JP2007028710A - Connection structure for dc superconductive cable - Google Patents

Connection structure for dc superconductive cable Download PDF

Info

Publication number
JP2007028710A
JP2007028710A JP2005203363A JP2005203363A JP2007028710A JP 2007028710 A JP2007028710 A JP 2007028710A JP 2005203363 A JP2005203363 A JP 2005203363A JP 2005203363 A JP2005203363 A JP 2005203363A JP 2007028710 A JP2007028710 A JP 2007028710A
Authority
JP
Japan
Prior art keywords
refrigerant
superconducting
connection structure
connection
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005203363A
Other languages
Japanese (ja)
Inventor
Yuichi Ashibe
祐一 芦辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005203363A priority Critical patent/JP2007028710A/en
Priority to PCT/JP2006/312228 priority patent/WO2007007515A1/en
Priority to TW095125002A priority patent/TW200710881A/en
Publication of JP2007028710A publication Critical patent/JP2007028710A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/34Cable fittings for cryogenic cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/68Connections to or between superconductive connectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connection structure for a DC superconductive cable which can remove foreign matter carried together with a refrigerant. <P>SOLUTION: This connection structure is equipped with a superconductor 11 provided in a cable core 10 drawn out of a superconductive cable, a conductor lead-out part (a sleeve 12, a lead part 13, a joint part 14, and a bushing 15) on normal temperature side connected to the superconductor 11, and a terminal connection box 20 where these connection points are stored. The terminal connection box 20 is equipped with a refrigerant container 21 filled with a refrigerant and a vacuum container 22 arranged to cover the periphery of the refrigerant container 21. A supply path 23, which supplies a refrigerant into a box 21 and a discharge path 24, which discharges a refrigerant from the box 21, are connected to the refrigerant container 21, and the refrigerant is circulated by these supply path 23 and the discharge path 24. The supply path 23 is equipped with a filtering means 1, which removes foreign matter f carried together with the refrigerant. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、直流送電に利用される超電導ケーブルの接続構造に関するものである。特に、冷媒と共に輸送される異物を除去可能な超電導ケーブルの接続構造に関するものである。   The present invention relates to a connection structure for a superconducting cable used for direct current power transmission. In particular, the present invention relates to a superconducting cable connection structure capable of removing foreign matters transported together with a refrigerant.

近年、電力ケーブルとして、超電導ケーブルが検討されている。超電導ケーブルは、超電導導体を具えるケーブルコアと、このコアを収納する断熱管とを具え、断熱管内に液体窒素などの冷媒を流通し、この冷媒にてコアを冷却して超電導導体を超電導状態に維持する構成である。ケーブルコアは、中心から順にフォーマ、超電導導体、電気絶縁層を具える構成が一般的である。このような超電導ケーブルを用いて電力供給線路を構築する場合、ケーブル同士を接続する中間接続構造の他、低温状態にある超電導ケーブルと常温に配置される常電導ケーブルなどの常温側電力機器とを接続する終端接続構造が構築される。   In recent years, superconducting cables have been studied as power cables. A superconducting cable has a cable core having a superconducting conductor and a heat insulating tube for housing the core. A refrigerant such as liquid nitrogen is circulated in the heat insulating tube, and the core is cooled by this refrigerant to superconducting the superconducting conductor. It is the structure maintained to. The cable core generally includes a former, a superconducting conductor, and an electrical insulating layer in order from the center. When constructing a power supply line using such a superconducting cable, in addition to an intermediate connection structure for connecting the cables, a superconducting cable in a low temperature state and a normal temperature side power device such as a normal conducting cable arranged at room temperature A terminal connection structure to be connected is constructed.

図4は、超電導ケーブルの中間接続構造を示す概略構成図である。中間接続構造は、接続する一方の超電導ケーブル100Aの端部から引き出したケーブルコア101Aと、他方の超電導ケーブル100Bの端部から引き出したケーブルコア101Bと、これらコア101A,101Bの端部が収納される中間接続箱110とを具える。各コア101A,101Bの接続は、端部を段剥ぎして、超電導導体102A,102B及び銅撚り線などで形成されたフォーマ(図示せず)を露出させ、例えば、中間接続スリーブ103にフォーマを挿入してスリーブ103を圧縮し、更に、両超電導導体102A,102Bをスリーブ103に挿入して半田付けすることで行われる。超電導導体102A,102B及びスリーブ103の外周には、補強絶縁層104が設けられる。コア101A,101Bの端部や超電導導体102A,102Bの接続箇所が収納される中間接続箱110は、液体窒素などの冷媒が流通される冷媒槽111と、冷媒槽111の外周に配置される真空槽112とを具える。冷媒槽111における冷媒の流通は、冷媒の貯留や冷却などを行う冷却システム(図示せず)と槽111との間に、槽111に導入される冷媒を輸送する供給路(同)と、槽111内から排出されて冷却システムに戻される冷媒を輸送する排出路(同)とを接続させて、これら供給路、排出路を利用して行う。その他、冷媒槽111に接続される一方の超電導ケーブルから冷媒が導入され、同他方のケーブルに排出されることで、冷媒の流通を行う場合もある。   FIG. 4 is a schematic configuration diagram showing an intermediate connection structure of a superconducting cable. The intermediate connection structure accommodates the cable core 101A drawn from the end of one superconducting cable 100A to be connected, the cable core 101B drawn from the end of the other superconducting cable 100B, and the ends of these cores 101A and 101B. And an intermediate junction box 110. The connection of each core 101A, 101B is stepped off to expose a former (not shown) formed of superconducting conductors 102A, 102B and copper stranded wire. The insertion is performed by compressing the sleeve 103 and inserting both the superconducting conductors 102A and 102B into the sleeve 103 and soldering. A reinforcing insulating layer 104 is provided on the outer periphery of the superconducting conductors 102A and 102B and the sleeve 103. An intermediate connection box 110 in which the ends of the cores 101A and 101B and the connection points of the superconducting conductors 102A and 102B are housed is a refrigerant tank 111 in which a refrigerant such as liquid nitrogen is circulated, and a vacuum disposed on the outer periphery of the refrigerant tank 111. A tank 112 is provided. Refrigerant circulation in the refrigerant tank 111 is performed between a tank 111 and a cooling system (not shown) that stores and cools the refrigerant, and a supply path (same as above) that transports the refrigerant introduced into the tank 111. It connects with the discharge path (same) which conveys the refrigerant | coolant discharged | emitted from 111 inside and returned to a cooling system, and performs using these supply paths and discharge paths. In addition, the refrigerant may be circulated by introducing the refrigerant from one superconducting cable connected to the refrigerant tank 111 and discharging the refrigerant to the other cable.

一方、超電導ケーブルの終端接続構造として、例えば、図5に示す構造のものがある(特許文献1参照)。この終端接続構造は、超電導ケーブルの端部から引き出したケーブルコア101と、このコア101の端部に接続される常温側導体引出部と、常温側導体引出部においてコアとの接続側を収納する終端接続箱200とを具える。常温側導体引出部は、コア101の端部を段剥ぎして露出させた超電導導体102に終端接続スリーブ150を介して接続されるリード部151と、リード部151にジョイント部152を介して接続されるブッシング153とを具える。スリーブ150,リード部151,ジョイント部152,後述する導体部153aは、銅などの導電性材料にて形成され、超電導導体102とスリーブ150とは半田付けにて接続される。超電導導体102,スリーブ150,リード部151の外周には、補強絶縁層104a,104bが形成される。ブッシング153は、中心部に、リード部151に接続される導体部153aを有し、導体部153aの外周にFRPなどで形成された固体絶縁層153bを具える。固体絶縁層153bの両端部には、テーパ状に形成したストレスコーン部を具える。   On the other hand, as a terminal connection structure of a superconducting cable, for example, there is a structure shown in FIG. 5 (see Patent Document 1). This termination connection structure accommodates the cable core 101 drawn from the end portion of the superconducting cable, the room temperature side conductor lead portion connected to the end portion of the core 101, and the core connection side in the room temperature side conductor lead portion. And a termination junction box 200. The room temperature side conductor lead-out portion is connected to the superconducting conductor 102 exposed by stripping the end portion of the core 101 via the terminal connection sleeve 150, and connected to the lead portion 151 via the joint portion 152. And a bushing 153 to be provided. The sleeve 150, the lead portion 151, the joint portion 152, and a conductor portion 153a described later are formed of a conductive material such as copper, and the superconducting conductor 102 and the sleeve 150 are connected by soldering. Reinforcing insulating layers 104a and 104b are formed on the outer periphery of the superconducting conductor 102, the sleeve 150, and the lead portion 151. The bushing 153 has a conductor portion 153a connected to the lead portion 151 at the center, and includes a solid insulating layer 153b formed of FRP or the like on the outer periphery of the conductor portion 153a. Both ends of the solid insulating layer 153b are provided with stress cone portions formed in a tapered shape.

そして、超電導導体102,スリーブ150,リード部151の一部(超電導導体102との接続側)は、終端接続箱200に接続される補助接続箱210に収納され、リード部151の他部(ブッシング153との接続側),ジョイント部152,ブッシング153の一部(リード部151との接続側)が終端接続箱200に収納される。終端接続箱200,補助接続箱210は、液体窒素などの冷媒が流通される冷媒槽201,211と、冷媒槽201,211の外周を覆うように配置される真空槽202,212とを具える。これら冷媒槽201,211や真空槽202,212は、ステンレス鋼といった高強度材料にて形成される。ブッシング153において常温側に配置される他部は、終端接続箱200の外側に突設され、絶縁油やSF6ガスなどの絶縁流体が内部に充填される碍管220内に収納される。 Then, a part of the superconducting conductor 102, the sleeve 150, and the lead part 151 (on the side connected to the superconducting conductor 102) is housed in the auxiliary connection box 210 connected to the terminal connection box 200, and the other part of the lead part 151 (bushing 153), the joint portion 152, and a part of the bushing 153 (the connection side with the lead portion 151) are accommodated in the terminal junction box 200. The terminal junction box 200 and the auxiliary junction box 210 include refrigerant tanks 201 and 211 in which a refrigerant such as liquid nitrogen is circulated, and vacuum tanks 202 and 212 arranged to cover the outer periphery of the refrigerant tanks 201 and 211. These refrigerant tanks 201 and 211 and vacuum tanks 202 and 212 are formed of a high-strength material such as stainless steel. The other part of the bushing 153 disposed on the normal temperature side is protruded outside the terminal junction box 200 and is housed in a soot tube 220 filled with an insulating fluid such as insulating oil or SF 6 gas.

冷媒槽201,211には、例えば、図5に示すように冷却システム(図示せず)からの冷媒を導入するための供給路203,213と、槽201,211内から排出される冷媒を冷却システムに輸送するための排出路204,214とが接続され、冷却システムにて所定の温度や輸送圧力に制御された冷媒が循環供給される。その他、ある終端接続箱に上記供給路又は排出路のみ具えて、供給路から導入された冷媒をこの終端接続箱からこの終端接続箱に接続される超電導ケーブルに供給し、このケーブルを介して別の終端接続箱や中間接続箱に接続される排出路により冷媒を排出する場合もある。また、冷媒槽201は、接地線205が接続され、槽201の内面を接地電位(低電圧)とすると共に、液体窒素といった絶縁性に優れる冷媒を用いることで、高電圧側のジョイント部152に対して絶縁性を持たせる構成である。   In the refrigerant tanks 201 and 211, for example, as shown in FIG. 5, supply paths 203 and 213 for introducing refrigerant from a cooling system (not shown), and refrigerant discharged from the tanks 201 and 211 for transporting to the cooling system The discharge paths 204 and 214 are connected, and the refrigerant controlled to a predetermined temperature and transport pressure by the cooling system is circulated and supplied. In addition, a terminal connection box is provided with only the supply path or the discharge path, and the refrigerant introduced from the supply path is supplied from the terminal connection box to the superconducting cable connected to the terminal connection box, and is separated via the cable. The refrigerant may be discharged through a discharge path connected to the terminal connection box or the intermediate connection box. In addition, the refrigerant tank 201 is connected to the ground wire 205, the inner surface of the tank 201 is set to the ground potential (low voltage), and a refrigerant having excellent insulation properties such as liquid nitrogen is used for the high voltage side joint portion 152. In contrast, the structure is provided with insulating properties.

一方、ブッシング153の固体絶縁層153bを、ステンレス鋼パイプの外周にFRPと箔電極とを積層してなるいわゆるコンデンサー方式の電界制御構造とし、線路運転時、ブッシング153表面に直流電界が均一に加えられるように電界制御することが提案されている。   On the other hand, the solid insulation layer 153b of the bushing 153 has a so-called capacitor-type electric field control structure in which FRP and foil electrodes are laminated on the outer periphery of a stainless steel pipe. It has been proposed to control the electric field as described above.

特開2005-12915号公報(図5)JP 2005-12915 (Fig. 5)

超電導ケーブルと上述のような接続構造とを利用して線路を構築し、この線路にて直流送電を行う場合、超電導導体の外周や超電導導体に接続されて通電される部分の外周には、直流電界が生じる。そして、直流電界がかかる箇所には、金属を含む粉塵が集積され易く、上記接続構造において直流電界がかかる箇所にこのような粉塵が集積されると、この粉塵が電極の突起として機能し、沿面破壊を起こす恐れがある。   When a line is constructed using a superconducting cable and the connection structure as described above, and direct current transmission is performed on this line, there is no direct current on the outer periphery of the superconducting conductor or the outer periphery of the portion connected to the superconducting conductor and energized. A world arises. And, the dust containing metal is easily collected at the place where the DC electric field is applied, and when such dust is collected at the place where the DC electric field is applied in the connection structure, the dust functions as the projection of the electrode, There is a risk of destruction.

