JP2007024061A - Pilot flow control valve device - Google Patents

Pilot flow control valve device Download PDF

Info

Publication number
JP2007024061A
JP2007024061A JP2005202628A JP2005202628A JP2007024061A JP 2007024061 A JP2007024061 A JP 2007024061A JP 2005202628 A JP2005202628 A JP 2005202628A JP 2005202628 A JP2005202628 A JP 2005202628A JP 2007024061 A JP2007024061 A JP 2007024061A
Authority
JP
Japan
Prior art keywords
pilot
valve
pilot valve
main
back pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005202628A
Other languages
Japanese (ja)
Other versions
JP4738077B2 (en
Inventor
Tomoyuki Mizuno
智之 水野
Takashi Yasuo
貴司 安尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP2005202628A priority Critical patent/JP4738077B2/en
Publication of JP2007024061A publication Critical patent/JP2007024061A/en
Application granted granted Critical
Publication of JP4738077B2 publication Critical patent/JP4738077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Driven Valves (AREA)
  • Mechanically-Actuated Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pilot flow control valve device capable of being operated more lightly. <P>SOLUTION: This pilot flow control valve device 10 comprises a main valve 16, a back pressure chamber 24, an introduction small hole 26, a pilot water passage 28, a pilot valve 30 changing the opening of the pilot water passage 28, and a drive shaft 46 driving the pilot valve 30. The flow of a main water passage is controlled by advancing and retreating the main valve 16 following the advancing and retreating motion of the pilot valve 30. The overall pilot valve 30 is installed in a water chamber 44 receiving the pressure of the back pressure chamber 24 in a dipped state. The drive shaft 46 is installed in the direction orthogonal to the advancing and retreating direction of the pilot valve 30 and sealed with O-rings 50-1, 50-2. A cam mechanism 53 advancing and retreating the pilot valve 30 by the rotation of the drive shaft 46 is installed on both a portion between these seals and the pilot valve 30. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は流調弁装置に関し、詳しくは小さな操作力で簡単に操作することのできるパイロット式流調弁装置に関する。   The present invention relates to a flow control device, and more particularly to a pilot-type flow control device that can be easily operated with a small operating force.

従来より水栓として各種のものが用いられているが、これら水栓は主水路の開度を変化させる主弁を主弁座に対して接近離間方向に進退運動させる際に大きな力を要し、操作が重いといった問題があった。
そこで水栓における操作を軽くする手段として、かかる水栓をパイロット式流調弁装置、即ちパイロット弁を進退運動させることによって主弁をこれに追従して進退運動させ、主水路の開度を変化させる方式のパイロット式流調弁装置を内蔵した水栓とすることが考えられる。
Various types of faucets have been used in the past, but these faucets require a large force to move the main valve that changes the opening of the main waterway in the approaching and retracting direction relative to the main valve seat. There was a problem that operation was heavy.
Therefore, as a means to lighten the operation of the faucet, this faucet is a pilot-type flow control device, that is, by moving the pilot valve forward and backward, the main valve is moved forward and backward to change the opening of the main water channel. It is conceivable to use a faucet with a built-in pilot-type flow control device.

図8はその具体例を比較例として示した図である。
同図において200,202は主水路を形成する1次側の流入水路,2次側の流出水路で、204はその主水路上に設けられたダイヤフラム弁から成る主弁である。
この主弁204は、主弁座206に対し接近離間方向に進退運動して主水路の開度を変化させ、その開度に応じて主水路における流量を調節する。
FIG. 8 is a diagram showing a specific example as a comparative example.
In the figure, reference numerals 200 and 202 denote a primary inflow waterway and a secondary outflow waterway that form a main waterway, and 204 denotes a main valve composed of a diaphragm valve provided on the main waterway.
The main valve 204 moves back and forth in the approaching / separating direction with respect to the main valve seat 206 to change the opening of the main water channel, and adjusts the flow rate in the main water channel according to the opening.

208は主弁204の背後に形成された背圧室で、この背圧室208は、主弁204に対して内部の圧力を閉弁方向の押圧力として作用させる。
主弁204には、これを貫通して流入水路200と背圧室208とを連通させる導入小孔210が設けられている。
この導入小孔210は、流入水路200からの水を背圧室208に導いて背圧室208の圧力を増大させる。
主弁204にはまた、これを貫通して背圧室208と流出水路202とを連通させる水抜水路としてのパイロット水路212が設けられている。
このパイロット水路212は、背圧室208内の水を流出水路202に抜いて背圧室208の圧力を減少させる。
Reference numeral 208 denotes a back pressure chamber formed behind the main valve 204. The back pressure chamber 208 applies an internal pressure to the main valve 204 as a pressing force in the valve closing direction.
The main valve 204 is provided with an introduction small hole 210 that passes through the main valve 204 and allows the inflow water channel 200 and the back pressure chamber 208 to communicate with each other.
The introduction small hole 210 leads the water from the inflow water channel 200 to the back pressure chamber 208 and increases the pressure of the back pressure chamber 208.
The main valve 204 is also provided with a pilot water channel 212 as a water drainage channel that passes through the main valve 204 and communicates the back pressure chamber 208 and the outflow water channel 202.
The pilot water channel 212 reduces the pressure in the back pressure chamber 208 by drawing water in the back pressure chamber 208 into the outflow water channel 202.

214は駆動軸216に一体運動状態に設けられたパイロット弁で、このパイロット弁214が主弁204に設けられたパイロット弁座218に対し図中上下方向、即ち主弁204の進退方向と同方向に進退運動することでパイロット水路212の開度(背圧室208に対する開度)が変化せしめられる。
尚220は環状シール部材としてのOリングで、このOリング220によって、パイロット弁214及びこれと一体の駆動軸216と背圧室208との間が水密にシールされている。
Reference numeral 214 denotes a pilot valve provided integrally with the drive shaft 216. The pilot valve 214 is in the vertical direction in the figure with respect to the pilot valve seat 218 provided on the main valve 204, that is, in the same direction as the forward and backward movement of the main valve 204. By moving forward and backward, the opening of the pilot water channel 212 (opening with respect to the back pressure chamber 208) is changed.
Reference numeral 220 denotes an O-ring as an annular seal member. The O-ring 220 seals the pilot valve 214 and the drive shaft 216 integrated therewith and the back pressure chamber 208 in a watertight manner.

