JP2007021217A - 運動する生物体範囲の画像を発生させるための方法およびx線診断装置 - Google Patents

運動する生物体範囲の画像を発生させるための方法およびx線診断装置 Download PDF

Info

Publication number
JP2007021217A
JP2007021217A JP2006194455A JP2006194455A JP2007021217A JP 2007021217 A JP2007021217 A JP 2007021217A JP 2006194455 A JP2006194455 A JP 2006194455A JP 2006194455 A JP2006194455 A JP 2006194455A JP 2007021217 A JP2007021217 A JP 2007021217A
Authority
JP
Japan
Prior art keywords
ray
value
amplitude
organism
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006194455A
Other languages
English (en)
Inventor
Florian Wesse
ヴェッセ フローリアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2007021217A publication Critical patent/JP2007021217A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • A61B5/1135Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing by monitoring thoracic expansion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/541Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal

Abstract

【課題】生物の呼吸に基づいて運動を生じる生物の体範囲の画像を発生させるための方法およびX線診断装置において生物が曝されるX線線量を低減する。
【解決手段】X線診断装置は、X線診断装置(1)と、生物(P)の呼吸信号を取得するための装置(14,15,16)とを含む。生物(P)の呼吸信号が求められ、種々の投影方向から生物(P)の体範囲のX線投影が撮影され、X線投影の撮影時にX線診断装置(1)のX線源から出射するX線の強度が次のように変調される。すなわち。このX線の強度が呼吸信号の振幅値および/または生物(P)の呼吸位置に依存して目標値または目標値よりも低下された値を取るように変調される。
【選択図】図3

