JP2006010438A - Method and apparatus for detecting flaw of magnetic metal specimen - Google Patents

Method and apparatus for detecting flaw of magnetic metal specimen Download PDF

Info

Publication number
JP2006010438A
JP2006010438A JP2004186323A JP2004186323A JP2006010438A JP 2006010438 A JP2006010438 A JP 2006010438A JP 2004186323 A JP2004186323 A JP 2004186323A JP 2004186323 A JP2004186323 A JP 2004186323A JP 2006010438 A JP2006010438 A JP 2006010438A
Authority
JP
Japan
Prior art keywords
leg
legs
defect
wound around
magnetic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004186323A
Other languages
Japanese (ja)
Other versions
JP4561195B2 (en
Inventor
Takahiro Koshihara
敬弘 腰原
Hiroharu Kato
宏晴 加藤
Akio Nagamune
章生 長棟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004186323A priority Critical patent/JP4561195B2/en
Publication of JP2006010438A publication Critical patent/JP2006010438A/en
Application granted granted Critical
Publication of JP4561195B2 publication Critical patent/JP4561195B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the occurrence of the region of a dead zone unable to detect a flaw when the flaw is detected using a comb-shaped magnetic sensor and to achieve the simplification, compactification or the like of the constitution of a flaw detector. <P>SOLUTION: First, the switch 4c of a selection circuit 4 is closed to excite an exciting coil 11c and both induced voltages of detection coils 11a and 11e are selectively outputted to a differential amplifier 6 by a selection circuit 5. Next, a switch 4d is closed to excite an exciting coil 11d and both induced voltages of detection coils 11b and 11f are selectively outputted to the differential amplifier 6 by the selection circuit 5. Further, a switch 4e is closed to excite an exciting coil 11e and both induced voltages of detection coils 11c and 11g are selectively outputted to the differential amplifier 6 by the selection circuit 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁性金属板、磁性金属帯、磁性金属管などの磁性金属材料の表面あるいは表層などに存在する、非磁性金属介在物やスケール(酸化物)のかみ込みなどの欠陥を精度良く検出する方法およびその装置に関するものである。   The present invention accurately detects defects such as biting of non-magnetic metal inclusions and scales (oxides) present on the surface or surface of a magnetic metal material such as a magnetic metal plate, magnetic metal band, or magnetic metal tube. And a device for the same.

近年、磁性金属製品に求められる品質レベルの高度化により、表面欠陥等の有害欠陥の少ない磁性金属材料に対する要望がますます強まっている。このような磁性金属製品としては、例えば鉄鋼薄板製品では自動車用、製缶用の冷延鋼板、めっき鋼板などがある。
また、厚板鋼材、鋼管などにおいても、欠陥が割れの起源となり得ることから、表面欠陥、表層欠陥、および内部欠陥を減少させることは非常に重要である。鋼以外の磁性金属を使用した磁性金属材料でも、表面欠陥、表層欠陥、および内部欠陥の有無が品質上非常に重要であることは同様である。
In recent years, with the advancement of the quality level required for magnetic metal products, there is an increasing demand for magnetic metal materials with few harmful defects such as surface defects. Examples of such magnetic metal products include cold rolled steel sheets and plated steel sheets for automobiles and cans for steel sheet products.
Further, in a thick steel plate, a steel pipe, etc., it is very important to reduce surface defects, surface layer defects, and internal defects because defects can cause cracks. Even in a magnetic metal material using a magnetic metal other than steel, the presence of surface defects, surface layer defects, and internal defects is very important in terms of quality.

なお、ここで、表層欠陥とは、表面を含む数100μm程度の深さまでの内部にある欠陥を意味する。
以下、自動車用めっき鋼板を例にして、さらに詳細に説明する。
自動車用めっき鋼板は、製鋼工程、熱延工程、酸洗工程、冷延工程、めっき工程、プレス工程を通して製造される。自動車用めっき鋼板における重大欠陥の1つは、ヘゲと一般に呼ばれるものであり、これは最終製品(自動車)において、欠陥部がその他の健全部と明らかに異なって見えるため、外観を損ねるという問題を引き起こし、あるいは非常に程度の悪いものになると、プレス成型時にプレス機を損傷するなどの弊害が生ずる。
Here, the surface layer defect means a defect in the interior up to a depth of about several hundred μm including the surface.
Hereinafter, an automotive plated steel sheet will be described in more detail as an example.
Plated steel sheets for automobiles are manufactured through a steelmaking process, a hot rolling process, a pickling process, a cold rolling process, a plating process, and a pressing process. One of the serious defects in galvanized steel sheets for automobiles is what is commonly referred to as “hege”, and this is a problem that in the final product (automobile), the defective parts appear to be clearly different from other healthy parts, thus deteriorating the appearance. If it is caused to be very bad, it will cause problems such as damage to the press machine during press molding.

このヘゲは、製鋼工程において生じる非磁性金属介在物に発生原因がある場合、あるいは製鋼工程および熱延工程入り側(熱延前)のおける、酸化物の鋼材内部への混入に発生原因がある場合など、全製造工程の中で、上工程側に起源があるとされている。また、このヘゲは、熱間圧延、冷間圧延を経ることで、幅方向に非常に微小で、圧延方向に長い形状に延ばされる。   This hege is caused by non-magnetic metal inclusions generated in the steelmaking process, or by the inclusion of oxide inside the steel material on the steelmaking process and hot rolling process entry side (before hot rolling). In some cases, it is said that the origin is on the upper process side in the entire manufacturing process. In addition, this scab is extended in a shape that is very small in the width direction and long in the rolling direction by undergoing hot rolling and cold rolling.

製品の品質向上のためには、プロセス改善の結果を早期に判定することが重要であると同時に、欠陥の発生状況を把握した上で、合格品として出荷する、あるいは、健全な部分のみを出荷する、別の低グレード品に転用するなど、最適な対応を取る必要がある。
ヘゲ等の表面欠陥を検出するためには、光学式の表面欠陥計が一般的には使用されているが、表面に露出していない表層欠陥をも含めて検出するためには、プローブ型渦流探傷器なども使用される。
In order to improve the quality of products, it is important to determine the results of process improvement at an early stage, and at the same time, after understanding the occurrence of defects, ship as acceptable products or ship only healthy parts. Therefore, it is necessary to take optimum measures such as diverting to another low-grade product.
An optical surface defect meter is generally used to detect surface defects such as baldness, but in order to detect surface layer defects that are not exposed on the surface, a probe type Eddy current flaw detectors are also used.

しかし、検出すべき欠陥が非常に小さくなってくると、従来から使用される光学式の表面欠陥計やプローブ型渦流探傷器では十分な検出能力が得られないという不具合があり、この不具合を解決するために、磁性金属被検体の表面や表層の欠陥を検出する方法が知られている(例えば、特許文献1参照)。
この検出方法は、脚部にコイルが巻回された櫛型形状の強磁性体の4本以上の脚部を磁性金属被検体の検出面に対向して略垂直に、かつ磁性金属被検体の幅方向に略平行に並べて配置し、隣り合う3本の脚部の組の選択を時間的に切り替えながら、選択された3本の脚部のうち、中央の脚部に巻回された1次コイルに交流電流を印加して励磁し、外側の2つの脚部のそれぞれに巻回された2次コイルに誘起された電圧の差分信号を基に、欠陥の検出を行うことで非常に小さな欠陥を検出するものである。
However, if the defects to be detected become very small, there is a problem that the conventional optical surface defect meter and probe type eddy current flaw detector cannot obtain sufficient detection capability, and this problem is solved. In order to achieve this, a method for detecting defects on the surface or surface layer of a magnetic metal specimen is known (see, for example, Patent Document 1).
In this detection method, four or more legs of a comb-shaped ferromagnetic material having a coil wound around a leg are substantially perpendicular to the detection surface of the magnetic metal object, and the magnetic metal object is The primary wound around the center leg among the selected three legs while temporally switching the selection of a pair of three adjacent legs arranged side by side in the width direction. A very small defect is detected by applying an alternating current to the coil and exciting it, and detecting the defect based on the voltage difference signal induced in the secondary coil wound around each of the two outer legs. Is detected.