この図8に示すパイロット式流調弁装置にあっては、パイロット弁214がパイロット弁座218に向かって前進運動すると、パイロット弁214とパイロット弁座218との隙間が小さくなってパイロット水路212の開度が小となり、背圧室208からパイロット水路212を通じて流出水路202に抜ける水の量が少なくなって背圧室208の圧力は増大する。
また一方パイロット弁214が図中上向きに後退運動すると、パイロット弁214とパイロット弁座218との隙間が大きくなってパイロット水路212の開度が大となり、ここにおいて背圧室208からパイロット水路212を通じて流出水路202に抜ける水の量が多くなって背圧室208の圧力が減少する。
そして主弁204は、その背圧室208の圧力と流入水路200の圧力とをバランスさせるようにして、パイロット弁214の進退運動に追従して図中上下方向に進退運動し、主水路の開度を変化させる。
そしてその主水路の開度の変化に応じて、流入水路200から流出水路202への水の流量が調節される。
In the pilot type flow regulating device shown in FIG. 8, when the pilot valve 214 moves forward toward the pilot valve seat 218, the gap between the pilot valve 214 and the pilot valve seat 218 becomes small, and the pilot water channel 212 The opening degree becomes small, the amount of water flowing from the back pressure chamber 208 to the outflow water channel 202 through the pilot water channel 212 decreases, and the pressure in the back pressure chamber 208 increases.
On the other hand, when the pilot valve 214 moves backward in the figure, the clearance between the pilot valve 214 and the pilot valve seat 218 increases, and the opening of the pilot water passage 212 increases, and here, the back pressure chamber 208 passes through the pilot water passage 212. The amount of water that flows into the outflow water channel 202 increases and the pressure in the back pressure chamber 208 decreases.
Then, the main valve 204 moves back and forth in the vertical direction in the figure following the forward and backward movement of the pilot valve 214 so as to balance the pressure of the back pressure chamber 208 and the pressure of the inflow water passage 200 to open the main water passage. Change the degree.
The flow rate of water from the inflow water channel 200 to the outflow water channel 202 is adjusted according to the change in the opening of the main water channel.

この図8に示すパイロット式流調弁装置にあっては、背圧室208の圧力の増減に基づいて主弁204を進退運動させ、そしてその背圧室208の圧力の増減をパイロット弁214の進退運動により制御するようになしていることから、小さい力で主弁204を開閉動作させることができ、軽い操作で流量調節を行うことができる特長を有する。   In the pilot type flow regulating device shown in FIG. 8, the main valve 204 is moved forward and backward based on the increase / decrease of the pressure in the back pressure chamber 208, and the increase / decrease of the pressure in the back pressure chamber 208 is controlled by the pilot valve 214. Since the main valve 204 can be opened and closed with a small force because it is controlled by advancing and retracting movement, the flow rate can be adjusted with a light operation.

しかしながらこの図8に示すパイロット式流調弁装置の場合、パイロット弁214及びこれと一体の駆動軸216に対して背圧室208の圧力が図中上向き、即ちパイロット弁214の後退方向に作用するため、パイロット弁214を閉弁方向、即ち前進方向に駆動軸216にて駆動する際に、その圧力に抗してこれを前進移動させなければならず、その分操作が重くなるといった問題を内包している。   However, in the case of the pilot type flow regulating device shown in FIG. 8, the pressure in the back pressure chamber 208 acts upward in the drawing, that is, in the backward direction of the pilot valve 214 with respect to the pilot valve 214 and the drive shaft 216 integrated therewith. Therefore, when the pilot valve 214 is driven by the drive shaft 216 in the valve closing direction, that is, in the forward direction, the pilot valve 214 must be moved forward against the pressure, and the operation becomes heavy accordingly. is doing.

本発明はこのような課題を解決すべく案出されたものである。
尚本発明に対する先行技術として下記特許文献1に開示されたものがある。
この特許文献1に開示のものは、アクチュエータの出力軸とパイロット弁とにまたがってカム機構を設け、出力軸の回転運動をカム機構によってパイロット弁の進退方向の運動に変換するようになしたものであるが、この特許文献1に開示のものにおいて、パイロット弁には圧力室の圧力が後退方向に作用しており、この点で図8に示すものと同様で、パイロット弁を閉弁方向に駆動する際に背圧室内の圧力に抵抗してこれを駆動しなければならず、その分操作が重くなるといった問題、即ち上記と同様の問題を内包するもので、本発明の課題を解決することのできないものである。
The present invention has been devised to solve such problems.
As a prior art for the present invention, there is one disclosed in Patent Document 1 below.
The one disclosed in Patent Document 1 is provided with a cam mechanism that spans the output shaft of the actuator and the pilot valve, and converts the rotational motion of the output shaft into motion of the pilot valve in the forward / backward direction by the cam mechanism. However, in the one disclosed in Patent Document 1, the pressure in the pressure chamber acts on the pilot valve in the backward direction, and in this respect, the pilot valve is in the valve closing direction in the same manner as shown in FIG. When driving, the pressure in the back pressure chamber must be resisted and driven, and the operation becomes heavier, that is, the problem similar to the above is included, and the problem of the present invention is solved. It cannot be done.

特開平1−229184号公報JP-A-1-229184

本発明は以上のような事情を背景とし、従来に増して操作を軽くすることのできるパイロット式流調弁装置を提供することを目的としてなされたものである。   The present invention has been made for the purpose of providing a pilot-type flow control device that can be lighter in operation than the conventional one against the background described above.

