JP2007032003A - Wall structure and method of constructing the same - Google Patents

Wall structure and method of constructing the same Download PDF

Info

Publication number
JP2007032003A
JP2007032003A JP2005214217A JP2005214217A JP2007032003A JP 2007032003 A JP2007032003 A JP 2007032003A JP 2005214217 A JP2005214217 A JP 2005214217A JP 2005214217 A JP2005214217 A JP 2005214217A JP 2007032003 A JP2007032003 A JP 2007032003A
Authority
JP
Japan
Prior art keywords
wall
soil
planar reinforcing
wall structure
solidified soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005214217A
Other languages
Japanese (ja)
Other versions
JP4131447B2 (en
Inventor
Kikuo Hirata
喜久男 平田
Takeshi Kondo
武司 近藤
Koji Ichii
康二 一井
Mitsuharu Fukuda
光治 福田
Takao Hirai
貴雄 平井
Junichi Hironaka
淳市 弘中
Yasuhisa Takahane
泰久 高羽
Hideto Terakawa
秀人 寺川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEO RES INST
GEO-RESEARCH INSTITUTE
KINKI REGIONAL DEV BUREAU MINI
Kinki Regional Development Bureau Ministry Of Land Infrastructure & Transport
Mitsui Chemicals Industrial Products Ltd
National Institute of Maritime Port and Aviation Technology
Mirai Construction Co Ltd
Original Assignee
GEO RES INST
GEO-RESEARCH INSTITUTE
KINKI REGIONAL DEV BUREAU MINI
Kinki Regional Development Bureau Ministry Of Land Infrastructure & Transport
Mitsui Chemicals Industrial Products Ltd
National Institute of Maritime Port and Aviation Technology
Mirai Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEO RES INST, GEO-RESEARCH INSTITUTE, KINKI REGIONAL DEV BUREAU MINI, Kinki Regional Development Bureau Ministry Of Land Infrastructure & Transport, Mitsui Chemicals Industrial Products Ltd, National Institute of Maritime Port and Aviation Technology, Mirai Construction Co Ltd filed Critical GEO RES INST
Priority to JP2005214217A priority Critical patent/JP4131447B2/en
Publication of JP2007032003A publication Critical patent/JP2007032003A/en
Application granted granted Critical
Publication of JP4131447B2 publication Critical patent/JP4131447B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Revetment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wall structure which has a seismically strengthening function of decreasing an earthquake force by exerting a resistance to the earthquake force, without increasing construction costs, and is available when the wall structure is newly constructed but also when an existing wall structure is renovated by executing construction work, and to provide a method of constructing the wall structure. <P>SOLUTION: The wall structure is formed of: a gravity-type wall body 52; solidified earth 58 successively deposited in a construction area E located on a rear side of the wall body from a bottom of the construction area upward in multiple layers each having a predetermined height; and a plurality of planar reinforcing members 32 which are almost horizontally arranged on each layer of the solidified earth like a plane at the predetermined height interval. Herein an end of each of the planar reinforcing members is connected to the rear side 35 of the wall body. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、重力式の壁体が用いられた、例えば、岸壁構造体等の壁構造体及びその形成方法に関するものである。   The present invention relates to a wall structure such as a quay structure, for example, and a method for forming the same, in which a gravitational wall is used.

従来の壁構造体としては、例えば、船舶が係留することができるように海岸線に沿って設けられている岸壁構造体がある。このような岸壁構造体としては、海岸線に沿って壁体が設けられていて、この壁体としては、例えば図10に示すケーソン50や、図示しないが、ケーソン50と同等の高さを有するL型ブロックとか、複数の直方体のブロックを積み上げて形成したブロック積等の壁体がある。   As a conventional wall structure, for example, there is a quay structure provided along a coastline so that a ship can be moored. As such a quay wall structure, a wall body is provided along the coastline. As this wall body, for example, a caisson 50 shown in FIG. 10 or an L having a height equivalent to the caisson 50 is not shown. There are wall bodies such as mold blocks or block products formed by stacking a plurality of rectangular parallelepiped blocks.

上記岸壁構造体に用いられるケーソン50等の壁体は、大きな地震が発生して外力が加わったときには、その滑り出し(水平移動)や、転倒等を生じ、これらが発生するときに加わる水平力の地震力(慣性力、壁体の自重×設計震度)や、壁体の下でこの壁体を支持する地盤の壁体支持力等に対する壁体諸元や構造部材が、例えば非特許文献1において検討され、その設計法が提案されている。   Walls such as the caisson 50 used in the quay structure, when a large earthquake occurs and an external force is applied, cause a slippage (horizontal movement), a fall, etc., and the horizontal force applied when these occur. Non-Patent Document 1, for example, describes the wall body specifications and structural members against seismic force (inertial force, dead weight of the wall body x design seismic intensity), and the wall body supporting force of the ground that supports the wall body under the wall body. The design method has been proposed.

例えば岸壁構造体は、地震時においてはケーソン50等の壁体の背面側(海と反対側の陸側)に、土砂等を介して海S側に向かって水平方向に作用する地震力A(図10参照)が働くため、特に、ケーソン50等の滑り出しの抑止や、壁体の下でこの壁体を支持する地盤の壁体支持力の確保が設計上の課題となる。   For example, the quay structure has a seismic force A that acts horizontally on the back side of the wall of the caisson 50 or the like (land side opposite to the sea) toward the sea S side through earth and sand during earthquakes. In particular, the design problem is to prevent the caisson 50 from slipping out and to secure the wall body supporting force of the ground that supports the wall body under the wall body.

壁体の滑り出し抑止の対策としては、壁体底面とこの壁体を支持する地盤の基礎部材との間の摩擦抵抗B(図10参照)を増大させたり、壁体の背面側に作用する水平力を減少させる等の方法が取られている。   As a measure for preventing the sliding of the wall body, the frictional resistance B (see FIG. 10) between the bottom surface of the wall body and the foundation member of the ground supporting the wall body is increased, or the horizontal action acting on the back side of the wall body. The measures such as reducing the power are taken.

上記摩擦抵抗Bを増大させるためには、図10に示すように、ケーソン50の幅Wを大きくして、このケーソン50を支持する地盤の基礎捨石54との接地面積を広くしたり(後述するa.)、このようにケーソン50の幅Wを大きくする代わりに、図11に示すように、上記ケーソン50より幅Wが小さいケーソン52の底面と地盤の基礎捨石54との間に、摩擦抵抗Bを増大させるマット56を取り付ける方法(後述するb.)等が提案されている(特許文献1参照)。   In order to increase the frictional resistance B, as shown in FIG. 10, the width W of the caisson 50 is increased to increase the ground contact area with the ground rubble 54 that supports the caisson 50 (described later). a.) Instead of increasing the width W of the caisson 50 in this way, as shown in FIG. 11, a frictional resistance is generated between the bottom surface of the caisson 52 having a width W smaller than the caisson 50 and the ground rubble 54. A method of attaching a mat 56 for increasing B (described later) is proposed (see Patent Document 1).

また、壁体の背面側に作用する水平力を減少させるには、図12に示すように、ケーソン52の背面側(図中右側)に、軽量混合処理土が固化してできる、軽くて強い固化処理土58等を埋設することにより、ケーソン52の背面側に作用する土圧を低減させる方法(後述するc.)等がある(非特許文献2参照)。   Moreover, in order to reduce the horizontal force which acts on the back side of a wall, as shown in FIG. 12, it is light and strong that a light mixing process soil solidifies on the back side (right side in the figure) of the caisson 52. There is a method of reducing the earth pressure acting on the back side of the caisson 52 by embedding the solidified soil 58 or the like (c. Described later) (see Non-Patent Document 2).

また、壁体の下でこの壁体を支持する地盤の壁体支持力の確保の対策としては、以下のような方法が取られている。   Moreover, the following methods are taken as countermeasures for securing the wall body supporting force of the ground supporting the wall body under the wall body.

図14に示すように、ケーソン52には、鉛直荷重F1と水平荷重F2等の力が作用し、これらの力の合力F3は、通常偏心し、かつ傾斜している偏心傾斜荷重となっている。地震時には、水平方向の地震力が上記水平荷重F2に加算されることにより、上記偏心傾斜荷重である合力F3が増大する。   As shown in FIG. 14, forces such as the vertical load F1 and the horizontal load F2 act on the caisson 52, and the resultant force F3 of these forces is an eccentric inclined load that is normally eccentric and inclined. . In the event of an earthquake, the horizontal seismic force is added to the horizontal load F2, thereby increasing the resultant force F3 that is the eccentric inclination load.