この検出方法に基づいて、磁性金属被検体の欠陥を検出する検出装置を図7に示す。図7は、磁化装置と磁気センサの部分を中心に図示したものであり、鋼板や信号処理回路については図示を省略している。
図7において、3は磁化電源、6は差動増幅器、10は櫛型強磁性体、10a〜10eは脚部、11a〜11eはコイルである。櫛型形状を有する櫛型強磁性体10の各脚部が、被検体である鋼板の表面に略垂直に、かつ、それぞれが鋼板の幅方向に並ぶように配置されている。各脚部には、図示のようにコイルが巻回されている。
FIG. 7 shows a detection apparatus for detecting defects in a magnetic metal object based on this detection method. FIG. 7 mainly shows the magnetizing device and the magnetic sensor, and the illustration of the steel plate and the signal processing circuit is omitted.
In FIG. 7, 3 is a magnetization power source, 6 is a differential amplifier, 10 is a comb-shaped ferromagnetic body, 10a to 10e are legs, and 11a to 11e are coils. The leg portions of the comb-shaped ferromagnetic body 10 having a comb shape are arranged so as to be substantially perpendicular to the surface of the steel plate as the subject and aligned in the width direction of the steel plate. A coil is wound around each leg as shown in the figure.

次に、このような構成からなる検出装置による磁性金属被検体の欠陥の検出について、図7(a)〜(c)を参照して説明する。
まず、図7(a)に示すように、同図の左端の3つの脚部10a,10b,10cを選択し、その中央の脚部10bに巻回されたコイル11bを磁化電源3に接続し、交流磁束を発生させる。そして、その磁束をその両側に位置する脚部10a,10cに巻回されたコイル11a,11cにより検出し、この検出信号を差動増幅器6に導く。差動増幅器6からは、その両者の差に対応する電圧が出力される。
Next, detection of a defect in a magnetic metal object by the detection apparatus having such a configuration will be described with reference to FIGS.
First, as shown in FIG. 7A, the left three leg portions 10a, 10b, and 10c in the same figure are selected, and the coil 11b wound around the central leg portion 10b is connected to the magnetizing power source 3. , Generate alternating magnetic flux. Then, the magnetic flux is detected by the coils 11 a and 11 c wound around the leg portions 10 a and 10 c located on both sides thereof, and this detection signal is guided to the differential amplifier 6. The differential amplifier 6 outputs a voltage corresponding to the difference between the two.

次に、電気経路を電子的または電気的に切り替えて、図7(b)に示すように、左端から2つ目〜4つ目の脚部10b,10c,10dを選択し、その中央の脚部10cに巻回されたコイル11cを磁化電源3に接続し、交流磁束を発生させる。そして、その磁束をその両側に位置する脚部10b,10dに巻回されたコイル11b,11dにより検出する。   Next, the electrical path is switched electronically or electrically to select the second to fourth legs 10b, 10c, 10d from the left end as shown in FIG. The coil 11c wound around the portion 10c is connected to the magnetization power source 3 to generate an alternating magnetic flux. The magnetic flux is detected by the coils 11b and 11d wound around the leg portions 10b and 10d located on both sides.

さらに、図7(c)に示すように、左端から3つ目〜5つ目の脚部10c,10d,10eを選択し、同様の検出を行う。
以下、これを繰り返せば、被検体である鋼板の幅方向に向けて検出器を走査していることに相当し、広い幅の範囲にわたって機械的な動きを伴うことなく走査を行うことができる。
Further, as shown in FIG. 7C, the third to fifth leg portions 10c, 10d, and 10e from the left end are selected, and the same detection is performed.
Hereinafter, if this is repeated, it corresponds to scanning the detector in the width direction of the steel plate as the subject, and scanning can be performed without mechanical movement over a wide range.

図7に示すような櫛型の強磁性体を用いた磁気センサによる検出方法は、E型の強磁性体を用いた磁気センサを走査させる方式と比較して、稼働部分がなく、構造が簡単で高速な走査が実現可能である。
特開2003−240761号公報
The detection method using a magnetic sensor using a comb-shaped ferromagnetic material as shown in FIG. 7 has no working parts and has a simple structure as compared with a method of scanning a magnetic sensor using an E-type ferromagnetic material. Thus, high-speed scanning can be realized.
JP 2003-240761 A

しかし、図8に示すように、3つの脚部のうち、磁束の発生を担当する中央の脚部の直下で検出感度が低くなり、欠陥を検出できない不感帯(検出不能領域)を生じるという不具合が考えられる。
この不感帯は、図7(a)〜(c)に示す各検出の度に発生し、この検出ごとに発生する各不感帯は図8(a)〜(c)に示すようになる。図8において、斜線部は各検出の際の検出可能領域であり、この検出可能領域に挟まれた領域が不感帯となる。従って、不感帯は、櫛型強磁性体10の各脚部の直下ごとに存在することになる。
However, as shown in FIG. 8, the detection sensitivity is lowered just below the central leg in charge of magnetic flux generation among the three legs, and there is a problem that a dead zone (detectable area) in which a defect cannot be detected is generated. Conceivable.
This dead zone occurs at each detection shown in FIGS. 7A to 7C, and each dead zone generated at each detection is as shown in FIGS. 8A to 8C. In FIG. 8, the shaded area is a detectable area at the time of each detection, and an area sandwiched between the detectable areas is a dead zone. Therefore, there is a dead zone immediately below each leg of the comb-shaped ferromagnetic body 10.

このような不具合に対して、特許文献1には、もう1組以上の櫛型の強磁性体を用いた磁気センサを、櫛型の強磁性体の長手方向にずらして並行に千鳥状に配置することで、その不感帯をカバーしあうことが提案されている。
しかし、その提案の場合には、櫛型の強磁性体を用いた磁気センサを複数列設ける必要があるので、それぞれの櫛型の強磁性体を用いた磁気センサを配列した方向にもずれが生じる。このため、例えば配列方向に移動する被検体を対象とする場合、同時刻に櫛型の強磁性体を用いたセンサが検査している位置は、移動方向にずれがあるため、この移動方向のずれを補正する必要が生じる。その移動方向のずれは、測定した時間のずれとして認識され、測定時間のタイミングを補正したものを、移動方向に同一の位置とみなすことで解決することができる。
In order to deal with such a problem, Patent Document 1 discloses that a magnetic sensor using another pair of comb-shaped ferromagnets is shifted in the longitudinal direction of the comb-shaped ferromagnet and arranged in a staggered manner in parallel. By doing so, it is proposed to cover the dead zone.
However, in the case of the proposal, it is necessary to provide a plurality of rows of magnetic sensors using comb-shaped ferromagnets. Therefore, there is a shift in the direction in which the magnetic sensors using the respective comb-shaped ferromagnets are arranged. Arise. For this reason, for example, when a subject moving in the arrangement direction is targeted, the position inspected by the sensor using the comb-shaped ferromagnetic material at the same time is shifted in the movement direction. It is necessary to correct the deviation. The shift in the movement direction is recognized as a shift in the measured time, and can be solved by regarding the correction of the timing of the measurement time as the same position in the movement direction.

このように、上記の提案の場合には、測定時間のタイミングを補正する機構が新たに必要になり、全体として構成が複雑になり装置が大掛かりになる。しかも、移動速度が変化すると、タイミングを補正する量が変わるなど、移動方向のずれを完全に補正することは容易ではない、などの不具合がある。
そこで、本発明の目的は、櫛型磁気センサを使用して欠陥検出を行う場合に、その検出ができない不感帯の発生を防止でき、その装置の実現に際して構成の簡易化、コンパク化、および制作費用の低価格化を達成できる磁性金属被検体の欠陥の検出方法および検出装置を提供することにある。
Thus, in the case of the above proposal, a mechanism for correcting the timing of the measurement time is newly required, and the configuration becomes complicated as a whole, and the apparatus becomes large. Moreover, when the moving speed is changed, there is a problem that it is not easy to completely correct the shift in the moving direction, for example, the amount of timing correction is changed.
Accordingly, an object of the present invention is to prevent the generation of dead zones that cannot be detected when performing defect detection using a comb-type magnetic sensor, simplifying the configuration, compacting, and production costs when realizing the device. It is an object of the present invention to provide a defect detection method and a detection apparatus for a magnetic metal specimen that can achieve a low cost.