而して請求項1のものは、(イ)主弁座に対して接近離間方向に進退運動して主水路の開度を変化させる主弁と、(ロ)該主弁の背後に形成され、内部の圧力を該主弁に対して閉弁方向の押圧力として作用させる背圧室と、(ハ)前記主水路における1次側の流入水路の水を該背圧室に導いて該背圧室の圧力を増大させる導入小孔と、(ニ)該背圧室と前記主水路における2次側の流出水路とを連通させる状態に前記主弁を貫通して設けられ、該背圧室の水を該流出水路に抜いて該背圧室の圧力を減少させるパイロット水路と、(ホ)該背圧室側に設けられ、前記主弁に設けられたパイロット弁座に対して接近離間方向に進退運動して、該パイロット水路の開度を変化させるパイロット弁と、(ヘ)該パイロット弁を駆動する駆動軸とを備え、該パイロット弁の進退運動に追従して前記主弁を進退運動させて前記主水路の流量調節を行うパイロット式流調弁装置において、前記パイロット弁の全体を前記背圧室の圧力の作用する水室内に水没状態に設けるとともに、前記駆動軸を該パイロット弁の進退方向に対して交差する方向に且つ該水室を横切るように設けて、軸方向の隔たった箇所で該水室の互いに対向する両壁にシール部材にてシールし、それらシール部間の部位と前記パイロット弁とにまたがって該駆動軸の回転若しくは軸方向の運動を該パイロット弁の前記進退方向の運動に変換する運動変換機構を設けたことを特徴とする。   Thus, according to the first aspect of the present invention, (a) a main valve that moves forward and backward in the approaching and separating direction with respect to the main valve seat to change the opening of the main water channel, and (b) formed behind the main valve. A back pressure chamber in which the internal pressure acts on the main valve as a pressing force in the valve closing direction; and (c) water in a primary inflow water channel in the main water channel is guided to the back pressure chamber. An inlet small hole for increasing the pressure of the pressure chamber; and (d) the back pressure chamber provided through the main valve so as to communicate with the back pressure chamber and the secondary outflow water channel in the main water channel. A pilot water channel that reduces the pressure in the back pressure chamber by draining the water into the outflow water channel, and (e) an approach and separation direction with respect to the pilot valve seat provided on the back pressure chamber side and provided on the main valve A pilot valve that moves forward and backward to change the opening of the pilot water channel, and (f) a drive shaft that drives the pilot valve, the pilot valve In a pilot-type flow control device that adjusts the flow rate of the main water channel by moving the main valve forward and backward in accordance with advancing and retracting movement, the entire pilot valve is submerged in a water chamber in which the pressure of the back pressure chamber acts The drive shaft is provided in a direction crossing the advancing / retreating direction of the pilot valve and across the water chamber, and seals the opposite walls of the water chamber at spaced locations in the axial direction. Provided with a motion conversion mechanism that seals with a member and converts rotation or axial motion of the drive shaft into motion of the pilot valve in the forward / backward direction across the portion between the seal portions and the pilot valve It is characterized by.

請求項2のものは、請求項1において、前記運動変換機構がカム機構であることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the motion conversion mechanism is a cam mechanism.

請求項3のものは、請求項1において、前記運動変換機構がギア機構であることを特徴とする。   According to a third aspect of the present invention, in the first aspect, the motion conversion mechanism is a gear mechanism.

発明の作用・効果Effects and effects of the invention

以上のように本発明は、パイロット弁と駆動軸とを分けて、パイロット弁の全体を背圧室の圧力の作用する水室内に水没状態に設けるとともに、駆動軸をパイロット弁の進退方向に対して交差する方向に且つ水室を横切るように設けてシール部材にて水室に対しシールをなし、そしてシール部間の部位とパイロット弁とにまたがって運動変換機構を設けて、駆動軸の回転若しくは軸方向の運動をパイロット弁の進退方向の運動に変換するようになしたもので、本発明においては、パイロット弁の全体が水没状態にあることからかかるパイロット弁に対して背圧室の圧力が後退方向に作用することがなく、即ちかかるパイロット弁を背圧室の圧力に抗して前進方向に駆動しなくても良く、パイロット弁に対する前進方向の駆動を少ない力で行うことができる。   As described above, according to the present invention, the pilot valve and the drive shaft are separated, the entire pilot valve is provided in a submerged state in the water chamber in which the pressure of the back pressure chamber acts, and the drive shaft is disposed in the forward / backward direction of the pilot valve. In order to cross the water chamber and cross the water chamber, the seal member seals the water chamber, and a motion conversion mechanism is provided across the part between the seals and the pilot valve to rotate the drive shaft. Alternatively, the movement in the axial direction is converted into the movement in the advancing / retreating direction of the pilot valve. In the present invention, since the entire pilot valve is submerged, the pressure in the back pressure chamber is reduced with respect to the pilot valve. Does not act in the backward direction, that is, it is not necessary to drive the pilot valve in the forward direction against the pressure in the back pressure chamber, and the pilot valve is driven in the forward direction with a small force. Door can be.

また駆動軸に対しては軸方向に隔たったシール部のそれぞれに背圧室の圧力が互いに逆向きに働くため、パイロット弁を駆動する際に駆動軸自体に対し背圧室の圧力が抵抗力となって働くといったことがなく、駆動軸自体の操作も少ない力で行うことができる。
その結果として、本発明によれば僅かな力で軽やかにパイロット弁の駆動、ひいては流量調節を行うことが可能となる。
In addition, since the pressure in the back pressure chamber acts in the opposite direction to each of the seal portions separated in the axial direction with respect to the drive shaft, the pressure in the back pressure chamber is resistant to the drive shaft itself when the pilot valve is driven. The drive shaft itself can be operated with a small force.
As a result, according to the present invention, the pilot valve can be driven and the flow rate can be adjusted with a small force.

ここで駆動軸は好適には軸周りに回転運動するようになしておくことができる。
また駆動軸はパイロット弁の進退方向に対して直交する方向に配向させておくことができる。
The drive shaft here can preferably be adapted to rotate around the axis.
The drive shaft can be oriented in a direction perpendicular to the advance / retreat direction of the pilot valve.

本発明においては、上記運動変換機構をカム機構となすことができ(請求項2)、或いはかかる運動変換機構をギア機構となすことができる(請求項3)。
この場合においてギア機構はピニオンギアとラックギアとを含むものとなしておくことができる。
In the present invention, the motion conversion mechanism can be a cam mechanism (Claim 2), or the motion conversion mechanism can be a gear mechanism (Claim 3).
In this case, the gear mechanism can include a pinion gear and a rack gear.

次に本発明の実施形態を図面に基づいて詳しく説明する。
図1において、10は本実施形態のパイロット式流調弁装置で、12,14は主水路を形成する1次側の流入水路,2次側の流出水路で、16はその主水路上に設けられたダイヤフラム弁から成る主弁である。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
In FIG. 1, 10 is a pilot-type flow regulating device of the present embodiment, 12 and 14 are a primary inflow water channel and a secondary outflow water channel forming a main water channel, and 16 is provided on the main water channel. It is a main valve consisting of a diaphragm valve.