このため、ケーソン52の底面の下でこの壁体を支持する地盤の壁体支持力が確保できない場合には、ケーソン52が傾いたり転倒したりするのを防止するため、図13に示すように、基礎捨石54の下に、サンドコンパクションパイル(SCP)工法等による地盤補強材料60等を埋設して地盤の壁体支持力を強化したり(後述するd.)、或いは、図12に示すように、ケーソン52の背面側に軽くて強い固化処理土58等を埋設して用いることにより、ケーソン52の背面側に作用する土圧を低減させて、壁体支持力が確保できる方法(後述するc.)等が取られている。   For this reason, as shown in FIG. 13, in order to prevent the caisson 52 from tilting or falling when the wall supporting force of the ground supporting the wall is not secured under the bottom surface of the caisson 52, Under the foundation rubble 54, a ground reinforcing material 60 or the like by a sand compaction pile (SCP) method or the like is embedded to reinforce the ground wall supporting force (d. Described later), or as shown in FIG. In addition, by embedding light and strong solidified soil 58 or the like on the back side of the caisson 52, the earth pressure acting on the back side of the caisson 52 can be reduced, and a wall supporting force can be secured (described later). c.) etc. are taken.

「港湾の施設の技術上の基準・同解説」 社団法人 日本港湾協会、1999年発行"Technical Standards and Explanations for Harbor Facilities" Japan Port Association, issued in 1999 「軽量混合処理土工法 技術マニュアル」財団法人 沿岸開発技術研究センター、平成11年4月発行"Lightweight Mixed Earth Processing Method Technical Manual" Coastal Development Technology Research Center, April 1999 特許第3086947号公報の「アスファルトマットの施工方法」"Asphalt mat construction method" in Japanese Patent No. 3086947

しかしながら、前記従来の壁構造体にあっては、次のような問題があった。
a.壁構造体に用いられるケーソン等の壁体の滑り出し抑止の対策として、壁体の底面とこの壁体を支持する地盤の基礎部材との間の摩擦抵抗Bを増大させるために、図10に示すように、ケーソン50の幅Wを広くする方法を取ると、ケーソン50の水平断面が大きくなるため、その製作費、据付費等の建設コストが増大する。
However, the conventional wall structure has the following problems.
a. In order to increase the frictional resistance B between the bottom surface of the wall body and the foundation member of the ground that supports the wall body as a countermeasure for preventing the sliding of the wall body such as caisson used in the wall structure, FIG. Thus, if the method of widening the width W of the caisson 50 is taken, the horizontal cross section of the caisson 50 becomes large, so that the construction cost such as the production cost and installation cost increases.

またケーソン50の幅Wを広くする方法を取ると、地盤の基礎捨石54の敷設範囲や、その下に地盤補強材料60等を埋設する場合はその埋設する範囲も増大して、さらに建設コストが増大するという問題があった。   Moreover, if the method of widening the width W of the caisson 50 is taken, the laying range of the ground foundation rubble 54 and the laying range when the ground reinforcing material 60 and the like are buried below it increase, and the construction cost is further increased. There was a problem of increasing.

また、既存の壁体をその幅Wを広くするように改修するような場合には、壁体の前面側(背面側と反対側、図中左側)が張り出すように水平断面を大きくせざるをえないので、岸壁構造体の場合は海岸線の位置が沖側に出っ張るように移動してしまうという問題があった。   Also, when renovating an existing wall body so as to increase its width W, the horizontal section must be enlarged so that the front side of the wall body (opposite to the back side, left side in the figure) protrudes. In the case of a quay structure, there is a problem that the coastline moves so as to protrude offshore.

b.また、上記壁体の滑り出し抑止の対策として、壁体の底面とこの壁体を支持する地盤の基礎部材との間の摩擦抵抗を増大させるために、図11に示すように、ケーソン52の底面と基礎捨石54との間に摩擦抵抗を増大させるマット56を取り付ける方法を取ると、そのようなマット56はケーソン52を新規に製作する時にしか取り付けられないため、既存の壁体の底面と基礎捨石54との間にマット56を取り付けることはできないという問題があった。   b. In order to increase the frictional resistance between the bottom surface of the wall body and the foundation member of the ground that supports the wall body as a measure for preventing the wall body from sliding out, as shown in FIG. If a mat 56 that increases the frictional resistance is attached between the base and the rubble 54, such a mat 56 can be attached only when a caisson 52 is newly manufactured. There was a problem that the mat 56 could not be attached to the rubble 54.

c.また、上記壁体の滑り出し抑止の対策として、壁体に作用する水平力を減少させる方法として、図12に示すように、ケーソン52の背面側に固化処理土58等を設置することにより、ケーソン52の背面側に作用する土圧を低減させる方法を取ると、全水平力の低減には繋がるとしても、地震力に抵抗して地震力を低減させるような積極的な耐震補強の効果は得られないため、地震力が大きい場合には壁体の滑り出しを抑止できる効果は期待できないという問題があった。   c. Further, as a measure for preventing the wall body from slipping out, as a method of reducing the horizontal force acting on the wall body, as shown in FIG. If the method of reducing the earth pressure acting on the back side of 52 is used, it will lead to the reduction of the total horizontal force, but the effect of active seismic reinforcement that reduces the earthquake force by resisting the seismic force is obtained. Therefore, when the seismic force is large, there is a problem that the effect of suppressing the sliding of the wall cannot be expected.

d.さらに、壁体の下でこの壁体を支持する地盤の壁体支持力の確保の対策として、図13に示すように、基礎捨石54の下に地盤改良構造60を形成するなどして、壁体支持力を強化する方法を取る場合は、ケーソン52を新規に製作する時にしか地盤改良構造60を形成することができないため、この方法により既存のケーソン52の下の地盤補強を施すことはできないという問題があった。   d. Further, as a measure for securing the wall body supporting force of the ground that supports the wall body under the wall body, as shown in FIG. When the method for strengthening the body supporting force is adopted, the ground improvement structure 60 can be formed only when the caisson 52 is newly manufactured. Therefore, the ground reinforcement under the existing caisson 52 cannot be applied by this method. There was a problem.

そこで本発明は、上記問題点に鑑みて、建設コストを増大させることなく、地震力に対する抵抗力を発揮して地震力を低減することができる耐震補強機能を有すると共に、新規に壁構造体を構築する場合のみならず、既存の壁構造体に工事を加えて改修する場合でも実施することができるような壁構造体及びその形成方法を提供することを課題とするものである。   Therefore, in view of the above problems, the present invention has a seismic reinforcement function capable of reducing the seismic force by demonstrating the resistance to seismic force without increasing the construction cost, and a new wall structure. It is an object of the present invention to provide a wall structure and a method for forming the wall structure that can be implemented not only in the case of construction but also in the case of renovating an existing wall structure by adding construction.

上記課題を解決するために、本発明による壁構造体は、
重力式の壁体と、
前記壁体の背面側に施工される施工領域に下方から上方に所定高さずつ順次堆積された固化処理土と、
前記固化処理土中に前記所定高さずつ間隔をおいてほぼ水平方向に平面状に配置された複数の面状補強材とを備え、
前記複数の面状補強材の各端部が前記壁体の背面側に連結されたことを特徴とするものである。
In order to solve the above problems, the wall structure according to the present invention is:
A gravitational wall,
Solidified soil sequentially deposited at a predetermined height from below to the construction area constructed on the back side of the wall,
A plurality of planar reinforcing materials arranged in a plane in a substantially horizontal direction at intervals of the predetermined height in the solidified soil,
Each end portion of the plurality of planar reinforcing members is connected to the back side of the wall body.

また、本発明による壁構造体は、
前記壁体が海岸線に沿って設けられた岸壁構造体に用いられたことを特徴とするものである。
The wall structure according to the present invention is
The wall body is used in a quay structure provided along a coastline.

また、本発明による壁構造体は、
前記固化処理土は、浚渫土砂又は掘削土砂に、セメント、石灰、酸化マグネシウム、或いは石こう等の固化材を混合して、固化する前は粘性を有し、時間の経過と共に固化するような性質を有していることを特徴とするものである。
The wall structure according to the present invention is
The solidified soil is mixed with dredged soil or excavated soil and solidified material such as cement, lime, magnesium oxide, or gypsum and has a property of having viscosity before solidifying and solidifying over time. It is characterized by having.