上記接続構造を形成する際、超電導導体などの構成部材から出た銀、銅やステンレス鋼などの金属粉、接続に用いた半田粉などが冷媒槽内などに残留されることがある。また、冷却システム内においてその構成部材と冷媒との摺動摩擦により金属性の粉塵が発生することがある。そして、上述のように超電導ケーブル線路では、冷媒を流通させているため、冷媒の輸送に伴って上記金属性の粉塵といった金属性の異物も輸送される。このとき、超電導ケーブルとして、高電位である超電導導体の外周に、接地電位となるシールド層を有する電界遮蔽構造のケーブルコアを具えるケーブルを利用する場合、このケーブル部分では、コアの表面に上記異物が集積しても沿面破壊を起こす可能性はほとんど無い。しかし、接続構造は、上記ケーブル部分と異なり、電界が開放された箇所が存在することがある。このような箇所では、その表面に異物が集積すると沿面破壊を起こすことがある。例えば、終端接続構造では、上記ブッシング表面において冷媒に接触しているブッシング端部のストレスコーン部の表面に異物が集積した場合、この部分において沿面破壊を起こす恐れがある。ブッシングにおいて冷媒槽内に収納された部分のうち、中間の平坦な部分は、接地電位となるシールド層を具えた電界遮蔽構造とすることが多いが、端部のストレスコーン部は、シールド層を設けず、表面を露出させた構成とすることがあり、このような場合、冷媒槽内の冷媒中に電界が開放された状態となる。そのため、ブッシングのストレスコーン部には、金属性の異物が集積し易く、また、この異物により沿面破壊を起こすことがある。   When forming the connection structure, silver, metal powder such as copper or stainless steel, solder powder used for connection, or the like that has come out of a constituent member such as a superconducting conductor may remain in the refrigerant tank. Further, metallic dust may be generated in the cooling system due to sliding friction between the constituent members and the refrigerant. Since the superconducting cable line circulates the refrigerant as described above, metallic foreign matters such as the metallic dust are also transported along with the transportation of the refrigerant. At this time, as a superconducting cable, when using a cable including a cable core having an electric field shielding structure having a shield layer that becomes a ground potential on the outer periphery of a superconducting conductor having a high potential, in this cable portion, the surface of the core Even if foreign matter accumulates, there is almost no possibility of causing creepage failure. However, unlike the cable portion, the connection structure may have a portion where the electric field is released. In such a place, if foreign matter accumulates on the surface, it may cause creeping damage. For example, in the terminal connection structure, when foreign matter accumulates on the surface of the stress cone portion at the bushing end portion that is in contact with the refrigerant on the bushing surface, there is a risk of causing creepage failure at this portion. Of the parts stored in the refrigerant tank in the bushing, the flat part in the middle often has an electric field shielding structure with a shield layer that is at ground potential, but the stress cone part at the end has a shield layer. In some cases, the surface is exposed without being provided. In such a case, the electric field is opened in the refrigerant in the refrigerant tank. For this reason, metallic foreign matters are likely to accumulate on the stress cone portion of the bushing, and creeping damage may occur due to the foreign matters.

一方、中間接続構造では、電界遮蔽構造を有するケーブル部分と同様に補強絶縁層の外周に接地電位となるシールド層を具えて電界遮蔽構造とすることで、接地電位層(シールド層)の表面に異物が集積しても、沿面破壊が生じにくい。しかし、この接地電位層よりも内側に異物が入り込んだ場合、電気的に不安定な状態となる。   On the other hand, in the intermediate connection structure, like the cable portion having the electric field shielding structure, the electric field shielding structure is provided on the surface of the ground potential layer (shield layer) by providing a shield layer having a ground potential on the outer periphery of the reinforcing insulating layer. Even if foreign matter accumulates, creeping damage hardly occurs. However, when a foreign substance enters inside the ground potential layer, the state becomes electrically unstable.

そこで、本発明の主目的は、直流超電導ケーブルの接続構造において、金属性の粉塵などの異物による不具合を解消するべく、異物を効果的に除去できる接続構造を提供することにある。   Accordingly, a main object of the present invention is to provide a connection structure that can effectively remove foreign matters in a connection structure of a DC superconducting cable in order to eliminate problems caused by foreign matters such as metallic dust.

本発明は、超電導ケーブルに具える超電導導体と、この超電導導体との接続対象とが収納され、超電導導体を冷却する冷媒が内部に流通される接続箱とを具える直流超電導ケーブルの接続構造であり、上記接続箱には、箱内に冷媒を供給する供給路と、箱外に冷媒を排出する排出路とが接続されるものとする。そして、本発明では、この供給路から接続箱を経て排出路に至る冷媒流通路において、冷媒により輸送される異物を効果的に除去するべく、ろ過手段を具えることを提案する。以下、本発明をより詳しく説明する。   The present invention is a DC superconducting cable connection structure comprising a superconducting conductor provided in a superconducting cable and a connection box in which a connection object to the superconducting conductor is accommodated and in which a refrigerant for cooling the superconducting conductor is circulated. In addition, a supply path for supplying the refrigerant into the box and a discharge path for discharging the refrigerant to the outside of the box are connected to the connection box. And in this invention, it is proposed to provide a filtration means in order to remove effectively the foreign material conveyed by a refrigerant | coolant in the refrigerant | coolant flow path which leads to a discharge path from this supply path through a junction box. Hereinafter, the present invention will be described in more detail.

本発明において接続構造とは、超電導ケーブル同士を接続する中間接続、低温側に配置される超電導ケーブルと常温側に配置される常電導ケーブルなどの常温側機器とを接続する終端接続のいずれでもよい。利用する超電導ケーブルの構成は特に問わない。代表的には、超電導導体を有するケーブルコアと、このコアを収納し、内部に超電導導体を冷却する冷媒が流通される断熱管とを具えるものが挙げられる。ケーブルコアの基本的構成としては、中心から順に、フォーマ、超電導導体、電気絶縁層を有する構成が挙げられる。更に、電気絶縁層の外周に超電導導体と同様に超電導材料からなる外部超電導層、その外周に保護層を具えてもよい。外部超電導層を具える場合、外部超電導層は、接地電位(対地電位)としておく。外部超電導層を具えない場合、対地電位としての接地用シールド層を具えてもよい。超電導ケーブルは、このようなケーブルコアを1心具える単心ケーブルでもよいし、複数心具える多心ケーブルでもよい。複数心のコアを具える多心ケーブルとする場合、複数条のコアを撚り合わせてから断熱管に収納させるとよい。上記ケーブルコアを収納する断熱管は、内管と外管とからなる二重構造で、二重管内を真空引きした構成が挙げられる。更に、両管の間に断熱材を配置してもよい。内管内は、超電導導体や外部超電導層を冷却するための冷媒の流通路として利用される。   In the present invention, the connection structure may be any of intermediate connection for connecting the superconducting cables, and termination connection for connecting a room temperature side device such as a superconducting cable arranged on the low temperature side and a normal conducting cable arranged on the room temperature side. . The configuration of the superconducting cable to be used is not particularly limited. A typical example includes a cable core having a superconducting conductor and a heat insulating pipe that houses the core and in which a refrigerant for cooling the superconducting conductor is circulated. As a basic configuration of the cable core, a configuration having a former, a superconducting conductor, and an electrical insulating layer in order from the center can be given. Further, an outer superconducting layer made of a superconducting material as in the superconducting conductor may be provided on the outer periphery of the electrical insulating layer, and a protective layer may be provided on the outer periphery thereof. When the external superconducting layer is provided, the external superconducting layer is set to the ground potential (ground potential). When the external superconducting layer is not provided, a grounding shield layer as a ground potential may be provided. The superconducting cable may be a single-core cable having one such cable core or a multi-core cable having a plurality of cores. In the case of a multi-core cable having a plurality of cores, the plurality of cores may be twisted and then stored in the heat insulating tube. The heat insulation pipe which accommodates the said cable core is the double structure which consists of an inner pipe and an outer pipe, and the structure which evacuated the inside of a double pipe is mentioned. Furthermore, you may arrange | position a heat insulating material between both pipes. The inside of the inner pipe is used as a refrigerant flow path for cooling the superconducting conductor and the outer superconducting layer.

フォーマは、銅やアルミニウムなどの金属材料にて形成した中実体でも中空体でもよく、例えば、銅線を複数本撚り合わせた構成のものが挙げられる。超電導導体は、例えば、酸化物超電導材料、具体的にはBi2223系超電導材料からなる線材を上記フォーマの外周に単層又は多層に巻回することで形成することが挙げられる。超電導導体を多層とする場合、層間絶縁層を設けてもよい。層間絶縁層は、クラフト紙などの絶縁紙やPPLP(登録商標)などの半合成絶縁紙を巻回して設けることが挙げられる。電気絶縁層は、クラフト紙などの絶縁紙やPPLP(登録商標)などの半合成絶縁紙などといった絶縁材料を超電導導体の外周に巻回して形成するとよい。電気絶縁層の外周に超電導導体とは別に外部超電導層を具える場合、上記超電導導体と同様に超電導材料にて形成するとよい。更に、超電導導体と電気絶縁層との間、電気絶縁層と外部超電導層との間にカーボン紙などにより半導電層を設けてもよい。前者内部半導電層、後者外部半導電層を具えた構成とすると、電気性能の安定に有効である。   The former may be a solid body or a hollow body formed of a metal material such as copper or aluminum, and examples thereof include a configuration in which a plurality of copper wires are twisted together. For example, the superconducting conductor may be formed by winding a wire made of an oxide superconducting material, specifically a Bi2223 superconducting material, around the former in a single layer or multiple layers. When the superconducting conductor is a multilayer, an interlayer insulating layer may be provided. The interlayer insulating layer may be provided by winding insulating paper such as kraft paper or semi-synthetic insulating paper such as PPLP (registered trademark). The electrical insulating layer may be formed by winding an insulating material such as insulating paper such as kraft paper or semi-synthetic insulating paper such as PPLP (registered trademark) around the outer periphery of the superconducting conductor. When an external superconducting layer is provided on the outer periphery of the electrical insulating layer in addition to the superconducting conductor, it may be formed of a superconducting material in the same manner as the superconducting conductor. Furthermore, a semiconductive layer may be provided by carbon paper or the like between the superconducting conductor and the electric insulating layer, and between the electric insulating layer and the external superconducting layer. A configuration including the former internal semiconductive layer and the latter external semiconductive layer is effective in stabilizing electrical performance.

本発明接続構造は、上記超電導ケーブルの端部において形成される。具体的には、ケーブル端部(ケーブルコア端部)を段剥ぎし、超電導導体の一部を露出させて形成される。この露出された超電導導体に接続される対象は、本発明接続構造を中間接続とする場合、別の超電導ケーブルに具える超電導導体となり、本発明接続構造を終端接続とする場合、一端が常温側に配置される常温側導体引出部となる。   The connection structure of the present invention is formed at the end of the superconducting cable. Specifically, it is formed by stripping the cable end (cable core end) and exposing a part of the superconducting conductor. The object to be connected to the exposed superconducting conductor is a superconducting conductor provided in another superconducting cable when the connecting structure of the present invention is used as an intermediate connection. It becomes a normal temperature side conductor lead-out part arranged in the.

本発明接続構造を中間接続とする場合、超電導導体同士は、銅などの導電性材料からなる中間接続スリーブを用いて接続するとよい。中間接続スリーブとしては、例えば、両端部に超電導導体及びフォーマが挿入可能な中空部を有する形状のものが挙げられる。このスリーブを用いる場合、まず、中空部にフォーマを挿入して圧縮し、圧着にてフォーマとスリーブとを接続し、更に、中空部に両ケーブルから引き出した超電導導体をそれぞれ挿入し、半田付けなどにより超電導導体とスリーブとを接続させるとよい。或いは、中間接続スリーブとして、両端部にフォーマを挿入可能な中空部を有する形状のものを用い、中空部にフォーマを挿入して圧着などによりフォーマとスリーブとを接続し、このスリーブの外周に接続用超電導材を縦添えなどして固定し、これら接続用超電導材の両端に、両ケーブルから引き出した各超電導導体をそれぞれ半田付けなどすることで、超電導導体同士を接続させてもよい。これら超電導導体及びスリーブの外周には、クラフト紙や半合成絶縁紙などの絶縁材料により、補強絶縁層を形成する。補強絶縁層の端部は、電界が集中し易いため、中間接続スリーブから遠ざかる側に向かって先細りするテーパ状として電界を制御可能な形状とすることが好ましい。また、このような超電導導体の接続部分は、後述する中間接続箱に固定させる構成としてもよい。例えば、接続部分の外周にエポキシ樹脂などからなる固体絶縁部材を具えておき、中間接続箱にこの固体絶縁部材を固定させる固定部材を取り付けて、固体絶縁部材を固定部材に固定することで、超電導導体の接続部分を中間接続箱に固定させてもよい。この固定部材は、例えば、中間接続箱(冷媒槽)の内周に適合した形状の板状部材にて構成し、中間接続箱内の空間を一方の超電導ケーブル側と、他方の超電導ケーブル側とに分離する区画壁として利用してもよい。上記補強絶縁層の外周には、導電性材料からなるシールド層を設けて電界遮蔽構造としてもよい。シールド層を形成する導電性材料としては、カーボン紙、軟銅線、メタルメッシュテープなどが挙げられる。これら導電性材料を補強絶縁層上に巻回することでシールド層を形成するとよい。このシールド層は、接地電位となるようにする。このような電界遮蔽構造とすることで、補強絶縁層の表面に金属性の異物が集積されても、沿面破壊が生じることがほとんどない。但し、このシールド層の内側に異物が侵入すると、電気的に不安定な状態となる。従って、本発明接続構造では、中間接続構造においてもろ過手段を具えておくことを提案する。   When the connection structure of the present invention is an intermediate connection, the superconducting conductors may be connected using an intermediate connection sleeve made of a conductive material such as copper. As an intermediate | middle connection sleeve, the thing of the shape which has a hollow part which can insert a superconducting conductor and a former | foamer in both ends is mentioned, for example. When using this sleeve, first insert the former into the hollow part and compress it, connect the former and the sleeve by crimping, and then insert the superconducting conductors drawn from both cables into the hollow part, soldering etc. It is preferable to connect the superconducting conductor and the sleeve. Alternatively, use an intermediate connection sleeve with a shape that has a hollow part into which both ends can be inserted. Insert the former into the hollow part and connect the former to the sleeve by crimping, etc., and connect to the outer periphery of this sleeve. The superconducting material may be connected to each other by fixing the superconducting material for vertical connection and soldering the superconducting conductors drawn from both cables to both ends of the connecting superconducting material. A reinforcing insulating layer is formed on the outer periphery of the superconducting conductor and the sleeve using an insulating material such as kraft paper or semi-synthetic insulating paper. Since the electric field tends to concentrate on the end portion of the reinforcing insulating layer, it is preferable that the end portion of the reinforcing insulating layer has a shape capable of controlling the electric field as a taper shape that tapers away from the intermediate connection sleeve. Moreover, the connection part of such a superconducting conductor is good also as a structure fixed to the intermediate | middle junction box mentioned later. For example, by providing a solid insulating member made of epoxy resin or the like on the outer periphery of the connection portion, attaching a fixing member for fixing the solid insulating member to the intermediate connection box, and fixing the solid insulating member to the fixing member, superconductivity The connecting portion of the conductor may be fixed to the intermediate connection box. This fixing member is constituted by, for example, a plate-like member having a shape adapted to the inner periphery of the intermediate connection box (refrigerant tank), and the space in the intermediate connection box is one superconducting cable side and the other superconducting cable side. It may be used as a partition wall that is separated into two. An electric field shielding structure may be provided by providing a shield layer made of a conductive material on the outer periphery of the reinforcing insulating layer. Examples of the conductive material forming the shield layer include carbon paper, annealed copper wire, and metal mesh tape. The shield layer may be formed by winding these conductive materials on the reinforcing insulating layer. This shield layer is set to the ground potential. With such an electric field shielding structure, even when metallic foreign matter is accumulated on the surface of the reinforcing insulating layer, creeping damage hardly occurs. However, if foreign matter enters the inside of the shield layer, it becomes electrically unstable. Therefore, in the connection structure of the present invention, it is proposed that the intermediate connection structure has a filtering means.