主弁16は、主弁本体18とこれにより保持されたゴム製のダイヤフラム膜20とから成っている。
この主弁16は、主弁座22に対して接近離間方向に進退運動して主水路の開度を変化させる。
詳しくは、主弁座22への主弁16の着座によって主水路を遮断し、また主弁座22から図中上向きに離間することによって主水路を開放する。
また主弁座22からの離間量に応じて主水路の開度を大小変化させ、主水路を流れる水の流量を調節する。
The main valve 16 includes a main valve body 18 and a rubber diaphragm film 20 held thereby.
The main valve 16 moves forward and backward in the approaching / separating direction with respect to the main valve seat 22 to change the opening of the main water channel.
Specifically, the main water passage is blocked by the main valve 16 being seated on the main valve seat 22, and the main water passage is opened by being separated upward from the main valve seat 22 in the figure.
Further, the opening degree of the main water channel is changed in accordance with the distance from the main valve seat 22 to adjust the flow rate of the water flowing through the main water channel.

この主弁16の図中上側、即ち主弁16に対し流出水路14と反対側に背圧室24が設けられている。
背圧室24は、内部の圧力を主弁16に対し閉弁方向の押圧力として作用させる。
主弁16には、これを貫通して1次側の流入水路12と背圧室24とを連通させる導入小孔26が設けられている。
この導入小孔26は、流入水路12からの水を背圧室24に導いて背圧室24の圧力を増大させる。
A back pressure chamber 24 is provided on the upper side of the main valve 16 in the figure, that is, on the side opposite to the outflow water passage 14 with respect to the main valve 16.
The back pressure chamber 24 causes the internal pressure to act on the main valve 16 as a pressing force in the valve closing direction.
The main valve 16 is provided with an introduction small hole 26 that passes through the main valve 16 and allows the primary inflow water passage 12 and the back pressure chamber 24 to communicate with each other.
The introduction small hole 26 guides the water from the inflow water channel 12 to the back pressure chamber 24 and increases the pressure of the back pressure chamber 24.

主弁16にはまた、これを貫通して背圧室24と2次側の流出水路14とを連通させる水抜き水路としてのパイロット水路28が設けられている。
このパイロット水路28は、背圧室24内の水を流出水路14に抜いて背圧室24の圧力を減少させる。
The main valve 16 is also provided with a pilot water channel 28 as a water drain channel that passes through the main valve 16 and communicates the back pressure chamber 24 and the secondary outlet water channel 14.
The pilot water channel 28 reduces the pressure in the back pressure chamber 24 by drawing water in the back pressure chamber 24 into the outflow water channel 14.

30は円柱形状をなすプランジャから成るパイロット弁で、上部に大径の頭部32を有している。頭部32の頂面は部分球面形状に形成されている。
このパイロット弁30とボデー34との間、詳しくはパイロット弁30における大径の頭部32とボデー34との間には、パイロット弁30を図中上方向、即ち後退方向に付勢する復帰スプリング36が介装され、パイロット弁30に対し図中上向きにばね力を及ぼしている。
Reference numeral 30 is a pilot valve made of a cylindrical plunger, and has a large-diameter head 32 at the top. The top surface of the head 32 is formed in a partial spherical shape.
Between the pilot valve 30 and the body 34, more specifically, between the large-diameter head 32 and the body 34 of the pilot valve 30, a return spring that urges the pilot valve 30 in the upward direction in FIG. 36 is interposed, and exerts a spring force upward on the pilot valve 30 in the figure.

このパイロット弁30は図中上下方向、即ち主弁16に設けられたパイロット弁座38(図2(B)参照)に対し図中上下方向(軸方向)に進退運動して、パイロット水路28の開度を変化させる。
詳しくは、パイロット弁30がパイロット弁座38に着座することでパイロット水路28が遮断され、またパイロット弁30がパイロット弁座38から図中上向きに離間することでパイロット水路28が開放される。
更にパイロット弁30のパイロット弁座38からの離間量に応じてパイロット水路28の開度が変化せしめられる。
The pilot valve 30 moves back and forth in the vertical direction in the drawing, that is, in the vertical direction (axial direction) in the drawing with respect to the pilot valve seat 38 (see FIG. 2B) provided in the main valve 16. Change the opening.
Specifically, the pilot water passage 28 is shut off when the pilot valve 30 is seated on the pilot valve seat 38, and the pilot water passage 28 is opened when the pilot valve 30 is separated upward from the pilot valve seat 38 in the figure.
Further, the opening degree of the pilot water passage 28 is changed in accordance with the distance of the pilot valve 30 from the pilot valve seat 38.

40は背圧室24に対してパイロット弁30周りの連通路42を介して連通状態に設けられた連通室で、本実施形態ではこれら背圧室24と連通路42及び連通室40とで背圧室24と同圧の水室44が構成されている。
パイロット弁30は、この水室44の内部に水没状態に設けられており、従ってパイロット弁30は背圧室24の圧力による抵抗を受けることなく図中上下方向に進退運動することが可能である。
Reference numeral 40 denotes a communication chamber provided in communication with the back pressure chamber 24 via a communication passage 42 around the pilot valve 30. In this embodiment, the back pressure chamber 24, the communication passage 42, and the communication chamber 40 are connected to the back pressure chamber 24. A water chamber 44 having the same pressure as the pressure chamber 24 is configured.
The pilot valve 30 is provided in a submerged state inside the water chamber 44. Therefore, the pilot valve 30 can move back and forth in the vertical direction in the figure without receiving resistance due to the pressure of the back pressure chamber 24. .

46は駆動軸で、パイロット弁30の進退方向と直交する方向に図中横向きに配向され、連通室40を横切る状態でボデー34に組み付けられている。
駆動軸46は、その一端側即ち図中左端側がボデー34から突き出す状態で先端部と中間部とがボデー34に形成された嵌合孔48-1,48-2にそれぞれ回転可能に嵌合されている。
Reference numeral 46 denotes a drive shaft which is oriented sideways in the drawing in a direction orthogonal to the advancing / retreating direction of the pilot valve 30 and is assembled to the body 34 in a state of crossing the communication chamber 40.
The drive shaft 46 is rotatably fitted in fitting holes 48-1 and 48-2 formed in the body 34 at the tip end portion and the intermediate portion with one end side thereof, that is, the left end side in the figure protruding from the body 34. ing.

