JP2007032562A - Enclosed compressor - Google Patents

Enclosed compressor Download PDF

Info

Publication number
JP2007032562A
JP2007032562A JP2006188335A JP2006188335A JP2007032562A JP 2007032562 A JP2007032562 A JP 2007032562A JP 2006188335 A JP2006188335 A JP 2006188335A JP 2006188335 A JP2006188335 A JP 2006188335A JP 2007032562 A JP2007032562 A JP 2007032562A
Authority
JP
Japan
Prior art keywords
oil
shaft portion
main shaft
flow path
thrust bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006188335A
Other languages
Japanese (ja)
Inventor
Yong Hyeon Cho
庸 鉉 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Gwangju Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Gwangju Electronics Co Ltd filed Critical Samsung Gwangju Electronics Co Ltd
Publication of JP2007032562A publication Critical patent/JP2007032562A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • F04B39/0238Hermetic compressors with oil distribution channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • F04B39/0238Hermetic compressors with oil distribution channels
    • F04B39/0246Hermetic compressors with oil distribution channels in the rotating shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • F04B39/0238Hermetic compressors with oil distribution channels
    • F04B39/0246Hermetic compressors with oil distribution channels in the rotating shaft
    • F04B39/0253Hermetic compressors with oil distribution channels in the rotating shaft using centrifugal force for transporting the oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • F04B39/0261Hermetic compressors with an auxiliary oil pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • F04B9/045Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms the means being eccentrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/12Parameters of driving or driven means
    • F04B2201/1207Wear of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/50Kinematic linkage, i.e. transmission of position
    • F05B2260/506Kinematic linkage, i.e. transmission of position using cams or eccentrics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S384/00Bearings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an enclosed compressor having improved lubrication structure of a thrust bearing in rolling-contact with a rotary shaft so as to support a load in the axial direction of the rotary shaft, thus improving reliability of a product. <P>SOLUTION: This enclosed compressor is provided with a sealed vessel forming an oil sump on a bottom face, a frame arranged in the sealed vessel and having a hollow part, the rotary shaft provided rotatably in the frame to pass through the hollow part and having an oil flow passage array for leading oil in the oil sump into an upper part, and the thrust bearing provided in a bearing installation channel at an upper end of the hollow part and coming into rolling-contact with the rotary shaft to support load in the axial direction of the rotary shaft. The oil flow passage array is constituted to supply at least a part of oil into the thrust bearing. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、密閉型圧縮機に係り、より詳細には、回転軸の軸方向荷重を支持するように、スラスト軸受が回転軸と転がり接触している密閉型圧縮機に関する。   The present invention relates to a hermetic compressor, and more particularly to a hermetic compressor in which a thrust bearing is in rolling contact with a rotating shaft so as to support an axial load of the rotating shaft.

一般に、密閉型圧縮機は、空気調和機や冷蔵庫などの冷凍サイクルに採用され、冷媒のような流体を圧縮し供給する機能を担う装置で、外観を形成する密閉容器、冷媒を圧縮する圧縮部、及び冷媒の圧縮動力を提供する駆動部を備える。ここで、圧縮部及び駆動部は、密閉容器内に設置される。   Generally, a hermetic compressor is a device that is employed in a refrigeration cycle such as an air conditioner or a refrigerator and has a function of compressing and supplying a fluid such as a refrigerant. And a drive unit that provides the compression power of the refrigerant. Here, the compression unit and the drive unit are installed in a sealed container.

しかしながら、かかる従来の密閉型圧縮機は、オイル供給構造の使用により、スラスト軸受下部側の中空部と回転軸との間や、圧縮部の摩擦部位のような特定部位へのオイル供給はできるのに対し、回転軸の荷重が実質的にかかるスラスト軸受へのオイル供給は不十分であった。その結果、圧縮機を長時間使用すると、スラスト軸受を構成する上部及び下部スラスト座金とボールが摩耗し、回転軸の円滑な回転を阻害し、さらにはこの摩耗により主として発生する粉塵がスラスト軸受に積もり、該スラスト軸受による摩擦低減効果を低下させ、結果として圧縮機の信頼性低下を招くという問題点があった。   However, such a conventional hermetic compressor can supply oil between a hollow portion on the lower side of the thrust bearing and the rotating shaft or to a specific portion such as a friction portion of the compression portion by using an oil supply structure. On the other hand, the oil supply to the thrust bearing where the load on the rotating shaft is substantially applied was insufficient. As a result, when the compressor is used for a long time, the upper and lower thrust washers and the balls constituting the thrust bearing are worn, and the smooth rotation of the rotating shaft is obstructed, and dust generated mainly by this wear is applied to the thrust bearing. There is a problem in that the effect of reducing friction by the thrust bearing is reduced, resulting in a decrease in the reliability of the compressor.

本発明は上記の問題点を解決するためのもので、その目的は、回転軸の軸方向荷重を支持するように回転軸と転がり接触しているスラスト軸受への潤滑構造を改善し、製品の信頼性を向上させることができる密閉型圧縮機を提供することにある。   The present invention is to solve the above-mentioned problems, and its purpose is to improve the lubrication structure for a thrust bearing that is in rolling contact with the rotating shaft so as to support the axial load of the rotating shaft. It is an object of the present invention to provide a hermetic compressor that can improve reliability.

上記目的を達成するために、本発明は、底面にオイルだめが形成される密閉容器と、前記密閉容器内に配置され、中空部を有するフレームと、前記中空部を貫通するように前記フレームに回転自在に設置され、前記オイルだめのオイルを上部に導くオイル流路アレイを有する回転軸と、前記中空部上端の軸受設置溝に設置され、前記回転軸の軸方向荷重を支持するように該回転軸に転がり接触するスラスト軸受と、を備えてなり、前記オイル流路アレイは、前記スラスト軸受にオイルの少なくとも一部を供給するように構成されたことを特徴とする密閉型圧縮機を提供する。   In order to achieve the above object, the present invention provides a sealed container having an oil sump formed on a bottom surface, a frame disposed in the sealed container and having a hollow part, and a frame penetrating the hollow part. A rotary shaft that is rotatably installed and has an oil passage array that guides oil in the oil sump to the upper part, and is installed in a bearing installation groove at the upper end of the hollow portion so as to support the axial load of the rotary shaft. A hermetic compressor, wherein the oil flow path array is configured to supply at least part of the oil to the thrust bearing. To do.