Description

本発明は、生物の呼吸に基づいて運動を生じる生物体範囲の画像を発生させるための方法およびX線診断装置に関する。X線源およびX線検出器を有する放射線測定システムにより、種々の投影方向から生物体範囲のX線投影が撮影され、これらのX線投影からコンピュータにより生物の画像が再構成される。
生物の呼吸に基づいて運動を生じる生物体範囲の画像を発生させる場合には、しばしば、呼吸周期の定められた位相においてのみ生物体範囲の画像を発生させることが望まれる。X線像の取得を患者の呼吸に同期させることは公知である(例えば、特許文献1)。このために患者の呼吸周期が検出され、患者の吸込みの定められた度合いにおいて、患者の描出すべき体部分のX線像が取得される。
例えば、X線源およびX線検出器を含む測定システムが連続的に患者の周りを回転する第3世代のX線コンピュータ断層撮影装置によるX線コンピュータ断層撮影において患者の体範囲の種々の投影方向のもとでX線投影を取得する場合に、X線投影の取得に並行して患者の呼吸周期を記録することは公知である。この場合にX線投影の取得は、連続的なテーブル送り、すなわち測定システムに対する患者用寝台の上に位置決めされた患者の相対的な連続移動のもとで行なわれるか(スパイラルモード)、または患者用寝台の固定位置において行なわれる(逐次モード)。患者の呼吸周期の並行記録によって、X線撮影に引き続いて、患者の呼吸周期の選択された位相で患者の体範囲のねらいを定めた画像を再構成することができる。しかしながら、この方法は、患者の体範囲の画像情報が必要でないかもしくは望まれない患者呼吸周期の時点でも患者がX線に曝されるという欠点を有する。
米国特許第6633775号明細書
本発明の課題は、生物の呼吸に基づいて運動を生じる生物体範囲の画像を発生させるために生物が曝されるX線線量が低減されている冒頭に述べたごとき方法およびX線診断装置を提供することにある。
本発明によれば、この課題は請求項1による方法によって解決される。この方法においては、生物の呼吸信号が呼吸信号取得のための装置により求められ、同時に種々の投影方向から生物の体範囲のX線投影が撮影され、X線投影の撮影時にX線源から出射するX線の強度が次のように変調される。すなわち、X線投影の取得時におけるX線の強度が現在測定された呼吸信号の振幅値および/または現在測定された生物の呼吸位置に依存して目標値または目標値よりも低下された値を取るように変調される。強度の目標値となるべき呼吸信号の振幅値もしくは呼吸位置はそれぞれの生物に適合化されて予め与えられる。したがって、本発明によれば、生物は、生物の体範囲の1つまたは複数の画像が再構成されるべき呼吸周期位相および/または生物の呼吸位置でのみ、体範囲から質的に価値の高い画像を再構成することができる強度を有するX線に曝される。呼吸周期の残りの時間の間、強度は零にではなくて予め与えられた値に低下させられるので、確かに異なる方向からの生物の体範囲の更に別のX線投影が撮影されるが、ただし低減されたX線強度にて撮影される。本発明による方法は、生物が体範囲の画像の発生のために全体として、従来技術から公知の方法の場合よりも少ないX線線量に曝されるという結果となる。X線は、本来は画像を発生させない呼吸位相で意図的に完全には遮断されない。というのは、この位相で撮影されたX線投影は、高い強度によるX線投影の不足時に、たとえそうであっても生物の体範囲の画像を再構成することができるようにするために、場合によっては必要となることがあるからである。したがって、低い強度を有するX線を維持するのは、個々のX線投影の不足時に、低い強度で撮影されたX線投影を再構成のための補完用X線投影として利用することを可能にするための確実性の観点からである。
本発明による変形によれば、現在測定された呼吸信号の振幅値と最後に測定された振幅最大値との比が、それぞれ予め与えられた少なくとも1つの限界値より大きいか等しいもしくはより小さいか等しいときに、X線の強度が目標値を取る。したがって、強度は、現在測定された呼吸信号の振幅値と以前に測定された振幅最大値との比に依存して変調される。生物の呼吸周期の特定の位相において強度の目標値を調整するために、2つの異なる限界値を使用することが好ましい。生物の呼吸周期は一般に正確に周期的ではないために、そのことから、強度のための目標値の調整も、時点および持続時間に関して言えば、正確に周期的に行なわれるのではなく、それぞれの被検査生物の呼吸周期に正確に同調させられている。