駆動軸46には、その先端部と中間部とに環状溝が形成されていてそこにシールリングとしての弾性を有するOリング50-1,50-2(図3参照)が嵌着されており、これらOリング50-1,50-2にて駆動軸46と連通室40、即ち水室44との間が水室44の互いに対向する両壁で水密にシールされている。
尚、図3中矢印で示しているように先端部のOリング50-1については水室44の圧力は図中右向きに作用し、また中間部のOリング50-2に対しては水室44の圧力は図中左向きに作用する。
それら反対方向に作用する圧力は互いに相殺され、従って駆動軸46に対し水室44の圧力は軸方向に作用していない。
The drive shaft 46 has annular grooves formed at the tip and intermediate portions thereof, and O-rings 50-1 and 50-2 (see FIG. 3) having elasticity as seal rings are fitted therein. These O-rings 50-1 and 50-2 are watertightly sealed between the drive shaft 46 and the communication chamber 40, i.e., the water chamber 44, by both opposing walls of the water chamber 44.
As indicated by the arrows in FIG. 3, the pressure in the water chamber 44 acts on the right side in the drawing for the O-ring 50-1 at the tip, and the water chamber for the O-ring 50-2 in the middle. The pressure of 44 acts to the left in the figure.
The pressures acting in the opposite directions cancel each other, so that the pressure of the water chamber 44 against the drive shaft 46 does not act in the axial direction.

尚駆動軸46には径方向に突出したフランジ部52が設けられており、このフランジ部52によって駆動軸46が図中左方向に抜止めされている。
この駆動軸46の左側に突き出した部分には、図示を省略するハンドルが一体回転状態に組み付けられ、ハンドルを介して駆動軸46に回転操作力が加えられるようになっている。
The drive shaft 46 is provided with a flange portion 52 projecting in the radial direction, and the drive shaft 46 is prevented from being pulled out in the left direction in the drawing by the flange portion 52.
A handle (not shown) is assembled in a unitary rotation state at a portion protruding to the left side of the drive shaft 46, and a rotational operation force is applied to the drive shaft 46 via the handle.

この実施形態では、駆動軸46におけるOリング50-1と50-2との間の部位と、パイロット弁30とにまたがってカム機構(運動変換機構)53が設けられている。
詳しくは、駆動軸46の先端部と中間部との間の部位、即ちOリング50-1と50-2との間の部位に偏芯カム54が一体回転状態に設けられており(図2,図3参照)、偏芯カム54の外周面がパイロット弁30の上端に当接させられている。
この偏芯カム54は、駆動軸46の回転に伴って駆動軸46の軸心周りに回転運動し、これに伴ってパイロット弁30を図中下向き即ち閉弁方向に前進運動させる働きをなす。
尚パイロット弁30の図中上向き即ち後退方向の運動は、偏芯カム54の回転に伴って復帰スプリング36がパイロット弁30を図中上向きに押し上げることで行われる。
In this embodiment, a cam mechanism (motion conversion mechanism) 53 is provided across the portion of the drive shaft 46 between the O-rings 50-1 and 50-2 and the pilot valve 30.
Specifically, an eccentric cam 54 is provided in an integrally rotated state at a portion between the tip portion and the intermediate portion of the drive shaft 46, that is, a portion between the O-rings 50-1 and 50-2 (FIG. 2). 3), the outer peripheral surface of the eccentric cam 54 is brought into contact with the upper end of the pilot valve 30.
The eccentric cam 54 rotates around the axis of the drive shaft 46 as the drive shaft 46 rotates, and in accordance with this, moves the pilot valve 30 forward in the drawing, that is, in the valve closing direction.
The upward movement of the pilot valve 30 in the drawing, that is, the backward movement, is performed by the return spring 36 pushing the pilot valve 30 upward in the drawing as the eccentric cam 54 rotates.

この実施形態では、図1に示す状態即ち主弁16が主弁座22に着座し、またパイロット弁30がパイロット弁座38に着座した状態、つまり主弁16が閉弁した状態の下で駆動軸46を回転させると、これに伴って偏芯カム54が一体に回転運動し、かかる偏芯カム54の図中下端の位置を漸次上方に変位させて行く(図2(B)参照)。
これに伴ってパイロット弁30が復帰スプリング36の付勢力で上方に後退運動する。
In this embodiment, the main valve 16 is seated on the main valve seat 22, and the pilot valve 30 is seated on the pilot valve seat 38, ie, the main valve 16 is closed in the state shown in FIG. When the shaft 46 is rotated, the eccentric cam 54 rotates integrally with the shaft 46, and the position of the lower end of the eccentric cam 54 in the drawing is gradually displaced upward (see FIG. 2B).
Along with this, the pilot valve 30 moves backward by the urging force of the return spring 36.

また一方偏芯カム54が駆動軸46と一体回転運動してその下端の位置を漸次下方に変位させることで、パイロット弁30が図中下向きに即ち閉弁方向に前進運動させられ、そして偏芯カム54の下端位置が最も下方に位置したところで図1に示す状態となって、パイロット弁30が閉弁状態となる。
而してパイロット弁30が図1に示す閉弁状態から駆動軸46の回転運動、即ち偏芯カム54の回転運動に伴って一定量図中上向きに前進移動すると、かかるパイロット弁30とパイロット弁座38との間に隙間が生ずる(図4(I)参照)。
On the other hand, the eccentric cam 54 rotates integrally with the drive shaft 46 and gradually moves the position of the lower end thereof downward, so that the pilot valve 30 is moved forward in the drawing, that is, in the valve closing direction, and is eccentric. When the lower end position of the cam 54 is located at the lowest position, the state shown in FIG. 1 is obtained, and the pilot valve 30 is closed.
Thus, when the pilot valve 30 moves forward in the figure by a certain amount in accordance with the rotational movement of the drive shaft 46, that is, the rotational movement of the eccentric cam 54, from the closed state shown in FIG. A gap is formed between the seat 38 (see FIG. 4I).

