JP2007017307A - 距離検出装置、飛翔体妨害装置 - Google Patents

距離検出装置、飛翔体妨害装置 Download PDF

Info

Publication number
JP2007017307A
JP2007017307A JP2005199516A JP2005199516A JP2007017307A JP 2007017307 A JP2007017307 A JP 2007017307A JP 2005199516 A JP2005199516 A JP 2005199516A JP 2005199516 A JP2005199516 A JP 2005199516A JP 2007017307 A JP2007017307 A JP 2007017307A
Authority
JP
Japan
Prior art keywords
flying object
flying
distance
imaging
reference axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005199516A
Other languages
English (en)
Inventor
Kenichi Arakawa
顕一 荒川
Yukinori Kawazu
幸典 河津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005199516A priority Critical patent/JP2007017307A/ja
Publication of JP2007017307A publication Critical patent/JP2007017307A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 同時に飛来する敵飛翔体までの距離を迅速に検出し、脅威度に応じた飛翔体妨害を行う。
【解決手段】 飛翔体M1,M2の探知方位情報に基づき、2台の撮像機器121,122が順次飛翔体M1,M2を共通して撮像画像の中央に捉える。各撮像機器121,122の飛翔体M1,M2を捉えた視軸の角度θ,φと、2台の撮像機器121,122間の距離Lとから、三角法により飛翔体M1,M2までの距離D1,D2 を算出する。
この距離算出は、撮像機器121,122が飛翔体M1,M2を画面中央に捉え、そのときの視軸の角度θ,φから瞬時に行うことができるので、同時飛来の複数飛翔体M1,M2に対し、レーザ光照射による脅威度に則した飛翔体妨害により、航空機の被弾を的確に回避できる。
【選択図】 図1

