JP2012211619A - Water supply control valve device - Google Patents

Water supply control valve device Download PDF

Info

Publication number
JP2012211619A
JP2012211619A JP2011076789A JP2011076789A JP2012211619A JP 2012211619 A JP2012211619 A JP 2012211619A JP 2011076789 A JP2011076789 A JP 2011076789A JP 2011076789 A JP2011076789 A JP 2011076789A JP 2012211619 A JP2012211619 A JP 2012211619A
Authority
JP
Japan
Prior art keywords
valve
pressure
flow path
main valve
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011076789A
Other languages
Japanese (ja)
Other versions
JP5740710B2 (en
Inventor
Mamoru Hashimoto
衛 橋本
Tomoki Narumi
智紀 鳴海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lixil Corp
Original Assignee
Lixil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lixil Corp filed Critical Lixil Corp
Priority to JP2011076789A priority Critical patent/JP5740710B2/en
Publication of JP2012211619A publication Critical patent/JP2012211619A/en
Application granted granted Critical
Publication of JP5740710B2 publication Critical patent/JP5740710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Driven Valves (AREA)
  • Safety Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water supply control valve device, in which a large differential pressure does not act on an outer seal of a differential pressure sensor at a constant differential pressure valve while a main valve is closed, while leakage of water from the main valve to the secondary side flow path caused by leaking at the seal can be prevented and an inexpensive diaphragm not including a foundation cloth can be used as the seal of the differential pressure sensor.SOLUTION: A pilot type water supply control valve 16 is added with: a valve body 54 with a differential sensor 56 which receives pressure P4 of a back pressure chamber at one side and receives pressure P2 at a primary side of a primary side flow path 30 on the other side surface at the opposite side; and a constant differential pressure valve 18 having a coil spring 68 exerting an added force to the working direction of the pressure P4 of the back pressure chamber to the valve body 54 and making the differential pressure of the pressure P4 of the back pressure chamber and the pressure P2 at the primary side constant by changing throttle to a flow path 14 by a throttle part 60 provided at the valve body 54. In this manner, the differential pressure between the primary side flow path 30 and the secondary side flow path 32 on a water supply control valve device 10 is maintained constant.

Description

この発明はパイロット式給水制御弁に定差圧弁を付加して成る給水制御弁装置に関する。   The present invention relates to a water supply control valve device obtained by adding a constant differential pressure valve to a pilot-type water supply control valve.

従来、(a)流路に設けた主弁と、(b)内部の圧力を主弁に対して閉弁方向の押圧力として作用させる背圧室と、(c)主弁に対する1次側流路の水を背圧室に導入して背圧室の圧力を増大させる導入小孔と、(d)背圧室の水を主弁に対する2次側流路に抜いて背圧室の圧力を減少させるパイロット流路と、(e)背圧室からパイロット流路を経て流出する水の流れを制御して主弁の動作を制御するパイロット弁と、を備えたパイロット式給水制御弁に、1次側流路の圧力と2次側流路の圧力との差圧を一定に保持する定差圧弁を付加して成る給水制御弁装置が公知である。   Conventionally, (a) a main valve provided in the flow path, (b) a back pressure chamber in which the internal pressure acts on the main valve as a pressing force in the valve closing direction, and (c) a primary side flow with respect to the main valve Introducing small holes to increase the pressure of the back pressure chamber by introducing the water of the passage into the back pressure chamber, and (d) removing the water of the back pressure chamber into the secondary flow path to the main valve to reduce the pressure of the back pressure chamber. A pilot-type water supply control valve comprising: a pilot flow path to be reduced; and (e) a pilot valve that controls the operation of the main valve by controlling the flow of water flowing out from the back pressure chamber through the pilot flow path. A water supply control valve device is known which is provided with a constant differential pressure valve that maintains a constant differential pressure between the pressure in the secondary flow path and the pressure in the secondary flow path.

この給水制御弁装置では、定差圧弁にて1次側流路の圧力と2次側流路の圧力との差圧を一定に保持することで給水流量、即ち主弁を通過して流れる水の流量を、主弁の開度に応じて一定流量とすることができ、また給水制御弁が開閉弁である場合、上記の差圧を低く設定することで、主弁の閉弁時にゆっくりと主弁を閉弁させることができ、ウォーターハンマを効果的に低減することができる。   In this water supply control valve device, the constant differential pressure valve keeps the differential pressure between the pressure of the primary flow path and the pressure of the secondary flow path constant so that the flow rate of the water supply, that is, the water flowing through the main valve The flow rate of the main valve can be made constant according to the opening of the main valve. The main valve can be closed, and water hammer can be effectively reduced.

図7は、この種の給水制御弁装置に属する一例を比較例として示している。
図において200は給水制御弁装置202のボデーで、内部に流路204を有している。
206はパイロット式給水制御弁(以下単に給水制御弁とする)で、ダイヤフラム弁から成る主弁208と、背圧室210と、主弁208を貫通して設けられた導入小孔214と、同じく主弁208を貫通して設けられたパイロット流路218と、パイロット弁220とを有している。
FIG. 7 shows an example belonging to this type of water supply control valve device as a comparative example.
In the figure, reference numeral 200 denotes a body of the water supply control valve device 202, which has a flow path 204 therein.
Reference numeral 206 denotes a pilot-type water supply control valve (hereinafter simply referred to as a water supply control valve), which includes a main valve 208 formed of a diaphragm valve, a back pressure chamber 210, and an introduction small hole 214 provided through the main valve 208. A pilot flow path 218 provided through the main valve 208 and a pilot valve 220 are provided.

ここで背圧室210は、内部の圧力を主弁208に対し閉弁方向の押圧力として作用させる。また導入小孔214は、主弁208に対する1次側流路212の水を背圧室210に導入して、背圧室210の圧力を増大させる。
一方パイロット流路218は、背圧室210の水を主弁208に対する2次側流路216に抜いて、背圧室210の圧力を減少させる。
またパイロット弁220は、背圧室210からパイロット流路218を経て2次側流路216に流出する水の流れを制御して、主弁208の動作を制御する。
Here, the back pressure chamber 210 causes the internal pressure to act on the main valve 208 as a pressing force in the valve closing direction. Further, the introduction small hole 214 introduces water in the primary side flow path 212 with respect to the main valve 208 into the back pressure chamber 210 and increases the pressure in the back pressure chamber 210.
On the other hand, the pilot flow path 218 draws the water in the back pressure chamber 210 to the secondary side flow path 216 with respect to the main valve 208 to reduce the pressure in the back pressure chamber 210.
The pilot valve 220 controls the operation of the main valve 208 by controlling the flow of water that flows from the back pressure chamber 210 through the pilot flow path 218 to the secondary flow path 216.

222は通電により電磁力を発生させる電磁コイルで、パイロット弁220は、この電磁コイル222により図中上方に持ち上げられて開弁する。
224はパイロット弁220を図中下向きに付勢するばねで、パイロット弁220は、このばね224によって閉弁状態に保持される。
An electromagnetic coil 222 generates an electromagnetic force when energized. The pilot valve 220 is lifted upward by the electromagnetic coil 222 and opened.
A spring 224 biases the pilot valve 220 downward in the figure, and the pilot valve 220 is held in a closed state by the spring 224.

ここで給水制御弁206は、主弁208が全開位置と全閉位置との何れかに位置保持されて、流路を開から閉に若しくはその逆に切り替える開閉弁とされている。
この給水制御弁206は、パイロット弁220がストローク一杯まで下向きに突き出されて閉弁することで主弁208が全閉状態となり、流路を閉とする。
また一方、パイロット弁220が電磁コイル222による電磁力により開弁することで主弁208が全開状態となり、流路が閉から開に切り替えられる。
Here, the water supply control valve 206 is an open / close valve that switches the flow path from open to closed or vice versa, with the main valve 208 being held in either the fully open position or the fully closed position.
In the water supply control valve 206, the pilot valve 220 protrudes downward to the full stroke and closes, so that the main valve 208 is fully closed and the flow path is closed.
On the other hand, when the pilot valve 220 is opened by the electromagnetic force generated by the electromagnetic coil 222, the main valve 208 is fully opened, and the flow path is switched from closed to open.

開閉弁として構成された給水制御弁206は、パイロット弁220がストローク一杯まで後退移動することで主弁208が全開状態となり、このとき主弁208とパイロット弁220との間には大きな隙間Sが生ずる。この隙間Sは背圧室210の背圧室圧力Pと2次側流路216の2次側圧力Pとを実質的に同圧とする大きな隙間である。 In the water supply control valve 206 configured as an on-off valve, the main valve 208 is fully opened when the pilot valve 220 moves backward to the full stroke. At this time, a large gap S is formed between the main valve 208 and the pilot valve 220. Arise. This gap S is a large gap that makes the back pressure chamber pressure P 4 of the back pressure chamber 210 substantially the same as the secondary pressure P 3 of the secondary channel 216.

226は、主弁208に対する1次側流路212の1次側圧力Pと、2次側流路216の2次側圧力Pとの差圧を一定にする定差圧弁で、228はその主体をなす弁体である。
弁体228は、一方の面(図中上面)で1次側流路212の1次側圧力Pを受け、反対側の他方の面(図中下面)で2次側流路216の2次側圧力Pを受け、それら1次側圧力Pと2次側圧力Pとの差圧を感受するダイヤフラム式の差圧感受部230と、入側流路232から1次側流路212への流路を絞る絞り部234とを有している。
そしてこの弁体228に対してコイルばね(付勢部材)236の付勢力が、2次側圧力Pの作用方向と同じ方向に作用せしめられている。
226 includes a primary pressure P 2 of the primary flow path 212 against the main valve 208, the differential pressure between the secondary pressure P 3 of the secondary-side flow path 216 at constant differential pressure valve to maintain a constant, the 228 It is the valve body that makes its subject.
The valve body 228, the second one side receives the primary pressure P 2 of the primary flow path 212 in (in the figure the upper surface), opposite to the other surface in (in FIG lower surface) secondary flow path 216 subject to the following side pressure P 3, which primary pressure P 2 and the diaphragm-type differential pressure sensing section 230 that senses the differential pressure between the secondary pressure P 3, the primary flow path from the inlet channel 232 And a restrictor 234 for restricting the flow path to 212.
The urging force of the coil spring (biasing member) 236 with respect to the valve body 228, are caused to act in the same direction as the direction of action of the secondary side pressure P 3.

この定差圧弁226は、絞り部234による流路に対する絞りを変化させることで、差圧感受部230に作用する互いに逆向きの力、即ち図中下向きに加わる1次側圧力Pによる力と、図中上向きに加わる2次側圧力Pによる力、及びコイルばね236による付勢力とをバランスさせるように動作し、以て1次側圧力Pと2次側圧力Pとの差圧を一定に保持する。
このとき、主弁208を通過して流れる水の流量は以下の式(1)で与えられる。

Figure 2012211619
但し式(1)中、Qは流量で、aは主弁208を水が通過する際の流路面積、cは定数で、ΔPは1次側圧力Pと2次側圧力Pとの差圧,ρは水の比重である。
而してこの給水制御弁装置202にあっては、差圧ΔPが一定に保たれるため、主弁208を通過して流れる水の流量は、主弁208の開度に応じた一定流量となる。
尚この種の給水制御弁装置については特許文献1に開示されている。 The constant differential pressure valve 226 by changing the aperture for the flow path by the diaphragm 234, mutually opposite forces acting on the differential pressure sensing portion 230, i.e. the force by the primary side pressure P 2 exerted downward in the drawing , the differential pressure between the operation and the primary side pressure Te than P 2 and the secondary side pressure P 3 to balance the biasing force of and the coil spring 236 forces, by the secondary side pressure P 3 acting upward in FIG. Is kept constant.
At this time, the flow rate of water flowing through the main valve 208 is given by the following equation (1).
Figure 2012211619
However in the formula (1), Q is a flow rate, a is the flow passage area when passing through the main valve 208 is water, c is a constant, [Delta] P is the primary pressure P 2 and the secondary side pressure P 3 The differential pressure, ρ, is the specific gravity of water.
Thus, in this water supply control valve device 202, since the differential pressure ΔP is kept constant, the flow rate of water flowing through the main valve 208 is a constant flow rate corresponding to the opening of the main valve 208. Become.
This type of water supply control valve device is disclosed in Patent Document 1.

ところでこの給水制御弁装置202の場合、定差圧弁226の差圧感受部230が1次側圧力Pと2次側圧力Pの差圧を直接感受して動作するように構成してあるため、主弁208の閉弁状態の下で差圧感受部230には入側流路232の入側圧力P(主弁208閉弁状態の下ではP=Pとなる)と2次側圧力Pとの差圧が加わることとなる。
この差圧は大きな差圧となるため、差圧感受部230の外周シール部で漏れを生じる恐れがある。
However if the water supply control valve 202, there was constructed as a differential pressure sensing section 230 of the constant differential pressure valve 226 is operated by directly sensing the differential pressure of the primary pressure P 2 and the secondary side pressure P 3 Therefore, when the main valve 208 is closed, the differential pressure sensing unit 230 has an inlet pressure P 1 of the inlet channel 232 (P 2 = P 1 when the main valve 208 is closed) and 2 differential pressure between the next side pressure P 3 so that the joins.
Since this differential pressure is a large differential pressure, there is a risk of leakage at the outer peripheral seal portion of the differential pressure sensing portion 230.

この漏れの問題はOリング等でシールを行った場合にも生じ得るが、差圧感受部230の動作時の摺動抵抗を小さくする上でダイヤフラム膜をシール部として用いることが望ましく、而してシール部としてダイヤフラム膜を用いた場合にはシール部の耐圧不足による膜の破れ、より具体的には図中下向きに湾曲して断面U字状に膨らんだ可撓部分の破れによる上記の漏れの問題を特に生じ易い。   Although this leakage problem may occur even when sealing is performed with an O-ring or the like, it is desirable to use a diaphragm membrane as the sealing portion in order to reduce the sliding resistance during operation of the differential pressure sensing portion 230. When a diaphragm film is used as the seal part, the film breaks due to insufficient pressure resistance of the seal part, and more specifically, the above leakage due to the break of the flexible part that curves downward in the figure and expands into a U-shaped section. This problem is particularly likely to occur.

このように差圧感受部230のシール部で漏れが生じると、主弁208が閉じているにも拘らず2次側流路216への水の漏れが生じてしまう。
ダイヤフラム膜をシール部として用いた場合において、その漏れを防止するためには耐圧性を持たせるために基布入りのダイヤフラム膜を用いることが必要となり、この場合ダイヤフラム膜のためのコストが高くなってしまう。
When leakage occurs in the seal portion of the differential pressure sensing portion 230 in this manner, water leaks into the secondary side flow path 216 even though the main valve 208 is closed.
When a diaphragm membrane is used as a seal portion, it is necessary to use a diaphragm membrane with a base fabric in order to provide pressure resistance in order to prevent leakage, and in this case, the cost for the diaphragm membrane increases. End up.

尚本発明に関連する先行技術として、下記特許文献2には、ダイヤフラムを使用したパイロット式電磁弁では、流路内でウォーターハンマが発生すると、その圧力でダイヤフラム式の主弁が瞬間的に押し上げられ、開弁してしまう問題を生じることから、これを解決することを目的として、ダイヤフラム式主弁の1次側流路上に膜体を配置して、その膜体の一方の面に1次圧を作用させる一方、他方の面にはパイロット圧力室(背圧室)の圧力を作用させ、それによってウォーターハンマによる圧力上昇が生じた際には膜体を介してパイロット圧力室の圧力も上昇させることで、主弁が不用意に開くことを防止するようになしたものが開示されている。
しかしながらこの特許文献2に開示のものにおいて、膜体は流路に対する絞りを変化させる絞り部を有しないもので、定差圧弁としての働きを成し得るものではなく、本発明とは異なっている。
Incidentally, as a prior art related to the present invention, in Patent Document 2 below, in a pilot type solenoid valve using a diaphragm, when a water hammer occurs in the flow path, the diaphragm type main valve is momentarily pushed up by the pressure. In order to solve this problem, a membrane body is disposed on the primary flow path of the diaphragm main valve, and the primary body is disposed on one surface of the membrane body. While pressure is applied, the pressure of the pilot pressure chamber (back pressure chamber) is applied to the other surface, so that when the pressure rises due to the water hammer, the pressure of the pilot pressure chamber also rises through the membrane. By doing so, it is disclosed that the main valve is prevented from being inadvertently opened.
However, in the thing disclosed in this Patent Document 2, the film body does not have a throttle part that changes the throttle with respect to the flow path, and does not function as a constant differential pressure valve, and is different from the present invention. .

特開2009−24780号公報JP 2009-24780 A 実開平7−4974号公報Japanese Utility Model Publication No. 7-4974

本発明は以上のような事情を背景とし、主弁の閉弁状態の下で定差圧弁における差圧感受部のシール部に大きな差圧が作用せず、シール部での漏れの発生を防止でき、また仮に漏れが生じたとしても主弁の2次側流路への水の漏れを生ぜしめず、更に差圧感受部のシール部としてダイヤフラム膜を用いる場合において、基布入りの耐圧性の高価なダイヤフラム膜を用いる必要がなく、所要コストを安価に抑制できる給水制御弁装置を提供することを目的としてなされたものである。   In the background of the above situation, the present invention prevents a large differential pressure from acting on the seal portion of the differential pressure sensing portion of the constant differential pressure valve under the closed state of the main valve, thereby preventing the occurrence of leakage at the seal portion. If there is a leak, water will not leak into the secondary flow path of the main valve, and if a diaphragm membrane is used as the seal for the differential pressure sensing part, It is an object of the present invention to provide a water supply control valve device that can suppress the required cost at a low cost without using an expensive diaphragm membrane.

而して請求項1のものは、(イ)(a)流路に設けた主弁と、(b)内部の圧力を該主弁に対して閉弁方向の押圧力として作用させる背圧室と、(c)該主弁に対する1次側流路の水を該背圧室に導入して該背圧室の圧力を増大させる導入小孔と、(d)該背圧室の水を該主弁に対する2次側流路に抜いて該背圧室の圧力を減少させるパイロット流路と、(e)該背圧室から該パイロット流路を経て流出する水の流れを制御して前記主弁の動作を制御するパイロット弁と、を備えたパイロット式給水制御弁に、(ロ)(f)一方の面で前記背圧室の圧力を受け、反対側の他方の面で前記1次側流路の1次側圧力を受け、それら1次側圧力と背圧室圧力との差圧を感受する差圧感受部を備えた弁体と、(g)該弁体に対して前記背圧室の圧力の作用方向に付勢力を作用させる付勢部材と、を有し、前記主弁の開弁状態の下で、前記弁体に備えた絞り部により流路に対する絞りを変えることで前記背圧室圧力と1次側圧力との差圧を一定とする定差圧弁、を付加することで前記1次側流路と2次側流路との差圧を一定に保持するようになしてあることを特徴とする。   Thus, the present invention comprises (a) (a) a main valve provided in the flow path, and (b) a back pressure chamber in which the internal pressure acts on the main valve as a pressing force in the valve closing direction. (C) an introduction small hole for introducing water in the primary side flow path with respect to the main valve into the back pressure chamber to increase the pressure in the back pressure chamber; and (d) water in the back pressure chamber. (E) controlling the flow of water flowing out from the back pressure chamber through the pilot flow path to the main flow path by reducing the pressure in the back pressure chamber through the secondary flow path to the main valve; A pilot-type water supply control valve having a pilot valve for controlling the operation of the valve; (b) (f) receiving pressure of the back pressure chamber on one side and the primary side on the other side A valve body having a differential pressure sensing portion that receives a primary pressure of the flow path and senses a differential pressure between the primary pressure and the back pressure chamber pressure; and (g) the back pressure against the valve body. The urging force is applied in the direction of the chamber pressure. And the back pressure chamber pressure and the primary side pressure can be changed by changing the throttle with respect to the flow path by the throttle part provided in the valve body under the open state of the main valve. By adding a constant differential pressure valve that makes the differential pressure constant, the differential pressure between the primary side flow path and the secondary side flow path is kept constant.

請求項2のものは、請求項1において、前記給水制御弁は、前記主弁が一方の面で前記背圧室の圧力を受け、反対側の他方の面で前記1次側流路の1次側圧力と前記2次側流路の2次側圧力とを受けるとともに、前記パイロット流路が前記主弁を貫通して設けてあり、該主弁が前記パイロット弁との間に一定の微小な追従間隙を保持しつつ該パイロット弁の移動に追従して同方向に移動し、給水流量を制御する弁であることを特徴とする。   According to a second aspect of the present invention, in the water supply control valve according to the first aspect, the main valve receives the pressure of the back pressure chamber on one side and the other side of the primary-side flow path 1 on the other side. In addition to receiving the secondary pressure and the secondary pressure of the secondary flow path, the pilot flow path is provided through the main valve, and the main valve is fixed to the pilot valve with a certain minute amount. A valve that controls the feed water flow rate by moving in the same direction following the movement of the pilot valve while maintaining a simple following gap.

請求項3のものは、請求項1において、前記給水制御弁は、前記主弁が全開位置と全閉位置との何れかに位置保持されて、流路を開から閉に若しくはその逆に切り替える開閉弁であることを特徴とする。   According to a third aspect of the present invention, in the first aspect, the water supply control valve switches the flow path from open to closed or vice versa, with the main valve being held at either the fully open position or the fully closed position. It is an on-off valve.

請求項4のものは、請求項1〜3の何れかにおいて、前記定差圧弁の前記差圧感受部のシール部がダイヤフラム膜であることを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the seal portion of the differential pressure sensing portion of the constant differential pressure valve is a diaphragm film.

請求項5のものは、請求項1〜4の何れかにおいて、前記背圧室が前記付勢部材の収容室を兼ねていることを特徴とする。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the back pressure chamber also serves as a storage chamber for the biasing member.

以上のように本発明は、一方の面で背圧室の圧力を受け、反対側の他方の面で主弁に対する1次側流路の1次側圧力を受け、それら1次側圧力と背圧室圧力との差圧を感受する差圧感受部を備えた弁体と、弁体に対して背圧室の圧力の作用方向に付勢力を作用させる付勢部材とを有し、弁体に備えた絞り部により流路に対する絞りを変えることで、背圧室圧力と1次側圧力との差圧を一定とする定差圧弁をパイロット式給水制御弁に付加することで、給水制御弁における主弁の1次側流路と2次側流路との差圧を一定に保持するようになしたものである。   As described above, the present invention receives the pressure of the back pressure chamber on one side, receives the primary side pressure of the primary flow path with respect to the main valve on the other side on the other side, and detects the primary side pressure and back pressure. A valve body having a differential pressure sensing portion that senses a differential pressure with respect to the pressure chamber pressure, and a biasing member that applies a biasing force to the valve body in the direction of the pressure of the back pressure chamber. By adding a constant differential pressure valve that makes the differential pressure between the back pressure chamber pressure and the primary side pressure constant by changing the throttle with respect to the flow path by the throttle part provided in the pilot water supply control valve, The pressure difference between the primary side flow path and the secondary side flow path of the main valve is kept constant.

本発明において、定差圧弁の差圧感受部に加わる圧力は、主弁に対する1次側流路の1次側圧力と背圧室圧力とであり、これらの圧力は主弁閉弁状態の下で同じ圧力となり、従って差圧感受部のシール部に対し、主弁閉弁状態の下で差圧による大きな力は加わらない。   In the present invention, the pressure applied to the differential pressure sensing part of the constant differential pressure valve is the primary side pressure and the back pressure chamber pressure of the primary side flow path with respect to the main valve, and these pressures are under the main valve closed state. Therefore, a large force due to the differential pressure is not applied to the seal portion of the differential pressure sensing portion under the main valve closed state.

これにより、主弁閉弁状態の下で差圧感受部のシール部に加わる大きな差圧によってシール部に漏れが発生するのを防止することができ、そのシール部の漏れによって、主弁が閉弁状態であるにも拘らず、この主弁の下流側に上流側の水が漏出するといったことを防止することができる。   As a result, it is possible to prevent the seal portion from leaking due to a large differential pressure applied to the seal portion of the differential pressure sensing portion under the main valve closed state, and the main valve is closed by the leak of the seal portion. Despite being in the valve state, it is possible to prevent the upstream water from leaking to the downstream side of the main valve.

従って差圧感受部の動作時の摺動抵抗を小さくするために、定差圧弁における差圧感受部のシール部としてダイヤフラム膜を用いた場合(請求項4)であっても、ダイヤフラム膜を耐圧確保のために基布入りのものとしなくてもよく、ダイヤフラム膜に要するコストを低く抑えることができる。   Accordingly, in order to reduce the sliding resistance during the operation of the differential pressure sensing part, even when the diaphragm film is used as the seal part of the differential pressure sensing part in the constant differential pressure valve (Claim 4), the diaphragm film is pressure resistant. For securing, it is not necessary to include a base fabric, and the cost required for the diaphragm membrane can be kept low.

また主弁開弁状態の下で差圧感受部に差圧が加わることによって、たとえシール部で微小な漏れが生じたとしても、その漏れは1次側流路から背圧室への漏れであり、1次側流路から背圧室への水の流れは、もともと導入小孔を通じて生じているものであるから、上記の漏れによる給水制御弁装置の性能への悪影響は殆んど生じない。   Moreover, even if a minute leak occurs in the seal part due to the differential pressure applied to the differential pressure sensing part under the main valve open state, the leak is a leak from the primary side flow path to the back pressure chamber. Yes, the flow of water from the primary side flow path to the back pressure chamber is originally generated through the introduction small hole, so that there is almost no adverse effect on the performance of the water supply control valve device due to the above leakage. .

本発明では、上記パイロット式給水制御弁を、主弁が一方の面で背圧室の圧力を受け、反対側の他方の面で1次側流路の1次側圧力と2次側流路の2次側圧力とを受け、その主弁がパイロット弁との間に一定の微小な追従間隙を保持しつつパイロット弁の移動に追従して同方向に移動し、給水流量を制御する弁となしておくことができる(請求項2)。   In the present invention, the pilot-type water supply control valve is configured such that the main valve receives the pressure of the back pressure chamber on one side and the primary side pressure and the secondary side channel on the other side on the opposite side. And a valve that controls the feed water flow rate by moving in the same direction following the movement of the pilot valve while maintaining a constant minute follow-up gap between the main valve and the pilot valve. (Claim 2).

又は給水制御弁を、主弁が全開位置と全閉位置との何れかに位置保持されて、流路を開から閉に若しくはその逆に切り替える開閉弁となしておくことができる(請求項3)。   Alternatively, the water supply control valve can be an open / close valve that switches the flow path from open to closed or vice versa, with the main valve held in either the fully open position or the fully closed position. ).

次に請求項5は、背圧室が付勢部材の収容室を兼ねるようにしたもので、この請求項5によれば、弁装置の構成を簡素な構成とすることができる。   The fifth aspect of the present invention is such that the back pressure chamber also serves as a housing chamber for the urging member. According to the fifth aspect, the configuration of the valve device can be simplified.

本発明の一実施形態である給水制御弁装置を開弁状態で示した図である。It is the figure which showed the water supply control valve apparatus which is one Embodiment of this invention in the valve opening state. 図1の給水制御弁装置を閉弁状態で示した図である。It is the figure which showed the water supply control valve apparatus of FIG. 1 in the valve closing state. 本発明の他の実施形態の給水制御弁装置を開弁状態で示した図である。It is the figure which showed the water supply control valve apparatus of other embodiment of this invention in the valve opening state. 図3の給水制御弁装置を閉弁状態で示した図である。It is the figure which showed the water supply control valve apparatus of FIG. 3 in the valve closing state. 本発明の更に他の実施形態の給水制御弁装置を開弁状態で示した図である。It is the figure which showed the water supply control valve apparatus of other embodiment of this invention in the valve opening state. 図5の給水制御弁装置を閉弁状態で示した図である。It is the figure which showed the water supply control valve apparatus of FIG. 5 in the valve closing state. 比較例としての給水制御弁装置の図である。It is a figure of the water supply control valve apparatus as a comparative example.

次に本発明の実施形態を図面に基づいて詳しく説明する。
図1及び図2において、10は本実施形態の給水制御弁装置で、12はそのボデーであり、内部に流路14を有している。
この実施形態において、給水制御弁装置10は、パイロット式給水制御弁(以下単に給水制御弁とする)16と、定差圧弁18とを有している。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
1 and 2, reference numeral 10 denotes a water supply control valve device according to the present embodiment, reference numeral 12 denotes a body thereof, and a flow path 14 is provided inside.
In this embodiment, the water supply control valve device 10 includes a pilot-type water supply control valve (hereinafter simply referred to as a water supply control valve) 16 and a constant differential pressure valve 18.

20は給水制御弁16における主弁で、ダイヤフラム弁から成っており、ゴム製のダイヤフラム膜22と、これを保持する硬質の保持部材24とを備えている。
ダイヤフラム膜22は、外周部がボデー12に全周に亘り固定されており、後述の背圧室34と1次側流路30との間を水密にシールするシール部としての働きも有している。
Reference numeral 20 denotes a main valve in the water supply control valve 16, which is a diaphragm valve, and includes a rubber diaphragm film 22 and a hard holding member 24 that holds the diaphragm film 22.
The diaphragm membrane 22 has an outer peripheral portion fixed to the body 12 over the entire circumference, and also has a function as a seal portion for sealing a space between a back pressure chamber 34 and a primary side flow passage 30 described later. Yes.

主弁20は、ボデー12に設けた円筒部26の先端部の主弁座28に着座して閉弁し、主弁20に対する1次側流路30と2次側流路32とを遮断する。
また主弁座28から図中上向きに離間して開弁し、1次側流路30と2次側流路32とを連通状態として、主弁20を通過する水の流れを生ぜしめる。
またその開度を変化させることで、1次側流路30から2次側流路32へと流れる水の流量、即ち給水の流量をその開度に応じて変化させる。
The main valve 20 is seated on the main valve seat 28 at the tip of the cylindrical portion 26 provided on the body 12 and is closed to shut off the primary flow path 30 and the secondary flow path 32 with respect to the main valve 20. .
Further, the valve is opened away from the main valve seat 28 in the upward direction in the figure, and the primary side flow path 30 and the secondary side flow path 32 are brought into communication with each other, and a flow of water passing through the main valve 20 is generated.
Further, by changing the opening degree, the flow rate of water flowing from the primary side flow path 30 to the secondary side flow path 32, that is, the flow rate of water supply is changed according to the opening degree.

主弁20の図中上側の背後には背圧室34が設けられている。
この背圧室34は、内部の圧力を主弁20に対し図中下向きの閉弁方向の押圧力として作用させる。
主弁20には、その中心から偏心した位置においてこれを貫通する導入小孔36が設けられている。
この導入小孔36は、1次側流路30の水を背圧室34に導入して、背圧室34の圧力を増大させる。
主弁20にはまた、その中心部においてこれを貫通する水抜路としてのパイロット流路38が設けられている。
パイロット流路38は、背圧室34の水を2次側流路32に抜いて背圧室34の圧力を減少させる。
A back pressure chamber 34 is provided behind the upper side of the main valve 20 in the figure.
The back pressure chamber 34 causes the internal pressure to act on the main valve 20 as a pressing force in the downward valve closing direction in the figure.
The main valve 20 is provided with a small introduction hole 36 penetrating therethrough at a position eccentric from the center thereof.
The introduction small hole 36 introduces the water in the primary channel 30 into the back pressure chamber 34 and increases the pressure in the back pressure chamber 34.
The main valve 20 is also provided with a pilot flow path 38 as a water drainage passage penetrating the main valve 20.
The pilot flow path 38 reduces the pressure in the back pressure chamber 34 by drawing water from the back pressure chamber 34 into the secondary flow path 32.

40はボデー12の外部に突き出した操作軸で、その先端部(図中下端部)にパイロット弁42が一体に構成されている。
パイロット弁42は、シール部44を主弁20に設けられたパイロット弁座46に着座させて閉弁し、背圧室34からパイロット流路38を経て2次側流路32に到る水の流れを遮断する。
またパイロット弁座46から図中上向きに離間し開弁することで、背圧室34からパイロット流路38を経て2次側流路32に到る水の流れを生ぜしめる。
Reference numeral 40 denotes an operating shaft that protrudes to the outside of the body 12, and a pilot valve 42 is integrally formed at the tip (lower end in the figure).
The pilot valve 42 is closed by seating a seal portion 44 on a pilot valve seat 46 provided in the main valve 20, and water reaching the secondary side flow path 32 from the back pressure chamber 34 through the pilot flow path 38. Cut off the flow.
Further, by opening the valve valve 46 away from the pilot valve seat 46 in the upward direction in the figure, a flow of water from the back pressure chamber 34 to the secondary flow path 32 through the pilot flow path 38 is generated.

操作軸40の外周面には雄ねじ部48が設けられており、この雄ねじ部48が、ボデー12に設けられた雌ねじ孔の雌ねじ部50に螺合されている。
従って操作軸40を回転させると、それら雄ねじ部48及び雌ねじ部50から成るねじ機構52によって、パイロット弁42が図中上下方向に進退移動せしめられる。
A male screw portion 48 is provided on the outer peripheral surface of the operation shaft 40, and the male screw portion 48 is screwed into a female screw portion 50 of a female screw hole provided in the body 12.
Therefore, when the operating shaft 40 is rotated, the pilot valve 42 is moved back and forth in the vertical direction in the drawing by the screw mechanism 52 including the male screw portion 48 and the female screw portion 50.

この例において給水制御弁16は、給水の流量を連続的に調節することのできる弁であって、その流量の調節は操作軸40を回転操作することによって行われる。
図2は、操作軸40を一方向に回転させてパイロット弁42をストローク一杯まで下向きに突き出し、閉弁させた状態を示している。
このとき主弁20もまた、主弁座28に着座して閉弁した状態にあり、1次側流路30から2次側流路32への水の流れは生じていない。
In this example, the water supply control valve 16 is a valve capable of continuously adjusting the flow rate of the water supply, and the flow rate is adjusted by rotating the operation shaft 40.
FIG. 2 shows a state in which the operating shaft 40 is rotated in one direction so that the pilot valve 42 protrudes downward to the full stroke and is closed.
At this time, the main valve 20 is also seated on the main valve seat 28 and closed, and no water flows from the primary side flow path 30 to the secondary side flow path 32.

この状態から操作軸40を上記とは逆方向に回転させてパイロット弁42を図中上向きに移動させると、パイロット弁42とパイロット弁座46、即ち主弁20との間に隙間が生じ、背圧室34の水がその隙間からパイロット流路38を経て2次側流路32へと流出し、背圧室34の圧力が減少する。
これにより、主弁20が1次側流路30の1次側圧力Pにより図中上向きに押し上げられて開弁する。
In this state, when the operating shaft 40 is rotated in the opposite direction to move the pilot valve 42 upward in the figure, a gap is created between the pilot valve 42 and the pilot valve seat 46, that is, the main valve 20, and the back. The water in the pressure chamber 34 flows out from the gap through the pilot channel 38 to the secondary channel 32, and the pressure in the back pressure chamber 34 decreases.
Thus, the main valve 20 is pushed up upward in the drawing to open the primary pressure P 2 of the primary flow path 30.

そして主弁20に対して下向きに加わる背圧室圧力Pによる力と、上向きに加わる1次側流路30の1次側圧力P及び2次側流路32の2次側圧力Pによる力とがバランスした位置で主弁20が移動停止する。 Then, the force by the back pressure chamber pressure P 4 applied downward to the main valve 20, the primary pressure P 2 of the primary flow path 30 applied upward, and the secondary pressure P 3 of the secondary flow path 32. The main valve 20 stops moving at a position where the force generated by the balance is balanced.

この状態から更にパイロット弁42を図中上向きに後退移動させると、パイロット弁42と主弁20との間の隙間が再び大きくなり、背圧室圧力Pが再び一時的に低下することで主弁20が図中上向きに移動する。 When the pilot valve 42 is further moved backward in the figure from this state, the gap between the pilot valve 42 and the main valve 20 is increased again, and the back pressure chamber pressure P 4 temporarily decreases again to temporarily reduce the main pressure. The valve 20 moves upward in the figure.

そして背圧室圧力Pによる下向きの力と、1次側圧力P及び2次側圧力Pによる図中上向きの力とがバランスした位置で再びそこに停止する。
そして主弁20の図中上向きの移動によって主弁20の開度が増大し、そして主弁20の開度の増大に伴って1次側流路30から2次側流路32へと流れる水の流量が増大変化する。
Then a downward force due to the back pressure chamber pressure P 4, and in the drawing upward force by the primary side pressure P 2 and the secondary side pressure P 3 is stopped there again at a position balanced.
Then, the opening degree of the main valve 20 is increased by the upward movement of the main valve 20 in the figure, and the water flowing from the primary side flow path 30 to the secondary side flow path 32 as the opening degree of the main valve 20 increases. The flow rate of the gas increases and changes.

主弁20は、パイロット弁42の更なる図中上向きの後退移動とともに同方向即ち図中上方向に移動し、弁開度を更に大きくして流路を流れる水の流量を更に増大させる。
但し実際の動きとしては、主弁20がパイロット弁42、詳しくはシール部44との間に一定の微小な追従隙間d(この隙間は0.03mm程度の微小な隙間)を維持しながら、パイロット弁42の後退移動に連続的に追従して同方向に移動し、流路14の開度を変化させる。
The main valve 20 moves in the same direction, that is, upward in the figure as the pilot valve 42 further moves upward in the figure, further increasing the valve opening and further increasing the flow rate of water flowing through the flow path.
However, as an actual movement, the pilot valve 42 is maintained while maintaining a constant minute follow-up gap d (this gap is a minute gap of about 0.03 mm) between the main valve 20 and the pilot valve 42, more specifically, the seal portion 44. Following the backward movement of the valve 42, the valve 42 moves in the same direction, and the opening degree of the flow path 14 is changed.

同様にパイロット弁42が図中下向きに前進移動したときにも、主弁20はパイロット弁42との間に一定の微小隙間dを維持しつつ、パイロット弁42の移動に追従して図中下向きに移動し、流路14を流れる水の流量を連続的に減少変化させる。
そしてパイロット弁42がストローク一杯まで図中下向きに前進移動し、パイロット弁42が閉弁状態となることで、主弁20もまた主弁座28に着座して閉弁状態となり、流路14内の水の流れを停止させる。
Similarly, when the pilot valve 42 moves forward in the figure downward, the main valve 20 follows the movement of the pilot valve 42 while keeping a certain minute gap d between the main valve 20 and the pilot valve 42 downward in the figure. And the flow rate of water flowing through the flow path 14 is continuously decreased.
Then, the pilot valve 42 moves forward downward in the drawing until the stroke is full, and the pilot valve 42 is in a closed state, so that the main valve 20 is also seated on the main valve seat 28 and is in a closed state. Stop the flow of water.

上記定差圧弁18は、背圧室34の背圧室圧力Pと1次側流路の1次側圧力Pとの差圧を一定にすることで、1次側圧力Pと2次側流路32の2次側圧力Pとの差圧を一定にする働きを有する弁で、図中54はその主体をなす弁体である。
この弁体54は、背圧室圧力Pと1次側圧力Pとの差圧を感受する差圧感受部56と、入側流路58から1次側流路30への流路を絞り且つその絞りを変化させる絞り部60とを有しており、それらが軸部62にて連結されている。
The constant differential pressure valve 18, by the pressure difference between the back pressure chamber pressure P 4 and 1 of primary channel primary pressure P 2 in the back pressure chamber 34 constant, the primary side pressure P 2 and 2 in a valve having a function of a differential pressure between the secondary pressure P 3 of the following side flow path 32 at a constant, reference numeral 54 is a valve body which forms the principal.
The valve body 54 includes a differential pressure sensing portion 56 that senses a differential pressure between the back pressure chamber pressure P 4 and the primary pressure P 2, and a flow path from the inlet flow path 58 to the primary flow path 30. It has a diaphragm and a diaphragm section 60 that changes the diaphragm, and these are connected by a shaft section 62.

差圧感受部56はダイヤフラム式のもので、ゴム製のダイヤフラム膜64と、これを保持する硬質の保持部66とを有している。
ダイヤフラム膜64は外周部がボデー12に水密に固定されており、ダイヤフラム膜64は、背圧室34と1次側流路30との間を水密にシールするシール部としての働きも有している。
ここで差圧感受部56は、一方の面(図中上面)で背圧室圧力Pを下向きに受け、また反対側の他方の面(図中下面)で1次側圧力Pを上向きに受け、それら背圧室圧力Pと1次側圧力Pとの差圧を感受する。
The differential pressure sensing part 56 is of a diaphragm type and has a rubber diaphragm film 64 and a hard holding part 66 for holding the diaphragm film 64.
The outer peripheral portion of the diaphragm membrane 64 is fixed to the body 12 in a watertight manner, and the diaphragm membrane 64 also has a function as a seal portion for sealing between the back pressure chamber 34 and the primary flow path 30 in a watertight manner. Yes.
Here the differential pressure sensing portion 56, an upward one surface subjected to downward back pressure chamber pressure P 4 in (in the figure the upper surface), also of the opposite other surface of the primary-side pressure P 2 in (in the drawing the underside) the receiving, senses the differential pressure thereof back pressure chamber pressure P 4 and the primary-side pressure P 2.

一方上記の絞り部60は、ボデー12に形成された嵌合孔72内に摺動可能に嵌合されている。
この絞り部60には、嵌合孔72の底部側の空間に連通した連通孔74が設けられている。
尚、この絞り部60の外周面と嵌合孔72の内周面との間はOリングにて水密にシールされている。
On the other hand, the throttle part 60 is slidably fitted in a fitting hole 72 formed in the body 12.
The throttle portion 60 is provided with a communication hole 74 communicating with the space on the bottom side of the fitting hole 72.
The outer peripheral surface of the throttle portion 60 and the inner peripheral surface of the fitting hole 72 are sealed in a watertight manner by an O-ring.

定差圧弁18は、弁体54に加えて、差圧感受部56に対してその付勢力を背圧室圧力Pの作用方向に及ぼすコイルばね(付勢部材)68を備えている。
ここでコイルばね68は、背圧室34の一部をなす収容室70に収容されており、その一端(図中上端)をボデー12に当接させ、また反対側の一端を差圧感受部56に当接させてその付勢力を下向きに及ぼしている。
Constant differential pressure valve 18, in addition to the valve body 54, and a coil spring (biasing member) 68 which exerts its biasing force in the direction of action of the back pressure chamber pressure P 4 with respect to the differential pressure sensing portion 56.
Here, the coil spring 68 is housed in a housing chamber 70 that forms a part of the back pressure chamber 34, one end (upper end in the figure) is brought into contact with the body 12, and the other end is placed on the differential pressure sensing part. 56, and the biasing force is applied downward.

この定差圧弁18は、次のように動作して背圧室圧力Pと1次側圧力Pとの差圧を一定に保持する。
即ち、主弁20の開弁状態の下で、背圧室圧力Pが増大すると、弁体54がその増大した背圧室圧力Pによって図中下向きに押し下げられる。
すると絞り部60による流路の絞りが小となって、1次側圧力Pが増大する。そして弁体54はその移動により上昇した1次側圧力Pと背圧室圧力Pとが釣合う位置で移動停止する。
また逆に背圧室圧力Pが低下すると、相対的に増大した1次側圧力Pにて弁体54が図中上向きに押し上げられて絞り部60による絞りを大とし、1次側圧力Pを低下させる。
そして背圧室圧力Pと1次側圧力Pとが釣合う位置で弁体54が移動停止する。
そのようにして弁体54は背圧室圧力Pと1次側圧力Pとの差圧ΔPを常に一定に保つように動作する。
The constant differential pressure valve 18 maintains a pressure difference between the back pressure chamber pressure P 4 operates as follows: the primary side pressure P 2 constant.
That is, when the back pressure chamber pressure P 4 increases under the valve open state of the main valve 20, the valve body 54 is pushed downward by the increased back pressure chamber pressure P 4 .
Then stop the flow channel by the throttle portion 60 becomes small, the primary side pressure P 2 increases. The valve body 54 is moved stops at that elevated by moving the primary side pressure P 2 and the back pressure chamber pressure P 4 are balanced position.
Further, when the back pressure chamber pressure P 4 is lowered conversely, relatively increased the inlet pressure P 2 in the valve body 54 is large cities the aperture by diaphragm portion 60 is pushed up upward in the figure, the primary side pressure lowering the P 2.
The back pressure chamber pressure P 4 and the primary-side pressure P 2 and the valve body 54 are balanced position to stop moving.
In this way, the valve body 54 operates so as to always keep the differential pressure ΔP between the back pressure chamber pressure P 4 and the primary pressure P 2 constant.

この例において、主弁20開弁状態の下で(即ち給水状態の下で)背圧室圧力Pを受ける主弁20の受圧面積をS,2次側圧力Pを受ける主弁20の受圧面積をS,1次側圧力Pを受ける主弁20の受圧面積を(S−S)としたとき、以下の式(2)が成り立つ。
式(2)・・・P=P(S−S)+P
この式(2)を変換すると以下の式(3)となる。
式(3)・・・(P−P)S=(P−P)S
In this example, the pressure receiving area of the main valve 20 that receives the back pressure chamber pressure P 4 under the open state of the main valve 20 (that is, under the water supply state) is S 1 , and the main valve 20 that receives the secondary pressure P 3. Where S 2 is the pressure receiving area and (S 1 -S 2 ) is the pressure receiving area of the main valve 20 that receives the primary pressure P 2 , the following equation (2) holds.
Equation (2) ··· P 4 S 1 = P 2 (S 1 -S 2) + P 3 S 2
When this equation (2) is converted, the following equation (3) is obtained.
Equation (3) ··· (P 2 -P 3) S 2 = (P 2 -P 4) S 1

式(3)において、1次側圧力Pと背圧室圧力Pとの差圧は定差圧弁18によって一定に保持されるから、1次側圧力Pと2次側圧力Pとの差圧もまた一定に保持される。
即ち定差圧弁18によって、1次側圧力Pと2次側圧力Pとの差圧が一定に保持される。
従って流路14を流れる水の流量即ち給水の流量は、主弁20の開度に応じた一定の流量となる。
In Formula (3), since the differential pressure between the primary pressure P 2 and the back pressure chamber pressure P 4 is held constant by the constant differential pressure valve 18, the primary pressure P 2 , the secondary pressure P 3 , The differential pressure is also kept constant.
That the constant differential pressure valve 18, the differential pressure between the primary side pressure P 2 and the secondary side pressure P 3 is kept constant.
Therefore, the flow rate of the water flowing through the flow path 14, that is, the flow rate of the feed water is a constant flow rate according to the opening of the main valve 20.

一方止水状態、即ち図2に示す主弁20の閉弁状態の下では、流路14に水の流れが生じていないため、背圧室圧力P=2次側圧力P=入側流路の入側圧力Pとなる。
即ち止水状態の下では、定差圧弁18の差圧感受部56におけるダイヤフラム膜64には差圧による力は働かず、従ってシール部としての働きを有するダイヤフラム膜64が差圧による力によって漏れを発生するといったことは生じない。
On the other hand, under the water stoppage state, that is, under the valve closing state of the main valve 20 shown in FIG. 2, no flow of water occurs in the flow path 14, so the back pressure chamber pressure P 4 = secondary side pressure P 2 = inlet side the entrance side pressure P 1 of the flow channel.
That is, under the water stop condition, the force due to the differential pressure does not act on the diaphragm film 64 in the differential pressure sensing portion 56 of the constant differential pressure valve 18, and therefore the diaphragm film 64 functioning as a seal portion leaks due to the force due to the differential pressure. Does not occur.

また仮に漏れが発生したとしても、そのことが主弁20閉弁状態の下で2次側流路32への水の漏出をもたらすこともない。
差圧感受部56のダイヤフラム膜64は、2次側流路32の2次側圧力Pを直接受けていないからである。即ちダイヤフラム膜64に接する流路と2次側流路32とは、主弁20にて遮断されているからである。
Even if leakage occurs, it does not cause leakage of water to the secondary flow path 32 under the closed state of the main valve 20.
Diaphragm membrane of the differential pressure sensing portion 56 64 is because not received secondary pressure P 3 of the secondary-side flow path 32 directly. That is, the flow path in contact with the diaphragm film 64 and the secondary flow path 32 are blocked by the main valve 20.

一方主弁20が開いた状態、即ち給水状態の下では、差圧感受部56のダイヤフラム膜64に対して背圧室圧力Pと1次側圧力Pとの差圧が作用する。
但しその差圧は、図7における1次側圧力P=Pと2次側圧力Pとの差圧ほど大きな差圧ではないので、ダイヤフラム膜64が漏れを発生するといったことは生じ難く、また仮にその状態で漏れを発生させたとしても、1次側流路30の水はその漏れを生じたダイヤフラム膜64の個所から背圧室34に流入するだけであり、しかも1次側流路30から背圧室34への水の流入は、もともと導入小孔36を通じて生じているものである。
従ってその微小な漏れによる給水制御弁装置10の性能への影響は殆んど生じない。
On the other hand, when the main valve 20 is open, that is, under a water supply state, a differential pressure between the back pressure chamber pressure P 4 and the primary pressure P 2 acts on the diaphragm membrane 64 of the differential pressure sensing portion 56.
Provided that the pressure difference is not a differential pressure larger the differential pressure between the primary side in FIG. 7 the pressure P 2 = P 1 and the secondary side pressure P 2, hardly occurs that such diaphragm membrane 64 to generate a leakage Even if leakage occurs in this state, the water in the primary flow path 30 only flows into the back pressure chamber 34 from the location of the diaphragm membrane 64 where the leakage occurred, and the primary side flow The inflow of water from the passage 30 to the back pressure chamber 34 is originally generated through the introduction small hole 36.
Accordingly, the minute leakage hardly affects the performance of the water supply control valve device 10.

本実施形態では、差圧感受部56の動作時の摺動抵抗を小さくするために、シール部としてダイヤフラム膜64を用いた場合であっても、ダイヤフラム膜64を耐圧確保のために基布入りのものとしなくてもよく、ダイヤフラム膜64に要するコストを低く抑えることができる。   In the present embodiment, in order to reduce the sliding resistance during operation of the differential pressure sensing part 56, even if the diaphragm film 64 is used as the seal part, the diaphragm film 64 is included in the base cloth for ensuring the pressure resistance. The cost required for the diaphragm film 64 can be kept low.

次に図3及び図4は本発明の他の実施形態を示している。
この実施形態は、給水制御弁16が開閉弁である場合の例で、ここではプランジャ式のパイロット弁76を、通電により電磁力を発生させる電磁コイル78にて駆動するようにしている。
この例の給水制御弁装置10では、パイロット弁76が前進端即ち全閉位置と、後退端即ち全開位置との何れかの位置に位置保持される。
3 and 4 show another embodiment of the present invention.
This embodiment is an example in the case where the water supply control valve 16 is an on-off valve. Here, the plunger-type pilot valve 76 is driven by an electromagnetic coil 78 that generates an electromagnetic force by energization.
In the water supply control valve device 10 of this example, the pilot valve 76 is held at either the forward end, that is, the fully closed position, or the backward end, that is, the fully opened position.

詳しくは、電磁コイル78に通電されると、電磁コイル78が電磁力でパイロット弁76をストローク一杯まで図中上向きに引き上げて全開位置にこれを保持する。
また閉弁時には、図4に示しているようにコイルばね80がパイロット弁76をストローク一杯まで図中下向きに突き出して、これを閉弁位置に位置保持する。
またこれに伴って主弁20がストローク一杯まで図中上向きに後退した全開位置と、ストローク一杯まで図中下向きに移動した全閉位置に位置保持される。
Specifically, when the electromagnetic coil 78 is energized, the electromagnetic coil 78 pulls up the pilot valve 76 upward in the drawing by electromagnetic force to the full stroke and holds it in the fully open position.
When the valve is closed, as shown in FIG. 4, the coil spring 80 projects the pilot valve 76 downward in the drawing to the full stroke and holds it in the closed position.
Accordingly, the main valve 20 is held in a fully open position in which the main valve 20 is retracted upward in the drawing to the full stroke and in a fully closed position in which the main valve 20 is moved downward in the drawing to the full stroke.

而してパイロット弁76及び主弁20がストローク一杯まで後退方向に移動して全開位置となったとき、図3に示しているようにパイロット弁76、詳しくはシール部44と主弁20との間には十分に大きな隙間Sが生じる。
このため、パイロット弁76及び主弁20の開弁状態の下では、背圧室圧力Pと2次側流路の2次側圧力Pとは実質等しい圧力(P=P)となる(パイロット流路38は導入小孔36に対して十分に拡い)。
Thus, when the pilot valve 76 and the main valve 20 move in the backward direction to the full stroke and reach the fully open position, as shown in FIG. 3, the pilot valve 76, more specifically, the seal portion 44 and the main valve 20 A sufficiently large gap S is generated between them.
Therefore, under the open state of the pilot valve 76 and main valve 20, the secondary pressure P 3 of the back pressure chamber pressure P 4 secondary flow path substantially equal to the pressure (P 4 = P 3) (The pilot channel 38 is sufficiently expanded with respect to the introduction small hole 36).

一方1次側圧力Pと背圧室圧力Pとの差圧(P−P)は定差圧弁18によって一定に保持されるため、1次側圧力Pと2次側圧力Pとの差圧もまた一定に保持される。
他方止水時、即ち主弁20が閉弁した状態の下では、流路14に水の流れは生じていないため、背圧室圧力P=1次側圧力P=入側圧力Pとなる。
尚図3及び図4の実施形態において、他の構成については基本的に上記実施形態と同様である。
この実施形態においても上記実施形態と同様の効果を奏する。
On the other hand, since the differential pressure (P 2 −P 4 ) between the primary pressure P 2 and the back pressure chamber pressure P 4 is held constant by the constant differential pressure valve 18, the primary pressure P 2 and the secondary pressure P The differential pressure from 3 is also kept constant.
On the other hand, when the water is stopped, that is, when the main valve 20 is closed, no flow of water occurs in the flow path 14, so the back pressure chamber pressure P 4 = primary side pressure P 2 = inlet side pressure P 1. It becomes.
In the embodiment of FIGS. 3 and 4, the other configurations are basically the same as those of the above embodiment.
This embodiment also has the same effect as the above embodiment.

次に図5及び図6は本発明の更に他の実施形態を示している。
この例もまた、給水制御弁16が開閉弁であって且つ主弁20がピストン弁から成っており、その主弁20がシリンダ室84の内面に沿って図中上下に摺動するようになっている。
尚ピストン弁から成る主弁20の外周面にはOリングが保持されており、このOリングによって、主弁20とシリンダ室84内面との間が水密にシールされている。
5 and 6 show still another embodiment of the present invention.
Also in this example, the water supply control valve 16 is an on-off valve and the main valve 20 is a piston valve, and the main valve 20 slides up and down in the drawing along the inner surface of the cylinder chamber 84. ing.
An O-ring is held on the outer peripheral surface of the main valve 20 composed of a piston valve, and the space between the main valve 20 and the inner surface of the cylinder chamber 84 is sealed in a watertight manner by the O-ring.

この例では、1次側流路30と背圧室34とを連通させる導入小孔36がボデー12を貫通して設けられており、またパイロット流路38が主弁20を貫通せずに、ボデー12を貫通して設けられている。
そしてこのパイロット流路38上に、パイロット弁86が配置され、このパイロット弁86がパイロット弁座88に着座し、又はこれから離間するようになっている。
In this example, an introduction small hole 36 for communicating the primary side flow path 30 and the back pressure chamber 34 is provided through the body 12, and the pilot flow path 38 does not penetrate the main valve 20. It is provided through the body 12.
A pilot valve 86 is disposed on the pilot flow path 38, and the pilot valve 86 is seated on or separated from the pilot valve seat 88.

パイロット弁86は、操作軸40の先端部にて構成されており、また操作軸42は雄ねじ部48が設けられていて、この雄ねじ部48が、ボデー12の雌ねじ孔の雌ねじ部50に螺合され、それら雄ねじ部48と雌ねじ部50とでねじ機構52が構成されている。
また操作軸40のボデー12から外部に露出した端部には、回転操作部90が設けられている。
The pilot valve 86 is configured at the tip of the operation shaft 40, and the operation shaft 42 is provided with a male screw portion 48, and this male screw portion 48 is screwed into the female screw portion 50 of the female screw hole of the body 12. The male screw portion 48 and the female screw portion 50 constitute a screw mechanism 52.
A rotation operation unit 90 is provided at the end of the operation shaft 40 exposed to the outside from the body 12.

本実施形態において、定差圧弁18における差圧感受部56は、ピストン部92とシール部としてのOリング94とで構成されており、かかる差圧感受部56が、シリンダ室96の内面に沿って図中上下に摺動可能とされている。
尚、他の構成については図3及び図4に示す実施形態と同様である。
In the present embodiment, the differential pressure sensing portion 56 in the constant differential pressure valve 18 is configured by a piston portion 92 and an O-ring 94 as a seal portion, and the differential pressure sensing portion 56 extends along the inner surface of the cylinder chamber 96. In the figure, it can slide up and down.
Other configurations are the same as those of the embodiment shown in FIGS.

この例では、図6に示すようにパイロット弁40を閉弁させると主弁20が閉弁位置に保持され、また図5に示すようにパイロット弁40を図中右方向に大きく後退させ開弁させると、主弁20が全開位置に位置保持される。
そして主弁20の全閉位置と全開位置との位置移動によって、流路が閉から開に、またその逆に切り換えられる。
In this example, when the pilot valve 40 is closed as shown in FIG. 6, the main valve 20 is held in the closed position, and as shown in FIG. 5, the pilot valve 40 is largely retracted to the right in the drawing to open the valve. As a result, the main valve 20 is held in the fully open position.
The flow path is switched from closed to open and vice versa by the movement of the main valve 20 between the fully closed position and the fully open position.

主弁20が全開位置にある図5において、2次側流路32はパイロット流路38を介して背圧室34と連通した状態にあり、またパイロット弁40は大きく開いた状態にあって、パイロット弁86とパイロット弁座88との間には大きな隙間Sが生じているため、背圧室圧力P=2次側圧力Pとなる。 In FIG. 5 in which the main valve 20 is in the fully open position, the secondary side flow path 32 is in communication with the back pressure chamber 34 via the pilot flow path 38, and the pilot valve 40 is in a largely open state. Since a large gap S is generated between the pilot valve 86 and the pilot valve seat 88, the back pressure chamber pressure P 4 = the secondary pressure P 3 .

また2次側圧力Pと背圧室圧力Pとの差圧(P−P)は定差圧弁18にて一定に保持されているため、1次側圧力Pと2次側圧力Pとの差圧(P−P)もまた一定の差圧に保持される。
従ってこの例においても、主弁20を通過して流れる水の流量は一定流量となる。
Further, since the differential pressure (P 2 -P 4 ) between the secondary pressure P 2 and the back pressure chamber pressure P 4 is held constant by the constant differential pressure valve 18, the primary pressure P 2 and the secondary pressure the differential pressure between the pressure P 3 (P 2 -P 3) is also held at a constant differential pressure.
Therefore, also in this example, the flow rate of water flowing through the main valve 20 is a constant flow rate.

尚この例のピストン弁から成る主弁20は、図6に示す閉弁状態から、1次側流路30から2次側流路32に向う水の流れの勢いで開弁する。
一方パイロット弁86を閉じると、増大した背圧室圧力Pの圧力で主弁20が閉弁し、そして主弁20が閉弁した状態の下では、背圧室圧力Pは1次側圧力P=入側圧力Pと等しい圧力となる。
The main valve 20 including the piston valve in this example is opened from the closed state shown in FIG. 6 by the momentum of water flow from the primary side flow path 30 to the secondary side flow path 32.
On the other hand, when the pilot valve 86 is closed, the main valve 20 is closed by the increased back pressure chamber pressure P 4 , and under the state where the main valve 20 is closed, the back pressure chamber pressure P 4 is the primary side. The pressure P 2 = the pressure equal to the entry side pressure P 1 .

以上本発明の実施形態を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた形態で構成可能である。   Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be configured in various forms without departing from the spirit of the present invention.

10 給水制御弁装置
14 流路
16 パイロット式給水制御弁
18 定差圧弁
20 主弁
30 1次側流路
32 2次側流路
34 背圧室
36 導入小孔
38 パイロット流路
42,76,86 パイロット弁
54 弁体
56 差圧感受部
60 絞り部
64 ダイヤフラム膜
68 コイルばね
70 収容室
DESCRIPTION OF SYMBOLS 10 Water supply control valve apparatus 14 Flow path 16 Pilot type water supply control valve 18 Constant pressure valve 20 Main valve 30 Primary side flow path 32 Secondary side flow path 34 Back pressure chamber 36 Introduction small hole 38 Pilot flow paths 42, 76, 86 Pilot valve 54 Valve body 56 Differential pressure sensing part 60 Throttle part 64 Diaphragm film 68 Coil spring 70 Storage chamber

Claims (5)

(イ)(a)流路に設けた主弁と、(b)内部の圧力を該主弁に対して閉弁方向の押圧力として作用させる背圧室と、(c)該主弁に対する1次側流路の水を該背圧室に導入して該背圧室の圧力を増大させる導入小孔と、(d)該背圧室の水を該主弁に対する2次側流路に抜いて該背圧室の圧力を減少させるパイロット流路と、(e)該背圧室から該パイロット流路を経て流出する水の流れを制御して前記主弁の動作を制御するパイロット弁と、を備えたパイロット式給水制御弁に、
(ロ)(f)一方の面で前記背圧室の圧力を受け、反対側の他方の面で前記1次側流路の1次側圧力を受け、それら1次側圧力と背圧室圧力との差圧を感受する差圧感受部を備えた弁体と、(g)該弁体に対して前記背圧室の圧力の作用方向に付勢力を作用させる付勢部材と、を有し、前記主弁の開弁状態の下で、前記弁体に備えた絞り部により流路に対する絞りを変えることで前記背圧室圧力と1次側圧力との差圧を一定とする定差圧弁
を付加することで前記1次側流路と2次側流路との差圧を一定に保持するようになしてあることを特徴とする給水制御弁装置。
(A) (a) a main valve provided in the flow path, (b) a back pressure chamber in which the internal pressure acts on the main valve as a pressing force in the valve closing direction, and (c) one for the main valve. An introduction small hole that introduces water in the secondary flow path into the back pressure chamber to increase the pressure in the back pressure chamber; and (d) drains the water in the back pressure chamber into the secondary flow path to the main valve. A pilot flow path that reduces the pressure in the back pressure chamber; and (e) a pilot valve that controls the operation of the main valve by controlling the flow of water flowing out of the back pressure chamber through the pilot flow path; To the pilot-type water supply control valve equipped with
(B) (f) The pressure of the back pressure chamber is received on one surface, the primary pressure of the primary flow path is received on the other surface on the opposite side, the primary pressure and the back pressure chamber pressure. And (g) a biasing member that applies a biasing force to the valve body in the direction of the pressure of the back pressure chamber. A constant differential pressure valve that makes the differential pressure between the back pressure chamber pressure and the primary side pressure constant by changing the throttle with respect to the flow path by the throttle part provided in the valve body under the open state of the main valve The water supply control valve device is characterized in that the differential pressure between the primary side flow path and the secondary side flow path is kept constant by adding.
請求項1において、前記給水制御弁は、前記主弁が一方の面で前記背圧室の圧力を受け、反対側の他方の面で前記1次側流路の1次側圧力と前記2次側流路の2次側圧力とを受けるとともに、
前記パイロット流路が前記主弁を貫通して設けてあり、
該主弁が前記パイロット弁との間に一定の微小な追従間隙を保持しつつ該パイロット弁の移動に追従して同方向に移動し、給水流量を制御する弁であることを特徴とする給水制御弁装置。
2. The water supply control valve according to claim 1, wherein the main valve receives the pressure of the back pressure chamber on one side, and the primary side pressure and the secondary side of the primary channel on the other side on the opposite side. Receiving the secondary side pressure of the side channel,
The pilot flow path is provided through the main valve;
The main valve is a valve that controls the feed water flow rate by moving in the same direction following the movement of the pilot valve while maintaining a constant minute follow-up gap with the pilot valve. Control valve device.
請求項1において、前記給水制御弁は、前記主弁が全開位置と全閉位置との何れかに位置保持されて、流路を開から閉に若しくはその逆に切り替える開閉弁であることを特徴とする給水制御弁装置。   2. The on-off valve according to claim 1, wherein the water supply control valve is an on-off valve that switches the flow path from open to closed or vice versa, with the main valve being held in either a fully open position or a fully closed position. A water supply control valve device. 請求項1〜3の何れかにおいて、前記定差圧弁の前記差圧感受部のシール部がダイヤフラム膜であることを特徴とする給水制御弁装置。   4. The water supply control valve device according to claim 1, wherein a seal portion of the differential pressure sensing portion of the constant differential pressure valve is a diaphragm membrane. 請求項1〜4の何れかにおいて、前記背圧室が前記付勢部材の収容室を兼ねていることを特徴とする給水制御弁装置。   5. The water supply control valve device according to claim 1, wherein the back pressure chamber also serves as a storage chamber for the biasing member.
JP2011076789A 2011-03-30 2011-03-30 Water supply control valve device Active JP5740710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011076789A JP5740710B2 (en) 2011-03-30 2011-03-30 Water supply control valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011076789A JP5740710B2 (en) 2011-03-30 2011-03-30 Water supply control valve device

Publications (2)

Publication Number Publication Date
JP2012211619A true JP2012211619A (en) 2012-11-01
JP5740710B2 JP5740710B2 (en) 2015-06-24

Family

ID=47265748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011076789A Active JP5740710B2 (en) 2011-03-30 2011-03-30 Water supply control valve device

Country Status (1)

Country Link
JP (1) JP5740710B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015036567A (en) * 2013-08-12 2015-02-23 アドバンス電気工業株式会社 Constant flow rate valve
JP2015146163A (en) * 2014-02-04 2015-08-13 アドバンス電気工業株式会社 Flow rate control valve and flow rate control device using the same
JP2015183986A (en) * 2014-03-26 2015-10-22 Toto株式会社 Hot water/water mixing device
WO2020223288A1 (en) * 2019-04-30 2020-11-05 Dresser, Llc Expandable pilot assembly for pressure regulators
RU2785059C1 (en) * 2019-04-30 2022-12-02 ДРЕССЕР, ЭлЭлСи Expandable control assembly for pressure controllers
US11713828B2 (en) 2019-04-30 2023-08-01 Dresser, Llc Pilot-operated pressure regulator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522801U (en) * 1978-01-19 1980-02-14
JP2007024061A (en) * 2005-07-12 2007-02-01 Inax Corp Pilot flow control valve device
JP2009014020A (en) * 2007-06-29 2009-01-22 Inax Corp Pilot flow control valve device
JP2009024780A (en) * 2007-07-19 2009-02-05 Inax Corp Constant flow rate valve device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522801U (en) * 1978-01-19 1980-02-14
JP2007024061A (en) * 2005-07-12 2007-02-01 Inax Corp Pilot flow control valve device
JP2009014020A (en) * 2007-06-29 2009-01-22 Inax Corp Pilot flow control valve device
JP2009024780A (en) * 2007-07-19 2009-02-05 Inax Corp Constant flow rate valve device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015036567A (en) * 2013-08-12 2015-02-23 アドバンス電気工業株式会社 Constant flow rate valve
JP2015146163A (en) * 2014-02-04 2015-08-13 アドバンス電気工業株式会社 Flow rate control valve and flow rate control device using the same
JP2015183986A (en) * 2014-03-26 2015-10-22 Toto株式会社 Hot water/water mixing device
WO2020223288A1 (en) * 2019-04-30 2020-11-05 Dresser, Llc Expandable pilot assembly for pressure regulators
CN113767237A (en) * 2019-04-30 2021-12-07 德莱赛有限责任公司 Expandable guide assembly for pressure regulator
RU2785059C1 (en) * 2019-04-30 2022-12-02 ДРЕССЕР, ЭлЭлСи Expandable control assembly for pressure controllers
US11713827B2 (en) 2019-04-30 2023-08-01 Dresser, Llc Expandable pilot assembly for pressure regulators
US11713828B2 (en) 2019-04-30 2023-08-01 Dresser, Llc Pilot-operated pressure regulator
CN113767237B (en) * 2019-04-30 2024-04-26 德莱赛有限责任公司 Expandable guide assembly for a pressure regulator

Also Published As

Publication number Publication date
JP5740710B2 (en) 2015-06-24

Similar Documents

Publication Publication Date Title
JP5740710B2 (en) Water supply control valve device
JP5406993B2 (en) Gas pressure regulator
JP2009024780A (en) Constant flow rate valve device
ATE534543T1 (en) ROLL VALVE WITH VACUUM SAFETY FUNCTION
US20070290152A1 (en) Poppet valve
JP2008186106A (en) Pressure reducing valve
JP5009107B2 (en) Suck back valve
KR20130052615A (en) Gas pressure regulating valve
JP5848724B2 (en) Valve device with overflow prevention function
JP2008052381A (en) Pressure reducing valve for low flow rate and very low pressure
JP2013134687A (en) Pressure control unit of fuel cell system
JP2007024062A (en) Pilot-type flow control valve device
JP4115436B2 (en) Solenoid proportional valve
JP3869673B2 (en) Liquid control valve
JP2005315349A (en) Control valve device
JP5648179B2 (en) Flow control valve device
JP4948330B2 (en) Pressure reducing valve device
JP6332088B2 (en) Integrated compound steam valve
JP2014062477A (en) Gaseous fuel supply control device
JP2009014021A (en) Electric water supply control valve device, and pilot flow control valve device and hot water/cold water mixing valve device using the same
JP2013079692A (en) Flow rate control valve
JPWO2012118071A1 (en) Fluid control valve
TW200302909A (en) Electromagnetic water supplying valve
JP3149527U (en) Solenoid valve with measuring function
JP4919896B2 (en) Pressure regulating valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150408

R150 Certificate of patent or registration of utility model

Ref document number: 5740710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350