するとその隙間を通じて背圧室24内の水がパイロット水路28を通じて流出水路14側に抜き出され、背圧室24の圧力が減少する。
ここにおいて流入水路12の圧力が背圧室24の圧力に打ち勝つに到って、主弁16が図4(II)に示しているように図中上向きに上昇、即ち後退運動させられ、そして背圧室24の圧力と流入水路12の圧力とが丁度バランスした位置で主弁16が停止する。
このとき主弁16と主弁座22との間には隙間が生じて、その隙間を通じて流入水路12から流出水路14へと水が流れ込む。
Then, the water in the back pressure chamber 24 is drawn out to the outflow water channel 14 through the pilot water channel 28 through the gap, and the pressure in the back pressure chamber 24 decreases.
Here, when the pressure of the inflow water channel 12 overcomes the pressure of the back pressure chamber 24, the main valve 16 is raised upward, that is, moved backward as shown in FIG. The main valve 16 stops at a position where the pressure in the pressure chamber 24 and the pressure in the inflow water channel 12 are just balanced.
At this time, a gap is formed between the main valve 16 and the main valve seat 22, and water flows from the inflow water channel 12 to the outflow water channel 14 through the gap.

この状態から更にパイロット弁30が図4(III)に示しているように図中上向きに後退運動すると、背圧室24の圧力と流入水路12の圧力とをバランスさせるようにして主弁16がパイロット弁30の後退運動に追従して図中上向きに後退運動し、主水路における開度を更に大として水の流量を増大させる。   When the pilot valve 30 further moves upward in the drawing as shown in FIG. 4 (III) from this state, the main valve 16 is made to balance the pressure of the back pressure chamber 24 and the pressure of the inflow water passage 12. Following the reverse movement of the pilot valve 30, the reverse movement is made upward in the figure, and the flow rate of water is increased by further increasing the opening in the main water channel.

一方、駆動軸46を逆方向に回転操作すると、偏芯カム54の回転運動に伴ってパイロット弁30が図5(I)に示しているように図中下向きに前進運動し、パイロット弁30とパイロット弁座38との間の隙間を小さくする。
すると背圧室24の圧力が増大して流入水路12の圧力に打ち勝つに到り、これにより主弁16がそれらの圧力をバランスさせるように図5(II)に示しているように図中下向きに前進運動し、主弁座22との間の隙間を小さくする。即ち流入水路12から流出水路14への水の流量を減少させる。
On the other hand, when the drive shaft 46 is rotated in the opposite direction, the pilot valve 30 moves forward downward in the drawing as shown in FIG. The clearance with the pilot valve seat 38 is reduced.
As a result, the pressure in the back pressure chamber 24 increases and overcomes the pressure in the inflow water channel 12, so that the main valve 16 balances the pressure downward as shown in FIG. 5 (II). The clearance between the main valve seat 22 and the main valve seat 22 is reduced. That is, the flow rate of water from the inflow water channel 12 to the outflow water channel 14 is decreased.

この状態から更に偏芯カム54の下端の位置が下方に変位すると、パイロット弁30が図5(III)に示しているように図中下向きに前進運動し、これに追従して主弁16が図中下向きに前進運動し、水の流量を更に減少させる。
そしてパイロット弁30が主弁16に形成されたパイロット弁座38に着座し、また主弁16が主弁座22に着座することで、流入水路12と流出水路14とが遮断された状態となって、ここに流入水路12から流出水路14への水の流れが停止する(図1に示す状態)。
When the position of the lower end of the eccentric cam 54 is further displaced downward from this state, the pilot valve 30 moves forward in the drawing downward as shown in FIG. 5 (III), and the main valve 16 follows the movement. It moves forward downward in the figure to further reduce the water flow rate.
The pilot valve 30 is seated on a pilot valve seat 38 formed on the main valve 16, and the main valve 16 is seated on the main valve seat 22, whereby the inflow water passage 12 and the outflow water passage 14 are blocked. Thus, the flow of water from the inflow water channel 12 to the outflow water channel 14 stops here (state shown in FIG. 1).

これら図4及び図5に示しているように、この実施形態においてはパイロット弁30と主弁16との間、詳しくはパイロット弁座38との間に完全閉弁状態(図1に示す状態)を除いて常時それらの間に隙間を生ぜしめる。そしてその隙間を大きく又は小さく変化させることで主弁16が進退運動し、主水路の水の流量を調節する。   4 and 5, in this embodiment, the valve is completely closed between the pilot valve 30 and the main valve 16, more specifically between the pilot valve seat 38 (the state shown in FIG. 1). Always leave a gap between them except. Then, the main valve 16 moves forward and backward by changing the gap large or small, and adjusts the flow rate of water in the main water channel.

以上のような本実施形態のパイロット式流調弁装置10によれば、パイロット弁30の全体が水没状態にあることから、かかるパイロット弁30に対して背圧室24の圧力が後退方向に作用することがなく、かかるパイロット弁30を背圧室24の圧力に抗して前進方向に駆動しなくても良い。これによりパイロット弁30に対する前進方向の駆動を少ない力で行うことができる。   According to the pilot flow regulating device 10 of the present embodiment as described above, since the entire pilot valve 30 is submerged, the pressure of the back pressure chamber 24 acts on the pilot valve 30 in the backward direction. The pilot valve 30 may not be driven in the forward direction against the pressure in the back pressure chamber 24. Accordingly, the pilot valve 30 can be driven in the forward direction with a small force.

また駆動軸46に対しては、軸方向に隔たったOリング50-1,50-2のそれぞれに背圧室24の圧力が互いに逆向きに働くため、パイロット弁30を駆動する際に駆動軸46自体に対し背圧室24の圧力が抵抗力となって働くといったことがなく、駆動軸46自体の操作も少ない力で行うことができる。
その結果として、本実施形態によれば僅かな力で軽やかにパイロット弁30の駆動、ひいては流量調節を行うことができる。
Further, since the pressure of the back pressure chamber 24 works in the opposite directions to the O-rings 50-1 and 50-2 separated in the axial direction with respect to the drive shaft 46, the drive shaft is driven when the pilot valve 30 is driven. The pressure in the back pressure chamber 24 does not act as a resistance against 46 itself, and the operation of the drive shaft 46 itself can be performed with a small force.
As a result, according to the present embodiment, the pilot valve 30 can be driven and the flow rate can be adjusted with a slight force.