Description

本発明は、飛翔体警戒装置等で探知された飛翔体の方位情報に基づき、当該飛翔体までの距離を検出する距離検出装置、及び飛翔体に妨害をかけて防御を図るとき、距離検出装置により検出された飛翔体までの距離情報に基づき、妨害をかけるべき飛翔体の優先度を得ることが可能な飛翔体妨害装置に関する。
航空機が飛翔体から攻撃をうけるとき、飛翔体による自機(航空機)に向けた誘導を妨害することにより、自機が攻撃を受けて被弾するのを回避することができる。
飛翔体の自機に向けた誘導を妨害するのに、レーザ光を照射可能な飛翔体妨害装置を自機に搭載し、レーザビームの飛翔体に向けた照射により、自機を追尾しようとしている飛翔体の赤外線シーカを飽和させる方法がある(例えば、特許文献1参照。)。
実際に、飛翔体に搭載された赤外線シーカを飽和させるためには、空間を捜索して、飛来する飛翔体を検出し、その検出した飛翔体のシーカにレーザ光の照準を合わせる必要がある。
特開2000−65497号公報
上記のように、飛翔体に搭載された赤外線シーカを飽和させて、飛翔体攻撃を回避しようとするには、ビーム幅を狭めたレーザ光を赤外線シーカに照射する必要があるが、空間を飛来する飛翔体に、ビーム幅の狭いレーザ光の照準を合わせるのは必ずしも容易ではなく、捉えた飛翔体に正確に照準を合わせるまでには所定の時間が必要とされる。
従って、自機(航空機)がもしも複数の飛翔体から同時攻撃を受けているような場合は、いずれか1つの飛翔体に対するレーザ光照射の照準合わせを行っている間に、より接近した位置から攻撃してくる他の飛翔体の被弾を受ける恐れがある。
そこで本発明は、複数の飛翔体から同時攻撃を受けたときに、より自機の近くに位置して、脅威度のより高い飛翔体から順序良く飛翔体防御可能な飛翔体妨害装置、及びその飛翔体妨害装置に採用して好適な距離検出装置を提供することを目的とする。
本発明の距離検出装置は、空間を捜索し、探知した飛翔体の方位情報を出力する探知手段と、予め基準軸上に間隔を有して設置されるとともに、個々に視軸の向きを変えて、前記探知手段で探知された1の飛翔体を共通して撮像可能な複数の撮像手段と、前記基準軸上に設置された複数の撮像手段間の距離と、各撮像手段の視軸と前記基準軸との各なす角度とから前記探知した飛翔体までの距離を算出する算出手段とを具備することを特徴とする。
本発明の飛翔体妨害装置は、予め基準軸上に間隔を有して設置されるとともに、個々に視軸の向きを変えた飛翔体の撮像により、複数個の飛翔体を順次共通して撮像する複数の撮像手段と、前記基準軸上に設置された複数の撮像手段間の距離と、各撮像手段の視軸と前記基準軸との各なす角度とから共通して撮像した飛翔体までの距離を順次算出する算出手段と、この算出手段で算出された各飛翔体までの距離データを比較して、各飛翔体に対する防御優先度を判定する優先度判定手段と、この優先度判定手段により判定された防御優先度に沿って、前記複数個の飛翔体に向けてレーザビームを順次照射するレーザ光照射手段とを具備することを特徴とする。
本発明の距離検出装置は、探知した飛翔体の方位情報を出力する探知手段と、この探知手段で探知された1の飛翔体を共通して撮像可能な複数の撮像手段と、これら複数の撮像手段間の距離と、各撮像手段の視軸と基準軸との各なす角度から探知した飛翔体までの距離を算出する算出手段とを備え、飛来する飛翔体までの距離を、三角法により迅速に検出することができる。
本発明の飛翔体妨害装置は、複数個の飛翔体を順次共通して撮像する複数の撮像手段と、これら複数の撮像手段間の距離と、各撮像手段における視軸が基準軸との各なす角度から共通して撮像した飛翔体までの距離を順次算出する算出手段と、算出された各距離データを比較して各飛翔体に対する防御優先度を判定する優先度判定手段と、この優先度判定手段により判定された防御優先度に沿って、各飛翔体に向けてレーザビームを順次照射するレーザ光照射手段を備え、複数個の飛翔体の同時攻撃を受けても、順序よく飛翔体妨害を行い、航空機が被弾するのを回避できる。
以下、本発明による飛翔体妨害装置を搭載した航空機の一実施例を図1ないし図3を参照して詳細に説明する。
すなわち、図1は本発明に係る航空機の一実施例を示した構成図である。
航空機(自機)Kは、飛翔体妨害装置1を搭載し、その搭載された飛翔体妨害装置1は、探知器11と、2台の撮像機器121,122と、算出回路13と、優先度判定回路14と、各撮像機器121,122にそれぞれ対をなして取り付けられたレーザ光照射器151,152と、効果判定回路16とからなり、これらは伝送路17により共通接続されて構成されている。
探知器11は、いわゆる飛翔体警戒装置(MWS)からなり、CCDで構成された紫外線センサが広域空間を捜索し、飛来する複数個の飛翔体M1,M2が放出する紫外線を検出する。探知器11は、各飛翔体M1,M2が放出する紫外線を検知することにより、飛翔体M1,M2の探知方位情報を出力することができ、出力された各飛翔体M1,M2の方位情報は、伝送路17を介して2台の撮像機器121,122に供給される。
2台の撮像機器121,122は赤外線カメラで構成され、航空機Kの機体に距離Lの間隔を隔てて据え付けられ、それぞれ視野方向すなわち視軸を上下左右に回動あるいは旋回可能に据え付けられている。
すなわち、図1に示したように、航空機Kが飛行する三次元の空間をX−Y−Z座標軸で表し、航空機Kは水平方向(X−Y領域面)に飛行しているとしたとき、撮像機器121,122は、水平飛行する航空機Kの機体に水平方向(X軸方向)の基準軸上に距離Lを有して据え付けられている。
また、各撮像機器121,122の据え付け位置を結ぶ線を基準軸としたとき、各撮像機器121,122は、その基軸と視軸との間のなす角度情報を、伝送路17を介して算出回路13に送信するように構成されている。
