Priority to CA002372259A priority patent/CA2372259C/en
Priority to PCT/CA2000/000136 priority patent/WO2000047987A1/en
Priority to ES00903465T priority patent/ES2306656T3/en
Publication of JP2000235019A publication Critical patent/JP2000235019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the number of signal lines to the number receptible within a cable and improve the spatial resolution and defect detectability by providing a switching circuit for time sharing and driving a plurality of magnetic field exciting element and magnetic field detecting element and a detection signal amplifier circuit on measuring instrument side. SOLUTION: A multiplexer is used as a switching circuit, and an excitation coil (magnetic field exciting element) group 13 and a detection coil (magnetic field detecting element) group 14 are connected to an excitation multiplexer 16 and to a detection multiplexer 18, respectively. The output of the detection multiplexer is amplified, through a detection signal line 22, by a detection signal amplifier circuit including an amplifier 20 in the course, and outputted to a measuring instrument side. The number of the signal line necessary for this line is reduced to 15, compared with at least 18 in the case using no multiplexer. Accordingly, the narrowing of signal lines is dispensed with, and the improvement in spatial resolution for a subject to be detected can be attained without changing the total diameter of signal cables.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱交換器内部にあ
る細管等の非破壊検査に用いる渦流探傷プローブに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current detection probe used for nondestructive inspection of a thin tube or the like inside a heat exchanger.

【0002】[0002]

【従来技術】複数の磁場励起素子と磁場検出素子を搭載
した渦流探傷プローブとしては、例えば特開平6−16
0357号記載のものがある。これは図15に示すよう
に円筒形の母体111上に3個1組のパンケーキコイル
群を配置したものであり、1コイル群は1個の励起コイ
ル112と差動接続された2個の検出コイル113とか
ら構成されている。このプローブの特徴は1コイル群で
伝熱管の円周方向に存在する欠陥と軸方向に存在する欠
陥の両方を検出することであり、またコイル群間での検
出性低下を防止するためコイル群を2段互い違いに配置
し、合計8コイル群を内部に備えている。
2. Description of the Related Art An eddy current flaw detection probe equipped with a plurality of magnetic field excitation elements and magnetic field detection elements is disclosed, for example, in Japanese Patent Application Laid-Open No. 6-16 / 1994.
No. 0357 is described. As shown in FIG. 15, a set of three pancake coils is arranged on a cylindrical base 111, and one coil group is composed of two excitation coils 112 and two differentially connected pancake coils. And a detection coil 113. The feature of this probe is that one coil group detects both a defect existing in the circumferential direction of the heat transfer tube and a defect existing in the axial direction. In addition, the coil group is used to prevent a decrease in detectability between the coil groups. Are alternately arranged in two stages, and a total of eight coil groups are provided inside.

【0003】一方、空間的配置パターンの異なる磁場励
起・検出対を持つ渦流探傷プローブとしては例えば図1
6に示すような磁場検出コイル123と周方向(欠陥検
出用)磁場励起コイル122及び軸方向(欠陥検出用)
磁場励起コイル121からなる回転型渦流探傷プローブ
があり、このプローブは管の軸方向欠陥検出用のコイル
配置と周方向欠陥検出用のコイル配置を持ち、周方向欠
陥、軸方向欠陥ともに検出性が最大となる配置で使用さ
れる。
On the other hand, as an eddy current flaw detection probe having magnetic field excitation / detection pairs having different spatial arrangement patterns, for example, FIG.
6, a magnetic field detecting coil 123, a circumferential direction (for defect detection) magnetic field excitation coil 122 and an axial direction (for defect detection) as shown in FIG.
There is a rotary type eddy current flaw detection probe composed of a magnetic field excitation coil 121. This probe has a coil arrangement for detecting an axial defect of a tube and a coil arrangement for detecting a circumferential defect. Used for maximum placement.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記記
載のプローブ では空間分解能がコイル群の数によって
規制を受けるため、空間分解能を向上するにはコイル数
を増やさざるを得ないが、その場合、探傷装置とプロー
ブ間の信号線が増えるため、信号線を内包しプローブヘ
ッドと探傷装置を繋ぐシース内に信号線が収容仕切れな
くなる。勿論、各信号線の径を細くすれば格納可能であ
るが、30m以上の長さにわたり信号を送受信するに
は、信号線が細い場合は信号減衰度が大きくなるので、
SN比が低下し、さらに近接する信号線間におけるクロ
ストークの増大、機械的強度の低下による断線確率の増
大などから信号線の細径化は現実的ではない。
However, in the probe described above, the spatial resolution is restricted by the number of coil groups, so that the number of coils must be increased to improve the spatial resolution. Since the number of signal lines between the device and the probe increases, the signal lines are not contained in the sheath that includes the signal lines and connects the probe head and the flaw detection device. Of course, if the diameter of each signal line is reduced, the signal can be stored. However, in order to transmit and receive a signal over a length of 30 m or more, when the signal line is small, the signal attenuation increases.
It is not practical to reduce the diameter of the signal line due to a decrease in the S / N ratio, an increase in crosstalk between signal lines that are closer together, and an increase in the probability of disconnection due to a decrease in mechanical strength.

【0005】なお、以上は内挿型渦流探傷プローブにつ
いて論じているわけであるが、一方、信号径に強い制限
のない貫通型プローブや上置型プローブについては信号
ケーブル全体の重量増、大径化は装置の大型化およびプ
ローブ固定部の強化を招くので、やはり信号線の増加は
好ましくない。このためコイル数に上限が存在するとい
う問題は依然残存している。また、一般に励起素子と検
出素子の配置について、周方向欠陥で検出性が最大にな
るとき軸方向欠陥の検出性は最低になり、軸方向欠陥で
検出性が最大のときは周方向欠陥で検出性は最低となっ
てしまう。
Although the above description has been made with respect to the interpolating type eddy current flaw detection probe, on the other hand, with respect to the penetration type probe and the upper type probe which do not have a strong restriction on the signal diameter, the weight and the diameter of the entire signal cable are increased. Increases the size of the device and strengthens the probe fixing portion, so that it is not preferable to increase the number of signal lines. Therefore, the problem that the number of coils has an upper limit still remains. In general, regarding the arrangement of the excitation element and the detection element, the detectability of the axial defect becomes the lowest when the detectability is maximized in the circumferential defect, and the detectability is the circumferential defect when the detectability is the largest in the axial defect. Sex is the worst.

【0006】前記特開平6−160357号公報記載の
ものは軸方向欠陥と周方向欠陥の感度がバランスするよ
うに配置されているが、これは逆に考えれば周軸両方の
欠陥で検出性を低下させていることにもなっている。と
は云え、各方向の欠陥に最適な複数の探傷モードを搭載
するためには異なる配置のコイル群が必要であり、さら
なる信号線の増加を招く。
The device disclosed in Japanese Patent Laid-Open No. 6-160357 is arranged so that the sensitivity of the axial defect and the sensitivity of the circumferential defect are balanced. It has also been reduced. However, in order to mount a plurality of flaw detection modes optimal for defects in each direction, coil groups having different arrangements are required, which further increases the number of signal lines.

【0007】本発明は上述の如き実状に鑑み、これに対
処してその問題を解決すべく、信号線数をケーブル内に
収容可能な数に押さえつつ、コイル群と探傷モードを増
やして空間解像度及び周軸両方の欠陥検出性を向上させ
た渦流探傷プローブを提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above situation, the present invention solves this problem by addressing this problem and increasing the number of coil groups and flaw detection modes while suppressing the number of signal lines to a number that can be accommodated in a cable. An object of the present invention is to provide an eddy current flaw detection probe with improved defect detection performance in both the peripheral axis and the peripheral axis.

【0008】[0008]

【課題を解決するための手段】即ち、上記目的に適合す
る本発明の渦流探傷プローブの構成は、複数の磁場励起
素子と、複数の磁場検出素子と、これらの素子を時分割
駆動するためのスイッチング回路および前記複数の検出
素子を時分割駆動するスイッチング回路よりも計測機器
側に設けた検出信号増幅回路からなることを特徴とす
る。
That is, the configuration of the eddy current detection probe of the present invention which meets the above-mentioned object comprises a plurality of magnetic field excitation elements, a plurality of magnetic field detection elements, and a time-division drive for these elements. It is characterized by comprising a switching circuit and a detection signal amplifying circuit provided on a measuring instrument side than a switching circuit for driving the plurality of detection elements in a time-division manner.

【0009】また本発明は複数の磁場励起兼検出素子を
備え、同一素子に励起素子を時分割駆動するためのスイ
ッチング回路と検出素子を時分割駆動するためのスイッ
チング回路の双方を接続してタイミングによって該同素
子を励起素子または検出素子として用いることも特徴と
する。そして、この場合、検出素子を時分割するための
スイッチング回路の出力側に検出信号増幅回路を設ける
ことが好ましいことは上記構成と同様である。更に、上
記の各構成において、複数の磁場励起素子・磁場検出素
子について、複数の空間的配置をもち、かつ、磁場励起
素子・磁場検出素子の組み合わせの変更が可能であるこ
とも好適な実施の態様である。
Further, the present invention comprises a plurality of magnetic field excitation and detection elements, wherein both a switching circuit for time-divisionally driving the excitation element and a switching circuit for time-divisionally driving the detection element are connected to the same element for timing. The present invention is also characterized in that the element is used as an excitation element or a detection element. In this case, it is preferable to provide a detection signal amplification circuit on the output side of the switching circuit for time-dividing the detection element, as in the above configuration. Furthermore, in each of the above configurations, it is also preferable that the plurality of magnetic field excitation elements / magnetic field detection elements have a plurality of spatial arrangements, and that the combination of the magnetic field excitation elements / magnetic field detection elements can be changed. It is an aspect.

【0010】[0010]

【発明の実施の形態】以下、更に添付図面を参照し、本
発明の具体的な実施の形態を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described with reference to the accompanying drawings.

【0011】図1は本発明に係る渦流探傷プローブの1
例を示す外観図であり、この渦流探傷プローブはケーブ
ル15に結合された円筒形の母体11上に8個のコイル
12を円周方向に沿って並べ、更にこれを軸方向に2
段、計16個並べて形成されている。このうち、上段の
コイル群13は管内に渦電流が発生するよう磁場励磁装
置に結合されている励磁専用コイル、下段のコイル群1
4は前記励磁装置に結合された励磁専用コイルに発生す
る電流を検出し、管内に欠陥があることを示す信号を発
生する検出専用コイルとなっており、励起・検出コイル
対としては検出コイルと隣接する励起コイルを対として
考えるため、全部で8対のセンサー対を具備している。
FIG. 1 shows one embodiment of an eddy current flaw detection probe according to the present invention.
FIG. 2 is an external view showing an example, in which the eddy current flaw detection probe arranges eight coils 12 along a circumferential direction on a cylindrical base body 11 connected to a cable 15, and further arranges the coils 12 in the axial direction.
A total of 16 steps are formed. Among them, the upper coil group 13 is a coil dedicated for excitation coupled to the magnetic field excitation device so as to generate an eddy current in the tube, and the lower coil group 1
Reference numeral 4 denotes a detection coil which detects a current generated in the excitation coil coupled to the excitation device and generates a signal indicating that there is a defect in the tube. In order to consider adjacent excitation coils as pairs, a total of eight sensor pairs are provided.

【0012】図2は上記各コイルのプローブ内部におけ
る回路ブロックであり、スイッチング回路としてマルチ
プレクサが用いられ、同図に示す如く、前記コイルの励
起コイル群13は励起信号線21に接続する励起コイル
用8チャンネル(ch)マルチプレクサ16へ、一方、
検出コイル群14は検出用8chマルチプレクサ18へ
夫々接続されている。そして、検出用マルチプレクサ1
8の出力は検出信号線22に接続され、途中に設けられ
た増幅アンプ20を含む検出信号増幅回路により増幅さ
れて計測器、即ち、探傷器側へ出力される。なお、図中
の17は励起用マルチプレクサ制御信号線、19は検出
用マルチプレクサ制御信号線である。
FIG. 2 is a circuit block diagram of the inside of the probe of each coil. A multiplexer is used as a switching circuit. As shown in FIG. 2, an excitation coil group 13 of the coils is used for an excitation coil connected to an excitation signal line 21. To an eight-channel (ch) multiplexer 16,
The detection coil group 14 is connected to a detection 8-ch multiplexer 18. And the detection multiplexer 1
The output of 8 is connected to a detection signal line 22, amplified by a detection signal amplifier circuit including an amplification amplifier 20 provided on the way, and output to a measuring instrument, that is, a flaw detector. In the figure, reference numeral 17 denotes an excitation multiplexer control signal line, and reference numeral 19 denotes a detection multiplexer control signal line.

【0013】ここで、上記回路で必要な信号線はマルチ
プレクサを用いない場合には少なくとも18本必要なの
に比べ、励起用マルチプレクサ制御信号線17が4本、
検出用マルチプレクサ制御信号線19が4本、励起信号
線21が2本、検出信号線22が2本、回路駆動用電源
が3本の計15本と削減される。当然ながらコイルが増
えた場合でも多チャンネルマルチプレクサを用いること
で信号線の増加は押さえられる。従って信号線を細径化
する必要がなくなるか、または従来ほど細径化する必要
がなくなり、この結果、信号ケーブル全体の径を変える
ことなく検出対象の形状や位置に関する空間分解能の向
上が達せられる。同時に探傷器とケーブルを接続するコ
ネクターの芯数も削減されるため、より小型のコネクタ
ーが使用可能になり、ケーブル接続時の操作性も向上す
る。
Here, when the multiplexer is not used, at least 18 signal lines are required in the above-described circuit, whereas four excitation multiplexer control signal lines 17 are required.
The number of detection multiplexer control signal lines 19 is four, the number of excitation signal lines 21 is two, the number of detection signal lines 22 is two, and the number of circuit driving power supplies is three. Naturally, even if the number of coils increases, the number of signal lines can be suppressed by using the multi-channel multiplexer. Therefore, it is not necessary to reduce the diameter of the signal line, or it is not necessary to reduce the diameter as compared with the conventional case. As a result, the spatial resolution related to the shape and position of the detection target can be improved without changing the diameter of the entire signal cable. . At the same time, the number of cores of the connector that connects the flaw detector and the cable is reduced, so that a smaller connector can be used and the operability when connecting the cable is improved.

【0014】なお、前記実施例はある励起コイルと、隣
接する検出コイルを対にして考えているが、図3におけ
る励起コイルTと隣接しない検出コイルRの組み合わせ
も可能であり、その場合は異なる配置状態のコイル対が
増加することになる。コイル対の配置状態が異なるとい
うことは、欠陥に対する検出感度が最大になる位置が変
化することと同じなので、故にコイル数を増やすことな
く空間分解能が向上する。また、欠陥に対する感度特性
を変化させることでもあり、目的とする欠陥の検出に最
適な状態にすることも1種類の渦流探傷プローブで可能
になる。
Although the above-described embodiment considers a certain excitation coil and an adjacent detection coil as a pair, a combination of the excitation coil T and the detection coil R not adjacent to each other in FIG. 3 is also possible. The number of coil pairs in the arrangement state increases. The difference in the arrangement state of the coil pairs is the same as the change in the position where the detection sensitivity to the defect is maximized, so that the spatial resolution is improved without increasing the number of coils. In addition, it is also possible to change the sensitivity characteristic with respect to the defect, and it is possible to use the one kind of eddy current flaw detection probe to make the state optimal for the detection of the target defect.

【0015】このコイル対の組み合わせは探傷器および
制御回路からの指令により容易に変更可能なためプロー
ブを変更することなく異なる感度特性でプローブを用い
ることが出来る。またマルチプレクサによる検出信号を
増幅するため、増幅回路は通常必要であるが、とくに検
出信号の劣化が問題にならないような場合は増幅アンプ
を省略することも可能である。
The combination of the coil pairs can be easily changed by a command from the flaw detector and the control circuit, so that the probes can be used with different sensitivity characteristics without changing the probes. An amplification circuit is usually required to amplify the detection signal by the multiplexer. However, the amplification amplifier can be omitted particularly when deterioration of the detection signal is not a problem.

【0016】図4は本発明渦流探傷プローブの第2の実
施例を示す外観図であり、プローブ母体41の円周上
に、円周方向に沿ってコイル42を等間隔に8個並べた
ものである。ここで各コイルは図5に示す如く励起用マ
ルチプレクサ43と検出用マルチプレクサ44の両方に
接続しており、当然ながら、あるコイルが励起コイルT
として作動しているときに、当該コイル以外のコイルが
検出コイルRとして作動する。時分割駆動時における各
コイルの状態を図6に示す。
FIG. 4 is an external view showing a second embodiment of the eddy current flaw detection probe according to the present invention, in which eight coils 42 are arranged at equal intervals on the circumference of the probe base 41 along the circumferential direction. It is. Here, each coil is connected to both the excitation multiplexer 43 and the detection multiplexer 44 as shown in FIG.
, The coil other than the coil operates as the detection coil R. FIG. 6 shows the state of each coil at the time of the time-division driving.

【0017】図示の如くタイムスロット1〜8におい
て、タイムスロット1にはaコイルが励起コイルTで、
これに隣接するbコイルが検出コイルRとなり、次のタ
イムスロット2にはさきに検出したbコイルが励起コイ
ルTで、隣接するcコイルが検出コイルRとして用いら
れる。このようにして、上記形態では次々に励起・検出
コイルを切り替えてゆくので、コイル総数は8個である
にもかかわらず、全部で8対の励起・検出コイル対とし
て用いることが出来る。
As shown, in time slots 1 to 8, a coil is an excitation coil T in time slot 1,
The b coil adjacent thereto is the detection coil R, and the b coil detected earlier in the next time slot 2 is the excitation coil T, and the adjacent c coil is used as the detection coil R. In this way, in the above embodiment, the excitation / detection coils are switched one after another, so that although the total number of coils is eight, it can be used as a total of eight excitation / detection coil pairs.

【0018】また、上記第2の実施例は、もう1つの使
い方として、上記の如く隣接するコイル同士で励起・検
出コイル対とするのではなく、図7に示すようにコイル
1つ飛ばしに励起・検出コイル対とすることもできる。
例えば、図7でaコイルが励起状態の時、cコイルを検
出コイルRにし、タイムスロット2でbコイルを励起コ
イル、dコイルを検出コイルにすることが可能である。
In the second embodiment, as another usage, instead of forming an excitation / detection coil pair between adjacent coils as described above, excitation is performed by skipping one coil as shown in FIG. -It can be a detection coil pair.
For example, in FIG. 7, when the a coil is in the excited state, the c coil can be used as the detection coil R, and in the time slot 2, the b coil can be used as the excitation coil and the d coil can be used as the detection coil.