図6は本発明の他の実施形態を示している。
この例では水室44が背圧室24単独で構成されており、その内部にパイロット弁56が水没状態に設けられている。
パイロット弁56は略円柱形状に形成されており、かかるパイロット弁56が背圧室24に設けられた半円形状のガイド58の案内面60にて上下方向に摺動案内されるようになっている。
FIG. 6 shows another embodiment of the present invention.
In this example, the water chamber 44 is constituted by the back pressure chamber 24 alone, and a pilot valve 56 is provided in a submerged state.
The pilot valve 56 is formed in a substantially cylindrical shape, and the pilot valve 56 is slidably guided in a vertical direction by a guide surface 60 of a semicircular guide 58 provided in the back pressure chamber 24. Yes.

駆動軸46は、この背圧室24即ち水室44を横切る状態に且つパイロット弁56の進退方向と直角方向に配設されており、そして先端部のOリング50-1と中間部のOリング50-2との間の部位とパイロット弁56とにまたがって、運動変換機構としてのギア機構61が設けられている。   The drive shaft 46 is disposed so as to cross the back pressure chamber 24 or the water chamber 44 and in a direction perpendicular to the advancing / retreating direction of the pilot valve 56, and an O-ring 50-1 at the tip and an O-ring at the middle. A gear mechanism 61 as a motion conversion mechanism is provided across the region between the valve 50-2 and the pilot valve 56.

このギア機構61は駆動軸46に一体回転状態に設けられたピニオンギア62と、パイロット弁56に設けられたラックギア64とから成っている。
これらピニオンギア62及びラックギア64は互いに噛み合わされており、駆動軸46と一体にピニオンギア62が正逆両方向に回転することで、パイロット弁56が図6(B)中上下方向即ち進退方向に駆動されるようになっている。
The gear mechanism 61 includes a pinion gear 62 provided on the drive shaft 46 so as to be integrally rotated, and a rack gear 64 provided on the pilot valve 56.
The pinion gear 62 and the rack gear 64 are meshed with each other, and the pilot valve 56 is driven in the up and down direction, that is, in the forward and backward direction in FIG. It has come to be.

この図6の実施形態では、ピニオンギア62の正逆両方向の回転によってパイロット弁56が前進方向にも後退方向にも駆動され、従ってこの実施形態では上記の復帰スプリング36を省略することができる。   In the embodiment of FIG. 6, the pilot valve 56 is driven both in the forward direction and in the backward direction by the rotation of the pinion gear 62 in both forward and reverse directions. Therefore, in this embodiment, the return spring 36 can be omitted.

図7は本発明の更に他の実施形態を示している。
この内図7(A)の例は、駆動軸46を軸方向に進退運動させるようにし、そしてその駆動軸46にカム面66を有するカム68を一体に設けてカム機構53を構成した例である。
一方図7(B)の例は、駆動軸46を回転運動させるようにし、そしてその駆動軸46にクランク部70を設けて、そのクランク部70とパイロット弁72とを連結部材74にて連結し、駆動軸46の回転運動によってパイロット弁72を図中上下方向に進退運動させるようになした例である。
ここで連結部材74は上端部と下端部とがそれぞれクランク部70及びパイロット弁72に対して相対回動可能にそれぞれに接続されている。
FIG. 7 shows still another embodiment of the present invention.
The example of FIG. 7A is an example in which the cam mechanism 53 is configured by moving the drive shaft 46 forward and backward in the axial direction and integrally providing a cam 68 having a cam surface 66 on the drive shaft 46. is there.
On the other hand, in the example of FIG. 7B, the drive shaft 46 is rotated, and a crank portion 70 is provided on the drive shaft 46, and the crank portion 70 and the pilot valve 72 are connected by a connecting member 74. In this example, the pilot valve 72 is moved back and forth in the vertical direction in the figure by the rotational movement of the drive shaft 46.
Here, the connecting member 74 has an upper end portion and a lower end portion connected to the crank portion 70 and the pilot valve 72 so as to be rotatable relative to each other.

以上本発明の実施形態を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた形態で構成可能である。   Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be configured in various forms without departing from the spirit of the present invention.

本発明の一実施形態であるパイロット式流調弁装置を示す断面図である。It is sectional drawing which shows the pilot type flow regulating apparatus which is one Embodiment of this invention. 同パイロット式流調弁装置の要部拡大図である。It is a principal part enlarged view of the pilot type flow control apparatus. 図2とは別の要部拡大図である。FIG. 3 is an enlarged view of a main part different from FIG. 2. 同パイロット式流調弁装置の作用説明図である。It is operation | movement explanatory drawing of the same pilot type flow control apparatus. 図4に続く作用説明図である。FIG. 5 is an operation explanatory diagram following FIG. 4. 本発明の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of this invention. 本発明の更に他の実施形態を示す図である。It is a figure which shows other embodiment of this invention. 本発明のパイロット式流調弁装置に対する比較例を示す比較例図である。It is a comparative example figure which shows the comparative example with respect to the pilot type flow regulating apparatus of this invention.

符号の説明Explanation of symbols

10 パイロット式流調弁装置
12 流入水路
14 流出水路
16 主弁
22 主弁座
24 背圧室
26 導入小孔
28 パイロット水路
30 パイロット弁
38 パイロット弁座
44 水室
46 駆動軸
50-1,50-2 Oリング
53 カム機構
61 ギア機構
DESCRIPTION OF SYMBOLS 10 Pilot type flow control apparatus 12 Inflow water channel 14 Outflow water channel 16 Main valve 22 Main valve seat 24 Back pressure chamber 26 Introduction small hole 28 Pilot water channel 30 Pilot valve 38 Pilot valve seat 44 Water chamber 46 Drive shaft 50-1, 50- 2 O-ring 53 Cam mechanism 61 Gear mechanism

Claims (3)