上記の課題を解決し本発明の目的を達成するために、各発明は以下のように構成するようにした。
すなわち、請求項1に係る発明は、磁性金属被検体を交流磁化し、この磁化に基づく磁束を磁気センサで検出し、この検出に基づいて磁性金属被検体の欠陥の検出を行う検出方法であって、6つ以上の脚部を有する櫛型形状の強磁性体と、前記各脚部にそれぞれ巻回されるコイルとを含む櫛型磁気センサの各脚部を、磁性金属被検体の検出面に対向して配置し、前記6つ以上の脚部の中から、隣り合わない等間隔に離れた3つの脚部を1組とする各組を所定の順序で選択していき、その各組が選択されるたびに、その選択された各組の3つの脚部のうち、中央の脚部に巻回されたコイルに交流を供給して励磁し、中央以外の両側の2つの脚部のそれぞれに巻回された両コイルに誘起される両電圧の差分信号に基づいて前記磁性金属被検体の欠陥の検出を行うようにした。
In order to solve the above-described problems and achieve the object of the present invention, each invention is configured as follows.
That is, the invention according to claim 1 is a detection method in which a magnetic metal specimen is AC magnetized, a magnetic flux based on this magnetization is detected by a magnetic sensor, and a defect of the magnetic metal specimen is detected based on this detection. In addition, each leg of the comb-shaped magnetic sensor including a comb-shaped ferromagnetic body having six or more legs and a coil wound around each leg is used as a detection surface of a magnetic metal object. Each pair is selected in a predetermined order from the six or more legs, and each pair is composed of three legs that are not adjacent to each other and spaced apart at equal intervals. Is selected, the alternating current is supplied to the coil wound around the center leg among the three legs of each selected pair, and the two legs on both sides other than the center are excited. The absence of the magnetic metal specimen based on the differential signal between the voltages induced in the coils wound around the coils. It was to perform the detection.

請求項2に係る発明は、請求項1に記載の検出方法において、前記磁性金属被検体の欠陥の検出時には、少なくとも前記中央の脚部と、前記中央以外の両側の2つの各脚部との間に位置する脚部に巻回されるコイルは、その両端を短絡するようにした。
請求項3に係る発明は、磁性金属被検体の検出面と対向する複数の脚部を有する櫛型形状の強磁性体と、前記複数の各脚部に巻回される複数のコイルとを含む櫛型磁気センサと、前記複数の脚部のうち、選択された2つの脚部に巻回されるコイルの両誘起電圧の差分を求める演算手段と、前記櫛型磁気センサの複数の脚部の中から、隣り合わない等間隔に離れた3つの脚部を1組とする各組のうちの所定の1組を選択し、この選択された各組の3つの脚部のうち、中央の脚部に巻回されたコイルに交流を供給して励磁し、中央以外の両側の2つの脚部のそれぞれに巻回された両コイルに誘起される両電圧を前記演算手段に導く選択手段と、前記演算手段で演算された差分信号に基づいて前記磁性金属被検体の欠陥の検出を行う欠陥検出手段と、を備えている。
According to a second aspect of the present invention, in the detection method according to the first aspect, at the time of detecting a defect of the magnetic metal object, at least the central leg and at least two legs on both sides other than the center are provided. The coil wound around the leg located between them was short-circuited at both ends.
The invention according to claim 3 includes a comb-shaped ferromagnetic body having a plurality of legs facing the detection surface of the magnetic metal object, and a plurality of coils wound around each of the plurality of legs. A comb-type magnetic sensor; computing means for obtaining a difference between both induced voltages of coils wound around two selected legs of the plurality of legs; and a plurality of legs of the comb-type magnetic sensor From the inside, a predetermined one of a pair of three legs that are not adjacent to each other and spaced apart at equal intervals is selected, and the center leg among the three legs of each selected pair is selected. A selection means for supplying an alternating current to the coil wound around the part to excite the coil and inducing both voltages induced in both the coils wound around each of the two legs on both sides other than the center to the arithmetic means; Defect detection means for detecting defects of the magnetic metal object based on the difference signal calculated by the calculation means; It is equipped with a.

請求項4に係る発明は、請求項3に記載の検出装置において、前記選択手段が、前記各組の3つの脚部を選択したときには、少なくとも選択した前記中央の脚部と、前記中央以外の両側の2つの各脚部との間に位置する脚部に巻回される各コイルの両端を短絡するようになっている。   According to a fourth aspect of the present invention, in the detection apparatus according to the third aspect, when the selection unit selects three legs of each set, at least the selected central leg and the other than the central leg. Both ends of each coil wound around the leg portion positioned between the two leg portions on both sides are short-circuited.

本発明によれば、櫛型磁気センサを使用して欠陥検出を行う場合に、その検出ができない不感帯の発生を防止でき、その装置の実現に際して構成の簡易化、コンパク化、および制作費用の低価格化を達成できる。   According to the present invention, when defect detection is performed using a comb-type magnetic sensor, it is possible to prevent the generation of a dead zone that cannot be detected, simplifying the configuration, realizing compactness, and reducing production costs when the device is realized. Price can be achieved.

以下、図面を参照して、本発明の磁性金属被検体の欠陥の検出方法、およびその検出装置の実施形態について説明する。
図1は、本発明の検出装置に係る実施形態の全体の構成を示すブロック図である。
この検出装置に係る実施形態は、図1に示すように、櫛型磁気センサ1と、磁化電源3と、選択回路4と、選択回路5と、差動増幅器6と、位相検波器7と、欠陥レベル判別器8と、制御回路9とを備えている。
Embodiments of a defect detection method and a detection apparatus for a magnetic metal specimen according to the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing the overall configuration of an embodiment according to the detection apparatus of the present invention.
As shown in FIG. 1, the embodiment according to this detection apparatus includes a comb-type magnetic sensor 1, a magnetization power source 3, a selection circuit 4, a selection circuit 5, a differential amplifier 6, a phase detector 7, A defect level discriminator 8 and a control circuit 9 are provided.

櫛型磁気センサ1は、例えば7つの脚部10a〜10gを有する櫛型強磁性体10と、その脚部10a〜10gに巻回される7つのコイル11a〜11gとを備えている。脚部10a〜10gは櫛型強磁性体10の長さ方向に一列に配列され、その脚部10a〜10gの各先端面は、磁性金属被検体の欠陥検出の際にはその検出面と対向するようになっている。   The comb-shaped magnetic sensor 1 includes, for example, a comb-shaped ferromagnetic body 10 having seven leg portions 10a to 10g and seven coils 11a to 11g wound around the leg portions 10a to 10g. The leg portions 10a to 10g are arranged in a line in the longitudinal direction of the comb-shaped ferromagnet 10, and the front end surfaces of the leg portions 10a to 10g face the detection surface when detecting a defect of the magnetic metal object. It is supposed to be.

脚部10a〜10gの幅、間隔、長さ、奥行きは、通常、測定対象とする欠陥の大きさに基づいて経験的、または代表的な自然欠陥や測定対象となる欠陥と同じ程度の大きさの人工欠陥をもとに試験探傷を繰り返して決定される。
ここで、図1に示す櫛型磁性体10の脚部10a〜10gの配列の間隔は、図7に示す従来の櫛型磁性体の脚部の間隔の1/2に設定されている。また、脚部の配列個数は、この例では説明の便宜上7つとしたが、6つ以上であれば良く、測定対象の大きさなどを考慮して決定される。
The width, interval, length, and depth of the leg portions 10a to 10g are usually the same size as empirical or typical natural defects or defects to be measured based on the size of the defect to be measured. It is determined by repeating the test flaw detection based on the artificial defect.
Here, the spacing between the leg portions 10a to 10g of the comb-shaped magnetic body 10 shown in FIG. 1 is set to ½ of the spacing between the leg portions of the conventional comb-shaped magnetic body shown in FIG. In this example, the number of leg portions is set to seven for convenience of explanation, but may be six or more, and is determined in consideration of the size of the measurement target.