本発明の他の実施形態によれば、現在測定された呼吸信号の振幅値と複数の呼吸周期の振幅最大に基づいて求められた比較値との比が予め与えられた少なくとも1つの限界値より大きいか等しいもしくはより小さいか等しいときに、X線の強度が目標値を取る。したがって、この場合には基準量が最後に測定された振幅最大値ではない。比較値を得るのに、むしろ予測的な考察のために、例えば複数の呼吸周期の複数の振幅最大にわたって平均化されるかまたは中央値フィルタが使用される。これは、特に、強度に目標値を取らせるために吸込み時における呼吸周期の特定位相を選択し、その位相において高い強度でX線投影を取得しようとする場合に得策である。なぜならば、この場合には現在の呼吸周期について基準量、つまり現在の呼吸周期の振幅最大値がまだ全く存在しないからである。
本発明の他の変形によれば、X線の強度が吸込み位相全体の期間中または吐出し位相全体の期間中に目標値を取る。したがって、本発明のこの変形は、生物の体範囲の画像を吸込み位相の期間中または吐出し位相の期間中に発生させようとする場合に有利である。
本発明の他の実施形態によれば、吐出し位相の期間内において現在測定された呼吸信号の振幅値と最後に測定された振幅最大値または複数の呼吸周期の振幅最大に基づいて求められた比較値との比が、予め与えられた第1の限界値より小さいか等しくかつ予め与えられた第2の限界値より大きいか等しいときに、X線の強度が目標値を取る。相応のやり方にて、X線強度を次のように変調すること、すなわち、吸込み位相の期間内において現在測定された呼吸信号の振幅値と最後に測定された振幅最大値または複数の呼吸周期の振幅最大に基づいて求められた比較値との比が、予め与えられた第1の限界値より大きいか等しくかつ予め与えられた第2の限界値より小さいか等しいときに、X線の強度が目標値を取るように変調することができる。引き続く診断の基礎として体範囲の狙いを定めた画像を発生させるために、高い強度による生物の体範囲のX線投影の撮影のための第1の実施形態の場合には、吐出し位相の期間内での呼吸周期の呼吸インターバルが選択されるのに対して、第2の実施形態の場合には、吸込み位相の期間内での呼吸周期の呼吸インターバルが選択される。
本発明の他の有利な実施形態によれば、現在測定された呼吸信号の振幅値が固定して予め与えられた下方の振幅限界値と固定して予め与えられた上方の振幅限界値との間にあるときに、X線の強度が目標値を取る。本発明のこの変形の場合には、例えば生物の体範囲から、呼吸信号の振幅値が比較的大きいかまたは小さい呼吸周期位相では、高いX線強度によるX線撮影が行なわれない。
本発明の他の変形によれば、生物のための絶対的な振幅限界値が生物の呼吸信号の振幅の以前に測定された値に基づいて確定され、生物が吸込み位相または吐出し位相にあるときのみ、X線の強度が目標値を取る。
呼吸信号は連続的に測定されることが好ましく、このために呼吸ベルト、鼻メガネのような公知の装置または呼吸信号表示用のビデオもしくはレーザシステムを用いることができる。
X線診断装置は、X線投影の撮影中に連続的に生物の周りを回転するX線源およびX線検出器を有するコンピュータ断層撮影装置であることが好ましい。しかしながら、X線診断装置はCアームX線装置であってもよく、CアームX線装置の場合には、生物の体範囲の3D画像を再構成するためのX線投影を取得するために、X線投影が生物の呼吸周期の特定位相でのみ撮影される。
本発明の特に有利な実施形態では、主としてX線の強度が目標値にある期間中に撮影されたX線投影のみが画像発生のために考慮される。
本発明の課題は、請求項17によるX線診断装置によっても解決される。これによれば、X線診断装置のコンピュータが、上述の方法の1つを実行するためのプログラム手段を有するように必要な装備を施されている。
本発明による変形によれば、X線診断装置は、強度の目標値、強度の目標値よりも低下された値の入力のため、ならびにそれぞれの種類の限界値の入力のための手段を有する。
既に述べたように、X線診断装置のX線診断機器はコンピュータ断層撮影装置またはCアームX線装置である。
本発明の実施例が添付の概略図面に示されている。図1は本発明による方法を実施するためのX線診断装置を示し、図2は呼吸周期の種々の振幅および長さを有する測定された呼吸信号の曲線を示し、図3乃至7は本発明による方法の動作を具体的に説明するダイアグラムを示す。
図1に示されている本発明による方法を実施するためのX線診断装置は、図1に示された実施例の場合にはコンピュータ断層撮影装置1である。コンピュータ断層撮影装置1はガントリ2内に配置された回転枠3を備えたガントリ2を有し、回転枠3はコンピュータ断層撮影装置1のシステム軸Zの周りを回転することができる。回転枠3にはX線源4がX線管の形で配置され、X線管の焦点FからX線ビーム5が出射する。X線ビーム5は、図1に示されてはいないが公知の絞りによりファン状もしくはピラミッド状に成形され、ファン角もしくは開角βを有する。本実施例の場合には多列のX線検出器6がX線源4に対向して回転枠3に配置されている。回転枠3の回転は、回転枠3に付設された電動駆動装置7により行なわれる。
更に、コンピュータ断層撮影装置1は公知の患者用寝台装置を含み、このうち図1には図の分かり易さの理由から寝台板8のみが示されている。この寝台板の上には、本実施例の場合には患者Pが横たわっていて、システム軸Zの方向に位置固定の回転枠3に対して相対的に移動可能である。
図1に示された患者Pの検査のために、患者Pは寝台板8の上に位置決めされ、回転枠3の開口9の中にもしくはそれを通して移動される。患者Pが逐次モードにて検査されるのか、それともスパイラルモードにて寝台板8の連続送りのもとで検査されるかどうかには関係なく、X線源4の焦点Fから出射するX線5は患者Pの検査すべき体範囲を透過し、X線検出器6に入射する。その際に、X線源4およびX線検出器6を有する回転枠3は、コンピュータ断層撮影装置1のシステム軸Zの周りもしくは患者の周りをφ方向に回転し、種々の投影方向から患者Pの体範囲のX線投影が取得される。X線投影ごとにX線検出器6には患者Pを透過しかつ患者Pの透過によって減弱されたX線が入射する。その際にX線検出器6は入射したX線強度に応じた信号を発生する。これに続いて、X線検出器6により検出された信号から、コンピュータ10が、公知のやり方にて、種々の投影方向のもとでX線投影を撮影された患者Pの1つまたは複数の2次元または3次元の画像が算定され、それらの画像は表示装置11において表示可能である。コンピュータ断層撮影装置1の操作のために、図1に典型例にて示されたキーボード12およびコンピュータマウス13のような入力手段が存在する。
患者Pの呼吸信号の連続取得のために、本実施例においてX線診断装置は、いわゆる呼吸バンド14を有し、これは伸縮性のあるバンドであり、図1における実施例の場合には、概略的に示されているように患者Pの胸郭の周りに置かれている。呼吸ベルトの明示的には示されていないポケット内には圧力センサ15がある。ポケット内における圧力センサ15の相応の配置および呼吸ベルトの引っ張りによって、患者Pの胸郭が上下する患者Pの呼吸の際に連続的な信号が発生し、信号は信号処理装置16に導かれる。信号処理装置16は場合によっては信号の前処理、例えば増幅を行ない、更なる評価のためにコンピュータ断層撮影装置1のコンピュータ10に転送される。コンピュータ10に転送された信号は以下において患者Pの呼吸信号と呼ばれ、図2に典型例にて示されているように、呼吸曲線として表示装置11に表示可能である。図2には模範例にて患者Pの3つの呼吸周期が示されていて、各呼吸周期は吸込み位相および吐出し位相によって特徴づけられている。図2から分かるように、患者Pの呼吸周期および他者の呼吸周期も一般に同一ではなく、つまり完全に周期的でなく、それらの期間および振幅値の高さが互いに相違する。
患者Pの呼吸周期のこれらの変化は、患者Pの呼吸に基づいて運動を生じる患者Pの体範囲の画像の取得時に画像内に運動アーチファクトをもたらす。更に、患者Pの呼吸に基づいて運動する体範囲の画像発生のためには、画像の基礎をなすX線投影の取得を呼吸に同期化して、すなわち患者Pの呼吸に依存して行なうことがしばしば望ましい。典型的には肺のX線投影が挙げられ、肺のX線投影は吸込み位相または吐出し位相において得ることができ、これは場合よっては画像発生に引き続く診断にとって重要であり得る。
したがって、呼吸によって運動する体範囲の画像の発生時に患者Pに照射されるX線の線量をできるだけ少なくするために、X線投影の撮影時においてX線源4から出射されるX線強度を次のように変調すること、すなわち、その強さが呼吸信号の振幅値および/または患者Pの呼吸位置に依存して目標値またはその目標値よりも低下された値をとるように変調することを提案する。具体的には、患者Pにおける呼吸により運動させられる体部分の投影が患者Pの体部分の画像発生のために撮影される患者Pの呼吸周期の位相においてはX線強度に目標値をとらせ、一般に画像発生にとって重要でない他の位相においてはX線強度にその目標値よりも低下させた値を取らせようとするものである。例えば呼吸周期の重要でない位相ではX線強度を目標値の20%に低下させることができる。目標値をどのくらいの高さにすべきか、またどの程度まで低下を行なうべきかについては、各患者に対して個別的にコンピュータ断層撮影装置1の入力手段を介して予め与えることができる。
以下においてX線強度の変調のための種々の例を示す。
図3に示された患者Pの3つの呼吸周期に基づいて具体的にて示されているように、ここでは、呼吸によって運動させられる患者Pの体部分の種々の投影方向からのX線投影が、患者Pの吐出し位相において撮影される。呼吸ベルトにより測定された呼吸信号の現在の振幅値と最後に測定された呼吸周期振幅最大値との比が90%から10%までの範囲にあるときに、患者Pの体部分から高い強度によるX線撮影が取得される。したがって、現在測定される呼吸信号の振幅値と最後に測定された振幅最大値との比が90%標識に到達したとき、患者Pより種々の投影方向から高い強度によるX線投影が撮影され始め、この取得が10%標識に到達するまで続けられる。引き続いて、すぐ次の呼吸周期における患者Pの吐出し時のすぐ次の90%標識到達までは、目標値を下回る低い強度のX線による種々の方向からのX線投影が撮影される。このプロセスは、画像の再構成のために必要なX線投影を記録し終えるまで行なわれる。X線強度の変調は次のように行なわれる。すなわち、断層撮影装置1のコンピュータ10の入力手段によるそれぞれの限界値(吐出し時における90%および10%の限界値)の設定に基づいて連続的に呼吸信号が評価され、最後に測定された振幅最大値に対する比に変換され、その比に依存して、X線源4に付設された電圧発生装置17が制御される。これは、例えば、X線管4の管電流が相応に変調されるように行なわれる。したがって、本方法は次の結果となる。すなわち、患者Pが、X線投影の撮影時に画像発生にとって重要な呼吸周期位相においてのみ、高画質のX線画像を発生させるために必要な強度のX線に曝される。一般に、高い強度によるX線投影が撮影される呼吸周期の範囲もしくは時間間隔は小さすぎないように選ばれるので、患者Pの表示すべき体範囲の画像の再構成のために十分な測定データが存在する。信頼性のために、画像発生にとって重要でない呼吸周期位相において、それにもかかわらず、そこでもX線投影を取得するためにX線源の遮断に等しい結果となるX線強度の零への引き下げは行なわれない。このようにして取得されたX線投影は、場合によっては、高い強度の位相において撮影されたX線投影が画像再構成のために十分でなかったときに、補充用のX線投影として援用されるであろう。この場合に、結果として生じる画像もしくは再構成された画像は確かに高画質の画像ではないが、そもそも、もう一度測定方法を実施しなければならないということなしに画像を再構成することができる。
コンピュータ10は、既に示したように、それにより本発明による方法が実施可能であるように必要な装備を施され、すなわちプログラム手段と呼ぶ相応のプログラム、プログラムモジュールおよびルーチンを備えさせられている。予め与えられた限界値、強度の目標値、強度の低下値および現在測定された呼吸信号の連続的な評価に基づいて、X線投影が高い強度により撮影される位相が求められる。更に、電圧発生ユニット17が相応に制御される。
図3から分かるように、本発明による方法に基づいて、X線投影の撮影がそれぞれの患者に適合化されている。種々の呼吸周期にもかかわらず、常に90%標識から10%標識までの範囲の吐出し位相においてX線投影が高いX線強度にて撮影される。したがって、それぞれの呼吸周期に依存して、X線投影が高い強度にて撮影される時点が完全に規則的ではなく、高い強度によるX線投影の撮影のこれらの位相の期間はさまざまである。
図4を基にして、模範的に患者Pの吸込み位相の期間中における呼吸により運動させられる患者Pの体部分の投影の撮影が、患者Pの3つの呼吸周期に基づいて具体的に示されている。これによると、現在において測定された患者Pの呼吸信号の振幅値と最後に測定された振幅最大値との比が30%より大きいか等しいまたは70%より小さいか等しいときに、X線投影が高い強度により撮影される。図4に示された呼吸周期の場合に、吸込み位相の期間中には、すなわち最大にまだ到達していない呼吸周期の時点においては、この最大を高い強度によるX線投影の撮影のトリガのために利用できないために、先行の呼吸周期の最大に遡らなければならず、このことは場合によっては不都合である。この理由からこのような場合には、複数の先行の呼吸周期の測定された振幅最大に基づく比較値を基準量として使用することが有意義である。適切な比較値は、例えば複数の呼吸周期の複数の振幅最大にわたって平均化を行なって、平均値を比較値として考慮するようにして求めることができる。代替として、複数の振幅最大から比較値を求めるために、中央値フィルタを使用してもよい。
図5には、更なる変形として、吐出し位相からの高い強度によるX線投影の撮影が吸込み位相にまで広がり得ることが示されている。図5には、第1の呼吸周期の吐出し位相において、現在測定された呼吸信号の振幅値と最後に測定された振幅最大値または他の求められた比較値である比較値との比が50%に達したときに、高い強度によるX線投影の撮影が始まることが示されている。高い強度によるX線投影の撮影は、最終的に、引き続く呼吸周期の吸込み位相において、現在測定された呼吸信号の振幅値と比較値との比が30%に達したときに終了する。
図6には高い強度によるX線投影の撮影が吐出し位相においてのみ行なうことができることが具体例で示されている。つまり、呼吸周期において測定呼吸信号の現在の最大が到達されたときに高い強度のX線投影の撮影が開始され、その高い強度のX線投影の撮影は、呼吸周期が終了したとき、すなわち測定呼吸信号の最小が到達されたときに終了する。同じやり方で、高い強度によるX線投影の撮影を吸込み位相の期間中においても行なうことができる。この場合に強度の変調は、測定呼吸信号に基づいて吸込みの最大もしくは吐出しの最小がコンピュータ10によって認識されたときにそれぞれ行なわれる。
図7には、高い強度によるX線投影の撮影が、絶対的な振幅限界値によってもそれぞれの患者Pに適合させられ、場合によってはなおも吸込み位相または吐出し位相に依存させられ得ることが具体例で示されている。そこで、図7では、吐出し位相において絶対的な振幅値が1000を下回ったときに高い強度によるX線投影の撮影が行なわれ、この高い強度による撮影は絶対的な振幅値が200を下回ったときに終了させられる。
したがって、患者Pの高い強度によるX線投影の撮影が、現在測定された呼吸信号の振幅値および/または患者Pの呼吸位置に依存させられることによって、患者Pの呼吸に基づいて運動を生じる体範囲から画像を発生させるのに、患者Pが全体として低減されたX線線量に曝されることが明らかである。更に、高い強度によるX線投影の撮影範囲の狙いを定めた選択によって運動アーチファクトを有する画像を受け取るのを回避することができる。この場合に、画像内に表示すべき体範囲の呼吸による比較的少ない運動が発生する呼吸周期位相を選択することが好ましい。特に、コンピュータ断層撮影装置のスパイラルモードでの高い強度によるX線投影の取得時に、上述の方法は、呼吸によって動かされる患者Pの体範囲の画像が、実際上任意の呼吸位相でかつシステム軸Zの方向における患者Pのあらゆる位置にて可能であるという利点をもたらす。この場合に更に画像の重複する再構成が著しく改善された3D画質をもたらす。X線投影の撮影中の連続的テーブル送りによって、画像内において描出すべき患者Pのボリュームが逐次トリガモードよりも明らかに高速にて走査される。ボリュームの高速走査によって患者Pの薄い体層の画像も発生させることができ、このことは更に改善された分解能に帰着する。
方法およびX線診断装置を上述では第3世代のコンピュータ断層撮影装置の例で説明した。しかし、第4および第5世代のコンピュータ断層撮影装置も本方法に適している。
代替として、後で3D画像が再構成される種々の投影方向からのX線投影の取得のために、コンピュータ断層撮影装置の代わりにCアームX線装置を使用することもできる。CアームX線装置におけるCアームに配置されているX線源およびX線検出器は、種々の投影方向からのX線投影を撮影するために撮影すべき患者の体範囲の周りを移動させられる。この場合にも、X線投影の取得時に全体的に患者が少ないX線線量に曝されるようにするために、高い強度によるX線投影の撮影が患者の呼吸信号の現在測定された値に依存させられる。
本発明による方法を実施するためのX線診断装置を示す概略図 呼吸周期の種々の振幅および長さを有する測定された呼吸信号の曲線を示すダイアグラム 本発明による方法の第1変形の動作を説明するためのダイアグラム 本発明による方法の第2変形の動作を説明するためのダイアグラム 本発明による方法の第3変形の動作を説明するためのダイアグラム 本発明による方法の第4変形の動作を説明するためのダイアグラム 本発明による方法の第5変形の動作を説明するためのダイアグラム
符号の説明
1 コンピュータ断層撮影装置
2 ガントリ
3 回転枠
4 X線源
5 X線ビーム
6 X線検出器
7 電動駆動装置
8 寝台板
9 開口
10 コンピュータ
11 表示装置
12 キーボード
13 コンピュータマウス
14 呼吸ベルト
15 圧力センサ
16 信号処理装置
17 電圧発生装置
P 患者
Z システム軸
β ファン角(開角)
φ 回転方向

Claims (20)

  1. 生物(P)の体範囲を種々の方向から透過するX線を出射するX線源(4)、X線源(4)に対応付けられた生物(P)の体範囲を透過したX線を検出するX線検出器(6)およびX線検出器(6)により測定された信号から生物(P)の体範囲の画像を求めるコンピュータ(10)を有するX線診断装置(1)と、生物(P)の呼吸信号を取得するための装置(14,15,16)とを用いて、生物(P)の呼吸に基づいて運動を生じる生物(P)の体範囲の画像を発生させるための方法において、次の方法ステップ、
    − 生物(P)の呼吸信号を求める方法ステップ、
    − 種々の投影方向から生物(P)の体範囲のX線投影を撮影し、X線投影の撮影時にX線源から出射するX線の強度を、この強度が呼吸信号の振幅値および/または生物(P)の呼吸位置に依存して目標値または目標値よりも低下された値を取るように変調する方法ステップ、
    を有することを特徴とする方法。
  2. 現在測定された呼吸信号の振幅値と最後に測定された振幅最大値との比が予め与えられた少なくとも1つの限界値より大きいか等しいときに、X線の強度が目標値を取ることを特徴とする請求項1記載の方法。
  3. 現在測定された呼吸信号の振幅値と最後に測定された振幅最大値との比が予め与えられた少なくとも1つの限界値より小さいか等しいときに、X線の強度が目標値を取ることを特徴とする請求項1又は2記載の方法。
  4. 現在測定された呼吸信号の振幅値と複数の呼吸周期の振幅最大に基づいて求められた比較値との比が予め与えられた少なくとも1つの限界値より大きいか等しいときに、X線の強度が目標値を取ることを特徴とする請求項1記載の方法。
  5. 現在測定された呼吸信号の振幅値と複数の呼吸周期の振幅最大に基づいて求められた比較値との比が予め与えられた少なくとも1つの限界値より小さいか等しいときに、X線の強度が目標値を取ることを特徴とする請求項1又は4記載の方法。
  6. X線の強度が吸込み位相の期間中または吐出し位相の期間中に目標値を取ることを特徴とする請求項1記載の方法。
  7. 吐出し位相の期間内において現在測定された呼吸信号の振幅値と最後に測定された振幅最大値または複数の呼吸周期の振幅最大に基づいて求められた比較値との比が、予め与えられた第1の限界値より小さいか等しくかつ予め与えられた第2の限界値より大きいか等しいときに、X線の強度が目標値を取ることを特徴とする請求項1乃至6の1つに記載の方法。
  8. 吸込み位相の期間内において現在測定された呼吸信号の振幅値と最後に測定された振幅最大値または複数の呼吸周期の振幅最大に基づいて求められた比較値との比が、予め与えられた第1の限界値より大きいか等しくかつ予め与えられた第2の限界値より小さいか等しいときに、X線の強度が目標値を取ることを特徴とする請求項1乃至7の1つに記載の方法。
  9. 現在測定された呼吸信号の振幅値が下方の振幅限界値と上方の振幅限界値との間にあるときに、X線の強度が目標値を取ることを特徴とする請求項1記載の方法。
  10. 生物(P)のための振幅限界値が、以前に測定された生物(P)の呼吸信号の振幅の値に基づいて設定されることを特徴とする請求項9記載の方法。
  11. 生物(P)が吸込み位相または吐出し位相にあるときのみ、X線の強度が目標値を取ることを特徴とする請求項9又は10記載の方法。
  12. 呼吸信号が連続的に測定されることを特徴とする請求項1乃至11の1つに記載の方法。
  13. X線診断装置がコンピュータ断層撮影装置(1)であることを特徴とする請求項1乃至12の1つに記載の方法。
  14. X線源(4)およびX線検出器(6)がX線投影の撮影中に連続的に生物(P)の周りを回転させられることを特徴とする請求項1乃至13の1つに記載の方法。
  15. X線診断装置がCアームX線装置であることを特徴とする請求項1乃至12の1つに記載の方法。
  16. 主としてX線の強度が目標値にある期間中に撮影されたX線投影のみが画像発生のために考慮されることを特徴とする請求項1乃至15の1つに記載の方法。
  17. 生物(P)の呼吸に基づいて運動を生じる患者(P)の体範囲の画像発生のためのX線診断装置であって、生物(P)の体範囲を種々の方向から透過するX線を出射するX線源(4)、X線源(4)に対応付けられた生物(P)の体範囲を透過したX線を検出するX線検出器(6)およびX線検出器(6)により測定された信号から生物(P)の体範囲の画像を求めるコンピュータ(10)を有するX線診断装置(1)と、生物(P)の呼吸信号を取得するための装置(14,15,16)とを備えたX線診断装置において、コンピュータ(10)は請求項1乃至16の1つに記載の方法の1つを実行するためのプログラム手段を有することを特徴とするX線診断装置。
  18. 目標値、目標値よりも低下された値ならびに限界値の入力のための手段(12,13)を有することを特徴とする請求項17記載のX線診断装置。
  19. コンピュータ断層撮影装置(1)を含むことを特徴とする請求項17又は18記載のX線診断装置。
  20. CアームX線装置を含むことを特徴とする請求項17又は18記載のX線診断装置。

JP2006194455A 2005-07-18 2006-07-14 運動する生物体範囲の画像を発生させるための方法およびx線診断装置 Withdrawn JP2007021217A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005033471A DE102005033471A1 (de) 2005-07-18 2005-07-18 Verfahren und Röntgendiagnostikeinrichtung zur Erzeugung eines Bildes von einem sich bewegenden Körperbereich eines Lebewesens

Publications (1)

Publication Number Publication Date
JP2007021217A true JP2007021217A (ja) 2007-02-01

Family

ID=37575568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006194455A Withdrawn JP2007021217A (ja) 2005-07-18 2006-07-14 運動する生物体範囲の画像を発生させるための方法およびx線診断装置

Country Status (4)

Country Link
US (1) US8233966B2 (ja)
JP (1) JP2007021217A (ja)
CN (1) CN1915170B (ja)
DE (1) DE102005033471A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013165755A (ja) * 2012-02-14 2013-08-29 Toshiba Corp 医用画像診断装置
US9655581B2 (en) 2012-02-14 2017-05-23 Toshiba Medical Systems Corporation Medical image diagnostic apparatus
CN111568425A (zh) * 2020-06-08 2020-08-25 北京大学 一种非接触式的多人呼吸检测方法

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007046220A1 (ja) * 2005-10-18 2009-04-23 コニカミノルタエムジー株式会社 X線撮影装置
CN101305921B (zh) * 2007-05-17 2010-12-01 上海西门子医疗器械有限公司 一种实现ct呼吸门控的方法及装置
DE102008003501A1 (de) * 2008-01-08 2009-07-16 Siemens Ag Medizintechnisches System und Verfahren zum Erfassen von Bilddaten eines sich zyklisch bewegenden Körperbereichs eines Patienten
US8519365B2 (en) * 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
US7939809B2 (en) * 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
US8624528B2 (en) * 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
US10029122B2 (en) 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
US8178859B2 (en) 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
US9155911B1 (en) 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
US8598543B2 (en) * 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US8642978B2 (en) * 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US20090314960A1 (en) * 2008-05-22 2009-12-24 Vladimir Balakin Patient positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8436327B2 (en) * 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
US8710462B2 (en) * 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
US8188688B2 (en) 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US8637833B2 (en) 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
US8569717B2 (en) * 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US9044600B2 (en) * 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US9981147B2 (en) 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
US8129699B2 (en) * 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
DE102008026037B4 (de) 2008-05-30 2010-02-18 Siemens Aktiengesellschaft Verfahren und Tomographiegerät zur Erzeugung eines Bildes von einem durch Atmung bewegten Körperbereich eines Patienten
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
US8627822B2 (en) * 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US7980446B2 (en) * 2009-03-06 2011-07-19 International Businss Machines Corporation Micro-fluidic injection molded solder (IMS)
DE102009034384B4 (de) * 2009-07-23 2016-05-04 Siemens Aktiengesellschaft Bildaufnahmeverfahren und Tomographiegerät zur schnellen Abtastung eines durch Atembewegung eines Patienten beeinflussten Aufnahmebereichs
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
CN102805635B (zh) * 2011-05-31 2015-04-08 上海西门子医疗器械有限公司 一种优化扫描流程方法和装置
WO2014063158A1 (en) * 2012-10-19 2014-04-24 Neurologica Corp. Computerized tomography (ct) fluoroscopy imaging system using a standard intensity ct scan with reduced intensity ct scan overlays
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
CN103845070B (zh) * 2012-12-07 2018-08-03 上海联影医疗科技有限公司 Pet-ct扫描装置及其控制方法
US20140228657A1 (en) * 2013-02-09 2014-08-14 Spire, Inc. System and method for monitoring respiration
CN103565460B (zh) * 2013-09-26 2016-06-29 沈阳东软医疗系统有限公司 一种降低扫描剂量的扫描方法和装置
DE102016202605A1 (de) * 2016-02-19 2017-08-24 Siemens Healthcare Gmbh Verfahren zur atemkorrelierten computertomographischen Bildaufnahme
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US10037863B2 (en) 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof
WO2018087049A1 (en) * 2016-11-10 2018-05-17 Koninklijke Philips N.V. Dose reduction in dynamic radiography
WO2021112867A1 (en) * 2019-12-04 2021-06-10 Data Integrity Advisors, Llc System and method for determining radiation parameters
CN112755407A (zh) * 2021-01-08 2021-05-07 广东省中医院(广州中医药大学第二附属医院、广州中医药大学第二临床医学院、广东省中医药科学院) 基于深吸气屏气抑制cbct成像呼吸运动伪影的方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6076005A (en) * 1998-02-25 2000-06-13 St. Jude Children's Research Hospital Respiration responsive gating means and apparatus and methods using the same
WO1999043254A1 (en) * 1998-02-27 1999-09-02 Uab Research Foundation System for synchronizing activation of an imaging device with patient respiration
US7769430B2 (en) * 2001-06-26 2010-08-03 Varian Medical Systems, Inc. Patient visual instruction techniques for synchronizing breathing with a medical procedure
JP4088058B2 (ja) * 2001-10-18 2008-05-21 株式会社東芝 X線コンピュータ断層撮影装置
US6836529B2 (en) * 2002-02-13 2004-12-28 General Electric Company Method and apparatus of CT imaging with voltage modulation
EP1587421A2 (en) * 2003-01-09 2005-10-26 Koninklijke Philips Electronics N.V. Respiration monitor for computed tomography
DE10352380A1 (de) * 2003-11-10 2005-06-16 Siemens Ag Verfahren zur Erzeugung von CT-Bildern von einem zyklisch bewegten Untersuchungsobjekt
US20050113673A1 (en) * 2003-11-26 2005-05-26 Avinash Gobal B. Method and system to reduce motion-related image artifacts during breath holding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013165755A (ja) * 2012-02-14 2013-08-29 Toshiba Corp 医用画像診断装置
US9655581B2 (en) 2012-02-14 2017-05-23 Toshiba Medical Systems Corporation Medical image diagnostic apparatus
CN111568425A (zh) * 2020-06-08 2020-08-25 北京大学 一种非接触式的多人呼吸检测方法
CN111568425B (zh) * 2020-06-08 2021-08-03 北京大学 一种非接触式的多人呼吸检测方法

Also Published As

Publication number Publication date
DE102005033471A1 (de) 2007-01-25
US8233966B2 (en) 2012-07-31
CN1915170A (zh) 2007-02-21
US20070027389A1 (en) 2007-02-01
CN1915170B (zh) 2010-11-03

Similar Documents

Publication Publication Date Title
JP2007021217A (ja) 運動する生物体範囲の画像を発生させるための方法およびx線診断装置
US11660059B2 (en) Apparatus and method of imaging
JP5317580B2 (ja) X線ct装置
JP4575909B2 (ja) X線断層撮影装置
JP5897273B2 (ja) 医用画像表示装置及びx線コンピュータ断層撮影装置
US20040218719A1 (en) Computed tomogrophy scanning
JP4537129B2 (ja) トモシンセシス用途における対象物を走査するためのシステム
CN107945850B (zh) 用于处理医学图像的方法和装置
JP6509131B2 (ja) X線ct装置、画像処理装置、及び画像再構成方法
JP5317389B2 (ja) 放射線断層撮影装置
KR20190079371A (ko) 조영제를 주입하여 컴퓨터 단층 촬영하는 방법 및 장치
KR100280198B1 (ko) Ct촬영이가능한x선촬영장치및방법
KR101768520B1 (ko) 흉부의 디지털 x선 일반촬영 및 디지털 단층영상합성의 영상을 통합적 및 연속적으로 획득하기 위한 디지털 x선 촬영 시스템의 제어방법
JP2003299643A (ja) 断層撮影装置
JP2010246958A (ja) X線断層撮影装置
US20220071578A1 (en) Improved method of acquiring a radiographic scan of a region-of-interest in a metal containing object
JP2008017964A (ja) X線ct装置
JP2013046774A (ja) X線断層撮影装置
JP2017131310A (ja) X線透視撮影装置、撮影方法
WO2012050166A1 (ja) 医用画像処理装置及びx線コンピュータ断層撮影装置
JP6286220B2 (ja) X線ct装置
US20180192966A1 (en) Image acquisition device and method
JP5384293B2 (ja) X線ct装置
JP7258474B2 (ja) X線ct装置及び放射線治療システム
JP2008246005A (ja) 同期撮影装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006