本発明接続構造を終端接続とする場合、常温側導体引出部としては、例えば、超電導導体に接続されるリード部と、リード部に接続されるブッシングとを具えるものが挙げられる。リード部は、銅などの導電性材料からなる棒状体が挙げられる。このリード部と超電導導体とは、銅などの導電性材料からなる終端接続スリーブを介して接続するとよい。終端接続スリーブは、一端に超電導導体やフォーマが挿入可能な導体側挿入穴を有し、他端にリード部が挿入可能なリード部側挿入穴を有する形状のものが挙げられる。このスリーブを用いてリード部と超電導導体とを接続するには、例えば、挿入穴にフォーマを挿入して圧着などしてフォーマをスリーブに接続させた後、導体側挿入穴に超電導導体を挿入して半田付けなどしてスリーブと超電導導体とを接続する。一方、リード部側挿入穴にリード部を挿入して圧着することでスリーブとリード部とを接続したり、リード部側挿入穴にマルチコンタクト(商品名)を具えておき、マルチコンタクトを介してスリーブとリード部とを接続する。このようにしてスリーブを介して超電導導体とリード部とを接続することができる。これら超電導導体、スリーブ、リード部の外周には、上記中間接続の場合と同様にクラフト紙やPPLP(登録商標)などの絶縁材料により、補強絶縁層を形成する。補強絶縁層の端部は、電界が集中し易いため、終端接続スリーブから遠ざかる側に向かって先細りするテーパ状として電界を制御可能な形状とすることが好ましい。ブッシングは、中心部に、リード部に接続され、銅などの導電性材料からなる導体部を有し、導体部の外周にFRPなどの絶縁性材料で形成された固体絶縁層を具える構成が挙げられる。固体絶縁層は、ステンレス鋼パイプなどの金属製パイプの外周にFRPなどの絶縁性材料と箔電極とを積層したいわゆるコンデンサー方式の電界制御構造とすることが好適である。また、固体絶縁層の両端部は、電界が集中し易いため、いずれも端部に向かって先細りするテーパ状として電界を制御できる形状とすることが好ましい。このブッシングと上記リード部とは、銅などの導電性材料からなるジョイント部を介して接続するとよい。   When the connection structure of the present invention is a terminal connection, examples of the room temperature side conductor lead-out portion include a lead portion connected to the superconducting conductor and a bushing connected to the lead portion. Examples of the lead portion include a rod-shaped body made of a conductive material such as copper. The lead portion and the superconducting conductor may be connected via a terminal connection sleeve made of a conductive material such as copper. The terminal connection sleeve includes a conductor-side insertion hole into which a superconducting conductor or former can be inserted at one end, and a lead-side insertion hole into which the lead portion can be inserted at the other end. To connect the lead part and the superconducting conductor using this sleeve, for example, after inserting the former into the insertion hole and crimping it to connect the former to the sleeve, the superconducting conductor is inserted into the conductor side insertion hole. Connect the sleeve and the superconducting conductor by soldering. On the other hand, the lead part is inserted into the lead part side insertion hole and crimped to connect the sleeve and the lead part, or the lead part side insertion hole is provided with a multi-contact (product name). Connect the sleeve and the lead part. In this way, the superconducting conductor and the lead portion can be connected via the sleeve. A reinforcing insulating layer is formed on the outer periphery of these superconducting conductors, sleeves, and lead portions using an insulating material such as kraft paper or PPLP (registered trademark), as in the case of the intermediate connection. Since the electric field tends to concentrate on the end portion of the reinforcing insulating layer, it is preferable that the end portion of the reinforcing insulating layer has a shape capable of controlling the electric field as a tapered shape that tapers away from the terminal connection sleeve. The bushing has a configuration in which a conductive portion made of a conductive material such as copper is connected to the lead portion at the center, and a solid insulating layer formed of an insulating material such as FRP is provided on the outer periphery of the conductive portion. Can be mentioned. The solid insulating layer is preferably a so-called capacitor-type electric field control structure in which an insulating material such as FRP and a foil electrode are laminated on the outer periphery of a metal pipe such as a stainless steel pipe. In addition, since the electric field tends to concentrate at both ends of the solid insulating layer, it is preferable that both have a shape that can control the electric field as a tapered shape that tapers toward the end. The bushing and the lead portion may be connected via a joint portion made of a conductive material such as copper.

上記超電導導体やその接続対象は、接続箱に収納する。この接続箱は、超電導導体などを冷却する冷媒が充填される冷媒槽と、この冷媒槽の外周を覆うように配置される真空槽とを具える構成が好適である。このような接続箱は、強度に優れるステンレス鋼などの金属といった高強度材料にて形成することが好ましい。本発明接続構造を中間接続とする場合、接続される超電導導体と、接続に利用される中間接続スリーブとを同一の接続箱に収納するとよい。本発明接続構造を終端接続とする場合、超電導導体と常温側導体引出部とを同一の接続箱に収納してもよいし、超電導導体と常温側導体引出部の一部を収納する接続箱と、常温側導体引出部の他部を収納する接続箱とを分けてもよい。また、常温側導体引出部において常温側は、絶縁油やSF6ガスなどの絶縁流体が内部に充填される碍管に収納させる。この碍管は、真空槽の外側に突設させるとよい。これら接続箱は、高電圧となる超電導導体との接続箇所に対して、低電圧(接地電位)となるように接地線を取り付けておき、接地可能な構成としておくことが好ましい。 The superconducting conductor and its connection target are stored in a connection box. The connection box preferably has a configuration including a refrigerant tank filled with a refrigerant for cooling the superconducting conductor and the like, and a vacuum tank arranged so as to cover the outer periphery of the refrigerant tank. Such a junction box is preferably formed of a high-strength material such as a metal such as stainless steel having excellent strength. When the connection structure of the present invention is an intermediate connection, the superconducting conductor to be connected and the intermediate connection sleeve used for the connection may be stored in the same connection box. When the connection structure of the present invention is a terminal connection, the superconducting conductor and the room temperature side conductor lead-out part may be housed in the same junction box, or the superconducting conductor and a part of the room temperature side conductor lead-out part may be housed. The junction box for storing the other part of the room temperature side conductor lead-out part may be separated. In the room temperature side conductor lead-out portion, the room temperature side is housed in a soot tube filled with an insulating fluid such as insulating oil or SF 6 gas. This soot tube may be projected outside the vacuum chamber. These connection boxes are preferably configured to be grounded by attaching a grounding wire so as to be at a low voltage (ground potential) at a connection point with a superconducting conductor having a high voltage.

そして、本発明では、上記接続箱内に冷媒を供給する供給路と、接続箱外に冷媒を排出する排出路とを具え、接続箱内に冷媒が流通される構成とする。超電導ケーブル線路を構築する場合、通常、タンクや冷凍機、ポンプなどを具備した冷却システムを具えておき、この冷却システムにより冷媒の貯留や温度制御、輸送圧力の制御などを行う。従って、上記供給路及び排出路を冷却システムに接続させて、このシステムにより所定の温度、流量などに制御された冷媒を接続箱内に供給し、侵入熱などにより温度が上昇した冷媒を接続箱外に排出してシステムに戻して冷媒の温度などを調整し、再び箱内に供給する、といった循環供給を行ってもよいし、システムにより調整された冷媒を常時接続箱内に供給し、高温となった冷媒を排出する、といった非循環型の供給を行ってもよい。このような供給路、排出路は、冷媒が所定の温度を維持できるように、内管と外管とからなる二重管からなり、二重管内を真空引きした構成とすることが挙げられる。二重管間に断熱材を配置してもよい。また、これらの管は、強度に優れるステンレス鋼などの金属といった高強度材料にて形成することが好ましい。   And in this invention, it is set as the structure which comprises the supply path which supplies a refrigerant | coolant in the said connection box, and the discharge path which discharges | emits a refrigerant | coolant outside a connection box, and distribute | circulates a refrigerant | coolant in a connection box. When constructing a superconducting cable line, a cooling system equipped with a tank, a refrigerator, a pump, and the like is usually provided, and refrigerant storage, temperature control, transport pressure control, and the like are performed by this cooling system. Therefore, the supply path and the discharge path are connected to the cooling system, the refrigerant controlled to a predetermined temperature and flow rate by the system is supplied into the junction box, and the refrigerant whose temperature has increased due to intrusion heat or the like is connected to the junction box. Circulating supply such as discharging outside and returning to the system to adjust the temperature of the refrigerant, etc., and supplying it again into the box may be performed. A non-circular supply such as discharging the refrigerant that has become may be performed. Such a supply path and a discharge path are composed of a double pipe composed of an inner pipe and an outer pipe so that the refrigerant can maintain a predetermined temperature, and the inside of the double pipe is evacuated. You may arrange | position a heat insulating material between double pipes. These tubes are preferably formed of a high-strength material such as a metal such as stainless steel having excellent strength.

本発明接続構造では、上述した供給路、接続箱(冷媒槽)、排出路が冷媒流通路となり、この冷媒流通路にろ過手段を具える点が最も特徴とするところである。ろ過手段は、冷媒温度領域、例えば、冷媒として液体窒素を用いる場合、65〜77K程度において使用可能であり、冷媒流通時の輸送圧力、例えば、0.5MPa・G程度に耐え得る材料からなるフィルタが好適に利用できる。このようなフィルタとして、例えば、ステンレス鋼からなる網状部材や、この網状部材に焼結体からなるエレメントを具えるものが挙げられる。公知のろ過手段を利用してもよい。   In the connection structure of the present invention, the supply path, the connection box (refrigerant tank), and the discharge path described above serve as a refrigerant flow path, and the most characteristic feature is that the refrigerant flow path includes a filtering means. The filtering means can be used in a refrigerant temperature range, for example, in the case of using liquid nitrogen as a refrigerant, about 65 to 77K, and a filter made of a material that can withstand a transport pressure during refrigerant circulation, for example, about 0.5 MPa · G. It can be suitably used. Examples of such a filter include a mesh member made of stainless steel and a filter member having an element made of a sintered body on the mesh member. A known filtration means may be used.

ろ過手段としてフィルタを利用する場合、フィルタのメッシュサイズを変化させることで、ろ過能力を変化させることができる。メッシュサイズを大きくし過ぎると、悪影響を及ぼす異物を捕捉できない恐れがあるため、異物の捕捉をより確実に行うためには、メッシュサイズを小さくすることが望まれる。しかし、メッシュサイズを小さくし過ぎると、冷媒輸送時の圧力損失が上昇する。これらの事情を考慮すると、メッシュサイズは、2μm以上300μm以下が好ましく、特に、75μm以上100μm以下が好適である。   When a filter is used as the filtering means, the filtering ability can be changed by changing the mesh size of the filter. If the mesh size is made too large, there is a possibility that foreign substances having an adverse effect cannot be captured. Therefore, in order to capture foreign substances more reliably, it is desirable to reduce the mesh size. However, if the mesh size is too small, the pressure loss during refrigerant transportation increases. Considering these circumstances, the mesh size is preferably 2 μm or more and 300 μm or less, and particularly preferably 75 μm or more and 100 μm or less.

ろ過手段の形状は、例えば、板状や有底筒形状が挙げられる。後者有底筒形状の場合、筒形状としては、円筒状が挙げられる。また、有底筒形状とする場合、側壁部及び底部の双方を網状として、両部とも冷媒の透過が可能な構成としてもよいが、この場合、両部とも異物により目詰まりを起こし易く、交換や洗浄といったメンテナンスに時間がかかる恐れがある。そこで、有底筒形状のろ過手段を用いる場合、側壁部を網状にして冷媒を透過可能とし、底部を網状にせず異物の滞留部としてもよい。この構成により、側壁部に付着した異物が底部に沈降して溜まり、側壁部の目詰まりを低減する。また、この場合、底部に異物が溜まり易いように冷媒の流れる方向に対して下流側に底部が位置するようにろ過手段を配置することが好ましい。   Examples of the shape of the filtering means include a plate shape and a bottomed cylindrical shape. In the case of the latter bottomed cylindrical shape, a cylindrical shape is mentioned as a cylindrical shape. In addition, when the bottomed cylindrical shape is used, both the side wall portion and the bottom portion may have a net shape, and both portions may be configured to allow refrigerant to pass therethrough. And maintenance such as cleaning may take time. Therefore, in the case of using a bottomed cylindrical filtration means, the side wall portion may be meshed to allow the refrigerant to pass therethrough, and the bottom portion may not be meshed and may be a foreign matter retaining portion. With this configuration, the foreign matter adhering to the side wall portion settles and accumulates at the bottom portion, and clogging of the side wall portion is reduced. Further, in this case, it is preferable to arrange the filtering means so that the bottom portion is located on the downstream side with respect to the flow direction of the refrigerant so that foreign matters are likely to be accumulated in the bottom portion.