また、本発明による壁構造体は、
前記面状補強材が、可撓性を有し、網目を有する平面状又は網目を有しないシート状に形成されたことを特徴とするものである。
The wall structure according to the present invention is
The planar reinforcing material is flexible and formed into a planar shape having a mesh or a sheet shape having no mesh.

また、本発明による壁構造体は、
前記面状補強材に、前記固化処理土中に含まれるアルカリ成分に対して耐蝕性が良い高分子樹脂性材料が用いられたことを特徴とするものである。
The wall structure according to the present invention is
The planar reinforcing material is made of a polymer resin material having good corrosion resistance against an alkali component contained in the solidified soil.

また、本発明による壁構造体は、
前記壁体の海岸側の海底を掘削してこの海底深さを増加させることができることを特徴とするものである。
The wall structure according to the present invention is
The depth of the seabed can be increased by excavating the seabed on the shore side of the wall body.

また、上記課題を解決するために、本発明による壁構造体の形成方法は、
重力式の壁体を設ける工程と、
前記壁体の背面側に施工される施工領域を掘削する工程と、
前記施工領域に固化処理土を下方から上方に所定高さずつ順次堆積させる工程と、
前記固化処理土を所定高さずつ順次堆積させる工程と交互に繰り返して、前記順次堆積させた固化処理土の上に面状補強材を順次配置すると共に、前記面状補強材の各端部を前記壁体の背面側に順次連結する工程とを有することを特徴とするものである。
Moreover, in order to solve the said subject, the formation method of the wall structure by this invention is the following.
Providing a gravitational wall,
Excavating a construction area to be constructed on the back side of the wall, and
A step of sequentially depositing the solidified soil in a predetermined height from the bottom to the top in the construction area;
By alternately repeating the step of sequentially depositing the solidified soil by a predetermined height, a planar reinforcing material is sequentially disposed on the sequentially deposited solidified soil, and each end of the planar reinforcing material is And sequentially connecting to the back side of the wall.

また、本発明による壁構造体の形成方法は、
前記壁体が海岸線に沿って設けられた岸壁構造体に用いられたことを特徴とするものである。
The method for forming a wall structure according to the present invention includes:
The wall body is used in a quay structure provided along a coastline.

また、上記課題を解決するために、本発明による壁構造体の形成方法は、
既設の重力式壁体の背面側に施工される施工領域を掘削する工程と、
前記施工領域に固化処理土を下方から上方に所定高さずつ順次堆積させる工程と、
前記固化処理土を所定高さずつ順次堆積させる工程と交互に繰り返して、前記順次堆積させた固化処理土の上に面状補強材を順次配置すると共に、前記面状補強材の各端部を前記壁体の背面側に順次連結する工程とを有することを特徴とするものである。
Moreover, in order to solve the said subject, the formation method of the wall structure by this invention is the following.
Excavating a construction area to be constructed on the back side of an existing gravitational wall; and
A step of sequentially depositing the solidified soil in a predetermined height from the bottom to the top in the construction area;
By alternately repeating the step of sequentially depositing the solidified soil by a predetermined height, a planar reinforcing material is sequentially disposed on the sequentially deposited solidified soil, and each end of the planar reinforcing material is And sequentially connecting to the back side of the wall.

また、本発明による壁構造体の形成方法は、
前記壁体が海岸線に沿って設けられた岸壁構造体に用いられたことを特徴とするものである。
The method for forming a wall structure according to the present invention includes:
The wall body is used in a quay structure provided along a coastline.

このような本発明による壁構造体及びその形成方法によれば、建設コストを増大させることなく、地震力に対する抵抗力を発揮して地震力を低減することができる耐震補強機能を有すると共に、新規に壁構造体を構築する場合のみならず、既存の壁構造体に工事を加えて改修する場合でも実施することができる。   According to such a wall structure and a method for forming the same according to the present invention, it has a seismic reinforcement function capable of reducing the seismic force by exerting a resistance force against the seismic force without increasing the construction cost, and is novel. This can be implemented not only when building a wall structure, but also when renovating an existing wall structure by adding construction.

以下に、本発明に係る壁構造体及びその形成方法を実施するための最良の実施の形態について、図面に基づいて具体的に説明する。
図1ないし図9は、本発明による壁構造体及びその形成方法の一実施の形態について説明するために参照する図である。従来と同じ部分には、従来と同じ符号を付して説明するものとする。
Hereinafter, the best mode for carrying out a wall structure and a method for forming the same according to the present invention will be specifically described with reference to the drawings.
1 to 9 are views referred to for explaining an embodiment of a wall structure and a method for forming the wall structure according to the present invention. The same parts as in the prior art will be described with the same reference numerals as in the prior art.

図1は、既存の岸壁構造体(壁構造体に相当)に改修工事を加えて、本発明の一実施の形態に係る岸壁構造体を形成した状態を示す断面図である。
同図に示すように、本実施の形態に係る岸壁構造体は、既設の重力式のケーソン(壁体)52の陸側(背面側、図中右側)に、深さを有する施工領域Eが形成され、この施工領域Eには固化処理土58が打設されて、この固化処理土58は下方から上方に所定高さずつ順次堆積されるようになっている。
FIG. 1 is a cross-sectional view showing a state where a renovation work is applied to an existing quay structure (corresponding to a wall structure) to form a quay structure according to an embodiment of the present invention.
As shown in the figure, the quay wall structure according to the present embodiment has a construction area E having a depth on the land side (back side, right side in the figure) of an existing gravity caisson (wall body) 52. In this construction area E, the solidified soil 58 is placed, and the solidified soil 58 is sequentially deposited from the lower side to the upper side by a predetermined height.

また、この固化処理土58中には、それが順次堆積されたときの前記所定高さの間隔をおいて、ほぼ水平方向に平面状に配置された複数の面状補強材32が挟み込まれている。そして、この複数の面状補強材32の海側の各端部は、ケーソン52の背面側に一体的に設けられたアンカー部材35に連結されている。アンカー部材35は、例えば、一端部がコンクリート内に打ち込まれて固定されるアンカーボルトとナット等の結合部材を用いることにより、ケーソン52の背面側に一体的に設けることができる。   Further, in the solidified soil 58, a plurality of planar reinforcing members 32 arranged in a plane in a substantially horizontal direction are sandwiched at intervals of the predetermined height when they are sequentially deposited. Yes. And each edge part of the sea side of this some planar reinforcement 32 is connected with the anchor member 35 integrally provided in the back side of the caisson 52. As shown in FIG. The anchor member 35 can be integrally provided on the back side of the caisson 52, for example, by using a connecting member such as an anchor bolt and a nut whose one end is driven and fixed in the concrete.

ケーソン52は、基礎捨石54の上に載置されている。基礎捨石54の下側には、前記SCP工法等による地盤改良構造60が埋設されている。固化処理土58の前側(図中左側)半分の下側には、裏込石37が埋設されている。固化処理土58の後方(図中右方)及びその後側(図中右側)半分の下側には、裏埋土40が埋設されている。ケーソン52の内部には、中詰砂42が充填されている。ケーソン52及び固化処理土58の上には、施工領域Eから掘り出して溜めておいた元の土砂を埋め戻して固めた土砂が配置されている。   The caisson 52 is placed on the foundation rubble 54. A ground improvement structure 60 by the SCP method or the like is embedded under the foundation rubble 54. A backside stone 37 is buried below the front half (left side in the figure) half of the solidified soil 58. A back buried soil 40 is embedded below the solidified soil 58 (on the right side in the figure) and below the rear side (right side in the figure) half. Inside the caisson 52, the filling sand 42 is filled. On the caisson 52 and the solidified soil 58, earth and sand that has been dug out from the construction area E and backfilled with the original earth and sand that has been accumulated is disposed.

図1における岸壁構造体の固化処理土58は、浚渫又は掘削して得られた、含水比が液性限界を超えるような軟弱な浚渫土砂又は掘削土砂に、セメント、石灰、酸化マグネシウム、或いは石こう等の固化材を混合して生成した混合処理土が、時間経過と共に固化したものである。この生成された混合処理土は海中でも固化することができ、固化することにより一軸圧縮強さで100〜400kN/m程度まで強度を向上させることができる。 The solidified soil 58 of the quay structure in FIG. 1 is made of dredged or excavated soft dredged soil or excavated sediment whose water content exceeds the liquid limit, and cement, lime, magnesium oxide, or gypsum. The mixed treated soil produced by mixing solidifying materials such as those solidified over time. The produced mixed treated soil can be solidified even in the sea, and by solidifying, the strength can be improved to about 100 to 400 kN / m 2 in terms of uniaxial compressive strength.

なお、後述する混合処理土58aの堆積の作業を行ない易くするために、流動化剤、凝集剤、高分子ポリマーのような分離防止剤などの混和剤や添加剤を必要に応じて混合することにより、固化処理土58へ固化する前の混合処理土は流動性を有するように流動化処理したものであってもよい。   In order to facilitate the work of depositing the mixed treated soil 58a, which will be described later, admixtures and additives such as a fluidizing agent, a flocculant, and a separation inhibitor such as a polymer are mixed as necessary. Thus, the mixed treated soil before solidifying into the solidified treated soil 58 may be fluidized so as to have fluidity.

このような混合処理土に用いる浚渫土砂又は掘削土砂としては、本実施の形態に係る岸壁構造体を形成する前、またはその形成と同時期に、港湾内の海底を浚渫又は前記施工領域Eを掘削した際に生じた浚渫土砂、又は掘削土砂を用いることができる。   As dredged soil or excavated soil used for such mixed treated soil, before or at the same time as forming the quayside structure according to the present embodiment, dredging the seabed in the harbor or the construction area E The dredged soil or excavated sediment generated during excavation can be used.

面状補強材32は、混合処理土中に含まれるセメント等のアルカリ成分に対して耐蝕性が良く、可撓性(柔軟性)のある高分子樹脂性材料が用いられており、図2に示すように網目を有する平面状に形成されているため、混合処理土中に埋設されたときに、混合処理土が上記網目を通って互いに連結するので、面状補強材32はこの混合処理土が固化した固化処理土58と構造上一体的に連結する。   The planar reinforcing material 32 is made of a polymer resin material having good corrosion resistance against alkali components such as cement contained in the mixed treated soil and having flexibility (softness). Since it is formed in a planar shape having a mesh as shown, the mixed treated soil is connected to each other through the mesh when embedded in the mixed treated soil. Are integrally connected to the solidified soil 58 that has solidified.

図2に示すように、面状補強材32はその長さ方向の端部32aが、棒部材34と連結部材36を介して前記アンカー部材35に連結されている。すなわち、面状補強材32はその端部32aが、この面状補強材32の長さ方向と垂直方向に伸びる棒部材34に巻き付けられて連結部材36に係止されている。   As shown in FIG. 2, the end portion 32 a in the length direction of the planar reinforcing member 32 is connected to the anchor member 35 via a bar member 34 and a connecting member 36. That is, the end portion 32 a of the planar reinforcing member 32 is wound around the bar member 34 extending in the direction perpendicular to the length direction of the planar reinforcing member 32 and is locked to the connecting member 36.

この棒部材34は、その長さがその両端部34a,34bの分だけ面状補強材32の幅よりも長くなっており、面状補強材32の端部32aは、この棒部材34の長さの中央部分34cに巻き付けられて固定されている。   The length of the bar member 34 is longer than the width of the planar reinforcing material 32 by the length of the both end portions 34 a and 34 b, and the end 32 a of the planar reinforcing material 32 is the length of the bar member 34. It is wound around the central portion 34c and fixed.

連結部材36は、四角断面の角棒部材をほぼ「コ」の字型に折り曲げた形状を有しており、この「コ」の字の横線に相当する部分はその長さが棒部材34の直径よりわずかに大きく、「コ」の字の縦線に相当する部分の長さは、例えば棒部材34の直径の2倍位と、その横線に相当する部分よりも十分に長くなっている。   The connecting member 36 has a shape obtained by bending a square bar member having a square cross section into a substantially “U” shape, and the length corresponding to the horizontal line of the “U” shape is the length of the bar member 34. The length of the portion slightly larger than the diameter and corresponding to the vertical line of the “U” is, for example, about twice the diameter of the bar member 34 and sufficiently longer than the portion corresponding to the horizontal line.

そしてこの連結部材36は、その形状の「コ」の字の縦線に相当する部分がアンカー部材35の長さ方向と平行となるように、「コ」の字の上側と下側の両方の横線の先端が溶接等によりアンカー部材35の陸側(ケーソン52の背面側)に向く面に固定されている。なお、連結部材36は四角断面の角棒部材に限定する必要はなく、丸棒や、多角形等の種々の断面の棒部材を「コ」の字型に折り曲げて用いてもよい。   The connecting member 36 has both the upper and lower sides of the “U” so that the portion corresponding to the vertical line of the “U” of the shape is parallel to the length direction of the anchor member 35. The tip of the horizontal line is fixed to the surface of the anchor member 35 facing the land side (the back side of the caisson 52) by welding or the like. The connecting member 36 is not necessarily limited to a square bar member having a square cross section, and a bar member having various cross sections such as a round bar or a polygon may be bent into a “U” shape.

面状補強材32の端部32aが、その長さの中央部分34cに固定された棒部材34の両端部34a,34bは、アンカー部材35と、「コ」の字状の連結部材36との間の長方形の空間内を、上下方向(長方形の長さ方向)に移動することができるように係合されている。   Both end portions 34a and 34b of the bar member 34 in which the end portion 32a of the planar reinforcing member 32 is fixed to the central portion 34c of the length are formed between the anchor member 35 and the "U" -shaped connecting member 36. It is engaged so that it can move in the up-down direction (length direction of the rectangle) in the rectangular space between them.

ケーソン52の陸側の施工領域E内に堆積させた混合処理土が固化して固化処理土58となった後は、棒部材34は、アンカー部材35と連結部材36との間の長方形の空間内を上下方向に移動することはない。またアンカー部材35と、連結部材36の形状の「コ」の字の縦線に相当する部分との間の間隔は、この棒部材34の径よりわずかに大きくなっているだけのため、アンカー部材35と面状補強材32との間に、面状補強材32の長さ方向の引張力が有効に伝達されるようになっている。   After the mixed treated soil accumulated in the construction area E on the land side of the caisson 52 is solidified to become the solidified treated soil 58, the bar member 34 is a rectangular space between the anchor member 35 and the connecting member 36. It does not move up and down. Further, since the distance between the anchor member 35 and the portion corresponding to the vertical line of the “U” shape of the connecting member 36 is only slightly larger than the diameter of the bar member 34, the anchor member The tensile force in the length direction of the planar reinforcing material 32 is effectively transmitted between the surface reinforcing material 32 and the planar reinforcing material 32.

したがって、岸壁構造体のケーソン52にその背面側から水平方向に地震力が作用した場合でも、所定高さずつ順次堆積された各階層の固化処理土58間に挟まれて一体化された複数の面状補強材32の水平方向の引張力がアンカー部材35に作用するので、アンカー部材35と固化処理土58が面状補強材32を介して一体化することができ、アンカー部材35を固化処理土58から離脱させようとする力に対して強い抵抗力を発揮できるようになっている。このため、ケーソン52の背面側に地震力が作用した場合でも、ケーソン52が固化処理土58から離脱して滑り出しを起こすことを抑止することができるようになっている。   Accordingly, even when a seismic force is applied to the caisson 52 of the quay structure from the back side in the horizontal direction, a plurality of integrated and sandwiched between the solidified soils 58 of each layer sequentially deposited by a predetermined height. Since the horizontal tensile force of the planar reinforcing material 32 acts on the anchor member 35, the anchor member 35 and the solidified soil 58 can be integrated via the planar reinforcing material 32, and the anchor member 35 is solidified. A strong resistance can be exerted against the force to be removed from the soil 58. For this reason, even when an earthquake force acts on the back side of the caisson 52, the caisson 52 can be prevented from detaching from the solidified soil 58 and starting to slide.

本実施の形態に係る岸壁構造体の形成方法について、以下に説明する。
まず、図3に示すように、上から見た既存の岸壁構造体のケーソン52の背面側(海Sと反対側)の地面Lに、矩形状に囲まれた施工領域Eを設定する。この施工領域Eの3辺は地面Lにより形成され、他の1辺は、ケーソン52の背面により形成されるようになっている。このような施工領域Eは、海岸線に沿って並べて設けられた複数のケーソン52の列に沿って、複数の施工領域Eが個々に分割されて一列に並べて設定されるようになっている。
A method for forming a quay structure according to the present embodiment will be described below.
First, as shown in FIG. 3, a construction area E surrounded by a rectangular shape is set on the ground L on the back side (opposite the sea S) of the caisson 52 of the existing quay structure as viewed from above. Three sides of the construction area E are formed by the ground L, and the other side is formed by the back surface of the caisson 52. Such a construction area E is configured such that the plurality of construction areas E are individually divided and set in a line along a row of a plurality of caissons 52 provided side by side along the coastline.

次に、このように設定された施工領域Eの矩形状の周縁部のケーソン52以外の3辺の各辺に、図4,図5に示すように、鋼矢板23等をクレーン33等を用いて打設した抗土圧構造体24を設ける。そして、上記3辺の抗土圧構造体24と1辺のケーソン52により囲まれた施工領域E内を、図5に示すように、掘削機械27を用いて掘削する。海Sの近くなので、掘削された施工領域E内には海水が溜まる。   Next, as shown in FIG. 4 and FIG. 5, a steel sheet pile 23 or the like is used on each side of the three sides other than the caisson 52 of the rectangular peripheral portion of the construction area E set as described above. An anti-earth pressure structure 24 is provided. Then, an excavation machine 27 is used to excavate the construction region E surrounded by the three sides of the anti-earthquake structure 24 and the one side caisson 52 as shown in FIG. Since it is near the sea S, seawater accumulates in the excavated construction area E.

次に、図6に示すように、クレーン33等により、予め前記連結部材36が設けられたアンカー部材35を施工領域E内に入れて、潜水士Mが水中で作業することにより、ケーソン52の背面にそのアンカー部材35を固定する。   Next, as shown in FIG. 6, the anchor member 35 provided with the connecting member 36 in advance is placed in the construction area E by the crane 33 or the like, and the diver M works underwater, so that the caisson 52 The anchor member 35 is fixed to the back surface.

ここで、図2に示したアンカー部材35の、高さ方向に互いに隣り合う連結部材36の上下方向の所定の間隔は、後で堆積される混合処理土の各階層の所定高さと同じ間隔に設定されている。そして、施工領域E内の最も低い位置の、裏込石37の上面に配置する面状補強材32と連結される連結部材36は、そのアンカー部材35を固定したときにおいて裏込石37の上面位置とほぼ一致するような、アンカー部材35のほぼ最下端部の位置に設けられている。   Here, the predetermined interval in the vertical direction of the connecting members 36 adjacent to each other in the height direction of the anchor member 35 shown in FIG. 2 is the same as the predetermined height of each layer of the mixed processing soil deposited later. Is set. And the connection member 36 connected with the planar reinforcing material 32 arrange | positioned on the upper surface of the back lining stone 37 of the lowest position in the construction area E is the upper surface of the lining stone 37 when the anchor member 35 is fixed. The anchor member 35 is provided at substantially the lowest position so as to substantially coincide with the position.

次に、予め棒部材34にその端部32aを巻付けて固定した面状補強材32を、図7に示すように、リール状に巻き取った状態でクレーン33等により下降させる。そして、そのクレーン車を移動させながら、リール状に巻き取った面状補強材32をリールから巻き出していくことにより、施工領域E内の最も低い位置の裏込石37の上面の上に面状補強材32を横たえて配置する。そして、その棒部材34の両端部34a,34bのそれぞれを、上記アンカー部材35の最下端部に設けられた、それらに対応する連結部材36に係合させる。   Next, as shown in FIG. 7, the planar reinforcing member 32, whose end portion 32 a is wound around and fixed to the rod member 34 in advance, is lowered by a crane 33 or the like while being wound in a reel shape. Then, while moving the crane car, the surface reinforcing material 32 wound up in the reel shape is unwound from the reel, so that the surface is placed on the upper surface of the bottom stone 37 in the construction area E. The reinforcing material 32 is laid down. Then, the both end portions 34 a and 34 b of the rod member 34 are engaged with the corresponding connecting members 36 provided at the lowermost end portion of the anchor member 35.

そして、図7に示すように、クレーン33等により吊られた処理土供給装置29により、この次に配置する面状補強材32の1階層分の所定の高さまで、混合処理土58aを施工領域E内に堆積させる。そして、この混合処理土58aにより、この下方に最初に横たえて配置した面状補強材32を埋設することができる。   Then, as shown in FIG. 7, the mixed soil 58 a is applied to the construction area up to a predetermined height corresponding to one layer of the planar reinforcing material 32 to be disposed next by the ground soil supply device 29 suspended by the crane 33 or the like. Deposit in E. The planar reinforcing material 32 that is initially laid down below this mixed processing soil 58a can be buried.

混合処理土58aの堆積方法は、図7に示すように、上記処理土供給装置29に連結された供給用パイプ47を通って、処理土供給船45からポンプ又は空気により混合処理土58aを施工領域Eに圧送する等の注入方法や、図示してないベルトコンベヤ又はバケット等を用いて混合処理土58aを施工領域E内に投入する方法などにより行なうことができる。   As shown in FIG. 7, the mixed treated soil 58 a is deposited through the supply pipe 47 connected to the treated soil supply device 29, and the mixed treated soil 58 a is applied from the treated soil supply ship 45 by a pump or air. It can be performed by an injection method such as pressure feeding to the region E or a method of throwing the mixed treated soil 58a into the construction region E using a belt conveyor or a bucket (not shown).

1階層分の所定の高さまで混合処理土58aを堆積した後は、最初に面状補強材32を配置したときと同様に、棒部材34にその端部28aを固定した面状補強材32を現在の軽量混合処理土58aの上に横たえて配置すると共に、棒部材34の両端部34a,34bのそれぞれを、前記アンカー部材35に設けられた、対応する連結部材36に係合させる。   After depositing the mixed treated soil 58a to a predetermined height for one layer, the planar reinforcing member 32 having its end portion 28a fixed to the bar member 34 is provided in the same manner as when the planar reinforcing member 32 is initially arranged. While laying on the present lightweight mixed processing soil 58a, both ends 34a, 34b of the bar member 34 are engaged with corresponding connecting members 36 provided on the anchor member 35, respectively.

このとき、面状補強材32は可撓性(柔軟性)を有しているので、混合処理土58aの上面に多少のうねりがあっても、自らの重さにより、そのうねりに沿って変形して面状補強材32は混合処理土58aの上に密着させて配置させることができる。   At this time, since the planar reinforcing member 32 has flexibility (flexibility), even if there is some undulation on the upper surface of the mixed soil 58a, it is deformed along the undulation by its own weight. The planar reinforcing material 32 can be disposed in close contact with the mixed treated soil 58a.

また、面状補強材32の端部32aが固定された棒部材34の両端部34a,34bのそれぞれは、アンカー部材35と連結部材36の「コ」の字形状との間に形成される、長方形の空間を上下方向に移動することができるように係合しているので、混合処理土58aの堆積高さが所定値から多少変化しても、このことが面状補強材32をアンカー部材35に連結する際に支障となることはない。   Further, both end portions 34a and 34b of the rod member 34 to which the end portion 32a of the planar reinforcing member 32 is fixed are formed between the anchor member 35 and the "U" shape of the connecting member 36. Since the rectangular space is engaged so that it can move in the vertical direction, even if the deposition height of the mixed treated soil 58a slightly changes from the predetermined value, this causes the planar reinforcing material 32 to be anchor member. When connecting to 35, there will be no hindrance.

このような作業を、図8に示すように、面状補強材32が複数の階層にわたって埋設されて、混合処理土58aの最上面がケーソン52の最上面とほぼ同じ高さになるまで繰り返し行なう。   As shown in FIG. 8, such an operation is repeated until the planar reinforcing material 32 is embedded in a plurality of layers and the uppermost surface of the mixed processing soil 58 a is almost the same height as the uppermost surface of the caisson 52. .

そして、混合処理土58aが固化してその強度が十分に発揮される固化処理土58になるまで養生させた後、最後に、図8,図9に示すように、施工領域Eの固化処理土58の上に、施工領域Eから掘り出した元の土砂を埋め戻して固めると共に、クレーン33等により抗土圧構造体24を構成する鋼矢板23等を引き抜くことにより、本実施の形態に係る岸壁構造体を形成する工事が終了する。   Then, after the mixed treated soil 58a is solidified and cured until it becomes a solidified treated soil 58 that exhibits its strength sufficiently, finally, as shown in FIGS. The quay according to the present embodiment is obtained by refilling and solidifying the original earth and sand excavated from the construction area E on 58 and pulling out the steel sheet pile 23 and the like constituting the anti-earth pressure structure 24 by the crane 33 and the like. Construction to form the structure is completed.

そしてさらに、図8に示す浚渫船48により、ケーソン52の沖側近傍の海底の基礎捨石54等を掘削し、図9に示すように、その水深を増加することにより、岸壁構造体は大型船舶の係留施設としての機能をも備えることができる。このとき、ケーソン52の海S側には防舷材43を設けて、大型船舶が深い水深の位置に係留できるようにすることができる。   Further, the dredger 48 shown in FIG. 8 excavates the bottom rubble 54, etc. near the offshore side of the caisson 52, and as shown in FIG. It can also function as a mooring facility. At this time, a fender 43 can be provided on the sea S side of the caisson 52 so that a large ship can be moored at a deep water depth.

このような本発明の一実施の形態に係る岸壁構造体及びその形成方法によれば、アンカー部材35と固化処理土58が面状補強材32を介して一体化し、アンカー部材35と固化処理土58を引き離そうとする水平力に対して、強い安定した引張強度を発揮することができるようになっている。   According to the quay structure and the method for forming the same according to the embodiment of the present invention, the anchor member 35 and the solidified soil 58 are integrated via the planar reinforcing material 32, and the anchor member 35 and the solidified soil It is possible to exhibit a strong and stable tensile strength against a horizontal force that attempts to separate 58.

このため、地震時にケーソン52の背面側に加わる地震力により、アンカー部材35と固化処理土58を引き離そうとする作用が働いても、そのような地震力に対して抵抗力を発揮して地震力を低減させることができると共に、ケーソン52の滑り出しを抑止することができる、耐震補強機能を岸壁構造体にもたせることができる。   For this reason, even if the action of trying to separate the anchor member 35 and the solidified soil 58 works due to the seismic force applied to the back side of the caisson 52 during an earthquake, the seismic force exhibits resistance to such seismic force. In addition, the quay wall structure can be provided with an anti-seismic reinforcing function that can prevent the caisson 52 from slipping out.

また、このような本実施の形態に係る岸壁構造体は、図10に示す従来の岸壁構造体のように、ケーソンの大型化により建設コストを増大させることがないため、同図に示す従来の岸壁構造体よりも安い費用で岸壁構造体を形成することができる。   Further, since the quay structure according to this embodiment does not increase the construction cost due to the enlargement of the caisson, unlike the conventional quay structure shown in FIG. 10, the conventional quay structure shown in FIG. The quay structure can be formed at a lower cost than the quay structure.

また、施工領域Eを掘削したことにより発生した土砂を、固化処理土58等に再利用することができるので、有効利用できずに費用をかけて処分しなければならなかった土砂の量を減らすことができるので、その分工事の費用を安くすることができる。   Moreover, since the earth and sand generated by excavating the construction area E can be reused as the solidified soil 58 and the like, the amount of earth and sand that cannot be effectively used and must be disposed of at a cost is reduced. Therefore, the construction cost can be reduced accordingly.

さらに、本実施の形態のような、面状補強材32を介して固化処理土58によりケーソン52を補強した岸壁構造体のメリットとしては、以下のようなことが挙げられる。
(a)ケーソン52の滑り出しに対する抵抗の増大が図られ、地震時のケーソン52の滑り出しを抑止することができるため、ケーソン52の水平断面を小さくすることができる。ちなみに、本実施の形態に係る岸壁構造体においては、地震時のケーソン52の滑り出し量を0(零)に、又は従来の岸壁構造体に比べて3分の1位に低減させることができるという実験結果が得られている。
(b)ケーソン52の底面に作用する偏心傾斜荷重が減少し、ケーソン52を支持する基礎捨石54の壁体支持力が小さくて済むので、ケーソン52の転倒等が生じ難くなる。
Further, the merits of the quay structure in which the caisson 52 is reinforced by the solidified soil 58 via the planar reinforcing material 32 as in the present embodiment include the following.
(A) Since the resistance of the caisson 52 to the sliding start is increased and the caisson 52 can be prevented from sliding during an earthquake, the horizontal section of the caisson 52 can be reduced. By the way, in the quay structure according to the present embodiment, the sliding amount of the caisson 52 at the time of an earthquake can be reduced to 0 (zero) or to one third of the conventional quay structure. Experimental results have been obtained.
(B) Since the eccentric inclined load acting on the bottom surface of the caisson 52 is reduced and the wall body supporting force of the foundation rubble 54 that supports the caisson 52 is small, it is difficult for the caisson 52 to fall over.

(c)以上の結果、ケーソン52の水平断面の縮小や基礎捨石54の壁体支持力の軽減により建設コストの低減が可能となる。
(d)既存の重力式のケーソン52の背面側の土を掘削して施工するようになっているので、岸壁の前面形状の前出しや、岸壁の前面海域の水深を変更することなく岸壁構造体に耐震補強機能をもたせることができる。
(C) As a result, the construction cost can be reduced by reducing the horizontal cross section of the caisson 52 and reducing the wall body supporting force of the foundation rubble 54.
(D) Since the soil on the back side of the existing gravity caisson 52 is excavated and constructed, the quay structure can be constructed without changing the front shape of the quay front and changing the water depth of the front sea area of the quay. The body can have a seismic reinforcement function.

(e)ケーソン52の滑り出しに対する抵抗力を増大することができるため、岸壁の前面の海底を浚渫し接岸位置を調整すれば、岸壁下方の水深を増大して岸壁構造体に大型船舶の係留施設としての機能をもたせることも可能である。
(f)本来は岸壁の前面海域での施工が必要ないため、ケーソン52の背面側を施工領域E毎に分割施工することにより、既存の現在使用中の岸壁においても、本実施の形態に係る耐震補強機能をもたせた岸壁構造体を実施することが可能となると共に、施工に伴う海域汚濁の心配がない。
(E) Since the resistance of the caisson 52 to slipping out can be increased, if the berthing position is adjusted by stroking the sea floor in front of the quay, the depth of water below the quay is increased and the mooring facility for large vessels is attached to the quay structure. It is also possible to provide a function as
(F) Originally, construction in the front sea area of the quay is not necessary, and therefore, by dividing the back side of the caisson 52 for each construction area E, the present embodiment also applies to the quay currently in use. It is possible to implement a quay structure with an anti-seismic reinforcement function and there is no concern about marine pollution associated with construction.

(g)固化処理土に浚渫土や掘削土を用いることにより、リサイクルが可能となって、環境の悪化を防止することができる。
(h)固化処理土はせん断強度が50〜200kN/m移動と大きいので、砂のように液状化しないため、岸壁のケーソン52背後の液状化対策が不要である。
(G) By using dredged soil or excavated soil as the solidified soil, recycling becomes possible and deterioration of the environment can be prevented.
(H) Since the solidified soil has a shear strength as high as 50 to 200 kN / m 2 , and does not liquefy like sand, no countermeasures against liquefaction behind the quay caisson 52 are required.

(i)固化処理土は低強度であるため、その固化後もバックホウ等による掘削は容易であり、構造物の埋設や杭等の打設が容易に可能である。また、地震等で固化処理土に変形が生じた場合の復旧も容易に行うことができる。
(j)固化処理土は軽量であるため、地震時に生じるその慣性力も低減されるので、ケーソン52に作用する地震力を低減することができる耐震機能を岸壁構造体に付与することができる。
(I) Since the solidified soil has low strength, excavation with a backhoe or the like is easy even after the solidification, and it is possible to easily embed a structure or place a pile. In addition, recovery can be easily performed when the solidified soil is deformed due to an earthquake or the like.
(J) Since the solidified soil is lightweight, its inertial force generated at the time of an earthquake is also reduced. Therefore, an earthquake-resistant function capable of reducing the earthquake force acting on the caisson 52 can be imparted to the quay structure.

なお、前記一実施の形態においては、既存の岸壁構造体の陸側に固化処理土を埋設して本発明に係る壁構造体を形成する場合について説明したが、既存の岸壁構造体が無い単なる海岸の場所に新たに岸壁構造体を形成するような場合にも、本発明は適用することができる。   In the above-described embodiment, the case where the solidified soil is embedded on the land side of the existing quay structure to form the wall structure according to the present invention has been described. However, there is no existing quay structure. The present invention can also be applied to a case where a quay structure is newly formed at a coastal place.

また、前記一実施の形態においては、海岸の岸壁構造体に本発明を適用した場合について説明したが、本発明は、陸上の山の斜面部の土留め等に適用することもできる。   Moreover, in the said one Embodiment, although the case where this invention was applied to the quay structure of a shore was demonstrated, this invention can also be applied to the earth retaining etc. of the slope part of a land mountain.