本発明による密閉型圧縮機によれば、回転軸に形成されたオイル流路アレイに沿って上部へ導かれるオイルが、回転軸の軸方向荷重を支持するように回転軸と転がり接触しているスラスト軸受側に直接伝達されるため、スラスト軸受への潤滑が大幅に改善され、その結果、スラスト軸受を通じた回転軸の円滑な回転が長期間持続可能になり、製品の信頼性が向上するという効果が得られる。   According to the hermetic compressor according to the present invention, the oil guided upward along the oil passage array formed on the rotating shaft is in rolling contact with the rotating shaft so as to support the axial load of the rotating shaft. Since it is transmitted directly to the thrust bearing side, lubrication to the thrust bearing is greatly improved, and as a result, smooth rotation of the rotating shaft through the thrust bearing can be sustained for a long period of time, improving product reliability. An effect is obtained.

以下、本発明に係る密閉型圧縮機の好適な実施形態を添付の図面を参照しつつ詳細に説明する。   Hereinafter, preferred embodiments of a hermetic compressor according to the present invention will be described in detail with reference to the accompanying drawings.

まず、説明の便宜上、密閉型圧縮機において、圧縮部と駆動部はそれぞれ、フレーム11の上部と下部側に配置されるとする。圧縮部は、フレーム11の上部一側に、内部空間が圧縮室を形成するように設けられたシリンダーと、圧縮室内で直線往復運動し冷媒を圧縮するピストン15とを備える。該駆動部は、フレーム11の下部に連結される固定子12と、該固定子12の内側に設けられ、固定子12と電気的に相互作用する回転子13と、を備える。   First, for convenience of explanation, it is assumed that in the hermetic compressor, the compression unit and the drive unit are arranged on the upper and lower sides of the frame 11, respectively. The compression section includes a cylinder provided on the upper side of the frame 11 so that the internal space forms a compression chamber, and a piston 15 that linearly reciprocates in the compression chamber to compress the refrigerant. The drive unit includes a stator 12 connected to a lower portion of the frame 11 and a rotor 13 provided inside the stator 12 and electrically interacting with the stator 12.

そして、フレーム内には、駆動部の駆動力を圧縮部へ伝達するように回転軸20が設置され、この回転軸20は、フレーム11の中空部11aに回転自在に挿設される。   A rotating shaft 20 is installed in the frame so as to transmit the driving force of the driving unit to the compressing unit, and the rotating shaft 20 is rotatably inserted into the hollow portion 11 a of the frame 11.

ここで、回転軸20の下端は、フレームの中空部の下部へ延びて回転子13に圧入固定され回転子13と共に回転する。回転軸20の偏心軸部22は、ピストンとコンロッド18を介して連結され、回転軸20の回転運動をピストン15の直線往復運動に転換させる。   Here, the lower end of the rotating shaft 20 extends to the lower part of the hollow portion of the frame, is press-fitted and fixed to the rotor 13, and rotates together with the rotor 13. The eccentric shaft portion 22 of the rotating shaft 20 is connected to the piston via the connecting rod 18 to convert the rotating motion of the rotating shaft 20 into the linear reciprocating motion of the piston 15.

また、回転軸20の偏心軸部22とフレーム11間の回転軸20の周りには、回転軸の軸方向荷重を支持するように回転軸と転がり接触する、リング形状の上部及び下部スラスト座金31,32と、上部及び下部スラスト座金の間に介支されるボール33とからなるスラスト軸受30が設置され、このスラスト軸受30が設置されるよう、フレーム11は、中空部11aの上端にリング形状の軸受設置溝11bを備える。   Further, around the rotating shaft 20 between the eccentric shaft portion 22 of the rotating shaft 20 and the frame 11, ring-shaped upper and lower thrust washers 31 that are in rolling contact with the rotating shaft so as to support the axial load of the rotating shaft. , 32 and a ball 33 supported between upper and lower thrust washers, and the frame 11 is ring-shaped at the upper end of the hollow portion 11a so that the thrust bearing 30 is installed. The bearing installation groove 11b is provided.

このような構造により、固定子12と回転子13の電気的な相互作用で回転軸20が回転すると、コンロッド18を介して回転軸20の偏心部に連結されたピストン15がシリンダーの圧縮室14a内部で直線往復運動して冷媒を圧縮し、この冷媒の圧縮動作時に、回転軸20の軸方向荷重は、回転軸と転がり接触しているスラスト軸受30の使用によって支持される。   With such a structure, when the rotating shaft 20 rotates due to the electrical interaction between the stator 12 and the rotor 13, the piston 15 connected to the eccentric portion of the rotating shaft 20 via the connecting rod 18 becomes the compression chamber 14a of the cylinder. The refrigerant is compressed by reciprocating linearly inside, and the axial load of the rotating shaft 20 is supported by the use of the thrust bearing 30 that is in rolling contact with the rotating shaft during the compressing operation of the refrigerant.

また、圧縮機には、上記のような冷媒圧縮動作時に、回転軸20及び圧縮部の各摩擦部位へオイルを供給し潤滑及び冷却作用を行うためのオイル供給構造が提供される。このオイル供給構造において、密閉容器10の底面には所定のオイルが貯蔵されるオイルだめ19が形成され、回転軸20の下端には、オイルだめ19のオイルを上部に吸い上げるためのオイルピックアップ手段40が結合され、回転軸にはオイルピックアップ手段40によって吸い上げられたオイルを、回転軸20と中空部11aとの間及び圧縮部へ導くためのオイル流路アレイが形成される。   Further, the compressor is provided with an oil supply structure for supplying oil to the frictional portions of the rotary shaft 20 and the compression unit to perform lubrication and cooling during the refrigerant compression operation as described above. In this oil supply structure, an oil sump 19 for storing predetermined oil is formed on the bottom surface of the sealed container 10, and an oil pickup means 40 for sucking up the oil in the oil sump 19 upward at the lower end of the rotating shaft 20. And an oil flow path array for guiding the oil sucked up by the oil pickup means 40 between the rotary shaft 20 and the hollow portion 11a and to the compression portion is formed on the rotary shaft.

オイル流路アレイは、中空部下部の回転軸内部に形成される第1オイル流路と、回転軸と中空部との間を潤滑するように、第1オイル流路と連通し、スラスト軸受下部の中空部側の回転軸外面に螺旋溝状に形成された第2オイル流路と、第2オイル流路と連通し、再び回転軸の内部を通って回転軸の上端まで延設された第3オイル流路と、を備えて構成される。   The oil passage array communicates with the first oil passage so as to lubricate between the first oil passage formed inside the rotary shaft at the lower portion of the hollow portion and between the rotary shaft and the hollow portion, and the thrust bearing lower portion. A second oil passage formed in the shape of a spiral groove on the outer surface of the rotary shaft on the hollow portion side, a second oil passage communicating with the second oil passage, and extending again through the inside of the rotary shaft to the upper end of the rotary shaft. And 3 oil flow paths.

したがって、冷媒の圧縮動作時に回転軸が回転すると、まず、オイルだめのオイルはオイルピックアップ手段によって第1オイル流路を経て第2オイル流路を通りつつ回転軸とフレームの中空部間を潤滑及び冷却させ、第2オイル流路を通過したオイルは続いて第3オイル流路を通って回転軸の上端へ噴射され圧縮部側に伝達されることで、ピストン15とコンロッド18との連結部などを潤滑及び冷却させ、このオイルは最終的にオイルだめ19に回収される。回収されたオイルは、複数のオイル流路を通過しつつ回転軸20及び圧縮部の各摩擦部位を潤滑及び冷却させるのに反復使用される。   Therefore, when the rotary shaft rotates during the refrigerant compression operation, first, oil in the oil sump is lubricated between the rotary shaft and the hollow portion of the frame while passing through the second oil passage through the first oil passage by the oil pickup means. The oil that has been cooled and passed through the second oil passage is subsequently injected through the third oil passage to the upper end of the rotating shaft and transmitted to the compression portion side, thereby connecting the piston 15 and the connecting rod 18 to each other. The oil is finally collected in the oil sump 19. The recovered oil is repeatedly used to lubricate and cool the friction parts of the rotary shaft 20 and the compression unit while passing through the plurality of oil flow paths.

本発明による密閉型圧縮機は、図1に示すように、上部容器10aと下部容器10bが相互結合されてなる密閉容器10を備える。   As shown in FIG. 1, the hermetic compressor according to the present invention includes a hermetic container 10 in which an upper container 10a and a lower container 10b are coupled to each other.

密閉容器10の一側及び他側には、外部冷媒の流入のための吸入管10c及び密閉容器10内部で圧縮された冷媒を外部へ吐出させるための吐出管10dがそれぞれ設置される。また、密閉容器10の内部にはフレーム11が設置され、このフレーム11の上部と下部には冷媒の圧縮動作を行う圧縮部と冷媒の圧縮動力を提供する駆動部がそれぞれ配設される。   On one side and the other side of the sealed container 10, a suction pipe 10c for inflow of an external refrigerant and a discharge pipe 10d for discharging the refrigerant compressed in the sealed container 10 to the outside are installed. In addition, a frame 11 is installed inside the hermetic container 10, and an upper part and a lower part of the frame 11 are respectively provided with a compression unit that performs a refrigerant compression operation and a drive unit that provides the compression power of the refrigerant.

ここで、駆動部は、電流の印加によって所定の電磁気力を発生させるように外側に固定される固定子12と、固定子12との電気的な相互作用で回転するように固定子12の内側に設けられる回転子13と、を備え、圧縮部は、フレーム11の上部一側にフレーム11と一体に形成され、内部に圧縮室14aが形成されたシリンダーブロック14と、圧縮室14aの内部で直線往復運動をしながら冷媒を圧縮するピストン15と、圧縮室14aを密閉するようにシリンダーブロック14の一側に結合され、冷媒吐出室16aと冷媒吸入室16bとが画設されているシリンダーヘッド16と、シリンダーブロック14とシリンダーヘッド16との間に介在され、冷媒吸入室16bから圧縮室14aへ吸入されるか、圧縮室14aから冷媒吐出室16aへ吐出される冷媒の流れを断続するバルブ装置17と、を備えて構成される。また、フレーム11は、中央の中空部11aが形成され、この中空部11aに回転軸20が回転自在に挿入され駆動部の駆動力を圧縮部へ伝達する。   Here, the driving unit is arranged on the inner side of the stator 12 so as to rotate by electrical interaction between the stator 12 fixed to the outside and the stator 12 so as to generate a predetermined electromagnetic force by applying a current. A compression block is formed integrally with the frame 11 on the upper side of the frame 11, and the compression block 14a is formed inside the compression block 14a. A cylinder head that is coupled to one side of the cylinder block 14 so as to seal the compression chamber 14a and a piston 15 that compresses the refrigerant while reciprocating linearly, and is provided with a refrigerant discharge chamber 16a and a refrigerant suction chamber 16b. 16 and between the cylinder block 14 and the cylinder head 16 and is sucked into the compression chamber 14a from the refrigerant suction chamber 16b or from the compression chamber 14a to the refrigerant discharge chamber. A valve device 17 intermittently the flow of the refrigerant discharged to 6a, configured with a. The frame 11 has a hollow portion 11a at the center, and the rotary shaft 20 is rotatably inserted into the hollow portion 11a to transmit the driving force of the drive portion to the compression portion.

図2を参照すると、回転軸20は、上部がフレーム11の中空部11aに回転自在に支持され、下部が駆動部の回転子13の中央に圧入され回転軸20が回転子13と共に回転できる下側のメイン軸部21と、回転軸20の上端を形成するようにメイン軸部21の上部に、メイン軸部21に対して偏心して設けられた偏心軸部22と、偏心軸部22による回転不釣り合いを補償するように、偏心軸部22とメイン軸部21との間に設けられたウェイトバランス部23と、を備えて構成される。ここで、偏心軸部22は、ウェイトバランス部23と共に偏心部を形成し、偏心軸部22と圧縮部のピストン15との間には、回転軸20の回転運動をピストン15の直線往復運動に変換するコンロッド18が連結され、よって、ピストン15が圧縮室14a内部で直線往復運動可能になる。   Referring to FIG. 2, the rotating shaft 20 is rotatably supported at the upper portion by the hollow portion 11 a of the frame 11, and the lower portion is press-fitted into the center of the rotor 13 of the driving unit so that the rotating shaft 20 can rotate together with the rotor 13. Side main shaft portion 21, an eccentric shaft portion 22 provided eccentric to the main shaft portion 21 at the upper portion of the main shaft portion 21 so as to form the upper end of the rotating shaft 20, and rotation by the eccentric shaft portion 22 A weight balance portion 23 provided between the eccentric shaft portion 22 and the main shaft portion 21 is configured to compensate for the unbalance. Here, the eccentric shaft portion 22 forms an eccentric portion together with the weight balance portion 23, and the rotational motion of the rotary shaft 20 is converted into the linear reciprocating motion of the piston 15 between the eccentric shaft portion 22 and the piston 15 of the compression portion. The connecting rod 18 to be converted is connected, so that the piston 15 can linearly reciprocate inside the compression chamber 14a.

また、回転軸20の偏心部とフレーム11間のメイン軸部21の上端外側には、回転軸20の軸方向荷重を支持するように回転軸20と転がり接触するリング形状の上部及び下部スラスト座金31,32と、上部及び下部スラスト座金31,32間に介支されるボール33とからなるスラスト軸受30が設置され、このスラスト軸受30の設置のために、中空部11a上端のフレーム11にはリング形状の軸受設置溝11bが形成される。   Further, on the outer side of the upper end of the main shaft portion 21 between the eccentric portion of the rotating shaft 20 and the frame 11, ring-shaped upper and lower thrust washers that are in rolling contact with the rotating shaft 20 to support the axial load of the rotating shaft 20. 31 and 32, and a thrust bearing 30 comprising a ball 33 supported between the upper and lower thrust washers 31 and 32 is installed, and the frame 11 at the upper end of the hollow portion 11a is provided for the installation of the thrust bearing 30. A ring-shaped bearing installation groove 11b is formed.

このような構成により、電源の印加によって固定子12と回転子13との電気的な相互作用にて回転子13と共に回転軸20が回転すると、回転軸20の偏心軸部22とコンロッド18を介して連結されたピストン15が、圧縮室14a内部で直線往復運動をし、これにより、吸入管10cと冷媒吸入室16bを通って圧縮室14aへ冷媒が流入する。この流入した冷媒は、圧縮室14a内で圧縮された後、冷媒吐出室16aと吐出管10dを通って密閉容器10の外部へ放出され、この回転軸20の回転時に、回転軸20の軸方向荷重は、回転軸20と転がり接触しているスラスト軸受30の使用によって支持される。   With such a configuration, when the rotating shaft 20 rotates together with the rotor 13 by the electrical interaction between the stator 12 and the rotor 13 due to the application of power, the eccentric shaft portion 22 of the rotating shaft 20 and the connecting rod 18 are interposed. The piston 15 connected in this manner reciprocates linearly inside the compression chamber 14a, whereby the refrigerant flows into the compression chamber 14a through the suction pipe 10c and the refrigerant suction chamber 16b. The refrigerant that has flowed in is compressed in the compression chamber 14a and then discharged to the outside of the sealed container 10 through the refrigerant discharge chamber 16a and the discharge pipe 10d. When the rotary shaft 20 rotates, the axial direction of the rotary shaft 20 The load is supported by the use of a thrust bearing 30 that is in rolling contact with the rotating shaft 20.

一方、本発明による密閉型圧縮機には、上記のような冷媒圧縮動作時に回転軸20及び圧縮部の摩擦部位とスラスト軸受30側にオイルを供給し、潤滑及び冷却を行うためのオイル供給構造が提供される。このオイル供給構造は、密閉容器10の底面に形成され、所定のオイルが貯蔵されるオイルだめ19と、回転軸20の下端に結合され、オイルだめ19のオイルを上部に吸い上げるオイルピックアップ手段40とを備えてなる。   On the other hand, the hermetic compressor according to the present invention supplies oil to the friction part of the rotating shaft 20 and the compression portion and the thrust bearing 30 side during the refrigerant compression operation as described above, and to supply and lubricate the oil. Is provided. This oil supply structure is formed on the bottom surface of the hermetic container 10 and includes an oil sump 19 in which predetermined oil is stored, and an oil pickup means 40 that is coupled to the lower end of the rotary shaft 20 and sucks up the oil in the oil sump 19 upward. It is equipped with.

オイルピックアップ手段40は、上下端が開放され、下端がオイルだめ19に浸るように形成された円筒形のオイルピックアップ部材41と、オイルピックアップ部材41の内部に設置され、回転軸20の回転時にオイルだめ19中のオイルを上部にくみ上げるオイルピックアップブレード42と、を備えて構成され、回転軸20には、このようなオイルピックアップ手段40によって上部に吸い上げられたオイルを、回転軸20と圧縮部の摩擦部位の他、スラスト軸受30側にも導くためのオイル流路アレイ50が形成される。   The oil pickup means 40 has a cylindrical oil pickup member 41 formed so that the upper and lower ends are opened and the lower end is immersed in the oil sump 19, and is installed inside the oil pickup member 41. An oil pick-up blade 42 for pumping up the oil in the sump 19 upward, and the rotary shaft 20 receives oil sucked up by the oil pick-up means 40 from the rotary shaft 20 and the compression portion. In addition to the friction part, an oil flow path array 50 is also formed for guiding to the thrust bearing 30 side.

オイル流路アレイ50は、中空部11a下部のメイン軸部21の内部に形成される第1オイル流路51と、メイン軸部21と中空部11a間を潤滑するように、第1オイル流路51と連通し、スラスト軸受30下部の中空部11a側のメイン軸部21外面に螺旋状溝で形成される第2オイル流路52と、第2オイル流路52と連通し、再び回転軸20の内部を通って第2オイル流路52上端側のメイン軸部21から偏心軸部22の上端まで延設された第3オイル流路53と、スラスト軸受30側のメイン軸部21外部と通じるように、第3オイル流路53からメイン軸部21の外面に放射状に分岐される直線穴からなる分岐流路54と、を備えて構成される。   The oil passage array 50 includes a first oil passage 51 formed inside the main shaft portion 21 below the hollow portion 11a, and a first oil passage so as to lubricate between the main shaft portion 21 and the hollow portion 11a. 51, a second oil passage 52 formed by a spiral groove on the outer surface of the main shaft portion 21 on the hollow portion 11a side below the thrust bearing 30, and a second oil passage 52, and the rotary shaft 20 again. The third oil passage 53 extending from the main shaft portion 21 on the upper end side of the second oil passage 52 to the upper end of the eccentric shaft portion 22 and the outside of the main shaft portion 21 on the thrust bearing 30 side. As described above, the third oil flow path 53 is configured to include a branch flow path 54 including a straight hole branched radially from the outer surface of the main shaft portion 21.

また、第1オイル流路51の上端と第2オイル流路52の下端との間と、第2オイル流路52の上端と第3オイル流路53の下端との間には、これらの間を連通させるための第1連通穴55aと第2連通穴55bがそれぞれ形成され、回転軸20の回転時に遠心力を受けてオイルをより有効に上昇させるように、第1オイル流路51は、上部側がメイン軸部21の軸心Cからそれるように、上部側に行くほど漸次偏心部側に傾いて形成され、第3オイル流路53もまた、メイン軸部21の軸心Cから偏心部側へ偏って形成される。   Further, there is a gap between the upper end of the first oil passage 51 and the lower end of the second oil passage 52 and between the upper end of the second oil passage 52 and the lower end of the third oil passage 53. The first oil passage 51 is formed with a first communication hole 55a and a second communication hole 55b, respectively, for increasing the oil more effectively by receiving a centrifugal force when the rotary shaft 20 rotates. As the upper side deviates from the axial center C of the main shaft portion 21, it is formed to be gradually inclined toward the eccentric portion side toward the upper side, and the third oil passage 53 is also eccentric from the axial center C of the main shaft portion 21. It is formed to be biased toward the part side.

ここで、メイン軸部21の軸心に対して偏心した第3オイル流路53から分岐する分岐流路54は、第3オイル流路53がメイン軸部21外面に近接していることから、メイン軸部21外面側からの簡単なパンチング加工によっても形成可能である。   Here, since the third oil passage 53 is close to the outer surface of the main shaft portion 21, the branch passage 54 that branches from the third oil passage 53 that is eccentric with respect to the axis of the main shaft portion 21, It can also be formed by a simple punching process from the outer surface side of the main shaft portion 21.

このようなオイル供給構造により、冷媒の圧縮動作に際して回転軸20が回転すると、まず、オイルだめ19のオイルはオイルピックアップ手段40のポンピング力によって上部に吸い上げられ、このように吸い上げられたオイルは、まず第1オイル流路51を経て第2オイル流路52を通過しつつスラスト軸受30下部側のメイン軸部21とフレーム11の中空部11a間を潤滑及び冷却させ、第2オイル流路52を通過するオイルの一部は、引き続き第3オイル流路53を通って偏心軸部22の上端に噴射されつつ圧縮部側に伝達され、ピストン15とコンロッド18との連結部などを潤滑及び冷却させ、第3オイル流路53を通過する残りのオイルは、分岐流路54を通ってスラスト軸受30側に直接伝達され、スラスト軸受30を潤滑及び冷却する。   With such an oil supply structure, when the rotating shaft 20 rotates during the refrigerant compression operation, first, the oil in the oil sump 19 is sucked up by the pumping force of the oil pickup means 40, and the oil thus sucked up is First, while passing through the first oil passage 51 and the second oil passage 52, the space between the main shaft portion 21 on the lower side of the thrust bearing 30 and the hollow portion 11a of the frame 11 is lubricated and cooled. Part of the oil passing therethrough is transmitted to the compression part side while being injected to the upper end of the eccentric shaft part 22 through the third oil flow path 53, and lubricates and cools the connection part between the piston 15 and the connecting rod 18 and the like. The remaining oil that passes through the third oil passage 53 is directly transmitted to the thrust bearing 30 side through the branch passage 54 to moisten the thrust bearing 30. And cooling.

このように、オイル流路アレイ50に沿って上部に導かれるオイルが、スラスト軸受30に直接伝達されると、圧縮機を長時間使用しても、スラスト軸受30を構成する上部及び下部スラスト座金31,32とボール33の摩耗が最小限に抑えられるため、スラスト軸受30による回転軸20の円滑な回転が持続可能になる。なお、上部及び下部スラスト座金31,32とボール33とが多少摩耗しながら少量の粉塵を生じても、この粉塵が、スラスト軸受30へ直接伝達されるオイルによってスラスト軸受30に積もらずに除去されるため、摩耗粉塵によるスラスト軸受30の回転力低減が抑えられる。   As described above, when the oil guided to the upper portion along the oil flow path array 50 is directly transmitted to the thrust bearing 30, the upper and lower thrust washers constituting the thrust bearing 30 even if the compressor is used for a long time. Since wear of the balls 31 and 32 and the ball 33 is minimized, smooth rotation of the rotary shaft 20 by the thrust bearing 30 can be sustained. Even if the upper and lower thrust washers 31, 32 and the ball 33 are slightly worn and a small amount of dust is generated, the dust is removed without being accumulated on the thrust bearing 30 by the oil directly transmitted to the thrust bearing 30. Therefore, the reduction of the rotational force of the thrust bearing 30 due to wear dust can be suppressed.

その後、分岐流路54や第3オイル流路53の上端から流れ出たオイルは、その自重によりオイルだめ19に回収される。この回収されたオイルは、再びオイル流路アレイ50に沿って回転軸20、圧縮部及びスラスト軸受30に供給され、潤滑及び冷却動作を繰り返す。   Thereafter, the oil flowing out from the upper ends of the branch flow path 54 and the third oil flow path 53 is collected in the oil sump 19 by its own weight. The recovered oil is supplied again to the rotary shaft 20, the compression unit, and the thrust bearing 30 along the oil passage array 50, and the lubrication and cooling operations are repeated.

一方、分岐流路54を通ってスラスト軸受30へ供給されるオイル量を大きくするためには、分岐流路54が回転軸20の回転時に遠心力が最大となる方向に形成されるように、分岐流路54を第3オイル流路53からメイン軸部21の軸心C方向と反対する方向に分岐しなければならない。   On the other hand, in order to increase the amount of oil supplied to the thrust bearing 30 through the branch flow path 54, the branch flow path 54 is formed in a direction in which the centrifugal force is maximized when the rotary shaft 20 rotates. The branch channel 54 must be branched from the third oil channel 53 in a direction opposite to the direction of the axis C of the main shaft portion 21.

しかしながら、分岐流路54を通じたオイルの供給量が過大になると、第2オイル流路52から第3オイル流路53へ導かれる大部分のオイルが、分岐流路54を通ってスラスト軸受30へ供給され、分岐流路54上部側の第3オイル流路53には伝達されないこともあり、この場合には、第3オイル流路53の上端から圧縮部へオイルが円滑に供給されず、圧縮部側の潤滑及び冷却が困難となる恐れがある。したがって、分岐流路54は、メイン軸部21の軸心Cと第3オイル流路53とを連結する直線と交差する方向に分岐され、圧縮部へのオイル供給に好ましくない影響を及ぼすことなくスラスト軸受30へオイルを直接伝達することが好ましい。   However, when the amount of oil supplied through the branch passage 54 becomes excessive, most of the oil guided from the second oil passage 52 to the third oil passage 53 passes through the branch passage 54 to the thrust bearing 30. In some cases, the oil may not be smoothly supplied from the upper end of the third oil passage 53 to the compression section and compressed. Lubrication and cooling on the part side may be difficult. Accordingly, the branch flow path 54 is branched in a direction intersecting with a straight line connecting the axis C of the main shaft portion 21 and the third oil flow path 53 without adversely affecting the oil supply to the compression section. It is preferable to transmit oil directly to the thrust bearing 30.