コイル11a〜11gの各一端側は共通接続され、その共通接続部がアースに接続されている。また、コイル11a〜11gの各他端側は、選択回路4のスイッチ4a〜4gを介して励磁電源3に接続されるとともに、選択回路5の入力側に接続されている。
磁化電源3は、選択回路4のスイッチ4a〜4gを介して櫛型磁気センサ1のコイル11a〜11gのうちの1つと接続し、その接続されたコイルを励磁するものである。このため、磁化電源3は、その一端側がスイッチ4a〜4gにそれぞれ接続され、その他端側がアースに接続されている。
Each one end side of the coils 11a to 11g is commonly connected, and the common connection portion is connected to the ground. The other end sides of the coils 11 a to 11 g are connected to the excitation power source 3 via the switches 4 a to 4 g of the selection circuit 4 and are connected to the input side of the selection circuit 5.
The magnetization power supply 3 is connected to one of the coils 11 a to 11 g of the comb magnetic sensor 1 via the switches 4 a to 4 g of the selection circuit 4 and excites the connected coil. For this reason, the magnetization power supply 3 has one end connected to the switches 4a to 4g and the other end connected to the ground.

選択回路4は、磁化電源3と櫛型磁気センサ1のコイル11a〜11gとの接続を選択的に行うスイッチ4a〜4gを備えている。このスイッチ4a〜4gは、欠陥検出の際に、後述のように制御回路9の制御に従ってそのうちの所定の1つが閉じるようになっている。スイッチ4a〜4gは、トランジスタのような電子スイッチ、またはリレーのような機械的な接点などが使用される。   The selection circuit 4 includes switches 4 a to 4 g that selectively connect the magnetization power supply 3 and the coils 11 a to 11 g of the comb magnetic sensor 1. The switches 4a to 4g are configured such that a predetermined one of them is closed according to the control of the control circuit 9 as described later when a defect is detected. As the switches 4a to 4g, electronic switches such as transistors or mechanical contacts such as relays are used.

選択回路5は、欠陥検出の際に、コイル11a〜11gのうちから所定の2つのコイルを選択し、その選択された2つのコイルの各誘起電圧を差動増幅器6に出力するようになっている。選択回路5のこれらの選択出力制御は、制御回路9からの指示に基づいて行うようになっている。選択回路5は図示しないが、スイッチの組み合わせからなり、そのスイッチとしては、トランジスタのような電子スイッチ、またはリレーのような機械的な接点などが使用される。   The selection circuit 5 selects two predetermined coils from the coils 11 a to 11 g when detecting a defect, and outputs each induced voltage of the selected two coils to the differential amplifier 6. Yes. The selection output control of the selection circuit 5 is performed based on an instruction from the control circuit 9. Although not shown, the selection circuit 5 is composed of a combination of switches. As the switch, an electronic switch such as a transistor or a mechanical contact such as a relay is used.

差動増幅器6は、選択回路5で選択された2つのコイルの両誘起電圧を入力し、その両誘起電圧の差分に応じた信号を位相検波器7に出力するようになっている。
位相検波器7は、差動増幅器6からの出力信号を入力し、この入力信号を磁化電源3の波形に同期した信号により位相検波し、これにより磁性金属被検体の欠陥の大きさに応じた信号を得るものである。
The differential amplifier 6 inputs both induced voltages of the two coils selected by the selection circuit 5 and outputs a signal corresponding to the difference between the two induced voltages to the phase detector 7.
The phase detector 7 receives the output signal from the differential amplifier 6 and detects the phase of the input signal using a signal synchronized with the waveform of the magnetizing power source 3, thereby responding to the defect size of the magnetic metal object. Get the signal.

欠陥レベル判別器8は、位相検波器7からの出力信号を入力し、これをあらかじめ定めてあるしきい値と比較することにより、磁性金属被検体の欠陥のレベルを判別し、その判別結果を出力するものである。
制御回路9は、欠陥検出の指示があると、その指示に基づいてあらかじめ定められた手順で選択回路4のスイッチ4a〜49のオンオフ制御、および選択回路5の選択出力制御を行うものである。
The defect level discriminator 8 receives the output signal from the phase detector 7 and compares it with a predetermined threshold value to discriminate the defect level of the magnetic metal object, and the discrimination result is obtained. Output.
When there is a defect detection instruction, the control circuit 9 performs on / off control of the switches 4a to 49 of the selection circuit 4 and selection output control of the selection circuit 5 according to a predetermined procedure based on the instruction.

次に、このような構成からなる実施形態による欠陥の検出方法について、図1〜図3を参照して説明する。
まず、図1に示す櫛型磁気センサ1の各脚部10a〜10gを、例えば図4(b)に示すように磁性金属被検体aの検出面に対向させる。
この状態で、櫛型磁気センサ1の左端から1つおきに5つ目までの3つの脚部10a,10c,10eを選択し、この選択された脚部10a,10c,10eに巻回されるコイル11a,11c,11eを使用して欠陥の検出を行う。
Next, a defect detection method according to the embodiment having such a configuration will be described with reference to FIGS.
First, the legs 10a to 10g of the comb-type magnetic sensor 1 shown in FIG. 1 are opposed to the detection surface of the magnetic metal subject a as shown in FIG. 4B, for example.
In this state, three legs 10a, 10c, 10e are selected from the left end of the comb-type magnetic sensor 1 to every fifth one, and wound around the selected legs 10a, 10c, 10e. Defects are detected using the coils 11a, 11c, and 11e.

このときには、制御回路9により選択回路4のスイッチ4cがオンとなり、その選択された中央の脚部10cに巻回されるコイル11cが磁化電源3に接続され、その両側に位置する脚部10a,10eに巻回されるコイル11a,11eの両誘起電圧が、選択回路5で選択されて差動増幅器6に出力される。このときのコイルと各部の接続状態は、図2(a)に示すようになる。ここで、図2ではコイルの一端側の接続のみ表示され、その他端側の接地の表示は省略されている。   At this time, the switch 4c of the selection circuit 4 is turned on by the control circuit 9, and the coil 11c wound around the selected center leg 10c is connected to the magnetizing power source 3, and the legs 10a, Both induced voltages of the coils 11 a and 11 e wound around 10 e are selected by the selection circuit 5 and output to the differential amplifier 6. The connection state between the coil and each part at this time is as shown in FIG. Here, in FIG. 2, only the connection on one end side of the coil is displayed, and the display of grounding on the other end side is omitted.

この結果、コイル11cは磁化電源3により励磁されて交流磁束が発生し、コイル11a,11eにより検出された検出信号(誘起電圧)は差動増幅器6に入力される。差動増幅器6の出力は位相検波器7に入力され、磁化電源の波形に同期した信号により位相検波されると、位相検波器7からは被検体の欠陥の大きさに応じた信号が出力される。欠陥レベル判別器8は、その出力信号を入力し、これをあらかじめ定めてあるしきい値と比較することにより、被検体の欠陥のレベルを判別し、その判別結果を出力する。   As a result, the coil 11 c is excited by the magnetizing power source 3 to generate an alternating magnetic flux, and the detection signal (induced voltage) detected by the coils 11 a and 11 e is input to the differential amplifier 6. The output of the differential amplifier 6 is input to the phase detector 7, and when phase detection is performed by a signal synchronized with the waveform of the magnetizing power source, the phase detector 7 outputs a signal corresponding to the size of the defect of the subject. The The defect level discriminator 8 receives the output signal, compares it with a predetermined threshold value, discriminates the defect level of the subject, and outputs the discrimination result.

ここで、仮に磁性金属被検体面の欠陥が脚部10aと脚部10cの間に存在すると、脚部10aと脚部10cを通る磁束に対する磁気抵抗が、脚部10cと脚部10eを通る磁束に対する磁気抵抗より大きくなり、これにより、脚部10aを通る磁束密度が脚部10eを通る磁束密度に比べて相対的に小さくなる。その結果、脚部10aに巻回されたコイル10aに誘起される電圧が、脚部10eに巻回されたコイル11eに誘起される電圧よりも小さくなる。この電圧の差が、差動増幅器6により増幅されて出力される。   Here, if a defect on the magnetic metal subject surface exists between the leg 10a and the leg 10c, the magnetic resistance to the magnetic flux passing through the leg 10a and the leg 10c is the magnetic flux passing through the leg 10c and the leg 10e. Thus, the magnetic flux density passing through the leg 10a is relatively smaller than the magnetic flux density passing through the leg 10e. As a result, the voltage induced in the coil 10a wound around the leg 10a is smaller than the voltage induced in the coil 11e wound around the leg 10e. This voltage difference is amplified by the differential amplifier 6 and output.

次に、櫛型磁気センサ1の左端から2つ目から6つ目の脚部のうち、1つおきに3つの脚部10b,10d,10fを選択し、この選択された脚部10b,10d,10fに巻回されるコイル11b,11d,11fを使用して欠陥の検出を行う。
このときには、選択回路4のスイッチ4dがオンとなり、脚部10dに巻回されるコイル11dが磁化電源3に接続され、脚部10b,10fに巻回されるコイル11b,11fの両誘起電圧が選択回路5で選択されて差動増幅器6に出力される。このときのコイルと各部の接続状態は、図2(b)に示すようになる。
Next, every third leg 10b, 10d, 10f is selected from the second to sixth legs from the left end of the comb magnetic sensor 1, and the selected legs 10b, 10d are selected. , 10f is used to detect defects using the coils 11b, 11d, and 11f wound around.
At this time, the switch 4d of the selection circuit 4 is turned on, the coil 11d wound around the leg 10d is connected to the magnetizing power source 3, and both induced voltages of the coils 11b and 11f wound around the legs 10b and 10f are The signal is selected by the selection circuit 5 and output to the differential amplifier 6. The connection state between the coil and each part at this time is as shown in FIG.

この結果、コイル11dは磁化電源3により励磁されて交流磁束が発生し、コイル11b,11fにより検出された検出信号は差動増幅器6に入力される。
さらに、櫛型磁気センサ1の左端から3つ目から7つ目の脚部のうち、1つおきに3つの脚部10c,10e,10gを選択し、この選択された脚部10c,10e,10gに巻回されるコイル11c,11e,11gを使用して欠陥の検出を行う。
As a result, the coil 11d is excited by the magnetizing power source 3 to generate an alternating magnetic flux, and the detection signals detected by the coils 11b and 11f are input to the differential amplifier 6.
Furthermore, every third leg 10c, 10e, 10g is selected from the third to seventh legs from the left end of the comb-shaped magnetic sensor 1, and the selected leg 10c, 10e, 10g, Defects are detected using the coils 11c, 11e, and 11g wound around 10g.

このときには、選択回路4のスイッチ4eがオンとなり、脚部10eに巻回されるコイル11eが磁化電源3に接続され、脚部10c,10gに巻回されるコイル11c,11gの両誘起電圧が選択回路5で選択されて差動増幅器6に出力される。このときのコイルと各部の接続状態は、図2(c)に示すようになる。
この結果、コイル11eは磁化電源3により励磁されて交流磁束が発生し、コイル11c,11gにより検出された検出信号は差動増幅器6に入力される。
At this time, the switch 4e of the selection circuit 4 is turned on, the coil 11e wound around the leg 10e is connected to the magnetizing power source 3, and both induced voltages of the coils 11c and 11g wound around the legs 10c and 10g are The signal is selected by the selection circuit 5 and output to the differential amplifier 6. The connection state between the coil and each part at this time is as shown in FIG.
As a result, the coil 11e is excited by the magnetizing power source 3 to generate an alternating magnetic flux, and the detection signals detected by the coils 11c and 11g are input to the differential amplifier 6.

以下、これらの検出を繰り返せば、磁性金属被検体が鋼板の場合には、鋼板の幅方向に向けて櫛型磁気センサ1を走査していることに相当し、広い幅の範囲にわたって機械的な動きを伴うことなく走査を行うことができる。
また、この実施形態の検出方法によれば、図2(a)に示すように、強磁性体10の脚部10a,10c,10eを使用して検出する場合には、図3(a)に示すように脚部10cの真下に不感帯が生じる。次に、図2(b)に示すように、脚部10b,10d,10fを使用して検出する場合には、図3(b)に示すように脚部10dの真下に不感帯が生じるが、この検出の際には、先に脚部10cの真下に生じた不感帯の領域は検出可能領域となる。以下、同様の結果が得られる。
Hereinafter, if these detections are repeated, when the magnetic metal object is a steel plate, this corresponds to scanning the comb-type magnetic sensor 1 in the width direction of the steel plate, and is mechanical over a wide range. Scanning can be performed without movement.
Further, according to the detection method of this embodiment, as shown in FIG. 2A, when the detection is performed using the leg portions 10a, 10c, and 10e of the ferromagnetic body 10, the detection method shown in FIG. As shown, a dead zone is formed directly below the leg 10c. Next, as shown in FIG. 2 (b), when detecting using the leg portions 10b, 10d, and 10f, a dead zone is generated directly below the leg portion 10d as shown in FIG. 3 (b). At the time of this detection, the area of the dead zone that has been generated immediately below the leg 10c first becomes a detectable area. Hereinafter, similar results are obtained.

このため、図3からわかるように、この実施形態によれば、従来の検出方法で問題となっていた、欠陥検出の際に発生する図9に示すような不感帯の発生を防止できる。
なお、上記の説明では、欠陥の検出を図2の(a)(b)(c)の順序で行うようにしたが、本発明はその手順に限定されず、例えば(a)(c)(b)の順序というように所定の順序で行うようにすれば良い。
Therefore, as can be seen from FIG. 3, according to this embodiment, it is possible to prevent the generation of the dead zone as shown in FIG. 9 that occurs when a defect is detected, which is a problem in the conventional detection method.
In the above description, the defect detection is performed in the order of (a), (b), and (c) in FIG. 2, but the present invention is not limited to the procedure, and for example, (a) (c) ( What is necessary is just to carry out in a predetermined order like the order of b).

図4は、櫛型磁気センサの検出時の磁束分布を示すイメージ図であり、(a)は従来の櫛型磁気センサのように隣り合う3つの脚部に巻回されるコイルを使用する場合であり、(b)はこの実施形態の櫛型磁気センサ1のように1つおきに選択された3つの脚部に巻回されるコイルを使用する場合である。
図4では、上記のように、(b)に示す実施形態に係る櫛型磁気センサ1の脚部の間隔は、(a)に示す櫛型磁気センサの脚部の間隔の約1/2となっている。
FIG. 4 is an image diagram showing the magnetic flux distribution at the time of detection by the comb-type magnetic sensor. FIG. 4A shows a case where coils wound around three adjacent legs are used like a conventional comb-type magnetic sensor. Yes, (b) shows a case where coils wound around three legs selected every other like the comb-type magnetic sensor 1 of this embodiment are used.
In FIG. 4, as described above, the distance between the legs of the comb-shaped magnetic sensor 1 according to the embodiment shown in (b) is about ½ of the distance between the legs of the comb-shaped magnetic sensor shown in (a). It has become.

図4(a)に示す場合には、脚部10cに巻かれたコイル11cに磁化電源3から交流電流を流すと、図示のような磁束12が生じる。磁性金属被検体aに欠陥a1があると、その欠陥a1によって磁束12が阻害され、脚部10a,10eに巻かれた11a,11eに誘起される電圧に差が生じ、それを差動増幅器6によって、増幅して検出する。
一方、図3(b)に示す場合には、脚部10cに巻かれたコイル11cに磁化電源3から交流電流を流すと、図示のような磁束12が生じる。しかし、励磁用の脚部10cと検出用の脚部10a,10eとの間に、脚部10b,10dが存在するため、磁束12は脚部10a,10eの他に脚部10b,10dを通る。このため、検出用の脚部10a,10eを通る磁束は、脚部10b,10dがない場合に比べて相対的に減少するため、検出性能が低下されることが懸念される。
In the case shown in FIG. 4A, when an alternating current is passed from the magnetization power supply 3 to the coil 11c wound around the leg portion 10c, a magnetic flux 12 as shown is generated. If there is a defect a1 in the magnetic metal object a, the magnetic flux 12 is obstructed by the defect a1, and there is a difference between the voltages induced in 11a and 11e wound around the legs 10a and 10e. To amplify and detect.
On the other hand, in the case shown in FIG. 3B, when an alternating current is passed from the magnetization power supply 3 to the coil 11c wound around the leg 10c, a magnetic flux 12 as shown is generated. However, since the leg portions 10b and 10d exist between the excitation leg portion 10c and the detection leg portions 10a and 10e, the magnetic flux 12 passes through the leg portions 10b and 10d in addition to the leg portions 10a and 10e. . For this reason, since the magnetic flux passing through the detection leg portions 10a and 10e is relatively reduced as compared with the case where there are no leg portions 10b and 10d, there is a concern that the detection performance is deteriorated.