上記ろ過手段は、供給路、排出路、接続箱(冷媒槽)の少なくとも一つに配置するとよく、供給路、排出路、接続箱のいずれか一つに配置してもよいし、供給路と排出路の双方、供給路又は排出路と接続箱との双方に配置してもよいし、これら三つ全てに配置してもよい。また、上記のように異なる二箇所以上にろ過手段を配置し、接続構造全体としてろ過手段を複数具える構成としてもよいし、同一箇所、例えば供給路に適宜間隔をあけて複数のろ過手段を配置して、接続構造全体としてろ過手段を複数具える構成としてもよい。このように多段に複数のろ過手段を具えることで、より確実に異物を捕捉することができる。複数のろ過手段を配置する場合、各ろ過手段は、同様の仕様のものを用いてもよいし、異なる仕様、例えば、メッシュサイズの異なるものを用いてもよい。   The filtration means may be disposed in at least one of a supply path, a discharge path, and a connection box (refrigerant tank), and may be disposed in any one of the supply path, the discharge path, and the connection box, You may arrange | position to both of a discharge path, a supply path or both a discharge path, and a connection box, and may arrange | position to all of these three. Moreover, it is good also as a structure which arrange | positions a filtration means in two or more different places as mentioned above, and provides a plurality of filtration means as the whole connection structure. It is good also as a structure which arrange | positions and provides several filtration means as the whole connection structure. Thus, by providing a plurality of filtering means in multiple stages, foreign substances can be captured more reliably. When arranging a plurality of filtering means, each filtering means may have the same specification, or may have different specifications, for example, different mesh sizes.

また、上記ろ過手段は、冷媒流通路に対して、着脱自在な構成としておくと、交換、洗浄などといったメンテナンス作業を容易に行うことができて好ましい。特に、供給路や排出路にろ過手段を具える場合、ろ過手段において冷媒の導入側(冷媒の上流側)及び冷媒の排出側(冷媒の下流側)にバルブを具えておくことが好ましい。これらのバルブは、通常時、開いておいて接続箱への冷媒の供給或いは接続箱から冷媒の排出といった冷媒の流通が可能な状態とし、ろ過手段のメンテナンス時は閉じるようにし、接続箱内に冷媒が充填された状態で冷媒の供給又は冷媒の排出が停止されるようにする。このようにバルブを具えておき、バルブを閉じることで供給路や排出路に設けたろ過手段と接続箱とが切り離し可能な状態となるため、ろ過手段のメンテナンス作業の際、接続箱内から冷媒を排出させることなくメンテナンス作業を行うことができる。即ち、本発明接続構造を具える線路が直流送電を行った状態(通電状態)でメンテナンス作業を行うことができる。このようなバルブとして、例えば、市販されている真空ジャケットを具えるバルブ(例えば、山田バルブ製作所製ジャケット式真空断熱弁など)を利用してもよい。   Further, it is preferable that the filtering means be configured to be detachable from the refrigerant flow passage because maintenance work such as replacement and cleaning can be easily performed. In particular, when a filtering means is provided in the supply path or the discharge path, it is preferable that valves be provided on the refrigerant introduction side (upstream side of the refrigerant) and the refrigerant discharge side (downstream side of the refrigerant) in the filtering means. These valves are normally opened to allow the refrigerant to flow, such as supply of refrigerant to the junction box or discharge of refrigerant from the junction box, and be closed during maintenance of the filtering means. The supply of the refrigerant or the discharge of the refrigerant is stopped in a state where the refrigerant is filled. By providing the valve in this way and closing the valve, the filtering means provided in the supply path and the discharge path and the connection box can be separated. Maintenance work can be performed without draining. That is, the maintenance work can be performed in a state where the line having the connection structure of the present invention performs DC power transmission (energized state). As such a valve, for example, a valve having a commercially available vacuum jacket (for example, a jacket type vacuum insulation valve manufactured by Yamada Valve Manufacturing Co., Ltd.) may be used.

上述のようにバルブを設けておくことで接続箱に冷媒を充填させた状態でろ過手段のメンテナンスを行うことができるが、冷媒の流通が停止されることで、メンテナンス時間が長引くと、侵入熱などにより冷媒の温度が上昇して、接続箱内における超電導導体が超電導状態を維持できなくなる恐れがある。そこで、本発明接続構造を具える線路が通電状態であっても、ろ過手段のメンテナンスが十分に行えるように供給路や排出路といった輸送路をそれぞれ一系統(一本)ではなく、複数系統(複数本)とすることが好ましい。具体的には、輸送路を分岐し、複数の分岐路を並列させ、これら分岐路にそれぞれろ過手段を具えると共に、各ろ過手段において冷媒の導入側及び排出側の双方にバルブを具える構成とすることが好適である。ろ過手段を具える供給路や排出路をそれぞれ複数の並列分岐路とし、各分岐路にバルブを具える構成とすることで、通常時、ある分岐路を用いて冷媒の供給や排出を行い、この分岐路に具えるろ過手段をメンテナンスする際、この分岐路のバルブを閉じると共に別の分岐路のバルブを開き、上記別の分岐路に切り替えることで、冷媒の流通を停止することなく、ろ過手段のメンテナンスを行うことができる。このろ過手段のメンテナンスが終了したら、再度バルブの開閉を行って分岐路を切り替えもよいし、メンテナンスのために切り替えた分岐路に具えるろ過手段がメンテナンスを行うまでそのままこの分岐路を用いて冷媒の輸送を行ってもよい。   By providing a valve as described above, it is possible to perform maintenance of the filtering means in a state where the junction box is filled with the refrigerant. As a result, the temperature of the refrigerant rises and the superconducting conductor in the junction box may not be able to maintain the superconducting state. Therefore, even if the line having the connection structure of the present invention is in an energized state, the transportation path such as the supply path and the discharge path is not a single system (single), but a plurality of systems (single) so that the filtration means can be sufficiently maintained. It is preferable to use a plurality of). Specifically, the transportation path is branched, a plurality of branch paths are arranged in parallel, each of the branch paths is provided with a filtering means, and each filtering means is provided with a valve on both the refrigerant introduction side and the discharge side. Is preferable. By supplying a plurality of parallel branch passages each having a filtering means and having a valve on each branch passage, the supply and discharge of the refrigerant is normally performed using a certain branch passage. When maintaining the filtering means provided in this branch path, the valve of this branch path is closed and the valve of another branch path is opened and switched to the other branch path, so that the flow of the refrigerant can be stopped without stopping. Means maintenance can be performed. When the maintenance of the filtration means is completed, the branch path may be switched by opening and closing the valve again, or the refrigerant is used as it is until the filtration means provided in the branch path switched for maintenance performs the maintenance. May be transported.

なお、本発明接続構造は、直流送電に利用されるものを対象とする。直流送電は、単極送電(モノポール送電)、双極送電(バイポール送電)のいずれを行ってもよい。単極送電を行う場合、超電導導体を有し、同軸状に別途外部超電導層を有していないケーブルコアを具える単心ケーブルを2条以上用意し、いずれかのケーブルのコアに具える超電導導体を往路、別のケーブルのコアに具える超電導導体を帰路、残りのケーブルを予備としてもよいし、超電導導体を有し、同軸状に別途外部超電導層を有していないケーブルコアを2心以上具える多心ケーブルを1条用意し、いずれかのコアに具える超電導導体を往路、別のコアに具える超電導導体を帰路、残りのコアを予備心としてもよい。いずれの場合もケーブルコアには、接地用シールド層を具えておく。或いは、超電導導体とこの超電導導体と同軸状に外部超電導層とを有するケーブルコアを具える超電導ケーブル(単心でも多心でもよい)を用意し、同一のコアにおいて超電導導体を往路、外部超電導層を帰路としてもよい。外部超電導層は、接地しておく。   The connection structure of the present invention is intended for use in DC power transmission. The direct current power transmission may be either single pole power transmission (monopole power transmission) or bipolar transmission (bipole power transmission). For single-pole power transmission, prepare two or more single-core cables that have a superconducting conductor and have a coaxial cable core that does not have a separate external superconducting layer. The conductor may be the forward path, the superconducting conductor provided in the core of another cable may be returned, and the remaining cable may be reserved, or two cores that have a superconducting conductor and do not have a separate external superconducting layer coaxially. One multi-core cable having the above may be prepared, the superconducting conductor provided in one of the cores may be the outgoing path, the superconducting conductor provided in another core may be the return path, and the remaining core may be used as a spare core. In either case, the cable core is provided with a ground shield layer. Alternatively, a superconducting cable (which may be single-core or multi-core) having a superconducting conductor and a cable core having an outer superconducting layer coaxially with the superconducting conductor is prepared, and the superconducting conductor is connected to the outer superconducting layer in the same core. May be the return route. The external superconducting layer is grounded.

双極送電を行う場合、超電導導体を有し、同軸状に別途外部超電導層を有していないケーブルコアを具える単心ケーブルを3条以上用意し、いずれかのケーブルのコアに具える超電導導体を正極、別のケーブルのコアに具える超電導導体を負極、更に別のケーブルに具える超電導導体を中性線、残りのケーブルを予備としてもよいし、超電導導体を有し、同軸状に別途外部超電導層を有していないケーブルコアを3心以上具える多心ケーブルを1条用意し、いずれかのコアの超電導導体を正極、別のコアの超電導導体を負極、更に別のコアの超電導導体を中性線、残りのコアを予備心としてもよい。いずれの場合も、正極用コア、負極用コアには接地用シールド層を具えておく。或いは、超電導導体とこの超電導導体と同軸状に外部超電導層とを有するケーブルコアを2心以上具える多心ケーブルを用意し、いずれかのコアの超電導導体を正極、別のコアの超電導導体を負極、これら二つのコアの外部超電導層を中性線、残りのコアを予備心としてもよい。外部超電導層は、接地しておく。   When conducting bipolar power transmission, prepare three or more single-core cables that have a superconducting conductor and have a coaxial cable core that does not have a separate external superconducting layer. Can be used as a positive electrode, a superconducting conductor provided in the core of another cable as a negative electrode, a superconducting conductor provided in another cable as a neutral wire, and the remaining cables as spares. Prepare a single multi-core cable with three or more cable cores that do not have an external superconducting layer, one core superconducting conductor as the positive electrode, another core superconducting conductor as the negative electrode, and another core superconducting The conductor may be a neutral wire and the remaining core may be a spare core. In either case, the positive electrode core and the negative electrode core are provided with a ground shield layer. Alternatively, a multi-core cable having two or more superconducting conductors and a cable core having an outer superconducting layer coaxially with the superconducting conductor is prepared, the superconducting conductor of one core is the positive electrode, and the superconducting conductor of the other core is provided. The negative electrode, the external superconducting layers of these two cores may be neutral wires, and the remaining cores may be reserved. The external superconducting layer is grounded.

上述のように本発明接続構造は、冷媒流通路にろ過手段を具えることで、金属性異物を効率よく除去することができるため、接続構造の構成部材の表面、特に、直流電界が加わる箇所の表面に異物が集積して、沿面放電による沿面破壊が生じることを効果的に防止できる。また、本発明接続構造は、ろ過手段を具えることで、上記金属性異物だけでなく、接続構造作製時に生じた絶縁材料の屑や、接続構造内に入った湿気(水分)が冷媒により冷却されて生じた固化物(氷)などの異物をも除去することができる。そのため、これらの異物による電気的な不具合の防止に加えて、冷媒流通路、特に供給路や排出路が閉塞されたり、異物の衝突などにより構成部材が破損するなどといった不具合をも防止することができる。   As described above, since the connection structure of the present invention can efficiently remove metallic foreign matters by providing the filtering means in the refrigerant flow passage, the surface of the connection member, particularly the portion where a DC electric field is applied. It is possible to effectively prevent foreign matter from accumulating on the surface of the metal and causing surface damage due to surface discharge. In addition, the connection structure of the present invention is provided with a filtering means, so that not only the above-mentioned metallic foreign matter but also insulating material waste generated at the time of manufacturing the connection structure and moisture (moisture) entering the connection structure are cooled by the refrigerant. In addition, foreign matters such as solidified matter (ice) generated can be removed. Therefore, in addition to preventing electrical problems due to these foreign substances, it is possible to prevent problems such as blocking of the refrigerant flow path, particularly the supply path and the discharge path, and damage to constituent members due to collisions of foreign substances. it can.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

図1(A)は、本発明接続構造において、終端接続構造を示す概略構成図、(B)は、供給路にろ過手段を配置した状態を示す概略構成図である。この終端接続構造において基本的構成は、図5に示す従来の構成と同様である。即ち、超電導ケーブルの端部から引き出したケーブルコア10と、このコア10の端部に接続される常温側導体引出部と、常温側導体引出部においてコアとの接続側を収納する終端接続箱20とを具える。終端接続箱20には、コア10との接続箇所を冷却するための極低温の冷媒が充填される冷媒槽21と、冷媒槽21の外周を覆うように配置される真空槽22とを具える。また、接続箱20には、冷媒槽21に冷媒を供給するための供給路23と、冷媒槽21から冷媒を排出する排出路24とが接続される。これら供給路23及び排出路24は、別途具える冷却システム(図示せず)に接続されており、供給路23→接続箱20(冷媒槽21)→排出路24→冷却システム(→供給路23)という経路により、接続箱20に冷媒の循環供給を行う構成である。即ち、この終端接続構造では、上記経路を冷媒流通路として利用する。このような終端接続構造において最も特徴とするところは、冷媒流通路を形成する供給路23において冷媒槽21近傍(図1(A)において破線円Aで示す箇所、真空槽22の外側)に、ろ過手段1(図1(B)参照)を具えることにあり、ろ過手段1によって冷媒に伴って輸送される異物の除去を行う。   FIG. 1 (A) is a schematic configuration diagram showing a termination connection structure in the connection structure of the present invention, and FIG. 1 (B) is a schematic configuration diagram showing a state in which filtering means is arranged in a supply path. The basic configuration of this termination connection structure is the same as the conventional configuration shown in FIG. That is, the cable core 10 drawn from the end of the superconducting cable, the normal temperature side conductor lead portion connected to the end portion of the core 10, and the termination junction box 20 that houses the connection side with the core in the normal temperature side conductor lead portion With. The termination junction box 20 includes a refrigerant tank 21 filled with a cryogenic refrigerant for cooling a connection portion with the core 10 and a vacuum tank 22 arranged so as to cover the outer periphery of the refrigerant tank 21. . The connection box 20 is connected to a supply path 23 for supplying the refrigerant to the refrigerant tank 21 and a discharge path 24 for discharging the refrigerant from the refrigerant tank 21. These supply path 23 and discharge path 24 are connected to a separate cooling system (not shown), and supply path 23 → connection box 20 (refrigerant tank 21) → discharge path 24 → cooling system (→ supply path 23). ), The refrigerant is circulated and supplied to the connection box 20. That is, in this terminal connection structure, the above path is used as a refrigerant flow path. In such a terminal connection structure, the most characteristic feature is that in the supply path 23 forming the refrigerant flow path, in the vicinity of the refrigerant tank 21 (indicated by a broken line circle A in FIG. 1 (A), outside the vacuum tank 22), The filtering means 1 (see FIG. 1B) is provided, and the filtering means 1 removes foreign matters transported along with the refrigerant.

本例において超電導ケーブルは、内周側から順に、フォーマ、超電導導体、電気絶縁層、外部超電導層、保護層を具えるケーブルコア1条を断熱管に収納させた単心ケーブルを利用した。超電導導体及び外部超電導層は、Bi2223系超電導テープ線(Ag-Mnシース線)を用い、このテープ線をフォーマの外周、電気絶縁層の外周にそれぞれ多層に螺旋状に巻回して構成した。フォーマは、銅線を複数本撚り合わせたものを用い、フォーマと超電導導体との間には、絶縁紙によりクッション層を形成した。電気絶縁層は、超電導導体に対して所定の絶縁強度を有するように、半合成絶縁紙PPLP(登録商標)を巻回して形成した。電気絶縁層の内周(超電導導体の外周)及び電気絶縁層の外周(外部超電導層の内周)に半導電層を設けてもよい。保護層は、クラフト紙を巻回して形成した。断熱管は、ステンレス鋼製の内管及び外管とからなる二重管であり、内管の外周にスーパーインシュレーション(商品名)といった断熱材を配置すると共に、両管の間を真空引きした構成とした。内管には、超電導導体や外部超電導層を冷却する冷媒(本例では液体窒素)が流通される。このような超電導ケーブルの端部からケーブルコア10を引き出し、コア10の端部を段剥ぎして外部超電導層、電気絶縁層、超電導導体11、フォーマを順次露出させ、終端接続スリーブ12を用いて、超電導導体11と常温側導体引出部とを接続する。終端接続スリーブ12は、一端にフォーマ及び超電導導体11を挿入可能な導体側挿入穴を具え、他端に常温側導体引出部(後述するリード部13)を挿入可能なリード部側挿入穴を具える銅製の筒状部材を用いた。超電導導体11とスリーブ12との接続は、導体側挿入穴にフォーマ及び超電導導体11を挿入して圧着によりスリーブ12とフォーマとを接続し、次に超電導導体11を半田付けすることにて行い、リード部13とスリーブ12との接続は、スリーブ12のリード部側挿入穴の内側にマルチコンタクトを具えておき、マルチコンタクトによる接触にて行った。   In this example, as the superconducting cable, a single-core cable in which a cable core including a former, a superconducting conductor, an electric insulating layer, an external superconducting layer, and a protective layer is housed in a heat insulating tube in order from the inner peripheral side. The superconducting conductor and the external superconducting layer were formed by using Bi2223 superconducting tape wire (Ag-Mn sheath wire) and spirally winding the tape wire around the outer periphery of the former and the outer periphery of the electrical insulating layer. As the former, a plurality of twisted copper wires were used, and a cushion layer was formed of insulating paper between the former and the superconducting conductor. The electrical insulating layer was formed by winding semi-synthetic insulating paper PPLP (registered trademark) so as to have a predetermined insulation strength with respect to the superconducting conductor. A semiconductive layer may be provided on the inner periphery of the electrical insulating layer (the outer periphery of the superconducting conductor) and on the outer periphery of the electrical insulating layer (the inner periphery of the external superconducting layer). The protective layer was formed by winding kraft paper. The heat insulation pipe is a double pipe consisting of an inner pipe and an outer pipe made of stainless steel, and a heat insulating material such as Super Insulation (trade name) is arranged on the outer circumference of the inner pipe, and a vacuum is drawn between the two pipes. The configuration. A refrigerant (in this example, liquid nitrogen) for cooling the superconducting conductor and the outer superconducting layer is circulated through the inner tube. Pull out the cable core 10 from the end of such a superconducting cable, step off the end of the core 10 to sequentially expose the external superconducting layer, the electrical insulating layer, the superconducting conductor 11, and the former, and use the terminal connection sleeve 12 Then, the superconducting conductor 11 and the room temperature side conductor lead-out portion are connected. The end connection sleeve 12 has a conductor side insertion hole into which the former and the superconducting conductor 11 can be inserted at one end, and a lead portion side insertion hole into which the room temperature side conductor lead-out portion (lead portion 13 described later) can be inserted at the other end. A copper tubular member was used. The superconducting conductor 11 and the sleeve 12 are connected by inserting the former and the superconducting conductor 11 into the conductor-side insertion hole, connecting the sleeve 12 and the former by crimping, and then soldering the superconducting conductor 11. The lead part 13 and the sleeve 12 were connected by providing a multi-contact inside the lead part side insertion hole of the sleeve 12 and making contact with the multi-contact.

常温側導体引出部は、上記超電導導体11とスリーブ12を介して接続されるリード部13と、このリード部13とジョイント部14を介して接続されるブッシング15とを具える。リード部13は、銅製の棒状体からなるものを用いた。超電導導体11,スリーブ12,リード部13の外周は、電気絶縁層と同様に合成絶縁紙にて補強絶縁層16a,16bを形成している。補強絶縁層16a,16bの端部は、電界の集中を制御するべくテーパ状(スリーブ12から離れるにつれて先細る形状)とした。ジョイント部14は、リード部13との接続端及びブッシング15との接続端を有する銅製の編組材からなり、その外周を銅製のカバーで覆ったシールド構造としている。ブッシング15は、中心部に、リード部13に接続される銅製の棒状体からなる導体部15aを有し、導体部15aの外周にFRPで形成された固体絶縁層15bを具える。固体絶縁層15bは、ステンレス鋼製パイプの外周にFRPと箔電極とを積層し、両端部がテーパ状(低温側の一端は、ジョイント部14に向かうにつれて先細り、常温側の他端は、カバー31(後述)に向かうにつれて先細る形状)のストレスコーン部を有する棒状体とした。この積層構造により、いわゆるコンデンサー方式の電界制御を行い、ブッシング15の表面にかかる直流電界が均一になるようにした。このような常温側導体引出部において、リード部13の一部(ジョイント部14との接続側)、ジョイント部14、ブッシング15の一部(ジョイント部14との接続側)が冷媒槽21に収納され、その外周を真空槽22に覆われる。冷媒槽21及び真空槽22は、ステンレス鋼製の容器である。この冷媒槽21には、接地線25が接続されており、この接地線25が接地されることで、冷媒槽21は、接地電位となる構成であり、冷媒として絶縁性に優れる液体窒素を用いることで、ジョイント部14といった高電圧箇所に対して絶縁性が維持される。この接地線25は、真空槽22に貫通されており、真空槽22において貫通箇所のシールには、ハーメチックシールを用いて気密を保持している。なお、接地電位である冷媒槽21と絶縁するべく、リード部13において冷媒槽21に導入される箇所の外周には、エポキシ樹脂からなる絶縁スペーサ(エポキシユニット)17を配置している。真空槽22は、内部にスーパーインシュレーションといった断熱材が配置されると共に、所定の真空度に真空引きされている。また、真空槽22の外側には、内部に絶縁油やSF6ガスなどの絶縁流体が充填される碍管30が突設されており、ブッシング15の一端(常電導機器に接続される側)が収納される。碍管30の常温側端部は、導電性のカバー31により覆われたシールド構造としている。 The room temperature side conductor lead portion includes a lead portion 13 connected to the superconducting conductor 11 via the sleeve 12 and a bushing 15 connected to the lead portion 13 via the joint portion 14. The lead part 13 was made of a copper rod-like body. Reinforcing insulating layers 16a and 16b are formed of synthetic insulating paper on the outer periphery of the superconducting conductor 11, the sleeve 12, and the lead portion 13 in the same manner as the electric insulating layer. The ends of the reinforcing insulating layers 16a and 16b are tapered (a shape that tapers as the distance from the sleeve 12 increases) in order to control the concentration of the electric field. The joint portion 14 is made of a copper braided material having a connection end with the lead portion 13 and a connection end with the bushing 15, and has a shield structure in which the outer periphery is covered with a copper cover. The bushing 15 has a conductor part 15a made of a copper rod connected to the lead part 13 at the center, and includes a solid insulating layer 15b formed of FRP on the outer periphery of the conductor part 15a. The solid insulating layer 15b is formed by laminating FRP and foil electrodes on the outer periphery of a stainless steel pipe, and both ends are tapered (one end on the low temperature side is tapered toward the joint portion 14, and the other end on the normal temperature side is a cover. A rod-shaped body having a stress cone portion of 31 (to taper toward 31 (described later)) was obtained. With this laminated structure, so-called capacitor-type electric field control was performed so that the DC electric field applied to the surface of the bushing 15 was uniform. In such a room temperature side conductor lead-out part, a part of the lead part 13 (connection side with the joint part 14), a part of the joint part 14 and a bushing 15 (connection side with the joint part 14) are stored in the refrigerant tank 21. Then, the outer periphery is covered with the vacuum chamber 22. The refrigerant tank 21 and the vacuum tank 22 are stainless steel containers. A ground wire 25 is connected to the refrigerant tank 21, and the ground tank 25 is grounded so that the refrigerant tank 21 is configured to have a ground potential, and liquid nitrogen having excellent insulating properties is used as the refrigerant. As a result, insulation is maintained with respect to a high voltage portion such as the joint portion 14. The ground line 25 is penetrated through the vacuum chamber 22, and a hermetic seal is used as a seal at the penetration portion in the vacuum chamber 22 to maintain airtightness. Insulating spacers (epoxy units) 17 made of an epoxy resin are disposed on the outer periphery of the portion where the lead portion 13 is introduced into the refrigerant tank 21 in order to insulate it from the refrigerant tank 21 at the ground potential. The vacuum chamber 22 is provided with a heat insulating material such as super insulation inside and is evacuated to a predetermined degree of vacuum. Also, outside the vacuum chamber 22, a soot tube 30 is provided which is filled with an insulating fluid such as insulating oil or SF 6 gas, and one end of the bushing 15 (the side connected to the normal conducting device) is provided. Stored. A normal temperature side end portion of the soot tube 30 has a shield structure covered with a conductive cover 31.

補強絶縁層16aで覆われた超電導導体11,スリーブ12,リード部13の一部は、終端接続箱20に接続される補助接続箱40に収納される。補助接続箱40は、超電導導体11を冷却する冷媒が流通される冷媒槽41と、その外周を覆う真空槽42とを具える。補助接続箱40の構成は、上記終端接続箱20と同様であり、冷媒槽41には、冷媒槽21と同様に冷媒の供給路43,排出路44が接続され、これら供給路43,排出路44を利用して冷媒が流通される。これら供給路43,排出路44も、冷却システム(図示せず)に接続されており、接続箱20と同様にして、補助接続箱40に冷媒の循環供給を行う。従って、供給路43,補助接続箱40(冷媒槽41),排出路44も、冷媒流通路として利用される。なお、本例では、冷媒槽21と冷媒槽41との間で冷媒が直接行き来しない分離された構成とした。供給路42及び排出路43は、後述する供給路23,排出路24と同様の構成である。   A part of the superconducting conductor 11, the sleeve 12, and the lead portion 13 covered with the reinforcing insulating layer 16a is housed in an auxiliary connection box 40 connected to the terminal connection box 20. The auxiliary junction box 40 includes a refrigerant tank 41 through which a refrigerant for cooling the superconducting conductor 11 is circulated, and a vacuum tank 42 covering the outer periphery thereof. The configuration of the auxiliary connection box 40 is the same as that of the terminal connection box 20, and the refrigerant tank 41 is connected to the refrigerant supply path 43 and the discharge path 44 in the same manner as the refrigerant tank 21, and the supply path 43 and the discharge path. Refrigerant is distributed using 44. These supply path 43 and discharge path 44 are also connected to a cooling system (not shown), and circulate and supply refrigerant to the auxiliary connection box 40 in the same manner as the connection box 20. Accordingly, the supply path 43, the auxiliary connection box 40 (refrigerant tank 41), and the discharge path 44 are also used as the refrigerant flow path. In this example, the refrigerant tank 21 and the refrigerant tank 41 are separated from each other so that the refrigerant does not go back and forth directly. The supply path 42 and the discharge path 43 have the same configuration as a supply path 23 and a discharge path 24 described later.

供給路23は、図1(B)に示すように内管23aと外管23bとの二重管からなり、両管23a,23bの間が真空引きされた断熱構造であり、内管23a内が冷媒流通路として利用される。排出路24も同様の構成である。そして、本例では、この内管23a内にろ過手段1を具える。ろ過手段1は、有底円筒形状のフィルタであり、側壁部1aを冷媒が透過可能な網状とし、底部1bを冷媒が透過しない板材にて構成される。このようなフィルタとして、例えば、商品名:ポアメット(FLOWELL CORPORATION製)、円筒型(CY)、メッシュサイズ100μmが挙げられる。ろ過手段の大きさは、供給路23を形成する管の径により種々変化させるとよく、例えば、フィルタ外径:50〜100mm程度、長さ:200mm程度のものが利用できる。   As shown in FIG. 1 (B), the supply path 23 is composed of a double tube of an inner tube 23a and an outer tube 23b, and is a heat insulating structure in which the space between both the tubes 23a and 23b is evacuated. Is used as a refrigerant flow passage. The discharge path 24 has the same configuration. In this example, the filtering means 1 is provided in the inner tube 23a. The filtering means 1 is a bottomed cylindrical filter, and is formed of a plate material in which the side wall 1a is permeable to refrigerant and the bottom 1b is not permeable to refrigerant. Examples of such a filter include trade name: Poremet (manufactured by FLOWELL CORPORATION), cylindrical type (CY), and mesh size 100 μm. The size of the filtering means may be variously changed depending on the diameter of the pipe forming the supply path 23. For example, a filter having an outer diameter of about 50 to 100 mm and a length of about 200 mm can be used.

そして、本例では、図1(B)に示すように、供給路23において、冷媒が鉛直方向上向きから下向きに流れる箇所に、底部1bが鉛直方向に対して直交し、側壁部1aが鉛直方向と平行するようにろ過手段1を配置している。特に、底部1bが冷媒の下流側となるように配置している。図1(B)において黒三角矢印は、冷媒の流れる方向を示す。後述する図2についても同様である。   In this example, as shown in FIG. 1 (B), in the supply path 23, the bottom 1b is perpendicular to the vertical direction and the side wall 1a is in the vertical direction at a location where the refrigerant flows downward from the vertical direction. The filtration means 1 is arranged so as to be parallel to the. In particular, the bottom 1b is disposed on the downstream side of the refrigerant. In FIG. 1 (B), black triangular arrows indicate the direction of refrigerant flow. The same applies to FIG. 2 described later.

上記構成を具える本発明接続構造では、冷却システム(図示せず)から供給管23に冷媒が輸送されると、冷媒は、ろ過手段1を通過して冷媒槽21に供給される。このとき、冷媒と共に異物fが輸送された場合、側壁部1aにより異物fの通過が阻止され、異物fは、冷媒の輸送圧力により底部1bに沈下して滞留する。従って、本発明接続構造では、異物fが除去された冷媒のみを効率よく冷媒槽21に供給することができる。そして、冷媒槽21から排出路24を経て排出された冷媒は、冷却システムにて温度調整などが行われて再度供給路23を通過して冷媒槽21に供給される。このとき、ろ過手段1により異物fが除去されるため、冷却システムなどに存在する粉塵が冷媒と共に輸送されても、この粉塵が冷媒槽21に供給されることがない。このように本発明接続構造では、供給路23,冷媒槽21,排出路22,冷却システムのいずれかに異物が存在して冷媒に伴って輸送されたとしても、上記ろ過手段1によりその異物を効率よく除去することができる。直流送電に利用される本発明接続構造では、各所に直流電界が加わる。このような直流電界が加わる箇所には、いわゆる集塵効果により金属性の屑が集積され易い。そして、集積箇所によっては、沿面破壊が生じるといった不具合が生じるが、本発明接続構造では、ろ過手段を具えることで、上記不具合を効果的に低減することができる。   In the connection structure of the present invention having the above configuration, when the refrigerant is transported from the cooling system (not shown) to the supply pipe 23, the refrigerant passes through the filtering means 1 and is supplied to the refrigerant tank 21. At this time, when the foreign matter f is transported together with the refrigerant, the passage of the foreign matter f is blocked by the side wall portion 1a, and the foreign matter f sinks and stays in the bottom portion 1b due to the transport pressure of the refrigerant. Therefore, in the connection structure of the present invention, only the refrigerant from which the foreign substance f has been removed can be efficiently supplied to the refrigerant tank 21. Then, the refrigerant discharged from the refrigerant tank 21 via the discharge path 24 is subjected to temperature adjustment or the like in the cooling system, passes through the supply path 23 again, and is supplied to the refrigerant tank 21. At this time, since the foreign substance f is removed by the filtering means 1, even if dust existing in the cooling system or the like is transported together with the refrigerant, the dust is not supplied to the refrigerant tank 21. Thus, in the connection structure of the present invention, even if foreign matter exists in any of the supply path 23, the refrigerant tank 21, the discharge path 22, and the cooling system and is transported along with the refrigerant, the foreign matter is removed by the filtering means 1. It can be removed efficiently. In the connection structure of the present invention used for direct current power transmission, a direct current electric field is applied to various places. In such a place where a direct current electric field is applied, metallic scraps are easily accumulated due to a so-called dust collection effect. And depending on an accumulation location, the malfunction that a creepage failure will arise arises, but in the connection structure of this invention, the said malfunction can be effectively reduced by providing a filtration means.

上記説明では、供給路23にろ過手段1を具える構成としたが、排出路24に具えてもよいし、冷媒槽21内に配置してもよいし、供給路23及び排出路24の双方に具えてもよい。一つの冷媒流通路に対して複数のろ過手段を具えることで、異物をより確実に捕捉することができる。また、上記説明では、供給路23にろ過手段1を一つ具える構成としたが適当な間隔をあけて複数具えてもよい。更に、冷媒槽40,供給路42,排出路43の少なくとも一つにも同様にろ過手段1を具えて異物を除去できるようにすることが好ましい。   In the above description, the supply means 23 is provided with the filtering means 1. However, the supply means 23 may be provided in the discharge path 24, may be disposed in the refrigerant tank 21, or both the supply path 23 and the discharge path 24. It may be included. By providing a plurality of filtering means for one refrigerant flow passage, foreign matter can be captured more reliably. Further, in the above description, the supply path 23 is provided with one filtering means 1, but a plurality of filtering means 1 may be provided at an appropriate interval. Further, it is preferable that at least one of the refrigerant tank 40, the supply path 42, and the discharge path 43 is similarly provided with the filtering means 1 so that foreign matters can be removed.

ろ過手段は、洗浄や交換などのメンテナンスが行い易い構成であることが好ましい。即ち、冷媒流通路から簡単に着脱できる構成であることが好ましい。そこで、次に、着脱が容易に行えるろ過手段の具体的な構成について説明する。図2は、冷媒流通路において屈曲した箇所にろ過手段を具える例を示す概略構成図である。ろ過手段の着脱を考慮すると、ろ過手段は、供給路や排出路に具えることが好ましい。特に、接続箱から突出した箇所であることが好ましい。更に、供給路や排出路において、冷媒の流れる方向が変化するような箇所、例えば、水平方向から垂直方向に屈曲した箇所や垂直方向から水平方向に屈曲した箇所にろ過手段を配置すると、着脱が容易な構成とし易い。例えば、図2に示すように供給路又は排出路の内管50として、冷媒が水平方向に流れる水平内管51と、冷媒が鉛直方向に主に流れる鉛直内管52と、水平内管51及び鉛直内管52を接続する屈曲内管53とを具え、屈曲内管53は、水平内管51及び鉛直内管52に対して着脱可能であり、この屈曲内管53にろ過手段1を取り付ける構成のものを利用する。本例では、屈曲内管53の一端を水平内管51との接続端とし、他端をろ過手段1との接続端とする。そして、ろ過手段1において側壁部1aの開口部側にその外周方向に突出するようにフランジ1cを具えておき、このフランジ1cを介して鉛直内管52に固定される構成とする。この構成により、フランジ1cの径R1は、側壁部1aの外径よりも大きくなる。屈曲内管53は、リジット管でもよいが、図2に示すように一部を可撓性のあるベローズ管とすると、ろ過手段1の取り付けを行い易い。 The filtering means is preferably configured to facilitate maintenance such as cleaning and replacement. That is, it is preferable that the configuration be easily removable from the refrigerant flow passage. Then, next, the specific structure of the filtration means which can be attached or detached easily is demonstrated. FIG. 2 is a schematic configuration diagram showing an example in which filtering means is provided at a bent portion in the refrigerant flow passage. Considering the attachment / detachment of the filtering means, the filtering means is preferably provided in the supply path and the discharge path. In particular, it is preferable that the portion protrudes from the junction box. Further, if the filtering means is disposed in a place where the refrigerant flow direction changes in the supply path or the discharge path, for example, a position bent from the horizontal direction to the vertical direction or a position bent from the vertical direction to the horizontal direction, the attachment or detachment is possible. Easy to configure. For example, as shown in FIG. 2, as the inner pipe 50 of the supply path or the discharge path, a horizontal inner pipe 51 in which the refrigerant flows in the horizontal direction, a vertical inner pipe 52 in which the refrigerant mainly flows in the vertical direction, a horizontal inner pipe 51 and A bent inner pipe 53 that connects the vertical inner pipe 52, and the bent inner pipe 53 is detachable from the horizontal inner pipe 51 and the vertical inner pipe 52, and the filtration means 1 is attached to the bent inner pipe 53. Use the thing. In this example, one end of the bent inner tube 53 is a connection end with the horizontal inner tube 51 and the other end is a connection end with the filtering means 1. In the filtering means 1, a flange 1c is provided on the opening side of the side wall portion 1a so as to protrude in the outer peripheral direction, and is fixed to the vertical inner tube 52 via the flange 1c. With this configuration, the diameter R 1 of the flange 1c is larger than the outer diameter of the side wall portion 1a. The bent inner tube 53 may be a rigid tube, but if a part of the bent inner tube 53 is a flexible bellows tube as shown in FIG. 2, the filtering means 1 can be easily attached.

水平内管51,鉛直内管52,屈曲内管53において開口部にはそれぞれ、フランジを設けており、水平内管51のフランジと屈曲内管53のフランジ、ろ過手段1のフランジ1cと鉛直内管52のフランジをそれぞれ重ね合わせ、ボルトなどの締付部材により接続固定する。各フランジ間には、金属Oリングなどのシール材を配置することが好ましい。上記接続により、ろ過手段1は、内管50内に配置される。この配置により、水平内管51を経た冷媒は、屈曲内管53を通過してろ過手段1に輸送され、ろ過手段1の側壁部1aを通過して鉛直内管52に輸送される。一方、冷媒と共に輸送された異物fは、冷媒の輸送圧力により底部1bに沈下して滞留する。   The horizontal inner pipe 51, the vertical inner pipe 52, and the bent inner pipe 53 are provided with flanges at the openings, respectively, the flange of the horizontal inner pipe 51 and the flange of the bent inner pipe 53, and the flange 1c of the filtering means 1 and the vertical inner pipe. The flanges of the pipes 52 are overlapped and connected and fixed by a fastening member such as a bolt. It is preferable to arrange a sealing material such as a metal O-ring between the flanges. With the above connection, the filtering means 1 is disposed in the inner tube 50. With this arrangement, the refrigerant that has passed through the horizontal inner pipe 51 passes through the bent inner pipe 53 and is transported to the filtering means 1, passes through the side wall portion 1 a of the filtering means 1, and is transported to the vertical inner pipe 52. On the other hand, the foreign substance f transported with the refrigerant sinks and stays at the bottom 1b due to the transport pressure of the refrigerant.

そして、上記水平内管51、ろ過手段1及び屈曲内管53との一体物、鉛直内管52が収納される外管54は、屈曲部分を開放可能な構成とする。図2に示す例では、外管54において鉛直方向上方に開口部を設け、この開口部を閉じる蓋部54aを具える。外管54の開口部には、フランジ54bを設けており、このフランジ54bと蓋部54aとを重ね合わせ、ボルトなどの締付部材により開口部を閉じ、締付部材を取り外すことで、蓋部54aを開放して、開口部を開ける。蓋部54aとフランジ54bとの間には、金属Oリングなどのシール材を配置することが好ましい。外管54の開口部の径R0は、ろ過手段1に具えるフランジ1cの径R1よりも大きくする。この構成により、外管54の蓋部54aを開けて、外管54内からろ過手段1と屈曲内管53との一体物を容易に取り外すことができる。なお、図2では、外管54においてろ過手段1と屈曲内管53との一体物が配置される屈曲部分をその他の部分よりも大きくしているが同じ大きさとしてもちろんよい。また、外管54には、真空引きポート54cを具えており、外管54内を真空引き可能な構成としている。 The horizontal inner pipe 51, the filtration unit 1 and the bent inner pipe 53, and the outer pipe 54 in which the vertical inner pipe 52 is housed are configured to be able to open the bent portion. In the example shown in FIG. 2, an opening is provided in the upper direction in the outer tube 54, and a lid 54a that closes the opening is provided. A flange 54b is provided in the opening of the outer tube 54. The flange 54b and the lid 54a are overlapped, the opening is closed with a fastening member such as a bolt, and the fastening member is removed, whereby the lid Open 54a and open the opening. It is preferable to arrange a sealing material such as a metal O-ring between the lid portion 54a and the flange 54b. The diameter R 0 of the opening of the outer tube 54 is made larger than the diameter R 1 of the flange 1c included in the filtering means 1. With this configuration, the lid 54 a of the outer tube 54 can be opened, and the integrated body of the filtering means 1 and the bent inner tube 53 can be easily removed from the outer tube 54. In FIG. 2, the bent portion of the outer tube 54 where the integral part of the filtering means 1 and the bent inner tube 53 is disposed is larger than the other portions, but it is of course possible to have the same size. Further, the outer tube 54 is provided with a vacuum port 54c so that the inside of the outer tube 54 can be evacuated.

図2に示す例において、ろ過手段1のメンテナンス作業の手順を説明する。
(1) 超電導ケーブルが通電を行っており、冷媒流通路に冷媒を流通させている場合、冷媒の流通を停止する。
(2) 真空引きポート54cにより、外管54内を真空から大気圧に戻す。
(3) 外管54から蓋部54aを取り外し、水平内管51と屈曲内管53との接続、鉛直内管52とろ過手段1(フランジ1c)との接続を取り外し、ろ過手段1と屈曲内管53との一体物を外管54から取り出す。なお、内管50内の冷媒は、排出させておく。
(4) ろ過手段1の汚れや異物の滞留具合を確認する。確認作業は、ろ過手段1を目視したり、ファイバスコープなどを用いて覗いたり、異物が出てこないか一体物を振ったりなどすることが挙げられる。ろ過手段の長さを200mm程度とする場合、屈曲内管53の開口部からろ過手段1の底部1bまでの長さは、せいぜい300mm程度であり、目視などでも容易にチェックすることができる。この確認により、異物が溜まっていれば、ろ過手段1を洗浄したり、交換する。
(5) 一体物を外管54に挿入して、水平内管51、鉛直内管52に固定する。
(6) 蓋部54aを閉じた後、真空引きポート54cから真空引きを行い、冷媒の流通を開始する。
In the example shown in FIG. 2, the maintenance work procedure of the filtering means 1 will be described.
(1) When the superconducting cable is energized and the refrigerant is flowing through the refrigerant flow passage, the refrigerant circulation is stopped.
(2) The inside of the outer tube 54 is returned from the vacuum to the atmospheric pressure by the evacuation port 54c.
(3) Remove the lid 54a from the outer tube 54, remove the connection between the horizontal inner tube 51 and the bent inner tube 53, remove the connection between the vertical inner tube 52 and the filtering means 1 (flange 1c), and remove the connection between the filtering means 1 and the bent inner tube 53. The integral with the tube 53 is taken out from the outer tube 54. The refrigerant in the inner pipe 50 is discharged.
(4) Check the dirt on the filtration means 1 and the retention of foreign matter. Examples of the confirmation work include visually observing the filtering means 1, using a fiberscope or the like, or checking for foreign matter to come out or shaking the integrated object. When the length of the filtering means is about 200 mm, the length from the opening of the bent inner tube 53 to the bottom 1b of the filtering means 1 is at most about 300 mm and can be easily checked visually. If foreign matter is accumulated by this confirmation, the filtering means 1 is washed or replaced.
(5) The unitary object is inserted into the outer tube 54 and fixed to the horizontal inner tube 51 and the vertical inner tube 52.
(6) After closing the lid portion 54a, evacuation is performed from the evacuation port 54c to start circulation of the refrigerant.