(イ)主弁座に対して接近離間方向に進退運動して主水路の開度を変化させる主弁と
(ロ)該主弁の背後に形成され、内部の圧力を該主弁に対して閉弁方向の押圧力として作用させる背圧室と
(ハ)前記主水路における1次側の流入水路の水を該背圧室に導いて該背圧室の圧力を増大させる導入小孔と
(ニ)該背圧室と前記主水路における2次側の流出水路とを連通させる状態に前記主弁を貫通して設けられ、該背圧室の水を該流出水路に抜いて該背圧室の圧力を減少させるパイロット水路と
(ホ)該背圧室側に設けられ、前記主弁に設けられたパイロット弁座に対して接近離間方向に進退運動して、該パイロット水路の開度を変化させるパイロット弁と
(ヘ)該パイロット弁を駆動する駆動軸と
を備え、該パイロット弁の進退運動に追従して前記主弁を進退運動させて前記主水路の流量調節を行うパイロット式流調弁装置において
前記パイロット弁の全体を前記背圧室の圧力の作用する水室内に水没状態に設けるとともに、前記駆動軸を該パイロット弁の進退方向に対して交差する方向に且つ該水室を横切るように設けて、軸方向の隔たった箇所で該水室の互いに対向する両壁にシール部材にてシールし、それらシール部間の部位と前記パイロット弁とにまたがって該駆動軸の回転若しくは軸方向の運動を該パイロット弁の前記進退方向の運動に変換する運動変換機構を設けたことを特徴とするパイロット式流調弁装置。
(A) a main valve that moves forward and backward in the direction of approaching and separating from the main valve seat to change the opening of the main waterway
(B) a back pressure chamber formed behind the main valve and acting on the main valve as a pressing force in the valve closing direction;
(C) an introduction small hole for guiding the water in the primary inflow water channel in the main water channel to the back pressure chamber to increase the pressure in the back pressure chamber;
(D) The back pressure chamber is provided through the main valve so as to communicate with the secondary outflow water channel in the main water channel, and water in the back pressure chamber is drawn into the outflow water channel to Pilot waterways to reduce chamber pressure and
(E) a pilot valve that is provided on the back pressure chamber side and moves forward and backward in a direction of approaching and separating from a pilot valve seat provided on the main valve, thereby changing an opening degree of the pilot water channel;
(F) a pilot-type flow control device that includes a drive shaft that drives the pilot valve, and that adjusts the flow rate of the main water channel by moving the main valve forward and backward following the forward and backward movement of the pilot valve. The entire valve is provided in a submerged state in the water chamber in which the pressure of the back pressure chamber acts, and the drive shaft is provided in a direction crossing the advancing / retreating direction of the pilot valve and across the water chamber, Sealing is performed on both opposing walls of the water chamber with seal members at axially spaced locations, and the drive shaft rotates or moves in the axial direction across the portion between the seal portions and the pilot valve. A pilot-type flow control device provided with a motion conversion mechanism for converting the pilot valve into motion in the advancing / retreating direction.
請求項1において、前記運動変換機構がカム機構であることを特徴とするパイロット式流調弁装置。   The pilot-type flow control device according to claim 1, wherein the motion conversion mechanism is a cam mechanism. 請求項1において、前記運動変換機構がギア機構であることを特徴とするパイロット式流調弁装置。   The pilot-type flow control device according to claim 1, wherein the motion conversion mechanism is a gear mechanism.
JP2005202628A 2005-07-12 2005-07-12 Pilot flow control device Expired - Fee Related JP4738077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005202628A JP4738077B2 (en) 2005-07-12 2005-07-12 Pilot flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005202628A JP4738077B2 (en) 2005-07-12 2005-07-12 Pilot flow control device

Publications (2)

Publication Number Publication Date
JP2007024061A true JP2007024061A (en) 2007-02-01
JP4738077B2 JP4738077B2 (en) 2011-08-03

Family

ID=37785101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005202628A Expired - Fee Related JP4738077B2 (en) 2005-07-12 2005-07-12 Pilot flow control device

Country Status (1)

Country Link
JP (1) JP4738077B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014020A (en) * 2007-06-29 2009-01-22 Inax Corp Pilot flow control valve device
JP2012052667A (en) * 2011-11-25 2012-03-15 Lixil Corp Pilot type flow control valve device
JP2012211619A (en) * 2011-03-30 2012-11-01 Lixil Corp Water supply control valve device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152865A (en) * 1979-05-18 1980-11-28 Sumitomo Chemical Co Production of acrylonitrile rush like
JPH01229184A (en) * 1988-03-09 1989-09-12 Toto Ltd Automatic switch valve
JP2002235348A (en) * 2001-12-20 2002-08-23 Mitsubishi Rayon Co Ltd Switching valve and body of coupling thereof
JP2006214480A (en) * 2005-02-02 2006-08-17 Inax Corp Light operation faucet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152865A (en) * 1979-05-18 1980-11-28 Sumitomo Chemical Co Production of acrylonitrile rush like
JPH01229184A (en) * 1988-03-09 1989-09-12 Toto Ltd Automatic switch valve
JP2002235348A (en) * 2001-12-20 2002-08-23 Mitsubishi Rayon Co Ltd Switching valve and body of coupling thereof
JP2006214480A (en) * 2005-02-02 2006-08-17 Inax Corp Light operation faucet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014020A (en) * 2007-06-29 2009-01-22 Inax Corp Pilot flow control valve device
JP2012211619A (en) * 2011-03-30 2012-11-01 Lixil Corp Water supply control valve device
JP2012052667A (en) * 2011-11-25 2012-03-15 Lixil Corp Pilot type flow control valve device

Also Published As

Publication number Publication date
JP4738077B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP4818650B2 (en) Pilot flow control device
JP2012508849A5 (en)
JP4738077B2 (en) Pilot flow control device
JP2007024062A5 (en)
JP4602857B2 (en) Pilot type flow control device and main valve unit used therefor
JP5159402B2 (en) Remote control faucet device
CN100392302C (en) Device for the regulation of flow applied to flow valves working under pressure differential
JP4850003B2 (en) Pilot flow control valve
JP2009014020A (en) Pilot flow control valve device
JP5132589B2 (en) Pilot flow control valve
JP6963713B1 (en) Valve that controls the pressure difference
JP2006112611A (en) Light operation faucet
JP4850004B2 (en) Pilot flow control valve
JP4738078B2 (en) Pilot flow control device
RU2298128C2 (en) Multipurpose valve
JP2006258272A (en) Faucet
JP4633489B2 (en) Lightly operated faucet
US20210215256A1 (en) Valve cartridge assembly for a faucet assembly
JP5764803B2 (en) Water supply control valve
JP2007333192A (en) Flow rate control valve device
CN211039725U (en) Switching valve device and faucet
JP5648179B2 (en) Flow control valve device
JP2007024060A (en) Pilot flow control valve device
JP4948330B2 (en) Pressure reducing valve device
JP2010007795A (en) Water supply control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4738077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees