JP2007006751A - Method for generating fermented feed - Google Patents

Method for generating fermented feed Download PDF

Info

Publication number
JP2007006751A
JP2007006751A JP2005190356A JP2005190356A JP2007006751A JP 2007006751 A JP2007006751 A JP 2007006751A JP 2005190356 A JP2005190356 A JP 2005190356A JP 2005190356 A JP2005190356 A JP 2005190356A JP 2007006751 A JP2007006751 A JP 2007006751A
Authority
JP
Japan
Prior art keywords
fermentation
lactic acid
feed
fermented
acid bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005190356A
Other languages
Japanese (ja)
Other versions
JP5177946B2 (en
Inventor
Hiroshi Tachikawa
洋 立川
Hideo Yamamoto
英雄 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKINE KK
Original Assignee
SEKINE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKINE KK filed Critical SEKINE KK
Priority to JP2005190356A priority Critical patent/JP5177946B2/en
Publication of JP2007006751A publication Critical patent/JP2007006751A/en
Application granted granted Critical
Publication of JP5177946B2 publication Critical patent/JP5177946B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fodder In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stably generating fermented feed having little destructive fungi such as Bacillus coli and yeast, and richly containing lactobacillus. <P>SOLUTION: The method for generating fermented feed comprises the following process: mixing crop feed with warm water at a prescribed mixing ratio to generate crop solution 3; inoculating lactobacillus culture liquid 4 into the crop solution 3 to generate primary fermentation preparatory liquid P1; and fermenting the primary fermentation preparatory liquid P1 to generate primary fermented feed H1, wherein the fermentation temperature is set to (38±1)°C, liquid properties are set to have pH 5.5-6.0, and the fermentation period is 6-9 h; taking out 80 wt.% of the primary fermented feed as fermentation liquid for fermented liquid feed to ensure the remaining 20 wt.% fermented feed as a fungus bed; refilling the crop solution 3 equivalent to the taken-out part to generate secondary fermentation preparatory liquid so as to ferment the feed. After prescribed times of repetition of the process described above, another new lactobacillus culture liquid 4 is inoculated into the feed to be fermented as stated above. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、発酵飼料の生成方法、特に大腸菌や酵母等の有害菌数が少なく且つ生きた乳酸菌を多量に含む発酵飼料を安定に生成することができる発酵飼料の生成方法に関するものである。   The present invention relates to a method for producing a fermented feed, and more particularly to a method for producing a fermented feed capable of stably producing a fermented feed having a small number of harmful bacteria such as Escherichia coli and yeast and containing a large amount of living lactic acid bacteria.

人間や豚の腸内には多種多数の細菌が生息している。これらの細菌は腸内細菌と称され、その種類は数百種類、その数は100兆個に及ぶものも存在する。また、これら多種多数の細菌の集団を植物が群れている様子になぞらえて、腸内細菌叢、あるいは腸内フローラと総称されている。腸内細菌をその機能や豚に対する影響の観点から分類すると、乳酸菌等の有用菌、大腸菌やサルモネラ等の有害菌、及びそのどちらにも属しない中間の菌に大別され得る。
ところで、腸内には大腸菌等の有害菌が生息しているにもかかわらず、人間や豚等が健康でいられるのは、乳酸菌等の有用菌が大腸菌等の有害菌の増殖を抑える形で腸内フローラが一定のバランスを維持しているからである。逆に、何らかの原因で大腸菌等の有害菌が増殖して腸内フローラのバランスが崩れると、大腸の働きを阻害して下痢、腹痛または発熱等の症状が現れたり、腸内腐敗が促進され健康に有害な物質が生成され、これらの有害な物質が臓器等に負担を与え老化を促進させる。従って、腸内のフローラのバランスを有用菌が優勢の形で維持することは、健康維持だけでなく老化防止の観点からも大変有効である。ことに、最近では、腸内フローラにおける乳酸菌の働きが人間の食物だけでなく豚の飼料においてもプロバイオティックス効果として注目されている(例えば、非特許文献1を参照。)。
ところで、豚の飼料というと、日本では残飯等の食物残渣が連想され、事実、食物残渣が豚の飼料として広く利用されている。それに対して養豚先進国であるヨーロッパ、特にイギリス、オランダまたはデンマークでは、食品製造の過程において廃棄される食品工場副産物(主として、形状不良等により商品として市場に置くことができないもの)、いわゆるバイプロが豚の飼料として広く利用されている。例えば、これらのバイプロを、小麦粉を所定の重量比で水に溶かした穀物溶液と共に一緒に混合したリキッド飼料、あるいは、そのリキッド飼料に乳酸菌や乳酸発酵液を添加した発酵リキッド飼料として利用されている(例えば、非特許文献2を参照。)。
近年、上記発酵リキッド飼料における発酵液の含有率が豚の成長に与える影響が研究されている(例えば、非特許文献3を参照。)。
このように、発酵リキッド飼料は、乳酸菌を豊富に含んでいるため豚の腸内フローラを正常に維持し豚の健康に大変良いこと、なお且つベースとなる飼料がバイプロや穀物等の人間の食物に近似する高栄養物であること、更に液状であるため消化吸収しやすく飼料効率が高いこと等の利点を有する。その結果、豚の肉質において、柔らかい、臭みがない、脂がしっとりしている、脂が甘い、脂がしつこくない等の評価をもたらしている。
A large number of bacteria live in the intestines of humans and pigs. These bacteria are called intestinal bacteria, and there are hundreds of types, and the number of such bacteria ranges up to 100 trillion. In addition, a group of these various bacteria is generally referred to as intestinal flora or intestinal flora, as if a group of plants were swarming. Intestinal bacteria can be broadly classified into useful bacteria such as lactic acid bacteria, harmful bacteria such as Escherichia coli and Salmonella, and intermediate bacteria that do not belong to either of them when classified from the viewpoint of their functions and effects on pigs.
By the way, even though harmful bacteria such as Escherichia coli live in the intestines, humans and pigs are healthy because useful bacteria such as lactic acid bacteria suppress the growth of harmful bacteria such as Escherichia coli. This is because the intestinal flora maintains a certain balance. On the other hand, if harmful bacteria such as Escherichia coli grow for some reason and the balance of the intestinal flora is lost, the action of the large intestine will be inhibited and symptoms such as diarrhea, abdominal pain or fever will appear, and intestinal rot will be promoted and health Harmful substances are generated, and these harmful substances put burden on organs and promote aging. Therefore, maintaining the balance of the flora in the intestine in a form in which useful bacteria predominate is very effective not only for maintaining health but also for preventing aging. In particular, the action of lactic acid bacteria in the intestinal flora has attracted attention as a probiotic effect not only in human food but also in pig feed (see, for example, Non-Patent Document 1).
By the way, when it comes to pig feed, food residues such as leftovers are associated in Japan, and in fact, food residues are widely used as pig feed. On the other hand, in Europe, especially Britain, the Netherlands, and Denmark, which are advanced pig farming countries, food factory by-products (mainly those that cannot be put on the market as products due to poor shape), so-called bipros, are discarded in the process of food production. Widely used as pig feed. For example, these bipros are used as a liquid feed in which wheat flour is mixed together with a grain solution prepared by dissolving water in a predetermined weight ratio, or as a fermented liquid feed in which lactic acid bacteria or lactic acid fermentation broth is added to the liquid feed. (For example, refer nonpatent literature 2.).
In recent years, the influence which the content rate of the fermented liquid in the said fermented liquid feed has on the growth of a pig is studied (for example, refer nonpatent literature 3).
In this way, fermented liquid feed contains abundant lactic acid bacteria, so it maintains normal intestinal flora of pigs and is very good for pig health, and the base feed is human food such as bipro and grains. It has the advantages that it is a high-nutrient substance that is close to, and that it is liquid and is easy to digest and absorb and has high feed efficiency. As a result, it has been evaluated that the pork meat is soft, odorless, fat is moist, fat is sweet, and fat is not persistent.

"Fermentation of liquid diets for pigs" 、Ronald Scholten、P.75−89"Fermentation of liquid diets for pigs", Ronald Scholten, P.75-89 "Recent Advances in Animal Nutrition"、P.C.Garnsworthy,PhD J.Wiseman,PhD 、ノッティンガム大学出版"Recent Advances in Animal Nutrition", P.C.Garnsworthy, PhD J. Wiseman, PhD, University of Nottingham Publishing " Digestive Physiology of Pigs "、J.E.LINDBERG and B.Ogle 編集、スウェーデン農業科学大学 動物栄養管理学部、P.264−268"Digestive Physiology of Pigs", edited by J.E.LINDBERG and B.Ogle, School of Animal Nutrition Management, Swedish University of Agricultural Sciences. 264-268

ところで、上記非特許文献2では、乳酸菌が発酵する時の環境温度、いわゆる発酵温度は20℃から30℃の温度範囲にある時が、乳酸菌の生育に適していることとなっている。
しかし、この温度範囲では乳酸菌だけでなく他の菌の発酵に対しても適することとなり、乳酸菌数の他、大腸菌や酵母等の有害菌数も増大することとなっていた。
他方、ヨーロッパでは2006年から飼料への抗生物質の添加が禁止され、更に2009年迄にサルモネラ菌数を一定以下に制御しなければならなくなる。従って、日本でもヨーロッパの動向を受けて、飼料への抗生物質の添加が禁止される方向に進展するものと考えられる。つまり、これからは薬品に頼らずに乳酸発酵の過程で大腸菌や酵母等の有害菌を抑制する発酵液の生成方法が不可欠となるものと考えられる。
そこで、本発明が解決しようとする課題は、上記従来技術の問題点に鑑みなされたものであって、大腸菌や酵母等の有害菌数が少なく且つ生きた乳酸菌を多量に含む発酵飼料を安定に生成することができる発酵飼料の生成方法を提供することである。
By the way, in the said nonpatent literature 2, when the environmental temperature when lactic acid bacteria ferment, what is called fermentation temperature exists in the temperature range of 20 to 30 degreeC, it is suitable for growth of lactic acid bacteria.
However, in this temperature range, it is suitable not only for lactic acid bacteria but also for fermentation of other bacteria, and in addition to the number of lactic acid bacteria, the number of harmful bacteria such as Escherichia coli and yeast is increased.
On the other hand, in Europe, the addition of antibiotics to feed has been banned since 2006, and the number of Salmonella must be controlled below a certain level by 2009. Therefore, it is considered that in Japan, in response to trends in Europe, progress will be made in the direction of prohibiting the addition of antibiotics to feed. That is, from now on, it is considered that a method for producing a fermented liquid that suppresses harmful bacteria such as Escherichia coli and yeast in the process of lactic acid fermentation without relying on chemicals is indispensable.
Therefore, the problem to be solved by the present invention has been made in view of the above-mentioned problems of the prior art, and stable fermented feed containing a small number of harmful bacteria such as Escherichia coli and yeast and containing a large amount of live lactic acid bacteria. It is to provide a method for producing a fermented feed that can be produced.

前記目的を達成するための第1の発明は、穀物飼料に対し温水を所定の重量比で混合した穀物溶液を生成し、次いで該穀物溶液を全部または一部分に含む発酵準備液に対し種菌として乳酸菌培養液を接種し、次いで前記発酵準備液を所定の発酵温度下で発酵させて発酵飼料とする発酵飼料の生成方法であって、前記発酵準備液の水素イオン濃度をpH=5.5から6.0の範囲に調整し、且つ前記発酵温度を37から39[℃]に設定し前記発酵準備液を発酵させることにより、大腸菌等の有害菌数の少ない乳酸菌に富む発酵飼料を安定に生成することを特徴とする。
本願発明者は、発酵温度が乳酸菌の発酵に与える影響を鋭意研究したところ、発酵温度を上げていくとある発酵温度に達した時に、発酵飼料中の乳酸菌の生育は変化しないが大腸菌や酵母といった有害菌の増殖が抑制され一部は死滅しこれらの菌数が激減することを見出した。更に、その有害菌のみの増殖を抑制する効果が見られる発酵温度範囲を調べた結果、37℃から39℃の温度範囲においてその効果が見られ、それ以上の温度では大腸菌や酵母の増殖だけでなく乳酸菌の増殖も抑制され、なお且つそれ以下の温度では大腸菌や酵母や乳酸菌の生育に何ら影響を与えないことを見出した。
また、同発明者は、水素イオン濃度が乳酸発酵に与える影響を鋭意研究したところ、発酵直前の発酵準備液または穀物溶液の水素イオン濃度を低下させていくと、即ちpHを上げていくと、その後の乳酸発酵において乳酸菌の増殖を急速に促進することを見出した。更に、乳酸菌の増殖を急速に促進する効果が見られるpHの範囲を調べた結果、pH5.5から6.0の範囲においてその効果が見られた。しかし、それ以上のpHでは、乳酸菌だけでなく大腸菌や酵母も増殖することとなった。
そこで、上記第1の発明の発酵飼料を生成する方法では、発酵準備液を生成した後にpHを5.5から6.0の範囲に調整し、且つ発酵準備液の発酵温度を37℃から39℃の範囲内に調整することにより、発酵液中の乳酸菌の生育を促進させ且つ大腸菌や酵母等の生育を好適に抑制する。これにより、発酵サイクルにおいて、乳酸菌のみが増殖し、大腸菌数が少なく乳酸菌に富む発酵飼料を安定に生成することが出来るようになる。
A first invention for achieving the above object is to produce a cereal solution in which warm water is mixed with a cereal feed at a predetermined weight ratio, and then a lactic acid bacterium as an inoculum for a fermentation preparation liquid containing all or part of the cereal solution. A method for producing a fermented feed by inoculating a culture solution and then fermenting the fermentation preparation solution at a predetermined fermentation temperature to obtain a fermented feed, wherein the hydrogen ion concentration of the fermentation preparation solution is adjusted to pH = 5.5 to 6 By adjusting the fermentation temperature to 37 to 39 [° C.] and fermenting the fermentation preparation liquid, a fermented feed rich in lactic acid bacteria having a small number of harmful bacteria such as Escherichia coli can be stably generated. It is characterized by that.
The inventor of the present application diligently studied the influence of the fermentation temperature on the fermentation of lactic acid bacteria, and when the fermentation temperature was raised, when the fermentation temperature reached a certain fermentation temperature, the growth of the lactic acid bacteria in the fermented feed did not change, but Escherichia coli and yeast, etc. It was found that the growth of harmful bacteria was suppressed, some of them died and the number of these bacteria decreased drastically. Furthermore, as a result of examining the fermentation temperature range in which the effect of suppressing the growth of only the harmful bacteria was observed, the effect was seen in the temperature range of 37 ° C. to 39 ° C. At higher temperatures, only the growth of E. coli and yeast was observed. It was also found that the growth of lactic acid bacteria was suppressed, and that the temperature below that level had no effect on the growth of E. coli, yeast or lactic acid bacteria.
In addition, the inventor earnestly studied the influence of hydrogen ion concentration on lactic acid fermentation, and when the hydrogen ion concentration of the fermentation preparation liquid or the grain solution immediately before fermentation is lowered, that is, when the pH is increased, It was found that the growth of lactic acid bacteria was rapidly accelerated in the subsequent lactic acid fermentation. Furthermore, as a result of investigating the pH range in which the effect of rapidly promoting the growth of lactic acid bacteria was observed, the effect was seen in the range of pH 5.5 to 6.0. However, at pH higher than that, not only lactic acid bacteria but also E. coli and yeast grew.
Therefore, in the method for producing a fermented feed according to the first aspect of the invention, after producing the fermentation preparation liquid, the pH is adjusted to the range of 5.5 to 6.0, and the fermentation temperature of the fermentation preparation liquid is 37 ° C to 39 ° C. By adjusting the temperature within the range of ° C., the growth of lactic acid bacteria in the fermentation broth is promoted and the growth of Escherichia coli, yeast and the like is suitably suppressed. Thereby, in a fermentation cycle, only lactic acid bacteria will proliferate and it will become possible to produce | generate stably fermented feed with few E. coli numbers and rich in lactic acid bacteria.

第2の発明では、水素イオン濃度の調整を発酵の初期の段階において実施することとした。
本願発明者が鋭意研究したところによると、発酵の全体にわたり発酵飼料のpHを上げることは、液性を中性側にシフトさせることであるから、乳酸菌だけでなく大腸菌や酵母等の有害菌までもが増殖し、一方、液性が酸性側にある間は大腸菌や酵母等の生育が抑制されることを見出した。
そこで、上記第2の発明の発酵飼料の生成方法では、発酵の初期の段階においては液性が中性付近にあり、それ以降は液性が酸性側にあるようにするために、水素イオン濃度の調整は発酵の初期の段階において実施されることとした。これにより、発酵の初期の段階はpH調整により、過度的に乳酸菌や大腸菌や酵母が発酵・増殖し、その段階を経過し液性が酸性側にシフトすると大腸菌や酵母の生育が抑制された状態で乳酸菌のみが好適に発酵・増殖することになる。そして、上記適切な発酵温度と相俟って大腸菌や酵母はさらに生育が抑制され、乳酸菌のみが好適に発酵・増殖することになる。
In the second invention, the hydrogen ion concentration is adjusted at the initial stage of fermentation.
According to the present inventor's earnest research, raising the pH of the fermented feed throughout the fermentation is shifting the liquidity to the neutral side, so not only lactic acid bacteria but also harmful bacteria such as E. coli and yeast On the other hand, it was found that the growth of Escherichia coli, yeast and the like was suppressed while the liquidity was on the acidic side.
Therefore, in the method for producing a fermented feed according to the second aspect of the present invention, in order to ensure that the liquidity is near neutral in the initial stage of fermentation and the liquidity is on the acidic side thereafter, the hydrogen ion concentration This adjustment was to be performed in the early stage of fermentation. As a result, the initial stage of fermentation was caused by excessive fermentation and growth of lactic acid bacteria, Escherichia coli and yeast by pH adjustment, and when the liquidity shifted to the acidic side after that stage, the growth of Escherichia coli and yeast was suppressed. Thus, only lactic acid bacteria are suitably fermented and propagated. In combination with the appropriate fermentation temperature, the growth of Escherichia coli and yeast is further suppressed, and only lactic acid bacteria are suitably fermented and propagated.

第3の発明では、前記発酵飼料の一部分を餌として取り除き残留発酵液を生成し、次に前記残留発酵液に前記穀物溶液を補充して発酵準備液を生成し、次いで前記発酵準備液を発酵させ、再び残留発酵液を生成するという発酵サイクルを所定の回数だけ繰り返した後、再び発酵準備液に乳酸菌培養液を接種し、前記発酵サイクルを繰り返し実施することとした。
上記第3の発明の発酵飼料の生成方法では、乳酸菌の数が一定以上に保持された乳酸菌を多量に含む発酵飼料を安定に生成することが出来るようになる。
In a third aspect of the invention, a portion of the fermented feed is removed as a feed to produce a residual fermented liquid, then the residual fermented liquid is supplemented with the grain solution to produce a fermented preparatory liquid, and then the fermented preparatory liquid is fermented Then, after repeating the fermentation cycle of generating a residual fermentation solution again a predetermined number of times, the fermentation preparation solution was again inoculated with the lactic acid bacteria culture solution, and the fermentation cycle was repeated.
In the method for producing a fermented feed according to the third aspect of the invention, a fermented feed containing a large amount of lactic acid bacteria in which the number of lactic acid bacteria is maintained at a certain level or more can be stably produced.

本発明の発酵飼料の生成方法によれば、発酵液の発酵前の水素イオン濃度をpH=5.5から6.0の範囲に調整して、且つ乳酸菌の発酵温度を38±1[℃]の範囲に調整することにより発酵飼料を発酵させるので、大腸菌や酵母等の有害な細菌の繁殖を好適に抑制し乳酸菌の発酵・増殖のみを好適に促進することが可能となる。また、乳酸菌培養液の接種量を発酵飼料の4%重量濃度近傍とし、且つ発酵時間を6時間から9時間とし、且つ残留発酵飼料の含有量を15%から20%とすることにより、乳酸菌数を一定以上に保持するための発酵飼料に対する乳酸菌培養液の接種回数を1週間に1度程度で済むことになる。これにより、乳酸菌を多量に含む発酵飼料を安定に生成することが出来るようになる。これにより、その乳酸菌に富む発酵飼料をバイプロと混合して発酵リキッド飼料として豚に与えることにより、豚は乳酸菌のプロバイオティックス効果を受け健全に生育するようになる。その結果、例えば肉に臭みがなく且つ脂がしっとりした良質の豚肉が市場に供給されることになる。   According to the method for producing a fermented feed of the present invention, the hydrogen ion concentration of the fermentation liquor before fermentation is adjusted to a range of pH = 5.5 to 6.0, and the fermentation temperature of lactic acid bacteria is 38 ± 1 [° C.]. Since the fermented feed is fermented by adjusting to this range, it is possible to suitably suppress the growth of harmful bacteria such as Escherichia coli and yeast and favorably promote only the fermentation and growth of lactic acid bacteria. In addition, the number of lactic acid bacteria can be increased by setting the inoculum of the lactic acid bacteria culture solution to around 4% weight concentration of the fermented feed, the fermentation time from 6 hours to 9 hours, and the content of residual fermented feed from 15% to 20%. The number of inoculations of the lactic acid bacteria culture solution with respect to the fermented feed for maintaining the above in a certain level is about once per week. Thereby, it becomes possible to stably produce a fermented feed containing a large amount of lactic acid bacteria. Thus, the fermented feed rich in lactic acid bacteria is mixed with Vipro and given to pigs as fermented liquid feed, so that the pigs grow healthy under the probiotic effect of lactic acid bacteria. As a result, for example, high-quality pork that has no odor and is moist in fat is supplied to the market.

以下、図に示す実施の形態により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings.

図1は、本発明に係る発酵飼料の生成方法のうちの乳酸菌の発酵工程を示す説明図である。
図1(a)の第1工程10では、発酵タンクHTにおいて、穀物飼料2に対して温水1を重量比1:2.5の割合で加水し、十分に攪拌して穀物溶液3を、例えば960[kg]生成する。なお、穀物飼料2は、トウモロコシ、脱脂大豆粕および脱脂糠から成り、その組成は例えば順に63:10:27である。また、温水1の温度は、例えば40℃から42℃が好ましい。
FIG. 1 is an explanatory view showing a fermentation process of lactic acid bacteria in the method for producing fermented feed according to the present invention.
In the first step 10 of FIG. 1 (a), in the fermentation tank HT, the hot water 1 is added to the grain feed 2 at a ratio of 1: 2.5 by weight, and the grain solution 3 is obtained by sufficiently stirring. 960 [kg] is generated. The grain feed 2 is composed of corn, defatted soybean meal and defatted meal, and the composition thereof is, for example, 63:10:27 in order. Moreover, the temperature of the hot water 1 is preferably 40 ° C. to 42 ° C., for example.

同(b)の第2工程20では、上記穀物溶液3に対して種菌として乳酸菌培養液を4%重量濃度になるように、例えば40[kg]を接種して、第1次発酵準備液P1を生成する。なお、以降、頭の次数は、接種した乳酸菌培養液に対する乳酸菌の発酵回数を示し、従って、一般に第n次発酵準備液Pnとは、第n回目の乳酸発酵が起こる直前の発酵飼料溶液であり、後述する第n次発酵飼料Hnとは、第n回目の乳酸発酵によって生成された発酵飼料溶液であることを示している。また、後述する第n次残留発酵液Bnとは、第n次発酵飼料Hnのうちから次なる乳酸発酵の菌床として残された発酵飼料溶液であることを示している。   In the second step 20 of the same (b), for example, 40 [kg] is inoculated to the grain solution 3 so as to give a 4% weight concentration of lactic acid bacteria culture solution as an inoculum, and the primary fermentation preparation solution P1. Is generated. In addition, the order of the head indicates the number of fermentations of lactic acid bacteria with respect to the inoculated lactic acid bacteria culture solution. Therefore, generally, the n-th fermentation preparation liquid Pn is a fermented feed solution immediately before the n-th lactic acid fermentation occurs. The n-th fermented feed Hn described below indicates a fermented feed solution produced by the n-th lactic acid fermentation. Moreover, the n-th residual fermentation broth Bn described later indicates a fermented feed solution left as a bacterial bed of the next lactic acid fermentation from the n-th fermented feed Hn.

図2は、本発明に係る発酵飼料の生成方法のうち乳酸菌の発酵サイクルを示す説明図である。
図2(a)の第3工程30では、第1次発酵準備液P1にpH調整液OH、例えば苛性ソーダを添加して水素イオン濃度を下げる(pHを上げる)ことを行う。
FIG. 2 is an explanatory diagram showing the fermentation cycle of lactic acid bacteria in the method for producing fermented feed according to the present invention.
In the third step 30 of FIG. 2A, a pH adjusting solution OH, for example, caustic soda is added to the primary fermentation preparation solution P1 to lower the hydrogen ion concentration (increase the pH).

ところで、図3は、発酵準備液の発酵前における水素イオン濃度が乳酸菌の生育に与える影響を示すグラフである。
図3(a)は、第1次発酵準備液P1を、発酵時間の7時間のうち1時間の間、pH=4.8からpH=6.0に調整した第1次発酵準備液P1Hと、pH調整がなされていない第1次発酵準備液P1と、および穀物溶液3とを供試体として7時間発酵させた時のpHの推移結果を示すものである。一方、同(b)は、同(a)に対するpH調整済み第1次発酵準備液P1H、第1次発酵準備液P1および穀物溶液3の1ml当たりの乳酸菌数を示すものである。
By the way, FIG. 3 is a graph which shows the influence which the hydrogen ion density | concentration before fermentation of a fermentation preparation liquid has on the growth of lactic acid bacteria.
FIG. 3 (a) shows that the primary fermentation preparation liquid P1H obtained by adjusting the primary fermentation preparation liquid P1 from pH = 4.8 to pH = 6.0 for 1 hour out of 7 hours of fermentation time. The transition results of the pH when fermented for 7 hours using the primary fermentation preparatory liquid P1 and the cereal solution 3 for which pH adjustment has not been made are shown. On the other hand, (b) shows the number of lactic acid bacteria per ml of the pH-adjusted primary fermentation preparation liquid P1H, primary fermentation preparation liquid P1 and grain solution 3 with respect to (a).

同(b)の結果より、発酵による乳酸菌数の増加において、pHを調整した第1次発酵準備液P1Hは発酵開始時に比べ約5倍の増加が確認され、一方、pH調整なしの第1次発酵準備液P1は発酵開始時に比べ約1.5倍の増加が確認され、対する穀物溶液3は約1.8倍の増加が確認された。このように、発酵前に、発酵準備液のpHを上げることにより、乳酸菌の生育を促進させることが出来る。   From the result of (b), in the increase in the number of lactic acid bacteria by fermentation, the primary fermentation preparation liquid P1H whose pH was adjusted was confirmed to increase by about 5 times compared with the start of fermentation, whereas the primary fermentation liquid without pH adjustment was confirmed. The fermentation preparation liquid P1 was confirmed to increase by about 1.5 times compared to the start of fermentation, while the grain solution 3 was confirmed to increase by about 1.8 times. Thus, the growth of lactic acid bacteria can be promoted by raising the pH of the fermentation preparation solution before fermentation.

なお、pH調整の最適値はpH=5.5から6.0の範囲内に調整することが望ましい。発酵準備液の液性がpH=6を越えると、再び、液性が大腸菌や酵母の生育が抑制されるpH=5.4以下に戻るのに時間を要し、乳酸菌だけでなく大腸菌や酵母といった有害菌が増殖する機会を与えることになるからである。   The optimum value for pH adjustment is preferably adjusted within the range of pH = 5.5 to 6.0. When the liquidity of the fermentation preparation exceeds pH = 6, it takes time for the liquid to return again to pH = 5.4 or lower, at which growth of E. coli and yeast is suppressed. This is because it gives an opportunity for such harmful bacteria to grow.

再び図2に戻り、同(b)の第4工程40では、pHを調整した第1次発酵準備液P1Hの液温を38±1[℃]に設定し、望ましくは37[℃]に設定し、同(a)の発酵時間と合わせ6時間から9時間発酵させて第1次発酵飼料H1を生成する。   Returning to FIG. 2 again, in the fourth step 40 of (b), the temperature of the primary fermentation preparatory liquid P1H whose pH has been adjusted is set to 38 ± 1 [° C.], preferably 37 [° C.]. Then, it is fermented for 6 to 9 hours together with the fermentation time of (a) to produce the primary fermented feed H1.

ところで、図4は、発酵温度が乳酸菌および酵母の生育に与える影響を示すグラフである。
このグラフは、滅菌処理した合成培地に、発酵温度を37℃に設定し乳酸菌および酵母の混合菌T1を培養した時の乳酸菌数および酵母数と、同30℃に設定し乳酸菌および酵母の混合菌T2を培養した時の乳酸菌数および酵母数との24時間毎のサンプリング結果を示すものである。なお、実線が発酵温度を37℃に設定した時の混合菌T1のサンプリング結果を示し、一点鎖線が同30℃に設定した時の混合菌T2のサンプリング結果を示すものである。
By the way, FIG. 4 is a graph which shows the influence which fermentation temperature has on the growth of lactic acid bacteria and yeast.
This graph shows the number of lactic acid bacteria and the number of yeasts when the fermentation temperature is set to 37 ° C. and the mixed bacteria T1 of lactic acid bacteria and yeast are cultured in a sterilized synthetic medium, and the mixed bacteria of lactic acid bacteria and yeasts. The sampling results every 24 hours with the number of lactic acid bacteria and the number of yeasts when T2 is cultured are shown. The solid line indicates the sampling result of the mixed bacteria T1 when the fermentation temperature is set to 37 ° C., and the alternate long and short dash line indicates the sampling result of the mixed bacteria T2 when set to 30 ° C.

また、滅菌処理は、pH=6.0かつ121℃の環境下に18分間晒すことにより行った。また、上記合成培地の組成としては、グルコースが2g、ペプトンが0.2g、酵母エキスが0.3g、肉エキスが0.1g、リン酸ナトリウム12HO(NaHPO・12HO)が0.1g、リン酸ニ水素カリウム(KHPO)が0.1g、塩化ナトリウム(NaCl)が0.1gであり、これらを水100mlに溶かし調製した。 The sterilization treatment was performed by exposing to an environment of pH = 6.0 and 121 ° C. for 18 minutes. The composition of the synthetic medium is 2 g glucose, 0.2 g peptone, 0.3 g yeast extract, 0.1 g meat extract, sodium phosphate 12H 2 O (Na 2 HPO 4 · 12H 2 O). 0.1 g, potassium dihydrogen phosphate (KH 2 PO 4 ) 0.1 g, and sodium chloride (NaCl) 0.1 g were dissolved in 100 ml of water and prepared.

また、乳酸菌としては、「Lactobacillus salivarius subsp salicinius JCM 1046」および「Lactobacillus rhamnosus MAFF 516003」を使用した。また、酵母としては、産膜酵母の「Debaryomyces hansenii JCM 5204」および「Pichia anomala JCM 5209」を使用した。また、乳酸菌の測定はBCP加プレートカウント寒天培地を用いて行った。   In addition, “Lactobacillus salivarius subsp salicinius JCM 1046” and “Lactobacillus rhamnosus MAFF 516003” were used as lactic acid bacteria. Further, as the yeasts, the membrane-producing yeasts “Debaryomyces hansenii JCM 5204” and “Pichia anomala JCM 5209” were used. The lactic acid bacteria were measured using a BCP-added plate count agar medium.

その結果、図4(a)に示すように、発酵温度を37℃に設定した時の混合菌T1および同30℃に設定した時の混合菌T2は、倶に類似した増加傾向を示し、乳酸菌数において有意な差異は特に見られない。なお、上記混合菌T1が上記混合菌T2よりも乳酸菌数において若干少なくなっているのは、発酵開始時の乳酸菌数の差によるものと考えられ、従って、発酵開始時の乳酸菌数を同一になるように調整すると、発酵から48時間経過後の乳酸菌数はほぼ同数になると考えられる。   As a result, as shown in FIG. 4 (a), the mixed bacteria T1 when the fermentation temperature was set to 37 ° C. and the mixed bacteria T2 when the fermentation temperature was set to 30 ° C. showed an increasing tendency similar to koji, and the lactic acid bacteria There is no significant difference in numbers. The reason why the mixed bacteria T1 is slightly smaller in the number of lactic acid bacteria than the mixed bacteria T2 is considered to be due to the difference in the number of lactic acid bacteria at the start of fermentation, and therefore the number of lactic acid bacteria at the start of fermentation becomes the same. When adjusted in this way, the number of lactic acid bacteria after 48 hours from the fermentation is considered to be approximately the same.

一方、同(b)に示すように、発酵温度を37℃に設定した時の混合菌T1および同30℃に設定した時の混合菌T2は、発酵開始時において、酵母数においてほぼ同数であったが、混合菌T1は発酵から48時間の間減少し、対する混合菌T2は増加し、発酵から48時間経過後の酵母数においては、混合菌T2の方が、混合菌T1よりも顕著に増殖し、有意な差が見られる。   On the other hand, as shown in (b), the mixed bacteria T1 when the fermentation temperature was set to 37 ° C. and the mixed bacteria T2 when the fermentation temperature was set to 30 ° C. were almost the same in the number of yeasts at the start of fermentation. However, the mixed bacteria T1 decreased for 48 hours from the fermentation, while the mixed bacteria T2 increased, and the mixed bacteria T2 was significantly more than the mixed bacteria T1 in the number of yeasts after 48 hours from the fermentation. Proliferates with significant differences.

上記結果は、発酵温度を37℃に設定することにより、乳酸菌および酵母の混合菌中の酵母のみの生育を選択的に抑制することが可能であることを示すものである。   The above results indicate that by setting the fermentation temperature to 37 ° C., it is possible to selectively suppress the growth of only the yeast in the mixed lactic acid bacteria and yeast.

なお、参考として、図5は、発酵温度が乳酸菌単体および酵母単体の生育に与える影響を示すグラフである。なお、図5(a)は、発酵温度を37℃に設定した時の乳酸菌T3または同30℃に設定した時の乳酸菌T4における乳酸菌数の24時間毎のサンプリング結果を示すものである。一方、同(b)は、発酵温度を37℃に設定した時の酵母T5または同30℃に設定した時の酵母T6における酵母数の24時間毎のサンプリング結果を示すものである。   For reference, FIG. 5 is a graph showing the effect of fermentation temperature on the growth of lactic acid bacteria and yeast alone. In addition, Fig.5 (a) shows the sampling result for every 24 hours of the number of lactic acid bacteria in lactic acid bacteria T3 when setting fermentation temperature to 37 degreeC, or lactic acid bacteria T4 when setting to 30 degreeC. On the other hand, (b) shows a sampling result every 24 hours of the number of yeasts in yeast T5 when the fermentation temperature is set to 37 ° C or yeast T6 when the fermentation temperature is set to 30 ° C.

図5(a)は、発酵温度を37℃に設定した乳酸菌T3よりも発酵温度を30℃に設定した乳酸菌T4の方が若干乳酸菌数において上回るが有意な差ではないと考えられる。対する酵母は、発酵温度を37℃に設定した酵母T5は48時間経過した時にその大部分が死滅し、発酵温度を30℃に設定した酵母T6は48時間経過した時に酵母数において約20倍に増加している。これらの結果からも、発酵温度を37℃に設定すると乳酸菌の生育は殆ど影響を受けない反面、酵母の生育は大いに抑制されることを示している。   FIG. 5 (a) is considered not to be a significant difference, although the lactic acid bacteria T4 with the fermentation temperature set to 30 ° C. is slightly higher in the number of lactic acid bacteria than the lactic acid bacteria T3 with the fermentation temperature set to 37 ° C. On the other hand, most of the yeast T5 with the fermentation temperature set to 37 ° C. was killed after 48 hours, and the yeast T6 with the fermentation temperature set to 30 ° C. was about 20 times the number of yeasts after 48 hours. It has increased. These results also show that when the fermentation temperature is set to 37 ° C., the growth of lactic acid bacteria is hardly affected, but the growth of yeast is greatly suppressed.

同様に、図6は、発酵温度が乳酸菌および大腸菌の生育に与える影響を示すグラフである。
このグラフは、滅菌処理した合成培地に、発酵温度を37℃に設定し乳酸菌および大腸菌の混合菌T7を培養した時の乳酸菌数および大腸菌数と、同30℃に設定し乳酸菌および大腸菌の混合菌T8を培養した時の乳酸菌数および大腸菌数との24時間毎のサンプリング結果を示すものである。なお、実線が発酵温度を37℃に設定した時の混合菌T7のサンプリング結果を示し、一点鎖線が同30℃に設定した時の混合菌T8のサンプリング結果を示すものである。
Similarly, FIG. 6 is a graph showing the effect of fermentation temperature on the growth of lactic acid bacteria and E. coli.
This graph shows the number of lactic acid bacteria and the number of E. coli when the fermentation temperature is set to 37 ° C. and the mixed bacterium T7 of lactic acid bacteria and E. coli is cultured in a sterilized synthetic medium, and the mixed bacteria of lactic acid bacteria and E. coli is set to 30 ° C. The sampling results every 24 hours with the number of lactic acid bacteria and the number of E. coli when T8 is cultured are shown. The solid line indicates the sampling result of the mixed bacteria T7 when the fermentation temperature is set to 37 ° C, and the alternate long and short dash line indicates the sampling result of the mixed bacteria T8 when the fermentation temperature is set to 30 ° C.

なお、滅菌処理は、pH=6.0かつ121℃の環境下に18分間晒すことにより行った。また、上記合成培地の組成としては、グルコースが2g、ペプトンが0.2g、酵母エキスが0.3g、肉エキスが0.1g、リン酸ナトリウム12HO(NaHPO・12HO)が0.1g、リン酸ニ水素カリウム(KHPO)が0.1g、塩化ナトリウム(NaCl)が0.1gであり、これらを水100mlに溶かし調製した。 The sterilization treatment was performed by exposing to an environment of pH = 6.0 and 121 ° C. for 18 minutes. The composition of the synthetic medium is 2 g glucose, 0.2 g peptone, 0.3 g yeast extract, 0.1 g meat extract, sodium phosphate 12H 2 O (Na 2 HPO 4 · 12H 2 O). 0.1 g, potassium dihydrogen phosphate (KH 2 PO 4 ) 0.1 g, and sodium chloride (NaCl) 0.1 g were dissolved in 100 ml of water and prepared.