なお、分岐流路54がメイン軸部21の軸心Cと第3オイル流路53とを連結する直線と交差する方向に分岐するとしても、この分岐流路54の分岐方向が、メイン軸部21の軸心Cと反対する方向に多少近接する場合には、分岐流路54へオイル供給が集中する現象を效果的に防止できなく、逆に、分岐流路54の分岐方向がメイン軸部21の軸心C方向に形成される場合には、分岐流路54を通じたオイル供給それ自体が困難となる。したがって、第3流路から分岐される分岐流路54の分岐方向は、図3及び図4に示すように、メイン軸部21の軸心C方向に反対する方向とメイン軸部21の軸心C方向との略中間程度の方向とすることがより好ましい。   Even if the branch flow path 54 branches in a direction intersecting with a straight line connecting the axis C of the main shaft portion 21 and the third oil flow path 53, the branch direction of the branch flow path 54 is the main shaft portion. 21 is slightly close to the direction opposite to the axis C of the shaft 21, the phenomenon that the oil supply concentrates on the branch channel 54 cannot be effectively prevented. On the contrary, the branch direction of the branch channel 54 is the main shaft portion. In the case of being formed in the direction of the axial center C of the oil 21, oil supply itself through the branch flow path 54 becomes difficult. Therefore, as shown in FIGS. 3 and 4, the branch direction of the branch flow path 54 branched from the third flow path is the direction opposite to the axis C direction of the main shaft portion 21 and the axis center of the main shaft portion 21. More preferably, the direction is approximately in the middle of the C direction.

もちろん、分岐流路54へオイル供給が集中するのを抑えた状態であっても、いったん分岐流路54に伝達されたオイルは、スラスト軸受30に效果的に伝達されることがスラスト軸受30に対する潤滑改善により有利となる。   Of course, the oil once transmitted to the branch flow path 54 is effectively transmitted to the thrust bearing 30 even if the oil supply is prevented from concentrating on the branch flow path 54. Improved lubrication is advantageous.

したがって、他の実施例を示す図5のように、分岐流路54’は、狭い通路を通る際に流体の速力が増加するというベルヌーイ原理が適用されるようにテーパー状に形成しても良い。すなわち、分岐流路54’を第3オイル流路53側の入口からメイン軸部21外面側の出口へ行くほど直径が狭まるように形成すると、分岐流路54’の出口側オイルの流速が増大し、スラスト軸受30側へのオイル供給がより円滑になる。   Therefore, as shown in FIG. 5 showing another embodiment, the branch flow path 54 ′ may be formed in a tapered shape so that the Bernoulli principle that the speed of fluid increases when passing through a narrow passage is applied. . That is, if the branch flow path 54 ′ is formed such that the diameter decreases from the inlet on the third oil flow path 53 side to the outlet on the outer surface side of the main shaft portion 21, the flow rate of the oil on the outlet side of the branch flow path 54 ′ increases. In addition, oil supply to the thrust bearing 30 side becomes smoother.

しかも、さらに他の実施例を示す図6のように、分岐流路54”を出口の高さが入口の高さよりも高くなるように傾斜して形成すると、第3オイル流路53に沿って上部へ導かれていたオイルが、分岐流路54”に流入する過程で急激に方向転換されることがなく、よって、分岐流路54”に沿って流動するオイルの流動抵抗が低減する。   In addition, as shown in FIG. 6 showing still another embodiment, when the branch flow path 54 ″ is formed so as to be inclined such that the height of the outlet is higher than the height of the inlet, The oil that has been guided to the upper portion is not suddenly changed in the course of flowing into the branch flow path 54 ", and thus the flow resistance of the oil that flows along the branch flow path 54" is reduced.

本発明による密閉型圧縮機の全体的な構造を示す側断面図である。1 is a side sectional view showing an overall structure of a hermetic compressor according to the present invention. 本発明による密閉型圧縮機における回転軸を示す部分側断面図である。It is a fragmentary sectional side view which shows the rotating shaft in the hermetic compressor by this invention. 本発明による密閉型圧縮機の回転軸を拡大して示す斜視図で、一部を断面図で示している。1 is an enlarged perspective view showing a rotating shaft of a hermetic compressor according to the present invention, and a part thereof is shown in a sectional view. 本発明による密閉型圧縮機における回転軸の分岐流路を示す平断面図である。It is a plane sectional view which shows the branch flow path of the rotating shaft in the hermetic compressor by this invention. 本発明による密閉型圧縮機における回転軸の分岐流路の他の実施例を示す側断面図である。It is a sectional side view which shows the other Example of the branch flow path of the rotating shaft in the hermetic compressor by this invention. 本発明による密閉型圧縮機における回転軸の分岐流路のさらに他の実施例を示す側断面図である。It is a sectional side view which shows the further another Example of the branch flow path of the rotating shaft in the hermetic compressor by this invention.

符号の説明Explanation of symbols

11 フレーム
11a 中空部
11b 軸受設置溝
20 回転軸
21 メイン軸部
22 偏心軸部
23 ウェイトバランス部
30 スラスト軸受
31 上部スラスト座金
32 下部スラスト座金
33 ボール
50 オイル流路アレイ
51 第1オイル流路
52 第2オイル流路
53 第3オイル流路
54,54’,54” 分岐流路
11 Frame 11a Hollow portion 11b Bearing installation groove 20 Rotating shaft 21 Main shaft portion 22 Eccentric shaft portion 23 Weight balance portion 30 Thrust bearing 31 Upper thrust washer 32 Lower thrust washer 33 Ball 50 Oil passage array 51 First oil passage 52 First 2 oil passage 53 third oil passage 54, 54 ', 54 "branch passage

Claims (10)

底面にオイルだめが形成される密閉容器と、
前記密閉容器内に配置され、中空部を有するフレームと、
前記中空部を貫通するように前記フレームに回転自在に設置され、前記オイルだめのオイルを上部に導くオイル流路アレイを有する回転軸と、
前記中空部上端の軸受設置溝に設置され、前記回転軸の軸方向荷重を支持するように該回転軸に転がり接触するスラスト軸受とを備えてなり、
前記オイル流路アレイは、前記スラスト軸受にオイルの少なくとも一部を供給するように構成されたことを特徴とする密閉型圧縮機。
An airtight container with an oil sump on the bottom;
A frame disposed in the sealed container and having a hollow portion;
A rotary shaft that is rotatably installed in the frame so as to penetrate the hollow portion, and has an oil passage array that guides the oil in the oil reservoir to the upper part;
A thrust bearing that is installed in a bearing installation groove at the upper end of the hollow portion and that is in rolling contact with the rotary shaft so as to support an axial load of the rotary shaft;
The hermetic compressor, wherein the oil passage array is configured to supply at least a part of oil to the thrust bearing.
前記回転軸は、
前記中空部を貫通して下部に延びる下側のメイン軸部と、
前記メイン軸部に対して偏心するように上端に形成される偏心軸部、及び前記偏心軸部による回転不釣り合いを補償するように前記偏心軸部とメイン軸部との間に設けられるウェイトバランス部からなる偏心部とを備え、
前記オイル流路アレイは、
前記中空部下部のメイン軸部内部に形成される第1オイル流路と、
前記第1オイル流路と連通するように前記スラスト軸受下部の中空部側の前記メイン軸部外面に形成される第2オイル流路と、
前記スラスト軸受側の前記メイン軸部及び前記偏心部の内部に形成される第3オイル流路と、
前記第3オイル流路へ導かれたオイルの一部を前記スラスト軸受に伝達するように、前記第3オイル流路から分岐し前記スラスト軸受側のメイン軸部外部と通じるように形成された分岐流路とを備えることを特徴とする請求項1に記載の密閉型圧縮機。
The rotation axis is
A lower main shaft portion extending through the hollow portion and extending downward,
An eccentric shaft portion formed at an upper end so as to be eccentric with respect to the main shaft portion, and a weight balance provided between the eccentric shaft portion and the main shaft portion so as to compensate for rotational unbalance due to the eccentric shaft portion With an eccentric part consisting of parts,
The oil flow path array is
A first oil passage formed inside the main shaft at the lower part of the hollow part;
A second oil passage formed on the outer surface of the main shaft portion on the hollow portion side of the thrust bearing lower portion so as to communicate with the first oil passage;
A third oil passage formed inside the main shaft portion and the eccentric portion on the thrust bearing side;
A branch formed so as to branch from the third oil flow path and communicate with the outside of the main shaft portion on the thrust bearing side so that a part of the oil guided to the third oil flow path is transmitted to the thrust bearing. The hermetic compressor according to claim 1, further comprising a flow path.
前記分岐流路は、直線穴の形態に形成され、
前記第3オイル流路は、前記メイン軸部の軸心から偏って形成され、
前記分岐流路は、前記メイン軸部の軸心と前記第3オイル流路とを連結する直線と交差する方向に分岐されることを特徴とする請求項2に記載の密閉型圧縮機。
The branch channel is formed in the form of a straight hole,
The third oil flow path is formed offset from an axis of the main shaft portion;
3. The hermetic compressor according to claim 2, wherein the branch flow path is branched in a direction intersecting with a straight line connecting the axis of the main shaft portion and the third oil flow path.
前記分岐流路は、前記第3オイル流路側の入口よりも前記メイン軸部外面側の出口の高さが高くなるように傾斜して形成されたことを特徴とする請求項3に記載の密閉型圧縮機。   4. The hermetic seal according to claim 3, wherein the branch passage is formed to be inclined so that the height of the outlet on the outer surface side of the main shaft portion is higher than the inlet on the side of the third oil passage. Mold compressor. 前記分岐流路は、前記第3オイル流路側の入口から前記メイン軸部外面側の出口へ行くほど直径が狭まるようにテーパー状に形成されたことを特徴とする請求項3に記載の密閉型圧縮機。   4. The hermetic type according to claim 3, wherein the branch flow path is formed in a tapered shape such that a diameter thereof decreases from an inlet on the third oil flow path side to an outlet on the outer surface side of the main shaft portion. Compressor. 前記分岐流路は、直線穴の形態に形成され、
前記第3オイル流路は、前記メイン軸部の軸心から偏って形成され、
前記分岐流路は、前記メイン軸部外面側からパンチング加工によって形成されたことを特徴とする請求項2に記載の密閉型圧縮機。
The branch channel is formed in the form of a straight hole,
The third oil flow path is formed offset from an axis of the main shaft portion;
The hermetic compressor according to claim 2, wherein the branch channel is formed by punching from the outer surface side of the main shaft portion.
内部にオイルだめが配される密閉容器と、
前記密閉容器内に配置され、中空部を有するフレームと、
前記フレームに挿入されるように構成された回転軸と、
前記オイルだめからオイルを導くように構成された少なくとも一つのオイル流路と、
前記回転軸の荷重を支持するように該回転軸に接触するように構成されたスラスト軸受とを備えてなり、
前記少なくとも一つのオイル流路は、前記スラスト軸受にオイルの少なくとも一部を供給するように構成されたことを特徴とする密閉型圧縮機。
An airtight container with an oil sump inside,
A frame disposed in the sealed container and having a hollow portion;
A rotating shaft configured to be inserted into the frame;
At least one oil passage configured to direct oil from the oil sump;
A thrust bearing configured to contact the rotating shaft so as to support a load of the rotating shaft;
The hermetic compressor, wherein the at least one oil passage is configured to supply at least a part of oil to the thrust bearing.
前記回転軸は、前記中空部の少なくとも一部を貫通するように構成されたことを特徴とする請求項7に記載の密閉型圧縮機。   The hermetic compressor according to claim 7, wherein the rotation shaft is configured to penetrate at least a part of the hollow portion. 前記少なくとも一つのオイル流路は、オイル流路アレイを形成する複数のオイル流路を含むことを特徴とする請求項7に記載の密閉型圧縮機。   The hermetic compressor according to claim 7, wherein the at least one oil passage includes a plurality of oil passages forming an oil passage array. 前記回転軸は、
前記中空部の少なくとも一部を貫通するように構成されたメイン軸部と、
前記メイン軸部の上側に、該メイン軸部に対して偏心して配置される偏心軸部と、
前記回転軸の回転動作の不釣り合いを補償するように構成されたウェイトバランス部とを備えることを特徴とする請求項7に記載の密閉型圧縮機。
The rotation axis is
A main shaft portion configured to penetrate at least a part of the hollow portion;
An eccentric shaft portion disposed eccentrically with respect to the main shaft portion on the upper side of the main shaft portion;
The hermetic compressor according to claim 7, further comprising: a weight balance unit configured to compensate for an unbalance in the rotational operation of the rotating shaft.
JP2006188335A 2005-07-27 2006-07-07 Enclosed compressor Withdrawn JP2007032562A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050068589A KR100679929B1 (en) 2005-07-27 2005-07-27 Hermetic type compressor

Publications (1)

Publication Number Publication Date
JP2007032562A true JP2007032562A (en) 2007-02-08

Family

ID=37673688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006188335A Withdrawn JP2007032562A (en) 2005-07-27 2006-07-07 Enclosed compressor

Country Status (6)

Country Link
US (1) US20070025864A1 (en)
JP (1) JP2007032562A (en)
KR (1) KR100679929B1 (en)
CN (1) CN1904362A (en)
BR (1) BRPI0602665A (en)
IT (1) ITTO20060545A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255556A (en) * 2009-04-27 2010-11-11 Panasonic Corp Hermetic compressor and refrigerating device
KR20110123143A (en) * 2010-05-06 2011-11-14 엘지전자 주식회사 Hermetic compressor
WO2013021652A1 (en) * 2011-08-11 2013-02-14 パナソニック株式会社 Hermetic type compressor
WO2013136814A1 (en) 2012-03-16 2013-09-19 パナソニック株式会社 Hermetically sealed compressor, and freezing device provided therewith
JP2013194536A (en) * 2012-03-16 2013-09-30 Panasonic Corp Sealed compressor and refrigerating apparatus
WO2013153825A1 (en) * 2012-04-12 2013-10-17 パナソニック株式会社 Hermetic compressor and refrigeration device comprising same
JP2013234649A (en) * 2012-04-12 2013-11-21 Panasonic Corp Sealed compressor and freezer refrigerator
JP2013234650A (en) * 2012-04-12 2013-11-21 Panasonic Corp Hermetic compressor and refrigeration device
JP2015038326A (en) * 2012-04-27 2015-02-26 パナソニック株式会社 Hermetic type compressor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110265510A1 (en) * 2009-01-07 2011-11-03 Jin-Kook Kim Reciprocating compressor and refrigerating apparatus having the same
BRPI1009161B8 (en) * 2010-12-06 2022-02-01 Embraco Ind De Compressores E Solucoes Em Refrigeracao Ltda Crankshaft for a reciprocating refrigeration compressor
JPWO2013099237A1 (en) * 2011-12-26 2015-04-30 パナソニックIpマネジメント株式会社 Hermetic compressor and refrigerator including the same
DE112013000763T5 (en) * 2012-01-31 2015-08-27 Ulvac Kiko, Inc. pump device
CN102953961A (en) * 2012-11-29 2013-03-06 广州万宝集团压缩机有限公司 Refrigerator compressor and lubricating-oil supplying device
DE112014004018T5 (en) * 2013-09-03 2016-07-14 Panasonic Intellectual Property Management Co., Ltd. Sealed compressor and freezer or refrigerator equipped with it
US10436104B2 (en) * 2014-05-23 2019-10-08 Eaton Intelligent Power Limited Supercharger
CN106795875B (en) * 2015-03-25 2019-11-05 松下电器制冷装置新加坡 Hermetic type compressor and refrigerating plant
KR102422698B1 (en) * 2020-11-06 2022-07-20 엘지전자 주식회사 Hermetic compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8810291U1 (en) * 1988-08-13 1989-10-19 Leybold Ag, 6450 Hanau, De
KR19990030044U (en) * 1997-12-29 1999-07-26 구자홍 Oil supply structure of electric compressor
KR100278386B1 (en) * 1998-09-08 2001-01-15 구자홍 Leak-proof structure of the compressor
KR20010008682A (en) * 1999-07-02 2001-02-05 배길성 Structure for oil supply in friction part of closed type compressor
KR200224989Y1 (en) * 2000-12-27 2001-05-15 엘지전자주식회사 An oil supplying structure for hermetic compressor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255556A (en) * 2009-04-27 2010-11-11 Panasonic Corp Hermetic compressor and refrigerating device
KR20110123143A (en) * 2010-05-06 2011-11-14 엘지전자 주식회사 Hermetic compressor
KR101698085B1 (en) * 2010-05-06 2017-02-01 엘지전자 주식회사 Hermetic compressor
WO2013021652A1 (en) * 2011-08-11 2013-02-14 パナソニック株式会社 Hermetic type compressor
JP2013036454A (en) * 2011-08-11 2013-02-21 Panasonic Corp Hermetic type compressor
WO2013136814A1 (en) 2012-03-16 2013-09-19 パナソニック株式会社 Hermetically sealed compressor, and freezing device provided therewith
JP2013194536A (en) * 2012-03-16 2013-09-30 Panasonic Corp Sealed compressor and refrigerating apparatus
WO2013153825A1 (en) * 2012-04-12 2013-10-17 パナソニック株式会社 Hermetic compressor and refrigeration device comprising same
JP2013234649A (en) * 2012-04-12 2013-11-21 Panasonic Corp Sealed compressor and freezer refrigerator
JP2013234650A (en) * 2012-04-12 2013-11-21 Panasonic Corp Hermetic compressor and refrigeration device
US10371134B2 (en) 2012-04-12 2019-08-06 Panasonic Appliances Refrigeration Devices Singapore Sealed compressor and refrigeration unit comprising sealed compressor
JP2015038326A (en) * 2012-04-27 2015-02-26 パナソニック株式会社 Hermetic type compressor

Also Published As

Publication number Publication date
BRPI0602665A (en) 2007-03-13
ITTO20060545A1 (en) 2007-01-28
US20070025864A1 (en) 2007-02-01
KR20070013904A (en) 2007-01-31
KR100679929B1 (en) 2007-02-07
CN1904362A (en) 2007-01-31

Similar Documents

Publication Publication Date Title
JP2007032562A (en) Enclosed compressor
KR100860203B1 (en) Hermetic compressor
WO2016152126A1 (en) Hermetic compressor and refrigeration device
KR101235191B1 (en) Hermetic type compressor
KR101234823B1 (en) Hermetic type compressor
JP6138625B2 (en) Hermetic compressor and refrigerator using the same
KR20060130891A (en) A reciprocating compressor
KR101313549B1 (en) Hermetic type compressor
JP6234793B2 (en) Hermetic compressor and refrigeration / freezing apparatus using the same
KR101410751B1 (en) A hermetic type compressor
JP2014163299A (en) Hermetic type compressor and refrigerator using the same
KR20070005305A (en) A reciprocating compressor
JP2018025142A (en) Hermetic type compressor and refrigeration device using the same
JP2009510298A (en) Compressor
KR100771594B1 (en) crankshaft of compressor for refrigerating machine
KR20040107728A (en) Oil feeding structure for hermetic rotary compressor
KR101454247B1 (en) Reciprocating compressor
KR100300194B1 (en) Hermetic reciprocating compressor
KR101235190B1 (en) Hermetic type compressor
KR200260115Y1 (en) Oil providing apparatus of a compressor
KR20060080441A (en) A reciprocating compressor
KR20080017213A (en) A hermetic type compressor
JP2013100797A (en) Hermetic compressor
KR101698085B1 (en) Hermetic compressor
JP2013136982A (en) Hermetic compressor

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080104