【0019】更に前記図6に示す隣接するコイル同士で
励起・検出コイル対を作る場合を探傷モードAとし、図
7の如く1つ置きに励起・検出コイル対を作る場合を探
傷モードBとすると、両モード合わせて16対の組み合
わせが8個のコイルで作り出せ、Aモード又はBモード
のみの使用も可能であるし、時分割数を増すことで両モ
ードを同時に使用することも可能である。この場合、構
成するコイル群はAモード、Bモードで同じであるが、
個々の素子対でみると、両モードでは構成素子は空間的
な配置パターンが異なるため、空間分解能や欠陥に対す
る感度特性などは当然異なる。
Further, a case where an excitation / detection coil pair is formed by adjacent coils shown in FIG. 6 is referred to as flaw detection mode A, and a case where alternate excitation / detection coil pairs are formed as shown in FIG. 7 is referred to as flaw detection mode B. A total of 16 pairs of both modes can be created with eight coils, and only the A mode or the B mode can be used, or both modes can be used simultaneously by increasing the number of time divisions. In this case, the configured coil group is the same in the A mode and the B mode,
Looking at the individual element pairs, the constituent elements have different spatial arrangement patterns in both modes, so that the spatial resolution and the sensitivity characteristics to defects are naturally different.

【0020】次に、図8は本発明の第3の実施例であ
り、円筒形81の円周上に8個のコイルが3段、計24
個のコイルを装備し、その内部においては図9の如く励
起コイル用8chマルチプレクサ90、検出コイル用8
chマルチプレクサ86、88、91、92、信号増幅
アンプ87,89,93,94が具備されている。
Next, FIG. 8 shows a third embodiment of the present invention, in which eight coils are provided in three stages on the circumference of a cylinder 81, for a total of 24 coils.
And 8 coils for the excitation coil and 8 coils for the detection coil as shown in FIG.
Channel multiplexers 86, 88, 91, 92 and signal amplifiers 87, 89, 93, 94 are provided.

【0021】この図9に示す回路の接続を詳しく説明す
ると、3段の配置されているコイル群のうち上段8個の
コイル群82と下段8個のコイル群84は検出専用コイ
ル群であり、夫々8chマルチプレクサ86及び88に
接続され、その出力側には増幅アンプ87及び89が介
設されている。
The connection of the circuit shown in FIG. 9 will be described in detail. The upper eight coil groups 82 and the lower eight coil group 84 of the three-stage coil group are detection-only coil groups. They are connected to 8-ch multiplexers 86 and 88, respectively, and amplification amplifiers 87 and 89 are provided on the output side.

【0022】また中段8個のコイル群83は励起兼検出
コイル群であり、励起用8chマルチプレクサ90と検
出用8chマルチプレクサ91と同じく検出用8chマ
ルチプレクサ92に接続され、各検出用マルチプレクサ
の出力側には夫々、増幅アンプ93及び94が接続され
ている。当然ながら、マルチプレクサ91,92は常に
別々のコイルを動作状態にしている。
The middle eight coil group 83 is an excitation / detection coil group, and is connected to the detection 8ch multiplexer 92 like the excitation 8ch multiplexer 90 and the detection 8ch multiplexer 91, and is connected to the output side of each detection multiplexer. Are connected to amplification amplifiers 93 and 94, respectively. Of course, the multiplexers 91 and 92 always have the separate coils active.

【0023】図10はこの各コイル群の動作状態を示し
たものであり、ある励起コイルTに隣接するコイル4個
が検出コイルRとして動作し、結局、5個のコイルが一
群として動作していることを示している。コイル群の切
り替えは第2の実施例と同様で、各タイムスロット毎に
励起・検出コイル群を切り替えていく。
FIG. 10 shows the operating state of each coil group. Four coils adjacent to a certain excitation coil T operate as detection coils R, and eventually, five coils operate as a group. It indicates that The switching of the coil group is the same as in the second embodiment, and the excitation / detection coil group is switched for each time slot.

【0024】この実施例では伝熱管の軸方向欠陥と周方
向欠陥夫々について最大感度を持つコイル配置になって
いるため、夫々の欠陥に対して探傷モードを持ってお
り、更にこれらを一度に探傷することが可能となってい
る。また、探傷器側において、片線接地入力と差動入力
のチャンネルを用意することにより、プローブを絶対型
としても差動型としても使用することが可能である。軸
方向欠陥用センサー対を差動型として使用する場合は、
上段コイル群82の検出信号を探傷器の差動増幅器の非
反転入力へ、下段コイル群84の検出信号を反転入力へ
接続すればよい。同様にマルチプレクサ91の出力を非
反転入力へ、マルチプレクサ92の出力を反転入力へ接
続すれば周方向欠陥用センサー対も差動型として使用す
ることが出来る。勿論、これは探傷器内部の結線なので
同時に絶対型チャンネルとしても使用できる。
In this embodiment, since the coil arrangement has the maximum sensitivity for each of the axial defect and the circumferential defect of the heat transfer tube, each of the defects has a flaw detection mode. It is possible to do. In addition, by providing a single-wire ground input channel and a differential input channel on the flaw detector side, the probe can be used as an absolute type or a differential type. When using the axial defect sensor pair as a differential type,
The detection signal of the upper coil group 82 may be connected to the non-inverting input of the differential amplifier of the flaw detector, and the detection signal of the lower coil group 84 may be connected to the inverting input. Similarly, if the output of the multiplexer 91 is connected to the non-inverting input and the output of the multiplexer 92 is connected to the inverting input, the circumferential defect sensor pair can also be used as a differential type. Of course, since this is a connection inside the flaw detector, it can also be used as an absolute channel at the same time.

【0025】絶対型チャンネルを使用しないことを前提
とするならば、増幅アンプ87及び89をひとまとめに
して差動入力アンプとしておけばよく、その場合は回路
実装スペースの削減や信号線数の低減が可能となる。こ
のことは、増幅アンプ93及び94についても同様であ
る。
If it is assumed that the absolute type channel is not used, the amplifiers 87 and 89 may be collectively used as a differential input amplifier, in which case the circuit mounting space and the number of signal lines can be reduced. It becomes possible. This is the same for the amplifiers 93 and 94.