上述した構成では、ろ過手段1のメンテナンスにあたり、冷媒の流通を停止すると共に、輸送管などから冷媒を排出させる必要があり、手間がかかる。そこで、輸送管や冷媒槽から冷媒を排出させることなくろ過手段1のメンテナンスを行うことができるように、ろ過手段1の冷媒導入側及び冷媒の排出側にバルブを具えることが好ましい。例えば、図2に示す配管の場合、水平内管51においてろ過手段側の端部近傍と、鉛直内管52においてろ過手段1の下方側とにバルブを具えることが挙げられる。これらバルブは、通電を行う通常時に開いておいて冷媒槽への冷媒の供給、冷媒槽からの冷媒の排出を行えるようにし、ろ過手段1のメンテナンスを行う際に閉じて、冷媒槽への冷媒の供給、冷媒槽からの冷媒の排出を停止する。このとき、冷媒槽には、冷媒が流通しない状態であるが、冷媒が充填された状態が維持される。なお、メンテナンスの際に、接続箱の真空槽の真空状態が破られないように構成しておく。一方、内管においてろ過手段を設けた箇所近傍を覆う外管と、内管の他の箇所を覆う外管との間には、区画壁などを設けておき、両管内にそれぞれ独立した真空層を有する構成とする。この構成により、メンテナンス時、冷媒の流通を停止しても、ろ過手段の取付箇所近傍以外は、真空状態が保持されるため、冷媒の温度上昇を低減することができる。かつ、メンテナンス後、真空引きを行うのは、ろ過手段の取付箇所近傍のみでよいため、作業性がよい。   In the above-described configuration, it is necessary to stop the circulation of the refrigerant and to discharge the refrigerant from the transport pipe or the like for the maintenance of the filtering means 1, which takes time. Therefore, it is preferable to provide valves on the refrigerant introduction side and the refrigerant discharge side of the filtration means 1 so that the filtration means 1 can be maintained without discharging the refrigerant from the transport pipe or the refrigerant tank. For example, in the case of the pipe shown in FIG. 2, a valve may be provided near the end on the filtration means side in the horizontal inner pipe 51 and on the lower side of the filtration means 1 in the vertical inner pipe 52. These valves are opened during normal energization so that the refrigerant can be supplied to the refrigerant tank and discharged from the refrigerant tank, and are closed when the filtration means 1 is maintained, and the refrigerant is supplied to the refrigerant tank. Supply and discharge of the refrigerant from the refrigerant tank are stopped. At this time, the refrigerant tank is in a state where the refrigerant does not flow, but the state in which the refrigerant is filled is maintained. Note that the vacuum state of the vacuum chamber of the connection box is not broken during maintenance. On the other hand, a partition wall or the like is provided between the outer tube that covers the vicinity of the location where the filtering means is provided in the inner tube and the outer tube that covers other locations of the inner tube, and independent vacuum layers are provided in both tubes. It is set as the structure which has. With this configuration, even if the flow of the refrigerant is stopped during maintenance, the vacuum state is maintained except in the vicinity of the attachment portion of the filtering means, so that the temperature rise of the refrigerant can be reduced. And after maintenance, it is only necessary to evacuate the vicinity of the place where the filtering means is attached, so workability is good.

また、図2に示す配管のように一系統の輸送路ではなく、配管を分岐して複数の分岐路を並列してなる複数系統の輸送路とし、各分岐路にろ過手段と、分岐路においてろ過手段の上流側及び下流側にバルブとを具えた構成とすると、冷媒槽に冷媒を流通したままろ過手段のメンテナンスを行うことができる。即ち、通常時、いずれかの一の分岐路のバルブを開いて冷媒の供給/排出を行い、残りの分岐路のバルブを閉じておき、通常時に用いている分岐路に具えるろ過手段のメンテナンスを行う際、この分岐路のバルブを閉じると共に、残りのいずれかの分岐路のバルブを開く。このようにバルブが開かれた分岐路を冷媒の流通に用いることで、冷媒槽には、冷媒の供給/排出が滞りなく行われ、冷媒の流通を停止することなく、ろ過手段のメンテナンスを行うことができる。また、ろ過手段を具えていない分岐路を設けておいて、メンテナンス時にこの分岐路を用いるようにしてもよいが、各分岐路にろ過手段を具えておくことで、常時、異物の除去を行うことができる。各分岐路には、上述と同様にそれぞれ独立した真空層を有する構成としておくことが好ましい。   Also, instead of a single-system transportation route as shown in FIG. 2, a plurality of transportation routes are formed by branching the piping and paralleling a plurality of branching routes. When the valve is provided on the upstream side and the downstream side of the filtering unit, the filtering unit can be maintained while the refrigerant is circulating in the refrigerant tank. That is, during normal operation, one of the branch passage valves is opened to supply / discharge the refrigerant, and the remaining branch passage valves are closed, and maintenance of the filtering means provided in the branch passages used in normal times is performed. When performing, the valve of this branch path is closed and the valve of any remaining branch path is opened. By using the branch path with the valve opened in this way for the circulation of the refrigerant, the refrigerant tank is supplied / discharged without delay, and the filtration means is maintained without stopping the refrigerant circulation. be able to. In addition, a branch path not provided with a filtering means may be provided, and this branch path may be used at the time of maintenance, but foreign substances are always removed by providing a filtering means in each branch path. be able to. Each branch path is preferably configured to have an independent vacuum layer as described above.

上記説明では、終端接続構造である場合について説明したが、本発明接続構造は、超電導ケーブル同士を接続する中間接続においても適用することができる。図3は、本発明接続構造において、中間接続構造を示す概略構成図である。この中間接続構造において基本的構成は、図4に示す従来の構成と同様である。即ち、この中間接続構造は、接続する一方の超電導ケーブル60Aの端部から引き出したケーブルコア61Aと、他方の超電導ケーブル60Bの端部から引き出したコア61Bと、これら両コア61A,61Bの端部が収納される中間接続箱70とを具える。本例において超電導ケーブル60A,60Bはいずれも、実施例1と同様の構成を具えるケーブルコアを3条撚り合わせて具える3心ケーブルを用い、三つの接続箇所を一つの接続箱70に収納させる構成とした(図3では接続箇所が二つしか記載されていないが実際には三つ存在する)。各コア61A,61Bは、端部を段剥ぎして超電導導体62A,62Bを露出させ、中間接続スリーブ63にて接続する。接続させた両超電導導体62A,62B及びスリーブ63の外周には、補強絶縁層64を設ける。この補強絶縁層64は、その端部をスリーブ63から離れるにつれて先細りするテーパ状に形成し、端部において電界が集中することを制御する構成とした。また、この補強絶縁層64の外周に銅などの導電性材料にてシールド層(図示せず)を設け、電界遮蔽構造とした。中間接続箱70は、超電導導体62A,62Bを冷却するための液体窒素などの冷媒が流通される冷媒槽71と、冷媒槽71の外周に配置される真空槽72とを具える。冷媒槽71には、冷媒を供給する供給路73及び冷媒を排出する排出路74を具える。本例では、冷媒槽71内に冷媒槽71の内周に適合した大きさを有するステンレス鋼製の円盤状部材65を設けており、この円盤状部材65により、冷媒槽71内の空間を超電導ケーブル60A側の空間Aと超電導ケーブル60B側の空間Bとに区画して、両空間A,B間で冷媒が流通しない構成とした。従って、各空間A,Bのそれぞれに供給路73及び排出路74を設けた。そして、この供給路73又は排出路74の少なくとも一方に実施例1で説明したろ過手段を具えることで、異物を捕捉することができる。本例では、補強絶縁層64の外周にシールド層を設けて電界遮蔽構造としており、シールド層の表面に金属性の異物が集積しても、沿面破壊を起こしにくい。しかし、このシールド層を打ち破って、シールド層の内側に粉塵が入り込むと電気的に不安定となる恐れがある。これに対し、本発明接続構造では、ろ過手段を具えることで、このような不具合を防止できる。このろ過手段は、供給路73,排出路74において、接続箱70の外側に配置される箇所に具えておくと、メンテナンスなどの作業が行いやすい。   In the above description, the case of a terminal connection structure has been described. However, the connection structure of the present invention can also be applied to an intermediate connection for connecting superconducting cables. FIG. 3 is a schematic configuration diagram showing an intermediate connection structure in the connection structure of the present invention. In this intermediate connection structure, the basic configuration is the same as the conventional configuration shown in FIG. That is, this intermediate connection structure includes a cable core 61A drawn from the end of one superconducting cable 60A to be connected, a core 61B drawn from the end of the other superconducting cable 60B, and ends of both cores 61A and 61B. And an intermediate connection box 70 in which is stored. In this example, each of the superconducting cables 60A and 60B is a three-core cable that is formed by twisting three cable cores having the same configuration as in Example 1, and three connection points are stored in one connection box 70. (In FIG. 3, there are only two connection points, but there are actually three). The cores 61A and 61B are stepped off to expose the superconducting conductors 62A and 62B, and are connected by an intermediate connection sleeve 63. A reinforcing insulating layer 64 is provided on the outer circumferences of the connected superconducting conductors 62A and 62B and the sleeve 63. The reinforcing insulating layer 64 has a configuration in which an end thereof is tapered so as to taper away from the sleeve 63, and the concentration of the electric field at the end is controlled. In addition, a shield layer (not shown) was provided on the outer periphery of the reinforcing insulating layer 64 with a conductive material such as copper, thereby forming an electric field shielding structure. The intermediate connection box 70 includes a refrigerant tank 71 in which a refrigerant such as liquid nitrogen for cooling the superconducting conductors 62A and 62B is circulated, and a vacuum tank 72 disposed on the outer periphery of the refrigerant tank 71. The refrigerant tank 71 includes a supply path 73 for supplying a refrigerant and a discharge path 74 for discharging the refrigerant. In this example, a stainless steel disk-like member 65 having a size suitable for the inner periphery of the refrigerant tank 71 is provided in the refrigerant tank 71, and the disk-like member 65 allows superconducting the space in the refrigerant tank 71. The space is divided into a space A on the cable 60A side and a space B on the superconducting cable 60B side so that the refrigerant does not flow between the spaces A and B. Therefore, the supply path 73 and the discharge path 74 are provided in each of the spaces A and B. In addition, by providing the filtering means described in the first embodiment in at least one of the supply path 73 and the discharge path 74, foreign substances can be captured. In this example, a shield layer is provided on the outer periphery of the reinforcing insulating layer 64 to form an electric field shielding structure, and even if metallic foreign matter accumulates on the surface of the shield layer, creeping damage is unlikely to occur. However, if this shield layer is broken and dust enters the inside of the shield layer, there is a risk of electrical instability. On the other hand, in the connection structure of the present invention, such a problem can be prevented by providing the filtering means. If this filtering means is provided at a location arranged outside the connection box 70 in the supply path 73 and the discharge path 74, operations such as maintenance can be easily performed.

本例に示す中間接続構造では、上記円盤状部材65により、超電導導体62Aと62Bとの接続部分を接続箱70(冷媒槽71)に固定させる構成とした。具体的には、超電導導体62Aと62Bとの間に銅製の棒状体からなる接続導体66を介在させ、超電導導体62Aと62Bを、中間接続スリーブ63及び接続導体66を用いて接続した。中間接続スリーブ63は、一端にフォーマ及び超電導導体62A(62B)を挿入可能な導体側挿入穴を具え、他端に上記接続導体66を挿入可能な接続導体用挿入穴を具える銅製の筒状部材で、接続導体用挿入穴の内側にマルチコンタクトを具えるものを利用した。接続導体66は、その外周にエポキシ樹脂成形体からなる固体絶縁部材67を装着させている。この固体絶縁部材67は、円盤状部材65に設けられた挿通孔に挿通配置され、中間部に設けられたフランジ部67aを円盤状部材65と押さえ部材68とで挟んだ状態としてボルト69を締めることで、円盤状部材65に固定される。そして、円盤状部材65は、冷媒槽71に溶接などにより固定されることで、超電導導体62A,62Bの接続部分が冷媒槽71に固定される。   In the intermediate connection structure shown in this example, the connection part between the superconducting conductors 62A and 62B is fixed to the connection box 70 (refrigerant tank 71) by the disk-shaped member 65. Specifically, a connection conductor 66 made of a copper rod was interposed between the superconducting conductors 62A and 62B, and the superconducting conductors 62A and 62B were connected using the intermediate connection sleeve 63 and the connection conductor 66. The intermediate connection sleeve 63 has a conductor-side insertion hole into which a former and a superconducting conductor 62A (62B) can be inserted at one end, and a copper cylinder having a connection conductor insertion hole into which the connection conductor 66 can be inserted at the other end. A member having a multi-contact inside the connection conductor insertion hole was used. The connection conductor 66 has a solid insulating member 67 made of an epoxy resin molded body mounted on the outer periphery thereof. This solid insulating member 67 is inserted and disposed in an insertion hole provided in the disc-like member 65, and the bolt 69 is tightened with the flange portion 67a provided in the intermediate portion sandwiched between the disc-like member 65 and the pressing member 68. As a result, the disc-shaped member 65 is fixed. Then, the disk-shaped member 65 is fixed to the refrigerant tank 71 by welding or the like, so that the connection portion of the superconducting conductors 62A and 62B is fixed to the refrigerant tank 71.

また、本例において接続箱70は、ケーブルコアの長手方向(図3において左右方向)に分割可能な一対の半割れ片を組み合わせて一体となるものを用いた。更に、本例では、一つの超電導ケーブルから3条のケーブルコアを引き出すため、接続作業が行い易いようにコア間を広げた状態で保持可能な保持具80を冷媒槽71内に適宜配置させた。加えて、本例では、同一の超電導ケーブルから引き出された3条のケーブルコアに具える外部超電導層を短絡させる短絡部90を設けた。   Further, in this example, the junction box 70 used is a combination of a pair of half crack pieces that can be divided in the longitudinal direction of the cable core (left and right in FIG. 3). Furthermore, in this example, in order to pull out the three cable cores from one superconducting cable, a holding tool 80 that can be held in a state where the cores are widened is arranged in the refrigerant tank 71 so as to facilitate the connection work. . In addition, in this example, a short-circuit portion 90 for short-circuiting the external superconducting layer included in the three-wire cable core drawn from the same superconducting cable is provided.

本発明直流超電導ケーブルの接続構造は、超電導ケーブル同士を接続する中間接続、超電導ケーブルと常温側に配置される常電導機器とを接続する終端接続のいずれにも適用することができる。このような接続構造は、直流送電を行う超電導ケーブル線路の構築において好適に利用することができる。   The connection structure of the DC superconducting cable of the present invention can be applied to any of intermediate connection for connecting the superconducting cables and terminal connection for connecting the superconducting cable and a normal conducting device arranged on the room temperature side. Such a connection structure can be suitably used in the construction of a superconducting cable line that performs DC power transmission.

(A)は、本発明接続構造において、終端接続構造を示す概略構成図、(B)は、供給路にろ過手段を配置した状態を示す概略構成図である。(A) is a schematic configuration diagram showing a termination connection structure in the connection structure of the present invention, and (B) is a schematic configuration diagram showing a state in which filtering means is arranged in a supply path. 本発明接続構造において、冷媒流通路にろ過手段を配置した状態を示す概略構成図であり、供給路又は排出路において屈曲した箇所にろ過手段を具える例を示す。In this connection structure, it is a schematic block diagram which shows the state which has arrange | positioned the filtration means in the refrigerant | coolant flow path, and shows the example which provides a filtration means in the location bent in the supply path or the discharge path. 本発明接続構造において、中間接続構造を示す概略構成図である。In this connection structure, it is a schematic block diagram which shows an intermediate | middle connection structure. 従来の超電導ケーブルの中間接続構造を示す概略構成図である。It is a schematic block diagram which shows the intermediate connection structure of the conventional superconducting cable. 従来の超電導ケーブルの終端接続構造を示す概略構成図である。It is a schematic block diagram which shows the termination | terminus connection structure of the conventional superconducting cable.

符号の説明Explanation of symbols

1 ろ過手段 1a 側壁部 1b 底部 1c フランジ
10 ケーブルコア 11 超電導導体 12 終端接続スリーブ 13 リード部
14 ジョイント部 15 ブッシング 15a 導体部 15b 固体絶縁層
16a,16b 補強絶縁層 17 絶縁スペーサ 20 終端接続箱 21,41 冷媒槽
22,42 真空槽 23,43 供給路 23a 内管 23b 外管 24,44 排出路
25 接地線 30 碍管 31 カバー 40 補助接続箱
50 内管 51 水平内管 52 鉛直内管 53 屈曲内管 54 外管
54a 蓋部 54b フランジ 54c 真空引きポート
60A,60B 超電導ケーブル 61A,61B ケーブルコア 62A,62B 超電導導体
63 中間接続スリーブ 64 補強絶縁層 65 円盤状部材 66 接続導体
67 固体絶縁部材 67a フランジ部 68 押さえ部材 69 ボルト
70 中間接続箱 71 冷媒槽 72 真空槽 73 供給路 74 排出路
80 保持具 90 短絡部
100A,100B 超電導ケーブル 101,101A,101B ケーブルコア
102,102A,102B 超電導導体 103 中間接続スリーブ
104,104a,104b 補強絶縁層
110 中間接続箱 111 冷媒槽 112 真空槽
150 終端接続スリーブ 151 リード部 152 ジョイント部
153 ブッシング 153a 導体部 153b 固体絶縁層
200 終端接続箱 201,211 冷媒槽 202,212 真空槽 203,213 供給路
204,214 排出路 205 接地線 210 補助接続箱 220 碍管
1 Filtration means 1a Side wall 1b Bottom 1c Flange
10 Cable core 11 Superconducting conductor 12 End connection sleeve 13 Lead
14 Joint 15 Bushing 15a Conductor 15b Solid insulation layer
16a, 16b Reinforced insulation layer 17 Insulation spacer 20 Termination junction box 21,41 Refrigerant tank
22,42 Vacuum chamber 23,43 Supply channel 23a Inner tube 23b Outer tube 24,44 Discharge channel
25 Ground wire 30 Steel pipe 31 Cover 40 Auxiliary junction box
50 Inner pipe 51 Horizontal inner pipe 52 Vertical inner pipe 53 Bent inner pipe 54 Outer pipe
54a Lid 54b Flange 54c Vacuum port
60A, 60B superconducting cable 61A, 61B cable core 62A, 62B superconducting conductor
63 Intermediate connection sleeve 64 Reinforcing insulation layer 65 Disk-shaped member 66 Connection conductor
67 Solid insulation member 67a Flange 68 Holding member 69 Bolt
70 Junction box 71 Refrigerant tank 72 Vacuum tank 73 Supply path 74 Discharge path
80 Holder 90 Short circuit
100A, 100B Superconducting cable 101,101A, 101B Cable core
102,102A, 102B Superconducting conductor 103 Intermediate connection sleeve
104,104a, 104b Reinforcing insulation layer
110 Intermediate connection box 111 Refrigerant tank 112 Vacuum tank
150 Terminal connection sleeve 151 Lead part 152 Joint part
153 Bushing 153a Conductor 153b Solid insulation layer
200 Terminal box 201,211 Refrigerant tank 202,212 Vacuum tank 203,213 Supply path
204,214 Discharge path 205 Ground wire 210 Auxiliary junction box 220 Steel pipe

Claims (8)

超電導ケーブルに具える超電導導体と、この超電導導体との接続対象とが収納され、超電導導体を冷却する冷媒が内部に流通される接続箱とを具える直流超電導ケーブルの接続構造であって、
前記接続箱には、箱内に冷媒を供給する供給路と、箱外に冷媒を排出する排出路とが接続され、
前記供給路から排出路に至る冷媒流通路に冷媒中の異物を除去するろ過手段を具えることを特徴とする直流超電導ケーブルの接続構造。
A superconducting conductor provided in the superconducting cable and a connection target of the superconducting conductor are housed, and a connection structure of a DC superconducting cable comprising a connection box in which a refrigerant for cooling the superconducting conductor is circulated.
The connection box is connected to a supply path for supplying the refrigerant into the box and a discharge path for discharging the refrigerant outside the box,
A direct current superconducting cable connection structure comprising a filtering means for removing foreign substances in the refrigerant in a refrigerant flow path extending from the supply path to the discharge path.
ろ過手段は、供給路及び排出路の少なくとも一方に配置されることを特徴とする請求項1に記載の直流超電導ケーブルの接続構造。   2. The DC superconducting cable connection structure according to claim 1, wherein the filtering means is disposed in at least one of the supply path and the discharge path. ろ過手段は、冷媒温度領域において使用可能であり、冷媒流通時の輸送圧力に耐え得る材料からなることを特徴とする請求項1に記載の直流超電導ケーブルの接続構造。   2. The connection structure for a DC superconducting cable according to claim 1, wherein the filtering means is made of a material that can be used in a refrigerant temperature region and can withstand a transport pressure during refrigerant circulation. ろ過手段は、メッシュサイズが2〜300μmのフィルタを具えることを特徴とする請求項1に記載の直流超電導ケーブルの接続構造。   2. The DC superconducting cable connection structure according to claim 1, wherein the filtering means includes a filter having a mesh size of 2 to 300 μm. 冷媒流通路に複数のろ過手段を多段に配置したことを特徴とする請求項1に記載の直流超電導ケーブルの接続構造。   2. The connection structure for a DC superconducting cable according to claim 1, wherein a plurality of filtering means are arranged in multiple stages in the refrigerant flow passage. ろ過手段において冷媒の導入側及び冷媒の排出側にバルブを具えることを特徴とする請求項2に記載の直流超電導ケーブルの接続構造。   3. The DC superconducting cable connection structure according to claim 2, wherein a valve is provided on the refrigerant introduction side and the refrigerant discharge side in the filtering means. 接続対象は、常温側導体引出部であることを特徴とする請求項1〜6のいずれかに記載の直流超電導ケーブルの接続構造。   The DC superconducting cable connection structure according to any one of claims 1 to 6, wherein the connection object is a room temperature side conductor lead-out portion. 接続対象は、別の超電導ケーブルに具える超電導導体であることを特徴とする請求項1〜6のいずれかに記載の直流超電導ケーブルの接続構造。   7. The DC superconducting cable connection structure according to claim 1, wherein the connection target is a superconducting conductor provided in another superconducting cable.
JP2005203363A 2005-07-12 2005-07-12 Connection structure for dc superconductive cable Pending JP2007028710A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005203363A JP2007028710A (en) 2005-07-12 2005-07-12 Connection structure for dc superconductive cable
PCT/JP2006/312228 WO2007007515A1 (en) 2005-07-12 2006-06-19 Connection structure of dc superconducting cable
TW095125002A TW200710881A (en) 2005-07-12 2006-07-10 Joint structure of DC superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005203363A JP2007028710A (en) 2005-07-12 2005-07-12 Connection structure for dc superconductive cable

Publications (1)

Publication Number Publication Date
JP2007028710A true JP2007028710A (en) 2007-02-01

Family

ID=37636913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005203363A Pending JP2007028710A (en) 2005-07-12 2005-07-12 Connection structure for dc superconductive cable

Country Status (2)

Country Link
JP (1) JP2007028710A (en)
WO (1) WO2007007515A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170275A (en) * 2008-01-16 2009-07-30 Sumitomo Electric Ind Ltd Terminating connector structure of superconductive cable
JP2013150545A (en) * 2007-03-21 2013-08-01 Nkt Cables Ultera As Termination unit
WO2016027962A1 (en) * 2014-08-19 2016-02-25 엘에스전선 주식회사 Joint box of high-viscosity insulation oil impregnated cable

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918086U (en) * 1972-05-19 1974-02-15
JPS58186322A (en) * 1982-04-26 1983-10-31 昭和電線電纜株式会社 Cooling system for large capacity transmission line
JPH10112925A (en) * 1996-10-02 1998-04-28 Sumitomo Electric Ind Ltd Apparatus and method for cooling cryogenic cable
JP2000213831A (en) * 1999-01-21 2000-08-02 Mitsubishi Electric Corp Refrigerating device
JP2001006837A (en) * 1999-06-16 2001-01-12 Sumitomo Electric Ind Ltd Branch structure of dc superconducting cable
JP2002238144A (en) * 2001-02-13 2002-08-23 Sumitomo Electric Ind Ltd Terminal structure of cryogenic apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04105505A (en) * 1990-08-22 1992-04-07 Toshiba Corp Gas insulated switchgear
JP4162191B2 (en) * 2002-04-05 2008-10-08 住友電気工業株式会社 Cooling method for superconducting cable track

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918086U (en) * 1972-05-19 1974-02-15
JPS58186322A (en) * 1982-04-26 1983-10-31 昭和電線電纜株式会社 Cooling system for large capacity transmission line
JPH10112925A (en) * 1996-10-02 1998-04-28 Sumitomo Electric Ind Ltd Apparatus and method for cooling cryogenic cable
JP2000213831A (en) * 1999-01-21 2000-08-02 Mitsubishi Electric Corp Refrigerating device
JP2001006837A (en) * 1999-06-16 2001-01-12 Sumitomo Electric Ind Ltd Branch structure of dc superconducting cable
JP2002238144A (en) * 2001-02-13 2002-08-23 Sumitomo Electric Ind Ltd Terminal structure of cryogenic apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013150545A (en) * 2007-03-21 2013-08-01 Nkt Cables Ultera As Termination unit
US9331468B2 (en) 2007-03-21 2016-05-03 Nkt Cables Ultera A/S Termination unit
JP2009170275A (en) * 2008-01-16 2009-07-30 Sumitomo Electric Ind Ltd Terminating connector structure of superconductive cable
WO2016027962A1 (en) * 2014-08-19 2016-02-25 엘에스전선 주식회사 Joint box of high-viscosity insulation oil impregnated cable

Also Published As

Publication number Publication date
WO2007007515A1 (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP2006221877A (en) Intermediate connection structure of superconductive cable
US6921865B2 (en) Superconductor connection structure
US7849704B2 (en) Cryogenic apparatus of superconducting equipment
JP4399763B2 (en) DC superconducting cable line
KR101148684B1 (en) Super-conducting cable
JP5351249B2 (en) Superconducting cable terminal connection structure
JP4207223B2 (en) Superconducting cable and superconducting cable line using this superconducting cable
MX2007005769A (en) Power cable line.
JP4201331B2 (en) Phase branching structure of multiphase superconducting cable
JP2005251570A (en) Intermediate connection part of superconducting cable
JP2007028710A (en) Connection structure for dc superconductive cable
JP4374613B2 (en) Intermediate connection structure of superconducting cable
JP2006012776A (en) Superconductive cable
JP2019129583A (en) Terminal structure of superconductor cable
JP6169030B2 (en) Superconducting cable terminal structure
JP4273525B2 (en) Terminal structure of superconducting equipment
JP5796744B2 (en) Superconducting cable system
JPH08321416A (en) Current lead for superconducting device
JP2013073831A (en) Superconducting cable line
JP2019149343A (en) High-temperature superconductive cable, middle connection, and terminal connection
JP2007266508A (en) Conductor lead-out structure of superconducting equipment
KR102179619B1 (en) Very Low Temperature Cooling Device And Connecting Structure of Superconducting Device
JP5454892B2 (en) Normal conductor lead-out structure
JP5754160B2 (en) Insulating joint and refrigerant drawing structure at the end of room temperature insulated superconducting cable
JP4766224B2 (en) DC power transmission method using superconducting cable for DC

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101018