また、前記一実施の形態において、面状補強材32は、高分子樹脂性材料を網目を有する平面状に形成したものを用いたが、金属や他の合成樹脂材のように引張強度及び可撓性の両方を備える素材により、網目を有する平面状、または網目を有しないシート状に形成したものを用いるようにしてもよい。例えば、面状補強材32として金網を用いるようにしてもよい。   In the above-described embodiment, the planar reinforcing material 32 is made of a polymer resin material formed into a planar shape having a mesh. However, like the metal or other synthetic resin material, the tensile strength and the allowable strength can be increased. You may make it use what was formed in the planar form which has a mesh, or the sheet form which does not have a mesh by the raw material provided with both flexibility. For example, a wire mesh may be used as the planar reinforcing material 32.

また、面状補強材32にポリアミド、ポリエステル、ポリアクリルニトリル、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリプロピレン及びポリスチレン等の熱可塑性樹脂を用いれば、面状補強材32の耐蝕性が良好になる。   Further, if the surface reinforcing material 32 is made of a thermoplastic resin such as polyamide, polyester, polyacrylonitrile, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polypropylene, or polystyrene, the surface reinforcing material 32 has good corrosion resistance. Become.

このような合成樹脂材を網目を有する平面状に形成した面状補強材32としては、図示しないが、延伸されたフィラメント又はテープ等を交叉させて融着、結束又は編織したもの、或いは、網目の交叉部が網目部と一体的に延伸されて交叉部自体が延伸方向に配向しているもの等を用いることができる。網目の大きさは特に制限はないが、この面状補強材32を挟む上下の固化処理土の層が互いに接触して一体化できる程度のものが好ましい。   As the planar reinforcing material 32 in which such a synthetic resin material is formed in a planar shape having a mesh, although not shown, a stretched filament or tape or the like is fused, bound or knitted, or a mesh In this case, the crossing portion of the crossing portion is integrally stretched with the mesh portion, and the crossing portion itself is oriented in the stretching direction. The size of the mesh is not particularly limited, but is preferably such that the upper and lower solidified soil layers sandwiching the planar reinforcing material 32 can be brought into contact with each other and integrated.

また、前記一実施の形態においては、面状補強材32の端部32aとアンカー部材35との連結に、棒部材34及びコの字型の連結部材36を用いるようにしたが、上記連結の方法はこのようなものに限る必要はなく、その他のどのような方法を用いてもよい。
例えば、図示しないが、アンカー部材35に取り付けられたコの字型の連結部材36に、ループジョイントベルト、連結治具、接続用布をロープ、ホックリンガー、ボルト等を用いて、面状補強材32の端部28aを連結するようにしてもよい。
また、上記連結の方法は、必ずしもコの字型の連結部材36を用いないような連結の方法を用いてもよいことはいうまでもない。
In the embodiment, the rod member 34 and the U-shaped connecting member 36 are used to connect the end 32a of the planar reinforcing member 32 and the anchor member 35. The method need not be limited to this, and any other method may be used.
For example, although not shown in the drawing, a planar reinforcing material is used by using a loop joint belt, a connecting jig, a connecting cloth for the U-shaped connecting member 36 attached to the anchor member 35, a rope, a hook ringer, a bolt or the like. You may make it connect the 32 edge part 28a.
Needless to say, the connection method described above may not necessarily use the U-shaped connection member 36.

また、前記実施の形態においては、施工領域Eの周部に鋼矢板を用いた場合について説明したが、他の実施の形態として鋼管矢板を用いるようにしてもよく、または、コンクリート製の矢板等の他の矢板を用いるようにしてもよく、或いは矢板以外の構造体を設置するようにしてもよい。   Moreover, in the said embodiment, although the case where the steel sheet pile was used for the peripheral part of the construction area | region E was demonstrated, you may make it use a steel pipe sheet pile as other embodiment, or a sheet pile made of concrete, etc. Other sheet piles may be used, or a structure other than the sheet piles may be installed.

本発明の一実施の形態に係る岸壁構造体を示す側面断面図である。It is side surface sectional drawing which shows the quayside structure which concerns on one embodiment of this invention. 図1に示すアンカー部材35に面状補強材32を連結するのに用いられる棒部材34及び連結部材36を示すその拡大斜視図である。FIG. 2 is an enlarged perspective view showing a rod member and a connecting member used for connecting a planar reinforcing member 32 to the anchor member shown in FIG. 図1に示す岸壁構造体のケーソン52の背面側に設定される施工領域Eを示す平面図である。It is a top view which shows the construction area | region E set to the back side of the caisson 52 of the quay structure shown in FIG. 図1に示す岸壁構造体の形成方法を説明するための側面断面図である。It is side surface sectional drawing for demonstrating the formation method of the quay wall structure shown in FIG. 図1に示す岸壁構造体の形成方法を説明するための側面断面図である。It is side surface sectional drawing for demonstrating the formation method of the quay wall structure shown in FIG. 図1に示す岸壁構造体の形成方法を説明するための側面断面図である。It is side surface sectional drawing for demonstrating the formation method of the quay wall structure shown in FIG. 図1に示す岸壁構造体の形成方法を説明するための側面断面図である。It is side surface sectional drawing for demonstrating the formation method of the quay wall structure shown in FIG. 図1に示す岸壁構造体の形成方法を説明するための側面断面図である。It is side surface sectional drawing for demonstrating the formation method of the quay wall structure shown in FIG. 図1に示す岸壁構造体の形成方法を説明するための側面断面図である。It is side surface sectional drawing for demonstrating the formation method of the quay wall structure shown in FIG. 従来の岸壁構造体を示す側面断面図である。It is side surface sectional drawing which shows the conventional quay structure. 従来の他の岸壁構造体を示す側面断面図である。It is side surface sectional drawing which shows the other conventional quay wall structure. 従来の他の岸壁構造体を示す側面断面図である。It is side surface sectional drawing which shows the other conventional quay wall structure. 従来の他の岸壁構造体を示す側面断面図である。It is side surface sectional drawing which shows the other conventional quay wall structure. 偏心傾斜荷重が作用する状態を示すケーソン52の側面断面図である。It is side surface sectional drawing of the caisson 52 which shows the state which an eccentric inclination load acts.

符号の説明Explanation of symbols

23 鋼矢板
24 抗土圧構造体
27 掘削機械
29 処理土供給装置
32 面状補強材
32a 端部
33 クレーン
34 棒部材
34a,34b 両端部
34c 中央部分
35 アンカー部材
36 連結部材
37 裏込石
40 裏埋土
42 中詰砂
45 処理土供給船
47 供給用パイプ
48 浚渫船
50,52 ケーソン
54 基礎捨石
56 マット
58 固化処理土
58a 軽量混合処理土
60 地盤改良構造
E 施工領域
F1 鉛直荷重
F2 水平荷重
F3 合力
L 地面
M 潜水士
S 海
DESCRIPTION OF SYMBOLS 23 Steel sheet pile 24 Anti earth pressure structure 27 Excavation machine 29 Treated soil supply apparatus 32 Plane reinforcement 32a End 33 Crane 34 Bar member 34a, 34b Both ends 34c Center part 35 Anchor member 36 Connecting member 37 Backing stone 40 Back Filled soil 42 Filled sand 45 Treated soil supply ship 47 Pipe for supply 48 Dredger 50, 52 Caisson 54 Foundation rubble 56 Mat 58 Solidified treated soil 58a Light mixed treated soil 60 Ground improvement structure E Construction area F1 Vertical load F2 Horizontal load F3 Combined force L Ground M Diver S Sea

Claims (10)