個々の撮像機器121,122は、探知器11から供給された各飛翔体M1,M2の各方位情報に基づき、それぞれの飛翔体M1,M2を選択的に捉えて追尾可能であるとともに、順次共通して飛翔体(M1あるいはM2)の映像を各画面中央に捉え、そのときの撮像機器121,122における視軸の角度情報を算出回路13に供給する。
算出回路13は、優先度判定回路14及び効果判定回路16とともに、記憶素子やCPUを有するコンピュータで構成され、記憶素子には各撮像機器121,122間の距離Lのデータが予め記憶されている。
そこで、算出回路13は、その記憶された2台の撮像機器121,122間の距離Lの値と、いずれか1の飛翔体(M1またはM2)を撮像画面の中央に捉えたときの各視軸と基準軸Rとのなす角度情報を各撮像機器121,122から受け、以下説明するように、いわゆる三角法による距離測定により、順次当該1の飛翔体(M1及びM2)までの距離を算出する。
すなわち、基準軸R上に距離Lだけ離れて設置された撮像機器121,122は、探知器11から供給される飛翔体M1及びM2の各方位情報に基づき、赤外線カメラの視軸の向きを制御し、当該飛翔体M1及びM2が放出する赤外線を視野内に捕捉し、撮像画面の中央位置に捉えたとき、図2に示したように、そのときの基準軸Rと各視軸とのなす角度θ,φの角度データを算出回路13に順次供給する。
算出回路13は、各撮像機器121,122から、飛翔体M1及びM2を捉えたときの各撮像機器121,122における基準軸Rとのなす角度θ,φの観測データの供給を受けて、撮像機器121から飛翔体M1(及びM2)までの距離D1M1 (及びD1M2 )を、以下説明するように、三角法により順次算出し、優先度判定回路14に供給する。
すなわち、図2に示したように、距離L隔てた撮像機器121,122が、基準軸Rとのなす角度θ,φで飛翔体M1(あるいはM2)を捉えたとものとする。
飛翔体M1(あるいはM2)を通る直線が基準軸Rと垂直に交差する交点をPとしたとき、交点Pから撮像機器121及び撮像機器122までの距離をそれぞれL1,L2とすると、L=L1+L2となる。
そこで、交点PとM1(あるいはM2)までの距離dM1(あるいはdM2 )は、下記式(1)により表される。
dM1(dM2 )=L・tanθ・tanφ/(tanθ+tanφ) (1)
従って、撮像機器121から、たとえば飛翔体M1までの距離D1M1は、下記(2)式により求めることができる。
D1M1=dM1/sinθ (2)
なお、撮像機器122から飛翔体M1までの距離D2M1は、同様にして、下記(3)により求めることができる。
D2M1=dM1/sinφ (3)
このようにして、各撮像機器121,122は、探知器11からの飛翔体M1,M2の方位情報に基づき、飛翔体M1及び飛翔体M2を撮像画面中央に捉え、そのときの各基準軸Rとのなす角度θ,φを算出回路13に供給するので、算出回路13は、各撮像機器121,122における飛翔体M1,M2までの距離D1M1,D1M2、D2M1,D2M2 を順次算出して、優先度判定回路14に供給する。
優先度判定回路14は、算出回路13から供給された各飛翔体M1,M2までの距離D1M1,D1M2 及びD2M1,D2M2 から、異なる飛翔体との間の距離を比較し、より距離の短い方の飛翔体から順に、自機(航空機K)における脅威度が大であると判定し、判定した脅威度に沿った順位情報をレーザ光照射器151,152に供給する。
レーザ光照射器151,152は、それぞれ撮像機器121,122に対応して連結構成され、照射されるレーザ光の光軸方向が、対応する撮像機器121,122の各視軸方向に一致して平行するように構成されている。
撮像機器121,122は、探知器11からの飛翔体探知方位情報の供給を受け、その方位情報に基づき、飛翔体M1,M2を追尾するように構成されているので、優先度判定回路14からの判定結果に基づく、より距離の短い飛翔体から順に、撮像機器121,122の視軸方向が向くように制御する。
このように、撮像機器121,122は、優先度判定回路14からの判定結果に基づき、妨害すべき順序で、該当する飛翔体のシーカに向けてレーザ光の光軸方向を制御するので、撮像機器121,122と一体に連結構成されたレーザ光照射器151,152は、該当する飛翔体の赤外線シーカに合わせてレーザ光を照射することができる。
また、図では、詳細構成を示していないが、この実施例のレーザ光照射器151,152は、それぞれ受光器を備え、照射したレーザ光の飛翔体M1,M2からの反射光を受光し、光電変換した後、伝送路17を介して効果判定器16に供給する。
レーザ光照射器151,152から照射されたレーザ光が、飛翔体M1,M2の赤外線シーカに当たって反射され、反射レーザ光がレーザ光照射器151,152の受光器で検出されたとき、効果判定器16は、その反射光を基に赤外線シーカの種別を識別することができ、その識別結果は伝送路17を介して該当するレーザ光照射器151,152に送信される。
従って、レーザ光照射器151,152は、効果判定器16における識別結果のフィードバック制御により、飛翔体M1,M2に対する妨害が適切に行われ、自機(航空機K)に向けた誘導追尾が正しく行われないようにすることができる。
上記のように、この実施例の航空機Kによれば、搭載された飛翔体妨害装置1が、飛来する飛翔体までの距離を迅速に測定可能な距離検出装置を装着したので、航空機Kがたとえ複数飛翔体による同時攻撃を受けたとしても、脅威度の高い飛翔体から順に飛翔体妨害を施すので、飛翔体の自機に向けた誘導妨害を有効に果たして、自機が飛翔体に被弾するのを回避できる。
なお、上記実施例の説明において、自機(航空機K)と飛来する飛翔体M1,M2との間の距離を検出するとき、撮像機器121,122を結ぶ直線を基準軸Rとし、撮像機器121,122が各飛翔体M1,M2を捉えた方向での、視軸と基準軸Rとのなす角度θ,φから、三角法により、各飛翔体M1,M2までの距離D1M1,D1M2、D2M1,D2M2 を算出する旨説明したが、基準軸RをX軸方向とし、X−Y方向を水平面、X−Z方向を鉛直面とするX−Y−Z座標からなる3次元の空間内で、各撮像機器121,122から飛翔体M1,M2までの方位ベクトルを水平面、及び鉛直面にそれぞれ投影し、同じく投影された各撮像機器121,122における視軸の角度θ,φから、同様に、三角法により飛翔体M1,M2までの距離を算出することができる。
そこで、飛翔体M(M1,M2)を各撮像機器121,122が捉えたとき、各撮像機器121,122の視軸が飛翔体M(M1,M2)を捉えた角度θ,φのX−Y−Z座標における水平面及び垂直面への投影値から、同じく三角法により飛翔体M(M1,M2)までの距離を算出する手順を、図3(a)及び(b)を参照して説明する。
図3(a)及び(b)は、三次元のX−Y−Z座標内において、各撮像機器121,122の視軸が基準軸Rに対するなす角度θ,φで飛翔体M(M1,M2)を捉えたとしたときの投影図で、図3(a)は、水平面(X−Y面)に飛翔体Mの位置を投影した図(すなわち、航空機Kを真上から見て水平面に投影した投影図)、図3(b)は、鉛直面(X−Z面)に飛翔体Mの位置を投影した図(すなわち、航空機Kを正面から見て鉛直面に投影した投影図)である。
図3(a)において、撮像機器121の飛翔体Mに向けた視軸と基準軸Rとのなす角度をθa、撮像機器122における同じく飛翔体Mに向けた視軸と基準軸Rとのなす角度をφa、飛翔体Mを通る直線が基準軸Rと垂直に交差する交点をPaとしたとき、交点Paと飛翔体Mまでの距離Da は、三角法により、下記(5)式で表される。
Da =L・tanθa・tanφa /(tanθa +tanφa ) (5)
従って、撮像機器121から飛翔体Mまでの距離D1a は次の(6)式で求められる。
D1a =Da /sinθa (6)
次に、図3(b)において、撮像機器121の飛翔体Mに向けた視軸と基準軸Rとのなす角度をθe、撮像機器122における同じく飛翔体Mに向けた視軸と基準軸Rとのなす角度をφe、飛翔体Mを通る直線が基準軸Rと垂直に交差する交点をPeとしたとき、交点Pe と飛翔体Mまでの距離D1e は、三角法により、下記(7)式で表される。
De =L・tanθe・tanφe /(tanθe +tanφe ) (7)
そこで、撮像機器121から飛翔体Mまでの実距離長さD1 は、飛翔体Mの位置の水平面に投影されたときの撮像機器121から飛翔体Mまでの距離D1a と、この距離D1a と直交し、飛翔体Mの位置を垂直面に投影されたときの水平面からの距離Deとで形成される三角形の長辺の長さであるから、撮像機器121から飛翔体Mまでの実距離長さD1 は、下記(8)式により求められる。
D1 =√(D1a2 +De2 ) (8)
上記説明は、撮像機器121から飛翔体Mまでの距離検出について説明したが、撮像機器122から飛翔体Mまでの距離検出も、同様にして算出できる。
なお、上記説明の実施例では、距離Lだけ隔てた2台の撮像機器121,122により、たとえば撮像機器121から飛翔体M1,M2までの距離D1,D2 を検出したが、撮像機器をさらに追加し、3台以上の撮像機器を適宜組み合わせることによって、同一飛翔体M1,M2に対し複数の距離測定値が得られるから、距離検出の精度をより高めることができる。
また、上記実施例の説明では、飛翔体M1,M2に対する脅威度を、自機(航空機K)までの距離に基づいて判定し、妨害すべき相手飛翔体の順位を決定し、その決定した順位に沿い、2つのレーザ光照射器151,152が一致して、同一の相手飛翔体に対してレーザビームを照射する旨説明したが、妨害する相手飛翔体に対する順位が確保されれば、2つのレーザ光照射器151,152が飛翔体を個別に妨害するようにしても良い。
また、各撮像機器121,122から各飛翔体M1,M2までの距離と、2つの撮像機器121,122間の距離Lを比較したとき、一般に、距離Lの長さは、撮像機器121,122から飛翔体M1,M2までの距離の長さと比べて著しく短い。
従って、上記実施例の説明では、各撮像機器121,122と飛翔体M1,M2との距離をそれぞれ算出し、算出された各距離データにより、防御優先度を判定する旨説明したが、いずれか一方の撮像機器と飛翔体M1,M2までの算出結果を他の撮像機器と飛翔体M1,M2までの距離に援用することもできる。
また、上記実施例の説明において、撮像機器121,122とレーザ光照射器151,152とは機能上区別しつつも連動して動作する旨説明したが、航空機に搭載される飛翔体妨害装置においては、いわゆる追尾照準器として両者が一体構成として機能動作しても良い。
また、上記実施例の説明では、自機(航空機K)は探知器を搭載している旨説明したが、探知器を母機のような他の航空機に搭載されたり、あるいは地上に設置されたレーダ装置に探知器の役割を持たせることもできる。
上記説明のように、この実施例の航空機Kは、同時に複数個飛来する飛翔体M1,M2までの距離(D1,D2)算出を迅速に行い、その算出結果に基づき脅威度を比較判定し、妨害用のレーザ光の照射操作を、飛翔体M1,M2の自機(航空機K)に対する脅威度が大の飛翔体から順に実行することができるので、従来のように、うっかりすると脅威度が小さい飛翔体に対するレーザ光の照射を先に行ってしまい、より脅威度の大なる飛翔体からの攻撃を受けてしまうような不具合を回避することができる。
本発明による飛翔体妨害装置を搭載した航空機の一実施例を示した概略構成図である。 図1に示した飛翔体妨害装置における距離検出方法を説明した説明図である。 図1に示した飛翔体妨害装置における他の距離検出方法を説明した説明図である。
符号の説明
1 飛翔体妨害装置
11 探知器(探知手段)
121,122 撮像機器(撮像手段)
13 算出回路(算出手段)
14 優先度判定回路(優先度判定手段)
151,152 レーザ光照射器(レーザ光照射手段)
16 効果判定回路(効果判定手段)
17 伝送路
D1,D2 飛翔体までの距離
K 航空機
L 撮像機器間の距離
M1,M2 飛翔体

Claims (4)

  1. 空間を捜索し、探知した飛翔体の方位情報を出力する探知手段と、
    予め基準軸上に間隔を有して設置されるとともに、個々に視軸の向きを変えて、前記探知手段で探知された1の飛翔体を共通して撮像可能な複数の撮像手段と、
    前記基準軸上に設置された複数の撮像手段間の距離と、各撮像手段の視軸と前記基準軸との各なす角度とから前記探知した飛翔体までの距離を算出する算出手段と
    を具備することを特徴とする距離検出装置。
  2. 予め基準軸上に間隔を有して設置されるとともに、個々に視軸の向きを変えた飛翔体の撮像により、複数個の飛翔体を順次共通して撮像する複数の撮像手段と、
    前記基準軸上に設置された複数の撮像手段間の距離と、各撮像手段の視軸と前記基準軸との各なす角度とから共通して撮像した飛翔体までの距離を順次算出する算出手段と、
    この算出手段で算出された各飛翔体までの距離データを比較して、各飛翔体に対する防御優先度を判定する優先度判定手段と、
    この優先度判定手段により判定された防御優先度に沿って、前記複数個の飛翔体に向けてレーザビームを順次照射するレーザ光照射手段と
    を具備することを特徴とする飛翔体妨害装置。
  3. 空間を捜索し、探知した飛翔体の方位情報を前記複数の撮像手段に供給する探知手段を具備し、
    前記複数の撮像手段は、前記飛翔体の方位情報に基づき視軸の向きを変えるように構成されたことを特徴とする請求項2に記載の飛翔体妨害装置。
  4. 前記レーザ光照射手段により照射されたレーザビームの前記飛翔体からの反射光を受信して、当該飛翔体に対する妨害効果の程度を判定する効果判定手段を具備することを特徴とする請求項2または請求項3に記載の飛翔体妨害装置。


JP2005199516A 2005-07-08 2005-07-08 距離検出装置、飛翔体妨害装置 Pending JP2007017307A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005199516A JP2007017307A (ja) 2005-07-08 2005-07-08 距離検出装置、飛翔体妨害装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005199516A JP2007017307A (ja) 2005-07-08 2005-07-08 距離検出装置、飛翔体妨害装置

Publications (1)

Publication Number Publication Date
JP2007017307A true JP2007017307A (ja) 2007-01-25

Family

ID=37754595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005199516A Pending JP2007017307A (ja) 2005-07-08 2005-07-08 距離検出装置、飛翔体妨害装置

Country Status (1)

Country Link
JP (1) JP2007017307A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132522A1 (ja) * 2011-03-29 2012-10-04 三菱重工業株式会社 管制装置、表示装置、協調運用システム、及び管制方法
JP2018091713A (ja) * 2016-12-02 2018-06-14 三菱電機株式会社 追尾装置およびマルチセンサシステム
JP2018091758A (ja) * 2016-12-05 2018-06-14 三菱電機株式会社 電子戦装置及びマルチセンサシステム
CN110109056A (zh) * 2019-04-24 2019-08-09 广州市慧建科技有限公司 一种多目标激光定位系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132522A1 (ja) * 2011-03-29 2012-10-04 三菱重工業株式会社 管制装置、表示装置、協調運用システム、及び管制方法
US9014958B2 (en) 2011-03-29 2015-04-21 Mitsubishi Heavy Industries, Ltd. Control apparatus, display apparatus, cooperative operation system, and control method
JP2018091713A (ja) * 2016-12-02 2018-06-14 三菱電機株式会社 追尾装置およびマルチセンサシステム
JP2018091758A (ja) * 2016-12-05 2018-06-14 三菱電機株式会社 電子戦装置及びマルチセンサシステム
CN110109056A (zh) * 2019-04-24 2019-08-09 广州市慧建科技有限公司 一种多目标激光定位系统
CN110109056B (zh) * 2019-04-24 2021-04-20 广州市慧建科技有限公司 一种多目标激光定位系统

Similar Documents

Publication Publication Date Title
US11002537B2 (en) Distance sensor including adjustable focus imaging sensor
US8203109B2 (en) High energy laser beam director system and method
US8049870B2 (en) Semi-active optical tracking system
US9528828B2 (en) Method and system for determining position and orientation of a measuring instrument
US7952691B2 (en) Method and system of aligning a track beam and a high energy laser beam
EP2508428B1 (en) Coarse and fine projective optical metrology system
JP2010249818A (ja) レーザビーム画像コントラスト増強
KR20150009177A (ko) 라이다 센서 시스템
JP2007017307A (ja) 距離検出装置、飛翔体妨害装置
US10365067B2 (en) System for aligning target sensor and weapon
JP2007162989A (ja) 弾丸位置計測装置
RU2523446C2 (ru) Способ автоматизированного определение координат беспилотных летательных аппаратов
EP2824474B1 (en) Dual function focal plane array seeker
US10750132B2 (en) System and method for audio source localization using multiple audio sensors
US8994943B2 (en) Selectivity by polarization
RU2541494C1 (ru) Комбинированная оптико-электронная система
KR20150136414A (ko) 레이저거리측정기를 이용한 동작감지센서로 회전되는 선반
RU2576471C2 (ru) Способ обнаружения объектов с повышенным быстродействием на высококонтрастном динамически изменяемом фоне
KR102262831B1 (ko) 소형 짐벌형 공통 광학계
RU2742139C1 (ru) Способ обнаружения оптических и оптико-электронных приборов
KR20180031926A (ko) 기계적 스캐닝이 없는 360° lidar 시스템
KR20230126106A (ko) 교정객체를 이용한 이종 광학센서 캘리브레이션 방법 및 이를 이용한 모니터링 시스템
KR20120100645A (ko) 공격 시스템 및 공격 시스템 제어 방법
JPH11294996A (ja) 誘導装置
Zhang et al. The foundation of 3D geometry model in omni-directional laser warning system based on diffuse reflection detection