【0026】図11は、本発明の第4の実施例として、
周方向欠陥検出用にコイル101〜108及びコイル2
01〜208を用い、軸方向欠陥検出用にコイル101
〜108とコイル301〜308を用いるものである。
この場合、図示例においては軸方向検出モードにおい
て、軸方向の感度低下領域を無くすためにコイル301
〜308はコイル101〜108、201〜208とは
角度をずらして配置されている。例えばコイル301は
コイル101とコイル102の中間点とコイル201と
コイル202の中間点を結ぶ直線上に配置される。駆動
に関してはコイル102が励起状態にあるときコイル3
01及びコイル302が検出状態に入り、さらに制御装
置で301の信号と302の信号が差分される。また、
同様に周方向欠陥検出モードはコイル101が励起状態
の時、コイル103が検出状態に入る。その後、コイル
201が励起状態に入りコイル203が検出状態に入
る。 制御装置においてコイル103の出力とコイル2
03の出力を差分することで周方向欠陥の差分信号が得
られる。
FIG. 11 shows a fourth embodiment of the present invention.
Coil 101-108 and Coil 2 for circumferential defect detection
01 to 208, the coil 101 for detecting an axial defect.
To 108 and coils 301 to 308.
In this case, in the illustrated example, in the axial direction detection mode, the coil 301 is used in order to eliminate the sensitivity reduction region in the axial direction.
308 are arranged at different angles from the coils 101 to 108 and 201 to 208. For example, the coil 301 is arranged on a straight line connecting the midpoint between the coils 101 and 102 and the midpoint between the coils 201 and 202. Regarding the driving, when the coil 102 is in the excited state, the coil 3
01 and the coil 302 enter the detection state, and further, the control device makes a difference between the signal of 301 and the signal of 302. Also,
Similarly, in the circumferential defect detection mode, when the coil 101 is in the excited state, the coil 103 enters the detection state. Thereafter, the coil 201 enters the excitation state, and the coil 203 enters the detection state. In the control device, the output of the coil 103 and the coil 2
The difference signal of the circumferential defect can be obtained by subtracting the output of No. 03.

【0027】図12は上記図11に示す各コイル群の動
作状況を示すものであり、これを時分割駆動例として例
示表記すると、下記表1の如くである。表中、s1は第
1スロット、s2は第2スロットなどを示し、例えば第
1スロットs1ではコイル101を励起コイルとして、
コイル103、コイル308、コイル301が検出コイ
ルとして動作することを示している。
FIG. 12 shows the operating state of each coil group shown in FIG. 11, which is shown as an example of time division driving as shown in Table 1 below. In the table, s1 indicates a first slot, s2 indicates a second slot, and the like. For example, in the first slot s1, the coil 101 is used as an excitation coil.
This shows that the coils 103, 308, and 301 operate as detection coils.

【0028】[0028]

【表1】 [Table 1]

【0029】なお、上記各実施例の外、更に図13に示
す配置や図14に示す配置、動作状況も可能である。以
上、本発明の実施例について説明したが、この説明では
磁場励起素子・磁場検出素子として共にコイルを用いた
が、勿論、これに限らず、その他の素子でも有効であ
る。また、コイル数やスイッチング回路であるマルチプ
レクサのチャンネル数についても同様に、特に8chで
ある必要は一切なく、必要に応じて適宜、増減すればよ
い。また回路を内蔵する場所について、プローブ母体内
部が最も望ましいが、物理的に不可能な場合は一般にシ
ースと呼ばれる信号線を内包するチューブ内部やその周
囲に設けることも可能である。
In addition to the above embodiments, the arrangement shown in FIG. 13 and the arrangement and operation shown in FIG. 14 are also possible. The embodiments of the present invention have been described above. In this description, coils are used as the magnetic field excitation element and the magnetic field detection element. However, the present invention is not limited to this, and other elements are also effective. Similarly, the number of coils and the number of channels of the multiplexer, which is a switching circuit, need not be 8 channels at all, and may be increased or decreased as needed. The location where the circuit is built is most preferably inside the probe matrix, but when physically impossible, it can be provided inside or around the tube containing the signal line generally called a sheath.

【0030】[0030]

【発明の効果】以上、説明した如く、本発明渦流探傷プ
ローブは、複数の磁場励起素子と、複数の磁場検出素子
と、これらの素子を時分割駆動するためのスイッチング
回路と、更に加えて複数の検出素子を時分割駆動するス
イッチング回路よりも計測器側に検出信号増幅回路を設
けた構成からなるものであり、多チャンネルマルチプレ
クサを用いることにより信号線の増加が押さえられ、従
って、信号線を細径化する必要はなく、信号ケーブル全
体の径を変えることなく検出素子数を増やすことができ
て、内挿型渦流探傷プローブの空間分解能の向上を達成
することができると共に、探傷器とケーブルを接続する
コネクターの芯数も削減され、小型コネクターの使用が
可能となり、ケーブル操作性の向上も得られる顕著な効
果を奏する。
As described above, the eddy current flaw detection probe of the present invention comprises a plurality of magnetic field excitation elements, a plurality of magnetic field detection elements, a switching circuit for time-divisionally driving these elements, and a plurality of The detection signal amplification circuit is provided on the measuring device side rather than the switching circuit that drives the detection element in a time-division manner.By using a multi-channel multiplexer, the increase in the number of signal lines is suppressed. There is no need to reduce the diameter, the number of detection elements can be increased without changing the diameter of the entire signal cable, and the spatial resolution of the insertion type eddy current flaw detection probe can be improved. The number of cores of the connector for connecting the cables is also reduced, so that a small connector can be used, and a remarkable effect of improving the operability of the cable can be obtained.

【0031】また、本発明渦流探傷プローブでは、検出
側スイッチング回路の出力側に増幅回路を設けたことに
より信号線内での電圧降下が無視できるようになったと
同時に、スイッチング回路を用いて同一素子を検出素子
兼励起素子として使用することにより、物理的な素子配
列を変更することなく感度特性の異なる複数の探傷モー
ドを使用することが可能となる効果も達成される。
Further, in the eddy current flaw detection probe of the present invention, the voltage drop in the signal line can be ignored by providing the amplifier circuit on the output side of the detection-side switching circuit, and at the same time, the same element is used by using the switching circuit. By using as a detection element and an excitation element, an effect that a plurality of flaw detection modes having different sensitivity characteristics can be used without changing the physical element arrangement is also achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明渦流探傷プローブの1例を示す外観概要
図である。
FIG. 1 is a schematic external view showing an example of an eddy current flaw detection probe of the present invention.