重力式の壁体と、
前記壁体の背面側に施工される施工領域に下方から上方に所定高さずつ順次堆積された固化処理土と、
前記固化処理土中に前記所定高さずつ間隔をおいてほぼ水平方向に平面状に配置された複数の面状補強材とを備え、
前記複数の面状補強材の各端部が前記壁体の背面側に連結されたことを特徴とする壁構造体。
A gravitational wall,
Solidified soil sequentially deposited at a predetermined height from below to the construction area constructed on the back side of the wall,
A plurality of planar reinforcing materials arranged in a plane in a substantially horizontal direction at intervals of the predetermined height in the solidified soil,
A wall structure characterized in that each end of the plurality of planar reinforcing members is connected to the back side of the wall.
前記壁体が海岸線に沿って設けられた岸壁構造体に用いられたことを特徴とする請求項1に記載の壁構造体。   The wall structure according to claim 1, wherein the wall body is used in a quay structure provided along a coastline. 前記固化処理土は、浚渫土砂又は掘削土砂に、セメント、石灰、酸化マグネシウム、或いは石こう等の固化材を混合して、固化する前は粘性を有し、時間の経過と共に固化するような性質を有していることを特徴とする請求項1又は2に記載の壁構造体。   The solidified soil is mixed with dredged soil or excavated soil and solidified material such as cement, lime, magnesium oxide, or gypsum and has a property of having viscosity before solidifying and solidifying over time. The wall structure according to claim 1, wherein the wall structure is provided. 前記面状補強材が、可撓性を有し、網目を有する平面状又は網目を有しないシート状に形成されたことを特徴とする請求項1ないし3のいずれかに記載の壁構造体。   The wall structure according to any one of claims 1 to 3, wherein the planar reinforcing material is formed into a flat shape having flexibility and a mesh or a sheet having no mesh. 前記面状補強材は、前記固化処理土中に含まれるアルカリ成分に対して耐蝕性が良い高分子樹脂性材料が用いられたことを特徴とする請求項1ないし4のいずれかに記載の壁構造体。   The wall according to any one of claims 1 to 4, wherein the planar reinforcing material is made of a polymer resin material having good corrosion resistance against an alkali component contained in the solidified soil. Structure. 前記壁体の海岸側の海底を掘削してこの海底深さを増加させることができることを特徴とする請求項2ないし5のいずれかに記載の壁構造体。   The wall structure according to any one of claims 2 to 5, wherein the depth of the seabed can be increased by excavating the seabed on the coast side of the wall. 重力式の壁体を設ける工程と、
前記壁体の背面側に施工される施工領域を掘削する工程と、
前記施工領域に固化処理土を下方から上方に所定高さずつ順次堆積させる工程と、
前記固化処理土を所定高さずつ順次堆積させる工程と交互に繰り返して、前記順次堆積させた固化処理土の上に面状補強材を順次配置すると共に、前記面状補強材の各端部を前記壁体の背面側に順次連結する工程と
を有することを特徴とする壁構造体の形成方法。
Providing a gravitational wall,
Excavating a construction area to be constructed on the back side of the wall, and
A step of sequentially depositing the solidified soil in a predetermined height from the bottom to the top in the construction area;
By alternately repeating the step of sequentially depositing the solidified soil by a predetermined height, a planar reinforcing material is sequentially disposed on the sequentially deposited solidified soil, and each end of the planar reinforcing material is And a step of sequentially connecting to the back side of the wall body.
前記壁体が海岸線に沿って設けられた岸壁構造体に用いられたことを特徴とする請求項7に記載の壁構造体の形成方法。   8. The method for forming a wall structure according to claim 7, wherein the wall body is used for a quay structure provided along a coastline. 既設の重力式壁体の背面側に施工される施工領域を掘削する工程と、
前記施工領域に固化処理土を下方から上方に所定高さずつ順次堆積させる工程と、
前記固化処理土を所定高さずつ順次堆積させる工程と交互に繰り返して、前記順次堆積させた固化処理土の上に面状補強材を順次配置すると共に、前記面状補強材の各端部を前記壁体の背面側に順次連結する工程と
を有することを特徴とする壁構造体の形成方法。
Excavating a construction area to be constructed on the back side of an existing gravitational wall; and
A step of sequentially depositing the solidified soil in a predetermined height from the bottom to the top in the construction area;
By alternately repeating the step of sequentially depositing the solidified soil by a predetermined height, a planar reinforcing material is sequentially disposed on the sequentially deposited solidified soil, and each end of the planar reinforcing material is And a step of sequentially connecting to the back side of the wall body.
前記壁体が海岸線に沿って設けられた岸壁構造体に用いられたことを特徴とする請求項9に記載の壁構造体の形成方法。
The method for forming a wall structure according to claim 9, wherein the wall body is used for a quay structure provided along a coastline.
JP2005214217A 2005-07-25 2005-07-25 Wall structure and method for forming the same Active JP4131447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005214217A JP4131447B2 (en) 2005-07-25 2005-07-25 Wall structure and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005214217A JP4131447B2 (en) 2005-07-25 2005-07-25 Wall structure and method for forming the same

Publications (2)

Publication Number Publication Date
JP2007032003A true JP2007032003A (en) 2007-02-08
JP4131447B2 JP4131447B2 (en) 2008-08-13

Family

ID=37791583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005214217A Active JP4131447B2 (en) 2005-07-25 2005-07-25 Wall structure and method for forming the same

Country Status (1)

Country Link
JP (1) JP4131447B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914891A (en) * 2010-05-11 2010-12-15 何成俊 Abutment foundation of girder-type bridge end reinforced concrete framework of two lanes in side walk
JP2011214248A (en) * 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd Structure for reinforcing embankment
JP2017031678A (en) * 2015-08-03 2017-02-09 Jfeスチール株式会社 Gravity-type breakwater
JP2017031677A (en) * 2015-08-03 2017-02-09 Jfeスチール株式会社 Gravity-type breakwater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134433A (en) * 1984-12-03 1986-06-21 Tokyu Constr Co Ltd Method of building revetment
JPH08284126A (en) * 1995-04-18 1996-10-29 Ohbayashi Corp Repairing method of quay and quay structure
JPH11269841A (en) * 1998-03-26 1999-10-05 Nkk Corp Marine earth wall structure
JP2005180041A (en) * 2003-12-19 2005-07-07 Mirai Kensetsu Kogyo Kk Quay structure and method of forming the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134433A (en) * 1984-12-03 1986-06-21 Tokyu Constr Co Ltd Method of building revetment
JPH08284126A (en) * 1995-04-18 1996-10-29 Ohbayashi Corp Repairing method of quay and quay structure
JPH11269841A (en) * 1998-03-26 1999-10-05 Nkk Corp Marine earth wall structure
JP2005180041A (en) * 2003-12-19 2005-07-07 Mirai Kensetsu Kogyo Kk Quay structure and method of forming the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214248A (en) * 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd Structure for reinforcing embankment
CN101914891A (en) * 2010-05-11 2010-12-15 何成俊 Abutment foundation of girder-type bridge end reinforced concrete framework of two lanes in side walk
JP2017031678A (en) * 2015-08-03 2017-02-09 Jfeスチール株式会社 Gravity-type breakwater
JP2017031677A (en) * 2015-08-03 2017-02-09 Jfeスチール株式会社 Gravity-type breakwater

Also Published As

Publication number Publication date
JP4131447B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
US7018141B2 (en) Earth retaining system such as a sheet pile wall with integral soil anchors
CN109113020B (en) Seaport breakwater structure and construction method thereof
JP5921857B2 (en) Slope protection structure in which honeycomb-shaped three-dimensional solid cell structures are stacked vertically
CN103233444B (en) Underwater dumped rockfill bedding and side slope Anti-scouring structure and construction method thereof
KR20120012504A (en) Cast in place concrete pile With precast type Caisson
CN108999142A (en) The construction method of dome rectangular light-duty caisson and pile foundation combined type deep water breakwater
JP4131447B2 (en) Wall structure and method for forming the same
JP4569525B2 (en) Steel wall for composite structure
KR200387407Y1 (en) Marine civil granular structure reinforced with floating geo-mat contained granulars on bottom and slopes of structure and floating geo-mat
JP6241167B2 (en) Seismic reinforcement method for jetty
JP4551985B2 (en) Quay structure and method for forming the same
JP4958064B2 (en) Seismic reinforcement structure of quay
JP6676462B2 (en) Embankment reinforcement method
KR102138839B1 (en) Cast-in-place concrete blocks using large scales and revetment methods using them
KR20110046209A (en) Method Of Construction For Scour Prevension And Reinforcement Of Bridge Pier, And Structure Of The Same
JP5980579B2 (en) Construction method of embankment structure
CN208965494U (en) The rectangular light-duty caisson of dome and pile foundation combined type breakwater
CN208857762U (en) Semi-circular caisson and pile foundation combined type breakwater
JP6846585B2 (en) Reinforced soil wall type structure Reinforced laying member connection structure and reinforced laying member laying method
KR100704460B1 (en) Device for harbor revetment construction
CN109024470A (en) The rectangular light-duty caisson of dome and pile foundation combined type breakwater
CN214530500U (en) Asphalt mat
CN108867546A (en) Semi-circular caisson and pile foundation combined type breakwater
US11530518B1 (en) Shoreline erosion protection using anchored concrete boulders
CN111335313B (en) Pile sinking process for wharf pile

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4131447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250