乳酸菌としては、「Lactobacillus salivarius subsp salicinius JCM 1046」および「Lactobacillus rhamnosus MAFF 516003」を使用した。また、大腸菌としては、豚の糞から採取したものを使用した。また、乳酸菌の測定はBCP加プレートカウント寒天培地を用いて行った。   “Lactobacillus salivarius subsp salicinius JCM 1046” and “Lactobacillus rhamnosus MAFF 516003” were used as lactic acid bacteria. Moreover, what was extract | collected from pig feces was used as colon_bacillus | E._coli. The lactic acid bacteria were measured using a BCP-added plate count agar medium.

図6(a)に示すように、発酵温度を37℃に設定した時の混合菌T7および同30℃に設定した時の混合菌T8ともに、乳酸菌数において有意な差異は見られない。なお、上記混合菌T8が上記混合菌T7よりも乳酸菌数において若干少なくなっているのは、発酵開始時の乳酸菌数の差によるものと考えられ、従って、発酵開始時の乳酸菌数を同一になるように調整すると、発酵から48時間経過後の乳酸菌数はほぼ同数になると考えられる。   As shown in FIG. 6 (a), there is no significant difference in the number of lactic acid bacteria for both the mixed bacteria T7 when the fermentation temperature is set to 37 ° C. and the mixed bacteria T8 when the fermentation temperature is set to 30 ° C. In addition, it is considered that the number of lactic acid bacteria in the mixed bacteria T8 is slightly smaller than the mixed bacteria T7 due to the difference in the number of lactic acid bacteria at the start of fermentation, and therefore the number of lactic acid bacteria at the start of fermentation is the same. When adjusted in this way, the number of lactic acid bacteria after 48 hours from the fermentation is considered to be approximately the same.

一方、同(b)に示すように、発酵温度を37℃に設定した時の混合菌T7は、同30℃に設定した時の混合菌T8よりも、発酵開始時の大腸菌数において上回っているにもかかわらず、発酵から48時間の間、大腸菌数は減少している。対する混合菌T8の大腸菌数は24時間の間増加しそれ以降は減少しているが、それでも発酵開始時に比べ約100倍以上の増加が認められ、混合菌T7に比べ約10000倍以上も増殖しており、混合菌T7および混合菌T8の間に有意な差が見られる。   On the other hand, as shown in the same (b), the mixed bacteria T7 when the fermentation temperature was set to 37 ° C. exceeded the mixed bacteria T8 when the fermentation temperature was set to 30 ° C. in the number of E. coli at the start of fermentation. Nevertheless, during the 48 hours after fermentation, the number of E. coli has decreased. On the other hand, the number of E. coli in the mixed bacterium T8 increased for 24 hours and decreased thereafter, but still increased by about 100 times or more compared with that at the start of fermentation, and grew about 10,000 times or more compared to the mixed bacterium T7. There is a significant difference between the mixed bacteria T7 and the mixed bacteria T8.

上記結果は、発酵温度を37℃に設定することにより、乳酸菌および大腸菌の混合菌中の大腸菌のみの生育を選択的に抑制することが可能であることを示すものである。   The above results indicate that by setting the fermentation temperature to 37 ° C., it is possible to selectively suppress the growth of only E. coli in a mixed bacterium of lactic acid bacteria and E. coli.

なお、参考として、図7は、発酵温度が大腸菌単体の生育に与える影響を示すグラフである。
このグラフは、発酵温度を37℃に設定した時の大腸菌T9または同30℃に設定した時の大腸菌T10における大腸菌数の24時間毎のサンプリング結果を示すものである。
For reference, FIG. 7 is a graph showing the effect of fermentation temperature on the growth of E. coli alone.
This graph shows the sampling result every 24 hours of the number of E. coli in E. coli T9 when the fermentation temperature is set to 37 ° C. or E. coli T10 when the fermentation temperature is set to 30 ° C.

発酵温度を37℃に設定した大腸菌T9は発酵開始時から急激に増殖するが24時間経過後は急激に減少している。一方、発酵温度を30℃に設定した大腸菌T10は大腸菌T9と同様に発酵開始から急激に増殖し24時間経過後は極僅か減少する程度である。その結果、大腸菌T10の大腸菌数は大腸菌T9に比べ約10000倍にもなる。これらの結果からも、発酵温度を37℃に設定すると乳酸菌の生育は殆ど影響を受けない(図5(a)を参照。)反面、大腸菌の生育は大いに抑制されることが容易に理解され得る。   E. coli T9 whose fermentation temperature is set to 37 ° C. grows rapidly from the start of fermentation, but decreases rapidly after 24 hours. On the other hand, Escherichia coli T10 whose fermentation temperature is set to 30 ° C. grows rapidly from the start of fermentation like Escherichia coli T9, and is slightly reduced after 24 hours. As a result, the number of E. coli of E. coli T10 is about 10,000 times that of E. coli T9. From these results, it can be easily understood that when the fermentation temperature is set to 37 ° C., the growth of lactic acid bacteria is hardly affected (see FIG. 5A), whereas the growth of E. coli is greatly suppressed. .

再び、図2に戻り、同(c)の第5工程50では、例えば、第1次発酵飼料H1の80%を発酵リキッド飼料の発酵液として取り出し、残りの第1次発酵飼料H1の20%に相当する第1次残留発酵飼料B1を次の菌床として確保する。   Returning to FIG. 2 again, in the fifth step 50 of (c), for example, 80% of the primary fermented feed H1 is taken out as a fermented liquid of the fermented liquid feed, and 20% of the remaining primary fermented feed H1. The first residual fermented feed B1 corresponding to is secured as the next fungus bed.

なお、この第1次残留発酵飼料B1の量は、上記第2工程20の乳酸菌培養液の接種量および接種後の発酵サイクルの回数によっても変動する。本実施形態では、乳酸培養液の接種量が発酵飼料の4%重量濃度であり且つ発酵サイクル回数が7回であるため、発酵飼料の約20%に相当する量を菌床として確保している。   The amount of the first residual fermented feed B1 varies depending on the inoculation amount of the lactic acid bacteria culture solution in the second step 20 and the number of fermentation cycles after inoculation. In this embodiment, since the inoculated amount of the lactic acid culture solution is 4% by weight of the fermented feed and the number of fermentation cycles is 7, the amount corresponding to about 20% of the fermented feed is secured as the fungus bed. .

図2(d)の第6工程60では、前述の取り出した第1次発酵飼料に相当する分の穀物溶液3を補充して第2次発酵準備液P2を生成する。なお、発酵温度を38±1[℃]に設定し、望ましくは37℃に設定して第2次発酵準備液P2を発酵させる。   In 6th process 60 of Drawing 2 (d), grain solution 3 for the amount corresponding to the above-mentioned primary fermentation feed taken out is supplemented, and secondary fermentation preparation liquid P2 is generated. The fermentation temperature is set to 38 ± 1 [° C.], preferably 37 ° C., and the secondary fermentation preparation liquid P2 is fermented.

そして、再び上記第3工程30に戻り、同様な処理を繰り返し、第2次発酵飼料H2、第2次残留発酵液B2、第3次発酵準備液P3、・・・、第n次発酵飼料Hn、・・・を順に生成する。なお、本実施形態では、第3工程30から第6工程60に至る発酵サイクルを7回繰り返す毎に、再び第2工程20に戻り、乳酸菌培養液4を接種する。使い古しの乳酸菌に代わり新たな乳酸菌を接種し乳酸菌全体に活性力を与えるためである。   And it returns to the said 3rd process 30 again, repeats the same process, 2nd fermentation feed H2, 2nd residual fermentation liquid B2, 3rd fermentation preparation liquid P3, ..., nth fermentation feed Hn Are generated in order. In this embodiment, every time the fermentation cycle from the third step 30 to the sixth step 60 is repeated seven times, the process returns to the second step 20 and the lactic acid bacteria culture solution 4 is inoculated. This is because a new lactic acid bacterium is inoculated in place of the used lactic acid bacterium, and the whole lactic acid bacterium is activated.

図8は、本発明に係る発酵飼料の生成方法を長期間実施した時の発酵飼料中の乳酸菌数、酵母数および大腸菌数の推移を示すグラフである。
このグラフは、2004年9月21日から2005年5月9日にわたる約7ヶ月にわたる本発明の発酵飼料の生成方法を実施し、その過程で生成された第7次発酵飼料H7の1ml当たりの乳酸菌数、酵母数および大腸菌数を測定した結果を示すものである。なお、●印、×印、■印および▲印は、乳酸菌数、酵母数、大腸菌および第n次発酵飼料のpHの各推移結果を示すものである。
FIG. 8 is a graph showing the transition of the number of lactic acid bacteria, the number of yeasts and the number of E. coli in the fermented feed when the method for producing fermented feed according to the present invention is carried out for a long period of time.
This graph shows that the method for producing a fermented feed of the present invention for about 7 months from September 21, 2004 to May 9, 2005 was carried out, and the 7th fermented feed H7 produced in the process per 1 ml The results of measuring the number of lactic acid bacteria, the number of yeasts and the number of E. coli are shown. In addition, the ● mark, the X mark, the ■ mark, and the ▲ mark indicate the transition results of the number of lactic acid bacteria, the number of yeasts, the pH of Escherichia coli and the nth fermented feed.

乳酸菌数を示す●印は平均して9Log10CFUとなり、即ち発酵飼料は1ml当たり10億個の乳酸菌を含んでいることになる。しかも注目すべきは、この上記菌数の測定は、新たな乳酸菌培養液4を接種する前の、最も使い古された第7次発酵飼料H7に対して行われたものである。また、酵母数を示す×印は平均して3Log10CFUとなり、即ち発酵飼料は1ml当たり1000個の酵母を含んでいることになるが、乳酸菌数に対する比較ではほとんど無視できるレベルである。また、大腸菌数を示す■印は、計量できない程の少数となった。更に、発酵飼料の液性は安定してpH=4.6以下を示している。 It shows the number of lactic acid bacteria ● mark on average 9 log 10 CFU next, i.e. fermented feed would contain one billion Lactobacillus per 1 ml. Moreover, it should be noted that this measurement of the number of bacteria was performed on the most used seventh fermented feed H7 before inoculation with a new lactic acid bacteria culture solution 4. In addition, the x mark indicating the number of yeasts is 3 Log 10 CFU on average, that is, the fermented feed contains 1000 yeasts per ml, but this level is almost negligible in comparison with the number of lactic acid bacteria. In addition, the ■ mark indicating the number of E. coli was so small that it could not be measured. Further, the liquidity of the fermented feed stably shows pH = 4.6 or less.

上述したように、発酵準備液の発酵温度を38±1[℃]に調整し且つ水素イオン濃度をpH=5.5から6.0の範囲内に調整することにより、乳酸菌の生育を好適に促進し、且つ酵母や大腸菌の有害菌の生育を好適に抑制していることがわかる。また、乳酸菌が発酵する過程で生成される乳酸によって液性が人間や豚の腸内と同じ程度のpH=4.6以下の弱酸性となっている。従って、この乳酸菌に富む弱酸性の発酵飼料を高栄養のバイプロと混合することによって乳酸菌に富む発酵リキッド飼料が好適に生成され、そして餌として豚の腸内に取り込まれると乳酸菌のプロバイオテックス効果によって豚の腸内フローラのバランスが良くなり、その結果、豚が健全に発育することになる。   As described above, by adjusting the fermentation temperature of the fermentation preparation liquid to 38 ± 1 [° C.] and adjusting the hydrogen ion concentration within the range of pH = 5.5 to 6.0, the growth of lactic acid bacteria is suitably performed. It can be seen that it promotes and suitably suppresses the growth of harmful bacteria such as yeast and Escherichia coli. In addition, lactic acid produced during the fermentation of lactic acid bacteria has a weak acidity of pH = 4.6 or less, which is about the same as the intestines of humans and pigs. Therefore, when this weakly acidic fermented feed rich in lactic acid bacteria is mixed with a highly nutritious bipro, a fermented liquid feed rich in lactic acid bacteria is suitably produced, and when incorporated into the intestine of pigs as a feed, the probiotic effect of lactic acid bacteria This improves the balance of the intestinal flora of the pig, and as a result, the pig grows healthy.

以上、上記発酵飼料の生成方法によれば、大腸菌や酵母等の有害菌の生育を抑制し乳酸菌の生育を促進するので、乳酸菌に富む発酵飼料を安定して生成することが出来るようになる。これにより、その発酵飼料をバイプロと混合することにより乳酸菌濃度の高い発酵リキッド飼料を豚に対し給餌することが可能になり、豚の健全な発育に寄与することが可能になる。   As described above, according to the method for producing a fermented feed, since the growth of harmful bacteria such as Escherichia coli and yeast is suppressed and the growth of lactic acid bacteria is promoted, a fermented feed rich in lactic acid bacteria can be stably produced. Thereby, by mixing the fermented feed with Vipro, fermented liquid feed with a high concentration of lactic acid bacteria can be fed to the pig, which can contribute to the healthy growth of the pig.

本発明の発酵飼料の生成方法は、豚や牛等の家畜に対する発酵リキッド飼料の乳酸発酵液の製造に好適に適用することができる。   The method for producing a fermented feed according to the present invention can be suitably applied to the production of a lactic acid fermentation broth of fermented liquid feed for livestock such as pigs and cattle.

本発明に係る発酵飼料の生成方法のうちの乳酸菌の発酵工程を示す説明図である。It is explanatory drawing which shows the fermentation process of lactic acid bacteria among the production methods of the fermented feed which concerns on this invention. 本発明に係る発酵飼料の生成方法のうち乳酸菌の発酵サイクルを示す説明図である。It is explanatory drawing which shows the fermentation cycle of lactic acid bacteria among the production methods of the fermented feed which concerns on this invention. 発酵準備液の発酵前における水素イオン濃度が乳酸菌の生育に与える影響を示すグラフである。It is a graph which shows the influence which the hydrogen ion concentration before fermentation of a fermentation preparation liquid has on the growth of lactic acid bacteria. 発酵温度が乳酸菌および酵母の生育に与える影響を示すグラフである。It is a graph which shows the influence which fermentation temperature has on the growth of lactic acid bacteria and yeast. 発酵温度が乳酸菌単体および酵母単体の生育に与える影響を示すグラフである。It is a graph which shows the influence which fermentation temperature has on the growth of lactic acid bacteria single-piece | unit and yeast single-piece | unit. 発酵温度が乳酸菌および大腸菌の生育に与える影響を示すグラフである。It is a graph which shows the influence which fermentation temperature has on the growth of lactic acid bacteria and Escherichia coli. 発酵温度が大腸菌単体の生育に与える影響を示すグラフである。It is a graph which shows the influence which fermentation temperature has on the growth of colon_bacillus | E._coli simple substance. 本発明に係る発酵飼料の生成方法を長期間実施した時の発酵飼料中の乳酸菌数、酵母数および大腸菌数の推移を示すグラフである。It is a graph which shows transition of the number of lactic acid bacteria in the fermented feed, the number of yeasts, and the number of coliforms when the fermented feed production method concerning this invention is implemented for a long period of time.

符号の説明Explanation of symbols

1 温水
2 穀物飼料
3 穀物溶液
4 乳酸菌培養液
10 第1工程
20 第2工程
30 第3工程
40 第4工程
50 第5工程
60 第6工程
DESCRIPTION OF SYMBOLS 1 Warm water 2 Grain feed 3 Grain solution 4 Lactic acid bacteria culture solution 10 1st process 20 2nd process 30 3rd process 40 4th process 50 5th process 60 6th process

Claims (3)

穀物飼料に対し温水を所定の重量比で混合した穀物溶液を生成し、次いで該穀物溶液を全部または一部分に含む発酵準備液に対し種菌として乳酸菌培養液を接種し、次いで前記発酵準備液を所定の発酵温度下で発酵させて発酵飼料とする発酵飼料の生成方法であって、前記発酵準備液の水素イオン濃度をpH=5.5から6.0の範囲に調整し、且つ前記発酵温度を37から39[℃]に設定し前記発酵準備液を発酵させることにより、大腸菌等の有害菌数の少ない乳酸菌に富む発酵飼料を安定に生成することを特徴とする発酵飼料の生成方法。   A grain solution in which warm water is mixed with a grain feed at a predetermined weight ratio is produced, and then a lactic acid bacteria culture solution is inoculated as a seed fungus into a fermentation preparation solution containing the grain solution in whole or in part, and then the fermentation preparation solution is prescribed. The fermented feed is produced by fermenting at a fermentation temperature of 1 to obtain a fermented feed, the hydrogen ion concentration of the fermentation preparation liquid is adjusted to a range of pH = 5.5 to 6.0, and the fermentation temperature is adjusted. A fermented feed production method characterized by stably producing a fermented feed rich in lactic acid bacteria having a small number of harmful bacteria such as Escherichia coli by fermenting the fermentation preparation liquid at 37 to 39 [° C.]. 水素イオン濃度の調整を発酵の初期の段階において実施する請求項1に記載の発酵飼料の生成方法。   The method for producing a fermented feed according to claim 1, wherein the adjustment of the hydrogen ion concentration is carried out at an early stage of fermentation. 前記発酵飼料の一部分を餌として取り除き残留発酵液を生成し、次に前記残留発酵液に前記穀物溶液を補充して発酵準備液を生成し、次いで前記発酵準備液を発酵させ、再び残留発酵液を生成するという発酵サイクルを所定の回数だけ繰り返した後、再び発酵準備液に乳酸菌培養液を接種し、前記発酵サイクルを繰り返し実施する請求項1に記載の発酵飼料の生成方法。   A portion of the fermented feed is removed as a feed to produce a residual fermentation broth, and then the residual fermentation broth is supplemented with the grain solution to produce a fermentation preparatory liquid, then the fermentation preparatory liquid is fermented and again the residual fermented liquid 2. The method for producing a fermented feed according to claim 1, wherein the fermentation cycle is repeated a predetermined number of times, and then the fermentation preparation is again inoculated with the lactic acid bacteria culture solution and the fermentation cycle is repeated.
JP2005190356A 2005-06-29 2005-06-29 Method for producing fermented feed Expired - Fee Related JP5177946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005190356A JP5177946B2 (en) 2005-06-29 2005-06-29 Method for producing fermented feed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005190356A JP5177946B2 (en) 2005-06-29 2005-06-29 Method for producing fermented feed

Publications (2)

Publication Number Publication Date
JP2007006751A true JP2007006751A (en) 2007-01-18
JP5177946B2 JP5177946B2 (en) 2013-04-10

Family

ID=37746033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005190356A Expired - Fee Related JP5177946B2 (en) 2005-06-29 2005-06-29 Method for producing fermented feed

Country Status (1)

Country Link
JP (1) JP5177946B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115048A (en) * 2009-11-30 2011-06-16 National Agriculture & Food Research Organization Method and apparatus for preparing fermented liquid feed using cereal
CN102302094A (en) * 2011-07-26 2012-01-04 仇培忠 Antibiotic-free Chinese herbal medicine composite fermented feed additive for pigs and preparation method thereof
CN106417165A (en) * 2016-09-23 2017-02-22 李进峰 Management method of piggery for pregnant sow
CN113785913A (en) * 2021-09-16 2021-12-14 句容市茅山风景区福清畜禽养殖场 Preparation method of peach leaf fermented feed additive for pigs

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104920834A (en) * 2015-05-29 2015-09-23 郭心仪 Preparation method of pig feed
CN106386682A (en) * 2016-09-23 2017-02-15 李进峰 A fermentation bed culture management method for finishing pigs
CN108157586A (en) * 2016-12-07 2018-06-15 中粮生物化学(安徽)股份有限公司 A kind of fermentative feedstuff of microbe raw material and its production method and feed

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6011034653; Dorthe Carlson, Hanne Damgaard Poulsen: 'Phytate degradation in soaked and fermented liquid feed?effect of diet, time of soaking, heat treatm' Animal Feed Science and Technology Volume 103, Issues 1-4, 20030131, Pages 141-154 *
JPN6011034656; 川島知之: '日本型発酵リキッドフィーディングの構築を目指して' 畜産の研究 第57巻、第9号, 2003, 975-986頁 *
JPN6012013004; '発酵リキッド飼料の調製法' 日本畜産学会第104回大会発表 , 20050327 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115048A (en) * 2009-11-30 2011-06-16 National Agriculture & Food Research Organization Method and apparatus for preparing fermented liquid feed using cereal
CN102302094A (en) * 2011-07-26 2012-01-04 仇培忠 Antibiotic-free Chinese herbal medicine composite fermented feed additive for pigs and preparation method thereof
CN106417165A (en) * 2016-09-23 2017-02-22 李进峰 Management method of piggery for pregnant sow
CN113785913A (en) * 2021-09-16 2021-12-14 句容市茅山风景区福清畜禽养殖场 Preparation method of peach leaf fermented feed additive for pigs

Also Published As

Publication number Publication date
JP5177946B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
CN102168045B (en) Bacillus subtilis preparation and preparation method thereof
CN108330080B (en) Feed silage agent containing lactobacillus buchneri and preparation method and application thereof
JP5177946B2 (en) Method for producing fermented feed
CN106834163A (en) Feed fermentation agent, fermented feed and preparation method thereof
CN106306606A (en) Biological fermented feed for crayfishes and preparation method thereof
KR101216669B1 (en) A livestock feed additive comprising the fermented biotite using effective microorganisms for enhancing viability of livestock
CN103125778A (en) Poultry feed additive and preparation method thereof
RU2595727C1 (en) Fodder composition and preparation method thereof
CN102511661A (en) Beneficial fungus feed additive for large-scale composite edible fungi and method for breeding flavored pigs
CN107373038A (en) A kind of fermented feed containing probiotics for improving egg quality and preparation method thereof
CN109924360A (en) One boar fermentation compound feed and preparation method thereof
KR100541379B1 (en) Animal feed additives and method of producing the same
KR20160114419A (en) Feed additive manufactured by using complex microbe spawn and method for manufacturing the same
CN107779416A (en) A kind of high-efficiency fermenting bed complex micro organism fungicide
KR101427187B1 (en) Composition for Eco-friendly Microorganism Formulation Comprising Microorganism Probiotics as Effective Ingredient and Production Method Thereof
CN102342371B (en) Process for preparing compound feed additive from bacillus subtilis natto and bacillus licheniformis
JP2005245299A (en) New lactic acid bacterium
CN102334602A (en) Preparation method of bioactive composite high-efficiency feed nutrient solution used for livestock and poultry
US20020012985A1 (en) Growth promoting material for useful microorganisms and process for producing the same
KR102210145B1 (en) Method for preparing calcium-fortified heat-resistant feed additive and feed additive prepared thereby
CN106615750A (en) Nutritional preservative for total mixed ration and preparation method for nutritional preservative
JP2011030466A (en) Beef cattle feed and method for fattening beef cattle using the same
KR102289532B1 (en) Livestock supplementary feed and a manufacturing method therefor
CN115669803A (en) Micro-ecological feed capable of improving intestinal health and deodorizing and preparation method thereof
CN108740497A (en) A kind of feed addictive and preparation method thereof improving laying hen intestinal health state

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120402

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130108

LAPS Cancellation because of no payment of annual fees