【図2】上記図1の渦流探傷プローブの電気的接続を示
す回路ブロックである。
FIG. 2 is a circuit block diagram showing an electrical connection of the eddy current flaw detection probe of FIG. 1;

【図3】図1の実施例によるコイルの配列態様を平面化
した説明図である。
FIG. 3 is an explanatory view in which a coil arrangement according to the embodiment of FIG. 1 is planarized;

【図4】本発明渦流探傷プローブの第2の実施例に係る
外観概要図である。
FIG. 4 is a schematic external view of a eddy current detection probe according to a second embodiment of the present invention.

【図5】上記図4の渦流探傷プローブの電気的接続を示
す回路ブロック図である。
FIG. 5 is a circuit block diagram showing an electrical connection of the eddy current detection probe of FIG. 4;

【図6】上記実施例の時分割駆動時における各コイルの
1つの状態を示す説明図である。
FIG. 6 is an explanatory diagram showing one state of each coil during time-division driving in the embodiment.

【図7】同じく図5の実施例の時分割駆動時における各
コイルの他の状態を示す説明図である。
FIG. 7 is an explanatory diagram showing another state of each coil during the time-division driving of the embodiment of FIG. 5;

【図8】本発明渦流探傷プローブの第3の実施例を示す
外観概要図である。
FIG. 8 is a schematic external view showing a third embodiment of the eddy current flaw detection probe of the present invention.

【図9】図8の実施例における電気的接続を示す回路ブ
ロック図である。
FIG. 9 is a circuit block diagram showing electrical connections in the embodiment of FIG.

【図10】上記図8の実施例の各コイル群の時分割駆動
時における動作状態を示す説明図である。
FIG. 10 is an explanatory diagram showing an operation state at the time of time-division driving of each coil group in the embodiment of FIG. 8;

【図11】本発明渦流探傷プローブの第4の実施例を示
す外観概要図である。
FIG. 11 is a schematic external view showing a fourth embodiment of the eddy current flaw detection probe of the present invention.

【図12】図11の第4実施例の時分割駆動時における
各コイルの動作状態を示す説明図である。
FIG. 12 is an explanatory diagram showing an operation state of each coil at the time of time-division driving in the fourth embodiment of FIG. 11;

【図13】本発明渦流探傷プローブの更に他のコイル配
置態様と動作状態を示す説明図である。
FIG. 13 is an explanatory view showing still another coil arrangement mode and an operation state of the eddy current detection probe of the present invention.

【図14】本発明渦流探傷プローブの更に別のコイル配
置状態と時分割駆動時における動作状態を示す説明図で
ある。
FIG. 14 is an explanatory view showing still another coil arrangement state of the eddy current flaw detection probe of the present invention and an operation state at the time of time division driving.

【図15】従来の渦流探傷プローブの1例を示す外観概
要図である。
FIG. 15 is a schematic external view showing an example of a conventional eddy current flaw detection probe.

【図16】従来の渦流探傷プローブの別の例を示す外観
概要図である。
FIG. 16 is a schematic external view showing another example of a conventional eddy current flaw detection probe.

【符号の説明】[Explanation of symbols]

13 励起コイル(磁場励起素子) 14 検出コイル(磁場検出素子) 16,43,90 励起用マルチプレクサ(スイッチン
グ回路) 18,44,86,88,91,92 検出用マルチプ
レクサ(スイッチング回路) 20,47,87,89,93,94 増幅アンプ(検
出信号増幅回路)
13 Excitation coil (magnetic field excitation element) 14 Detection coil (magnetic field detection element) 16, 43, 90 Multiplexer for excitation (switching circuit) 18, 44, 86, 88, 91, 92 Multiplexer for detection (switching circuit) 20, 47, 87, 89, 93, 94 Amplification amplifier (detection signal amplification circuit)

───────────────────────────────────────────────────── フロントページの続き (71)出願人 599019948 4495 Wilfrid−Hamel Qu ebec,Qebec, Canada (72)発明者 原田 豊 大阪市西区土佐堀一丁目3番7号 株式会 社原子力エンジニアリング内 (72)発明者 下根 純理 大阪市西区土佐堀一丁目3番7号 株式会 社原子力エンジニアリング内 (72)発明者 フローリアン ハーディ カナダ国.ケベック州 セント−オーガス チン リュ デ ラバンディエーレ 121 (72)発明者 ロック サムソン カナダ国 ケベック州 セント−ニコラス ド ラ ショーディエル 177 Fターム(参考) 2F063 AA03 BC02 BD07 CA08 CA09 CA34 DA01 DD07 DD09 EB24 GA08 LA09 LA11 2G053 AA11 AB21 BA12 BA23 CB19 DB02 DB04 DB27  ──────────────────────────────────────────────────続 き Continuation of the front page (71) Applicant 599019948 4495 Wilfrid-Hamel Quebec, Qbec, Canada (72) Inventor Yutaka Harada 1-3-7 Tosabori, Nishi-ku, Osaka-shi Nuclear Engineering Co., Ltd. (72) Invention Person: Junri Shimone 1-3-7 Tosabori, Nishi-ku, Osaka-shi Nuclear Engineering Co., Ltd. (72) Inventor Florian Hardy Canada. St-Augustine, Quebec 121 Rue de Labandiere 121 (72) Inventor Rock Samson St. Nicholas de la Chaudier, Quebec 177 F-term (reference) 2F063 AA03 BC02 BD07 CA08 CA09 CA34 DA01 DD07 DD09 EB24 GA08 LA09 LA11 2G053 AA11 AB21 BA12 BA23 CB19 DB02 DB04 DB27

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の磁場励起素子と、複数の磁場検出
素子と、これらの素子を時分割駆動するためのスイッチ
ング回路および前記複数の検出素子を時分割駆動するス
イッチング回路よりも計測器側に設けた検出信号増幅回
路からなることを特徴とする渦流探傷プローブ。
1. A plurality of magnetic field excitation elements, a plurality of magnetic field detection elements, a switching circuit for driving these elements in a time-division manner, and a switching circuit for time-divisionally driving the plurality of detection elements on the measuring instrument side. An eddy current flaw detection probe comprising a detection signal amplification circuit provided.
【請求項2】 複数の磁場励起素子・磁場検出素子が、
複数の空間的配置パターンを持っている請求項1記載の
渦流探傷プローブ。
2. The method according to claim 1, wherein the plurality of magnetic field excitation elements / magnetic field detection elements are:
2. The eddy current detection probe according to claim 1, wherein the probe has a plurality of spatial arrangement patterns.
【請求項3】 複数の磁場励起兼検出素子を備え、同一
素子に励起素子を時分割駆動するためのスイッチング回
路と検出素子を時分割駆動するためのスイッチング回路
の双方を接続してタイミングによって該同一素子を励起
素子または検出素子として用いることを特徴とする渦流
探傷プローブ。
And a switching circuit for driving the excitation element in a time-division manner and a switching circuit for driving the detection element in a time-division manner in the same element. An eddy current flaw detection probe using the same element as an excitation element or a detection element.
【請求項4】 検出素子を時分割するためのスイッチン
グ回路の出力側に検出信号増幅回路を設けた請求項3記
載の渦流探傷プローブ。
4. The eddy current flaw detection probe according to claim 3, wherein a detection signal amplification circuit is provided on an output side of a switching circuit for time-dividing the detection element.
【請求項5】 複数の磁場励起素子・磁場検出素子が、
複数の空間的配置を持ち、かつ磁場励起素子・磁場検出
素子の組み合わせの変更が可能なことを特徴とする請求
項3または4記載の渦流探傷プローブ。
5. The magnetic field excitation element / magnetic field detection element according to claim 1,
5. The eddy current flaw detection probe according to claim 3, wherein the probe has a plurality of spatial arrangements, and a combination of a magnetic field excitation element and a magnetic field detection element can be changed.
JP11034446A 1999-02-12 1999-02-12 Eddy-current flaw detecting probe Pending JP2000235019A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP11034446A JP2000235019A (en) 1999-02-12 1999-02-12 Eddy-current flaw detecting probe
US09/350,183 US6344739B1 (en) 1999-02-12 1999-07-09 Eddy current probe with multi-use coils and compact configuration
PCT/CA2000/000135 WO2000047986A1 (en) 1999-02-12 2000-02-14 Eddy current testing with compact configuration
AU25300/00A AU2530000A (en) 1999-02-12 2000-02-14 Eddy current testing with compact configuration
AU25301/00A AU2530100A (en) 1999-02-12 2000-02-14 Multi-element probe with multiplexed elements for non-destructive testing
KR1020017010220A KR100756763B1 (en) 1999-02-12 2000-02-14 Eddy current testing with compact configuration
AT00903465T ATE391292T1 (en) 1999-02-12 2000-02-14 EDDY CURRENT TESTING WITH SPACE-SAVING CONFIGURATION
DE60038483T DE60038483T2 (en) 1999-02-12 2000-02-14 CURRENT CURRENT CHECK WITH ROUGH-SAVING CONFIGURATION
EP00903465A EP1153289B1 (en) 1999-02-12 2000-02-14 Eddy current testing with compact configuration
CA002372259A CA2372259C (en) 1999-02-12 2000-02-14 Eddy current testing with compact configuration
PCT/CA2000/000136 WO2000047987A1 (en) 1999-02-12 2000-02-14 Multi-element probe with multiplexed elements for non-destructive testing
ES00903465T ES2306656T3 (en) 1999-02-12 2000-02-14 TRIAL THROUGH CURRENT FOUCAULT WITH A COMPACT CONFIGURATION.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11034446A JP2000235019A (en) 1999-02-12 1999-02-12 Eddy-current flaw detecting probe

Publications (1)

Publication Number Publication Date
JP2000235019A true JP2000235019A (en) 2000-08-29

Family

ID=12414486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11034446A Pending JP2000235019A (en) 1999-02-12 1999-02-12 Eddy-current flaw detecting probe

Country Status (1)

Country Link
JP (1) JP2000235019A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240761A (en) * 2002-02-15 2003-08-27 Jfe Steel Kk Method and apparatus for detecting surface layer defect or surface defect in magnetic metal specimen
JP2005315840A (en) * 2004-01-28 2005-11-10 Hitachi Ltd Resolver/digital converter, and control system using the same
JP2005337909A (en) * 2004-05-27 2005-12-08 Olympus Corp Multicoil type probe of eddy current flaw detector
JP2006010438A (en) * 2004-06-24 2006-01-12 Jfe Steel Kk Method and apparatus for detecting flaw of magnetic metal specimen
JP2007033027A (en) * 2005-07-22 2007-02-08 Uchihashi Estec Co Ltd Method of diagnosing ferrous material in concrete structure with ferrous material embedded therein
JP2007513330A (en) * 2003-11-18 2007-05-24 アルセロール・フランス Method and system for detecting surface defects in continuously cast crude metal products
JP2008046069A (en) * 2006-08-21 2008-02-28 Hitachi Ltd Eddy current flaw detection technique and system
WO2009037954A1 (en) 2007-09-20 2009-03-26 Nuclear Engineering, Ltd. Eddy-current flaw detecting method, eddy-current flaw detecting device, and eddy-current flaw detecting probe
JP2009069155A (en) * 2007-09-11 2009-04-02 Olympus Ndt Phased scan eddy current array probe and phased scanning method for providing complete and continuous coverage of test surface without scanning mechanically
JP2012173121A (en) * 2011-02-21 2012-09-10 Toshiba Corp Eddy current-utilizing flaw detection testing apparatus and testing method of the same
JP2013242223A (en) * 2012-05-21 2013-12-05 Toshiba Corp Eddy current flaw detection device and method
JP2018066671A (en) * 2016-10-20 2018-04-26 日立Geニュークリア・エナジー株式会社 Eddy current flaw detection system and eddy current flaw detection method
KR20180079989A (en) * 2017-01-03 2018-07-11 한국수력원자력 주식회사 Array eddy current probe with isolated transmit/receive part and eddy current inspection method using thereof
CN111351843A (en) * 2018-12-24 2020-06-30 核动力运行研究所 Eddy current multiplexing array probe for BOBBIN coil excitation point type coil receiving
KR102214144B1 (en) * 2020-09-10 2021-02-09 한전케이피에스 주식회사 Eddy current array probe for inspection

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240761A (en) * 2002-02-15 2003-08-27 Jfe Steel Kk Method and apparatus for detecting surface layer defect or surface defect in magnetic metal specimen
JP2007513330A (en) * 2003-11-18 2007-05-24 アルセロール・フランス Method and system for detecting surface defects in continuously cast crude metal products
JP4652336B2 (en) * 2003-11-18 2011-03-16 アルセロールミタル・フランス Method and system for detecting surface defects in continuously cast crude metal products
JP2005315840A (en) * 2004-01-28 2005-11-10 Hitachi Ltd Resolver/digital converter, and control system using the same
JP4521258B2 (en) * 2004-01-28 2010-08-11 日立オートモティブシステムズ株式会社 Resolver / digital converter and control system using the same
JP2005337909A (en) * 2004-05-27 2005-12-08 Olympus Corp Multicoil type probe of eddy current flaw detector
JP4575029B2 (en) * 2004-05-27 2010-11-04 オリンパス株式会社 Multi-coil probe for eddy current flaw detector
JP4561195B2 (en) * 2004-06-24 2010-10-13 Jfeスチール株式会社 Method and apparatus for detecting defects in magnetic metal specimen
JP2006010438A (en) * 2004-06-24 2006-01-12 Jfe Steel Kk Method and apparatus for detecting flaw of magnetic metal specimen
JP2007033027A (en) * 2005-07-22 2007-02-08 Uchihashi Estec Co Ltd Method of diagnosing ferrous material in concrete structure with ferrous material embedded therein
JP4619884B2 (en) * 2005-07-22 2011-01-26 双日マシナリー株式会社 Diagnosis method for ferrous materials in concrete structures embedded in ferrous materials
JP2008046069A (en) * 2006-08-21 2008-02-28 Hitachi Ltd Eddy current flaw detection technique and system
JP4663603B2 (en) * 2006-08-21 2011-04-06 日立オートモティブシステムズ株式会社 Eddy current flaw detection method and eddy current flaw detection system
JP2009069155A (en) * 2007-09-11 2009-04-02 Olympus Ndt Phased scan eddy current array probe and phased scanning method for providing complete and continuous coverage of test surface without scanning mechanically
KR101450842B1 (en) 2007-09-20 2014-10-14 가부시키가이샤 겐시료쿠엔지니어링 Eddy-current flaw detecting method, eddy-current flaw detecting device, and eddy-current flaw detecting probe
WO2009037954A1 (en) 2007-09-20 2009-03-26 Nuclear Engineering, Ltd. Eddy-current flaw detecting method, eddy-current flaw detecting device, and eddy-current flaw detecting probe
US8421449B2 (en) 2007-09-20 2013-04-16 Nuclear Engineering, Ltd. Eddy-current flaw detection method, eddy-current flaw detection device and eddy-current flaw detection probe
JP2009074943A (en) * 2007-09-20 2009-04-09 Nuclear Engineering Ltd Eddy current flaw detection method, eddy current flaw detector and eddy current flaw detection probe
JP2012173121A (en) * 2011-02-21 2012-09-10 Toshiba Corp Eddy current-utilizing flaw detection testing apparatus and testing method of the same
JP2013242223A (en) * 2012-05-21 2013-12-05 Toshiba Corp Eddy current flaw detection device and method
JP2018066671A (en) * 2016-10-20 2018-04-26 日立Geニュークリア・エナジー株式会社 Eddy current flaw detection system and eddy current flaw detection method
KR20180079989A (en) * 2017-01-03 2018-07-11 한국수력원자력 주식회사 Array eddy current probe with isolated transmit/receive part and eddy current inspection method using thereof
WO2018128225A1 (en) * 2017-01-03 2018-07-12 한국수력원자력 주식회사 Eddy current array probe having an insulted transceiver unit and eddy current examination method using same
KR101941354B1 (en) * 2017-01-03 2019-01-22 한국수력원자력 주식회사 Array eddy current probe with isolated transmit/receive part and eddy current inspection method using thereof
CN110140049A (en) * 2017-01-03 2019-08-16 韩国水力原子力株式会社 Eddy current array probe with insulation transceiver unit and use its eddy current inspection method
CN111351843A (en) * 2018-12-24 2020-06-30 核动力运行研究所 Eddy current multiplexing array probe for BOBBIN coil excitation point type coil receiving
KR102214144B1 (en) * 2020-09-10 2021-02-09 한전케이피에스 주식회사 Eddy current array probe for inspection

Similar Documents

Publication Publication Date Title
EP2199785B1 (en) Eddy-current flaw detecting method, eddy-current flaw detecting device, and eddy-current flaw detecting probe
JP2000235019A (en) Eddy-current flaw detecting probe
US6344739B1 (en) Eddy current probe with multi-use coils and compact configuration
JP4917899B2 (en) Eddy current flaw detection sensor and eddy current flaw detection method
JP2009545732A (en) Device with separate emission / reception functions for conducting eddy current tests on conductive parts
JP2005351890A (en) Omnidirectional eddy current probe and inspection system
WO2018128225A1 (en) Eddy current array probe having an insulted transceiver unit and eddy current examination method using same
US20140240571A1 (en) Image data processing method, image sensor and image data processing system using the method
US6339327B1 (en) Eddy current probe for inspecting electrically conducting parts
JP2007510488A (en) Parallel MR imaging method
JP3111045B2 (en) RF probe for magnetic resonance imaging
WO2003028194A1 (en) Linear motor with transducer arrangement
JP2000235018A (en) Eddy-current flaw detecting probe
JP2005084000A (en) Torque measuring device
US8059176B2 (en) Linear image sensor
KR102185877B1 (en) Eddy current probe having tilted coils
JP2019163950A (en) Eddy current flaw inspection probe
JPH08211026A (en) Eddy current sensor probe
JP2005199043A (en) Method and apparatus for multiple imaging field of gradient coil
JPS6359254A (en) One-dimensional image sensor device
CN116465958A (en) Array type telescopic probe, pulsed eddy current nondestructive inspection system and method
JP6083137B2 (en) Control apparatus and control method
JPH0352024B2 (en)
JPS6114569A (en) Detector for eddy current flaw detection
JP2009162711A (en) Rotation speed detection sensor