そこで、本発明者らは、実際に測定対象となる欠陥と同じレベルの大きさの人工欠陥を用意し、この実施形態に係る磁気センサの検出能力を評価するための実験を行った。
この実験では、測定対象となる人工欠陥として、その幅が0.2mm、その深さが0.5mmのものを用意した。そして比較のために、以下の2つの櫛型磁気センサA,Bを用意した。
Therefore, the present inventors prepared an artificial defect having the same size as the defect to be actually measured, and conducted an experiment for evaluating the detection capability of the magnetic sensor according to this embodiment.
In this experiment, an artificial defect having a width of 0.2 mm and a depth of 0.5 mm was prepared as an artificial defect to be measured. For comparison, the following two comb magnetic sensors A and B were prepared.

櫛型磁気センサAは、脚部の幅が0.5mm、脚部の間隔が1.5mm、脚部の奥行きが10mm、脚部の長さが2mmのものとした。櫛型磁気センサBは、脚部の幅が0.5mm、脚部の間隔が3mm、脚部の奥行きが10mm、脚部の長さが2mmのものとした。このような両磁気センサA,Bのイメージは、図5(a)(b)に示すようになる。
ここで、脚部の間隔とは、隣り合う2つの脚部の幅方向の中心間距離のことである(図5参照)。
The comb-shaped magnetic sensor A had leg widths of 0.5 mm, leg spacing of 1.5 mm, leg depths of 10 mm, and leg lengths of 2 mm. The comb-type magnetic sensor B had leg widths of 0.5 mm, leg spacing of 3 mm, leg depths of 10 mm, and leg lengths of 2 mm. Images of both magnetic sensors A and B are as shown in FIGS.
Here, the space | interval of a leg part is a center distance of the width direction of two adjacent leg parts (refer FIG. 5).

このように、櫛型磁気センサA、Bではその脚部のサイズは同じであるが、櫛型磁気センサAの脚部の配置間隔は櫛型磁気センサBの脚部の配置間隔の1/2であり、狭くなっている。
そして、櫛形磁気センサAでは、隣合う3つの脚部を使用して、図5(a)に示すような接続により検出を行った。また、櫛形磁気センサBでは、1つおきに3つの脚部を使用して、図5(b)に示すような接続により検出を行った。この比較試験では、励磁コイルの励磁周波数は、750〔kHz〕とした。
As described above, the size of the legs of the comb magnetic sensors A and B is the same, but the arrangement interval of the legs of the comb magnetic sensor A is 1/2 of the arrangement interval of the legs of the comb magnetic sensor B. It is narrow.
In the comb-shaped magnetic sensor A, detection was performed by connection as shown in FIG. 5A using three adjacent leg portions. Further, in the comb-shaped magnetic sensor B, detection was performed by connection as shown in FIG. 5B using every other three legs. In this comparative test, the exciting frequency of the exciting coil was set to 750 [kHz].

実際の探傷では、例えば図1に示すような検出装置を使用して擬似的な走査を行うが、この比較試験では、励磁用、検出用の脚部の間の脚部がどのような影響を与えるかを評価することが目的である。このため、櫛型磁気サンサAは、図5(b)に示すように5つの脚部からなるものを用意し、実際に走査させて測定した。この測定時には、櫛形磁気センサAの測定に使用されない脚部に巻回されるコイルを短絡させ、非接地状態とした(図5(b)参照)。   In actual flaw detection, for example, a detection device as shown in FIG. 1 is used to perform a pseudo scan. In this comparative test, the influence of the leg between the excitation and detection legs is affected. The purpose is to evaluate what to give. For this reason, the comb-shaped magnetic sensor A was prepared with five legs as shown in FIG. 5 (b), and was actually scanned and measured. At the time of this measurement, the coil wound around the leg portion not used for the measurement of the comb-shaped magnetic sensor A was short-circuited to be in a non-grounded state (see FIG. 5B).

この比較試験の結果を、図5に示す。図5(a)に示すように、櫛形磁気センサBを使用して隣合う3つの脚部を使用する従来の検出方法では、人工欠陥に対する出力信号のレベルが約1.4〔V〕である。これに対して、櫛形磁気センサAを使用して1つおきの3つの脚部を使用する本発明に係る検出方法では、その出力信号のレベルが約1.3〔V〕であり、若干の出力低下があるが、この程度の低下では欠陥検出に問題のないレベルであることが確認された。   The result of this comparative test is shown in FIG. As shown in FIG. 5A, in the conventional detection method using three adjacent legs using the comb-shaped magnetic sensor B, the level of the output signal for the artificial defect is about 1.4 [V]. . In contrast, in the detection method according to the present invention using every other three legs using the comb-shaped magnetic sensor A, the level of the output signal is about 1.3 [V], Although there was a decrease in output, it was confirmed that this level of decrease would not cause a problem in defect detection.

次に、本発明に係る検出方法では、欠陥の検出時に、励磁用の脚部と検出用の脚部との間に、検出に直接寄与しない脚部が存在し、その脚部に巻回されるコイルが検出に与える影響が懸念される。
そこで、その検出に直接寄与しない脚部に巻回されるコイルを、図6(a)に示すように電気的に開放させた開放状態、図6(b)に示すように短絡させて接地しない状態(短絡非接地状態)、および図6(c)に示すように短絡させて接地させた状態(短絡接地状態)の3状態における比較試験を、以下のような条件の下で行った。
Next, in the detection method according to the present invention, when a defect is detected, a leg that does not directly contribute to detection exists between the excitation leg and the detection leg, and is wound around the leg. There is concern about the influence of the coil on detection.
Therefore, the coil wound around the leg that does not directly contribute to the detection is in an open state in which the coil is electrically opened as shown in FIG. 6 (a), and short-circuited as shown in FIG. 6 (b) and not grounded. A comparative test in the three states of the state (short-circuited non-grounded state) and the state of being short-circuited and grounded (short-circuited grounded state) as shown in FIG. 6C was performed under the following conditions.

人工欠陥は、先の比較実験と同じ大きさのものとした。櫛型磁気センサは、脚部の幅が0.5mm、脚部の間隔が1mm、脚部の奥行きが2mm、脚部の長さが5mmのものを用意した。また、コイルの励磁周波数は、1〔MHz〕とした。
表1に、測定結果である3つの状態における欠陥の信号出力の強度を示す。表1に示す信号強度は、信号出力の正負のピーク値の差を表している。表1によれば、励磁用と検出用の間の脚部に巻回されるコイルの状態が、開放状態、短絡接地状態、および短絡非接地状態のいずれの場合でも信号は検出可能であった。
The artificial defect was the same size as the previous comparative experiment. A comb-shaped magnetic sensor having a leg width of 0.5 mm, a distance between leg parts of 1 mm, a leg part depth of 2 mm, and a leg part length of 5 mm was prepared. The excitation frequency of the coil was 1 [MHz].
Table 1 shows the intensity of the signal output of the defect in the three states as the measurement results. The signal intensity shown in Table 1 represents the difference between the positive and negative peak values of the signal output. According to Table 1, a signal could be detected regardless of whether the coil wound around the leg portion for excitation and detection was in an open state, a short-circuit ground state, or a short-circuit non-ground state. .

Figure 2006010438
Figure 2006010438

この比較実験結果から3つの状態を比較すると、開放状態と比較して、短絡の2状態の方がより検出し易く、短絡させた2状態を比較すると、短絡接地状態よりも短絡非接地状態の方が優れていることがわかる。
従って、この実施形態では、欠陥検出の際に、励磁用と検出用の間の脚部に巻回されるコイルはその両端を短絡するようにするのが好ましい。なお、そのコイルを短絡するための回路は、図1に示す検出装置には含まれていないが、スイッチの組み合わせにより選択回路4などに含ませることができる。
Comparing the three states based on the results of this comparative experiment, it is easier to detect the two short-circuit states than the open state, and comparing the two short-circuit states is a short-circuit non-ground state than a short-circuit ground state. You can see that it is better.
Therefore, in this embodiment, it is preferable to short-circuit both ends of the coil wound around the leg portion for excitation and detection when detecting a defect. A circuit for short-circuiting the coil is not included in the detection device shown in FIG. 1, but can be included in the selection circuit 4 or the like by a combination of switches.

以上説明したように、この実施形態によれば、櫛型磁気センサを使用して欠陥検出を行う場合に、その検出ができない不感帯の発生を防止でき、その装置の実現に際しては、構成の簡易化、コンパク化、および制作費用の低価格化を達成できる。
なお、上記の実施形態の検出方法では、図2(a)に示すように、例えば、櫛型磁気センサ1の左端から1つおきに5つ目までの3つの脚部10a,10c,10eを選択し、この選択された脚部10a,10c,10eに巻回されるコイル11a,11c,11eを使用して欠陥の検出を行う場合について説明した。
As described above, according to this embodiment, when a defect detection is performed using a comb-type magnetic sensor, it is possible to prevent a dead zone that cannot be detected, and to simplify the configuration when realizing the device. , Compactness, and lower production costs.
In the detection method of the above embodiment, as shown in FIG. 2A, for example, three legs 10a, 10c, and 10e from the left end of the comb-type magnetic sensor 1 to every fifth one are alternately provided. The case where the defect is detected by using the coils 11a, 11c, and 11e wound around the selected leg portions 10a, 10c, and 10e has been described.

しかし、これに代えて、以下のようにして欠陥を検出するようにしても良い。すなわち、まず、櫛型磁気センサ1の左端から1つおきに3つ目までの2つの脚部10a,10cを選択し、その選択した10a,10cのうち、脚部10aに巻回されるコイルを励磁用コイルとして使用し、脚部10cに巻回されるコイルを検出用コイルとして欠陥を検出する。次に、左端から2つ目から4つ目の脚部のうち、1つおきに2つの脚部10b,10dを選択し、その選択した10b,10dのうち、脚部10bに巻回されるコイルを励磁用コイルとして使用し、脚部10dに巻回されるコイルを検出用コイルとして欠陥を検出する。以下、同様の手順により検出する。   However, instead of this, a defect may be detected as follows. That is, first, two legs 10a and 10c are selected from the left end of the comb-type magnetic sensor 1 to every third one from the left end, and the coil wound around the leg 10a among the selected 10a and 10c. Is used as an exciting coil, and a coil wound around the leg 10c is used as a detecting coil to detect a defect. Next, every second leg 10b, 10d is selected from the second to fourth legs from the left end, and the leg 10b is wound around the selected 10b, 10d. A coil is used as an exciting coil, and a defect is detected using a coil wound around the leg 10d as a detecting coil. Hereinafter, detection is performed by the same procedure.

なお、上記の実施形態では、櫛型磁気センサ1の脚部10a〜10gを1つおきに3つ選択し、その選択した脚部に巻回されるコイルを使用して欠陥を検出するようにした(図2参照)。しかし、これに代えて、脚部を2つ以上おきに3つ選択し、その選択した3つの脚部に巻回されるコイルを使用して欠陥を検出するようにしても良い。
また、上記の実施形態では、上記のように、欠陥の検出に寄与しない脚部に巻回されるコイルは短絡させるのが好ましい。図6では、その短絡させるコイルは、検出用のコイルが巻回される脚部の内側に配置される脚部に巻回されるコイルとしたが、その脚部の内側のみならずその脚部の外側に配置される脚部に巻回されるコイルを含めるようにしても良い。
In the above embodiment, every other leg 10a to 10g of comb-shaped magnetic sensor 1 is selected, and a defect is detected using a coil wound around the selected leg. (See FIG. 2). However, instead of this, three legs may be selected every two or more, and defects may be detected using coils wound around the selected three legs.
In the above embodiment, as described above, it is preferable to short-circuit the coil wound around the leg that does not contribute to the detection of the defect. In FIG. 6, the coil to be short-circuited is a coil wound around the leg portion arranged inside the leg portion around which the detection coil is wound, but not only the inside of the leg portion but also the leg portion. You may make it include the coil wound by the leg part arrange | positioned outside.

本発明の検出装置の実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of embodiment of the detection apparatus of this invention. その検出装置による検出方法の手順を説明する図である。It is a figure explaining the procedure of the detection method by the detection apparatus. その検出装置による各検出毎の検出領域を経時的に示す図である。It is a figure which shows the detection area | region for every detection by the detection apparatus with time. 櫛型磁気センサの磁束の分布を示す図であり、(a)は従来の検出方法の場合であり、(b)は本発明に係る検出方法の場合である。It is a figure which shows distribution of the magnetic flux of a comb-shaped magnetic sensor, (a) is a case of the conventional detection method, (b) is a case of the detection method which concerns on this invention. 本発明の効果を確認するための測定結果を示す図であり、(a)は従来の検出方法による検出信号を使用したセンサAのイメージとともに示し、(b)は本発明に係る検出方法による検出信号を使用したセンサBのイメージとともに示す。It is a figure which shows the measurement result for confirming the effect of this invention, (a) is shown with the image of the sensor A using the detection signal by the conventional detection method, (b) is the detection by the detection method which concerns on this invention It shows with the image of the sensor B which used the signal. 励磁用と検出用の間の脚部に巻回されるコイルの状態の比較実験の方法を示す図であり、(a)はそのコイルの両端が開放された場合、(b)はそのコイルが短絡されて接地されない場合、(c)はそのコイルが短絡されて接地される場合である。It is a figure which shows the method of the comparative experiment of the state of the coil wound by the leg part between excitation and detection, (a) is the case where the both ends of the coil are open | released, (b) When short-circuited and not grounded, (c) is when the coil is short-circuited and grounded. 従来の検出方法の手順を説明する図である。It is a figure explaining the procedure of the conventional detection method. 従来の検出方法により発生する不感帯を説明する図である。It is a figure explaining the dead zone which arises with the conventional detection method. 従来の検出方法において、各検出毎に発生する検出されない領域(不感帯)を説明する図である。In the conventional detection method, it is a figure explaining the area | region (dead zone) which is generated for each detection and is not detected.

符号の説明Explanation of symbols

a 磁性金属被検体
1 櫛型磁気センサ
3 磁化電源
4、5 選択回路
6 差動増幅器
7 位相検波器
8 欠陥レベル判別器
9 制御回路
10 櫛型の強磁性体
10a〜10g 脚部
11a〜11f コイル
a Magnetic metal object 1 Comb magnetic sensor 3 Magnetized power supply 4, 5 Select circuit 6 Differential amplifier 7 Phase detector 8 Defect level discriminator 9 Control circuit 10 Comb-shaped ferromagnetic bodies 10a to 10g Legs 11a to 11f Coils

Claims (4)

磁性金属被検体を交流磁化し、この磁化に基づく磁束を磁気センサで検出し、この検出に基づいて磁性金属被検体の欠陥の検出を行う検出方法であって、
6つ以上の脚部を有する櫛型形状の強磁性体と、前記各脚部にそれぞれ巻回されるコイルとを含む櫛型磁気センサの各脚部を、磁性金属被検体の検出面に対向して配置し、
前記6つ以上の脚部の中から、隣り合わない等間隔に離れた3つの脚部を1組とする各組を所定の順序で選択していき、
その各組が選択されるたびに、その選択された各組の3つの脚部のうち、中央の脚部に巻回されたコイルに交流を供給して励磁し、中央以外の両側の2つの脚部のそれぞれに巻回された両コイルに誘起される両電圧の差分信号に基づいて前記磁性金属被検体の欠陥の検出を行うことを特徴とする磁性金属被検体の欠陥の検出方法。
A magnetic metal subject is AC magnetized, a magnetic flux based on this magnetization is detected by a magnetic sensor, and a defect detection of the magnetic metal subject is detected based on this detection,
Each leg part of the comb-type magnetic sensor including a comb-shaped ferromagnetic body having six or more leg parts and a coil wound around each leg part is opposed to the detection surface of the magnetic metal object. And then place
Each of the six or more legs is selected in a predetermined order, with each pair having three legs separated at equal intervals that are not adjacent to each other.
Each time each pair is selected, among the three legs of each selected pair, an alternating current is supplied to the coil wound around the center leg to excite the two legs on both sides other than the center. A method for detecting a defect in a magnetic metal object, comprising: detecting a defect in the magnetic metal object based on a differential signal of both voltages induced in both coils wound around each leg.
前記磁性金属被検体の欠陥の検出時には、少なくとも前記中央の脚部と、前記中央以外の両側の2つの各脚部との間に位置する脚部に巻回されるコイルは、その両端を短絡するようにしたことを特徴とする請求項1に記載の磁性金属被検体の欠陥の検出方法。   At the time of detecting a defect in the magnetic metal specimen, at least both ends of a coil wound around a leg located between the center leg and the two legs on both sides other than the center are short-circuited at both ends. The method for detecting a defect in a magnetic metal specimen according to claim 1, wherein the defect is detected. 磁性金属被検体の検出面と対向する複数の脚部を有する櫛型形状の強磁性体と、前記複数の各脚部に巻回される複数のコイルとを含む櫛型磁気センサと、
前記複数の脚部のうち、選択された2つの脚部に巻回されるコイルの両誘起電圧の差分を求める演算手段と、
前記櫛型磁気センサの複数の脚部の中から、隣り合わない等間隔に離れた3つの脚部を1組とする各組のうちの所定の1組を選択し、この選択された各組の3つの脚部のうち、中央の脚部に巻回されたコイルに交流を供給して励磁し、中央以外の両側の2つの脚部のそれぞれに巻回された両コイルに誘起される両電圧を前記演算手段に導く選択手段と、
前記演算手段で演算された差分信号に基づいて前記磁性金属被検体の欠陥の検出を行う欠陥検出手段と、
を備えることを特徴とする磁性金属被検体の欠陥の検出装置。
A comb-shaped magnetic sensor including a comb-shaped ferromagnetic body having a plurality of legs facing the detection surface of the magnetic metal object, and a plurality of coils wound around the plurality of legs;
An arithmetic means for obtaining a difference between both induced voltages of the coils wound around the two selected leg portions among the plurality of leg portions;
From the plurality of leg portions of the comb-shaped magnetic sensor, a predetermined one set is selected from each set of three leg portions that are not adjacent to each other and spaced apart at equal intervals. Among the three legs, an alternating current is supplied to the coil wound around the central leg to excite it, and both induced by both coils wound around the two legs on both sides other than the center. Selecting means for guiding the voltage to the computing means;
Defect detection means for detecting defects of the magnetic metal specimen based on the difference signal calculated by the calculation means;
An apparatus for detecting a defect in a magnetic metal object.
前記選択手段が、前記各組の3つの脚部を選択したときには、少なくとも選択した前記中央の脚部と、前記中央以外の両側の2つの各脚部との間に位置する脚部に巻回される各コイルの両端を短絡するようになっていることを特徴とする請求項3に記載の磁性金属被検体の欠陥の検出装置。   When the selection means selects three legs of each set, the selection means winds around at least the selected leg of the center and two legs on both sides other than the center. 4. The apparatus for detecting a defect in a magnetic metal object according to claim 3, wherein both ends of each coil to be short-circuited are short-circuited.
JP2004186323A 2004-06-24 2004-06-24 Method and apparatus for detecting defects in magnetic metal specimen Expired - Fee Related JP4561195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004186323A JP4561195B2 (en) 2004-06-24 2004-06-24 Method and apparatus for detecting defects in magnetic metal specimen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004186323A JP4561195B2 (en) 2004-06-24 2004-06-24 Method and apparatus for detecting defects in magnetic metal specimen

Publications (2)

Publication Number Publication Date
JP2006010438A true JP2006010438A (en) 2006-01-12
JP4561195B2 JP4561195B2 (en) 2010-10-13

Family

ID=35777867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186323A Expired - Fee Related JP4561195B2 (en) 2004-06-24 2004-06-24 Method and apparatus for detecting defects in magnetic metal specimen

Country Status (1)

Country Link
JP (1) JP4561195B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074943A (en) * 2007-09-20 2009-04-09 Nuclear Engineering Ltd Eddy current flaw detection method, eddy current flaw detector and eddy current flaw detection probe
JP2014182066A (en) * 2013-03-21 2014-09-29 Anritsu Sanki System Co Ltd Metal detector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102528095B1 (en) * 2021-04-30 2023-05-12 (주)시티케이 Movable apparatus for detecting defect of thick steel plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282065A (en) * 1997-04-01 1998-10-23 Daido Steel Co Ltd Eddy current flaw detector
JP2000235019A (en) * 1999-02-12 2000-08-29 Genshiryoku Engineering:Kk Eddy-current flaw detecting probe
JP2003240761A (en) * 2002-02-15 2003-08-27 Jfe Steel Kk Method and apparatus for detecting surface layer defect or surface defect in magnetic metal specimen
JP2005031014A (en) * 2003-07-10 2005-02-03 Jfe Steel Kk Magnetic sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282065A (en) * 1997-04-01 1998-10-23 Daido Steel Co Ltd Eddy current flaw detector
JP2000235019A (en) * 1999-02-12 2000-08-29 Genshiryoku Engineering:Kk Eddy-current flaw detecting probe
JP2003240761A (en) * 2002-02-15 2003-08-27 Jfe Steel Kk Method and apparatus for detecting surface layer defect or surface defect in magnetic metal specimen
JP2005031014A (en) * 2003-07-10 2005-02-03 Jfe Steel Kk Magnetic sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074943A (en) * 2007-09-20 2009-04-09 Nuclear Engineering Ltd Eddy current flaw detection method, eddy current flaw detector and eddy current flaw detection probe
US8421449B2 (en) 2007-09-20 2013-04-16 Nuclear Engineering, Ltd. Eddy-current flaw detection method, eddy-current flaw detection device and eddy-current flaw detection probe
JP2014182066A (en) * 2013-03-21 2014-09-29 Anritsu Sanki System Co Ltd Metal detector

Also Published As

Publication number Publication date
JP4561195B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
US3875502A (en) Coil arrangement and circuit for eddy current testing
US20130009632A1 (en) Eddy current measuring sensor and inspection method using this eddy current measuring sensor
US6310476B1 (en) Eddy current flaw detector
JP2003240761A (en) Method and apparatus for detecting surface layer defect or surface defect in magnetic metal specimen
WO2012111500A1 (en) Nondestructive inspection device using alternating magnetic field, and nondestructive inspection method
EP2574912B1 (en) Arrangement for crack detection in metallic materials
JP3709930B2 (en) Method for detecting surface layer or surface defect, apparatus for detecting surface layer or surface defect, and method for manufacturing steel strip for manufacturing steel strip for cold rolling or plating
JP4561195B2 (en) Method and apparatus for detecting defects in magnetic metal specimen
JP2012063296A (en) Barkhausen noise inspection device
KR20140117983A (en) Apparatus for detecting defect of rolled coil
JP5233909B2 (en) Eddy current type inspection apparatus and eddy current type inspection method
JP4192708B2 (en) Magnetic sensor
JP4175181B2 (en) Magnetic flux leakage flaw detector
EP4160200A1 (en) Sensitivity calibration method, inspection device, and magnetic sensor group
JP4774690B2 (en) Magnetic sensor
JP2014122849A (en) Eddy current flaw detector and eddy current flaw detection method
JP4586556B2 (en) Surface layer property measurement method, surface layer defect determination method using the same, and metal strip manufacturing method
JP2006010439A (en) Method and apparatus for detecting flaw of metal specimen
JP4289074B2 (en) Steel strip manufacturing method
JPH09274017A (en) Method and apparatus for detecting flaw of metal element
JP2001059836A (en) Method and apparatus for eddy-current flaw detection
SU789730A1 (en) Method and transducer for multifrequency eddy-current monitoring
JP2003149209A (en) Probe for eddy current flaw detection and eddy current flaw detecting apparatus using the same
KR100584758B1 (en) Ultrasonic sensor and long ranged inspection system for flash butt welded part
JPH1078412A (en) Method and device for detecting flaw on surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4561195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees