JP2007005473A - 半導体発光装置 - Google Patents

半導体発光装置 Download PDF

Info

Publication number
JP2007005473A
JP2007005473A JP2005182228A JP2005182228A JP2007005473A JP 2007005473 A JP2007005473 A JP 2007005473A JP 2005182228 A JP2005182228 A JP 2005182228A JP 2005182228 A JP2005182228 A JP 2005182228A JP 2007005473 A JP2007005473 A JP 2007005473A
Authority
JP
Japan
Prior art keywords
light emitting
support member
emitting device
semiconductor laser
laser element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005182228A
Other languages
English (en)
Inventor
Shigeki Miyazaki
滋樹 宮崎
Ko Naganuma
香 長沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005182228A priority Critical patent/JP2007005473A/ja
Publication of JP2007005473A publication Critical patent/JP2007005473A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Die Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】本発明の目的は、半導体発光素子の基板に対して熱膨張率が大きく異なる支持部材を用いた場合であっても、半導体発光素子への残留応力を小さくすることができ、放熱性を向上させた発光装置を提供することにある。
【解決手段】本実施形態に係る発光装置は、対向する第1面10aおよび第2面10bを有し、第1面10aおよび第2面10bの対向方向に直交する方向に光を出射する半導体発光素子10と、半導体発光素子10の第1面10aに第1溶着層41を介して接合された支持部材30と、支持部材30に第2溶着層42を介して接合された放熱部材20とを有し、支持部材30の熱膨張率は、半導体発光素子10の基板の熱膨張率に対して50%以上異なり、支持部材30の厚さは、50μm以上200μm以下であり、第1溶着層41の融点が、120℃以上230℃以下である。
【選択図】図3

Description

本発明は、半導体発光装置に関し、特に、半導体発光素子と放熱部材との間に支持部材を介在させた発光装置に関する。
半導体レーザは、現在、光通信、高密度光記録あるいはプリンターなどへ広く応用されている。更なる発展のためには、動作電流の低減化、低ノイズ化、低コスト化、さらに高出力、高速動作、高温動作時の高い信頼性などを実現する必要がある。
特に高出力化は市場の要求が大きいが、それに伴う発熱に関連する問題については、半導体レーザの多方面にわたる利用を制限している。この熱に関する問題は、半導体レーザの単位面積あたりの発熱量に関連しており、活性層の温度上昇および応力の発生などが引き起こされる。
活性層の動作温度が上昇すると、発光出力、発光効率および寿命などが低下し、さらに、半導体レーザから生じる光の波長を長波長化させるという問題がある。また、応力の発生は半導体レーザの特性を悪化させて寿命を短くする原因となる。応力は実装プロセスにおいても発生することがあり、極端な場合は残留応力がクラックを発生させる原因となる。このように熱と応力は非常に重要な要因であるが、通常それらを同時に改善するには困難を伴う。
活性層の動作温度の上昇を抑制するため、半導体レーザ素子からの発熱を効率よく逃がす必要がある。このため、半導体レーザ素子は、熱伝導率の高い金属製のヒートシンク(放熱部材)に実装される。しかしながら、ヒートシンク上に直接半導体レーザ素子を搭載すると、金属の熱膨張率が半導体レーザ素子よりもかなり大きいことから応力が発生し、極端な場合には応力のために半導体レーザ素子に割れが生じる場合がある。
このため、従来では、半導体素子の基板の熱膨張率に近いサブマウント(支持部材)上に半導体素子を搭載し、当該半導体素子を搭載したサブマウントをヒートシンクに接合させている(例えば、特許文献1,2参照)。
特開平1−181490号公報 特開平8−228044号公報
応力を小さくして反りやゆがみを少なくするためには、サブマウントの熱膨張率は半導体レーザ素子に近いものが望ましい。しかしながら、GaAs基板を用いた半導体レーザ素子、特に赤色の波長域に発振波長を有する素子の場合には、熱膨張率の近いサブマウント材料は一般的に熱伝導率が低く、そのために放熱性が低下して光出力や効率などの特性が悪化してしまう。
このように、一般的に放熱性の向上と残留応力の低減はトレードオフの関係にあり、両方を同時に改善することは困難であった。
本発明は上記の事情に鑑みてなされたものであり、その目的は、半導体発光素子の基板に対して熱膨張率が大きく異なる支持部材を用いた場合であっても、半導体発光素子への残留応力を小さくすることができ、放熱性を向上させた発光装置を提供することにある。
上記の目的を達成するため、本発明の発光装置は、対向する第1面および第2面を有し、前記第1面および前記第2面の対向方向に直交する方向に光を出射する半導体発光素子と、前記半導体発光素子の前記第1面に第1溶着層を介して接合された支持部材と、前記支持部材に第2溶着層を介して接合された放熱部材とを有し、前記支持部材の熱膨張率は、前記半導体発光素子の基板の熱膨張率に対して50%以上異なり、前記支持部材の厚さは、50μm以上200μm以下であり、前記第1溶着層の融点が、120℃以上230℃以下である。
上記の本発明の発光装置では、半導体発光素子の基板とは熱膨張率が大きく異なる材料、すなわち50%以上熱膨張率が異なる材料を採用する。このような材料を支持部材として用いた場合であっても、支持部材の厚さと、第1溶着層の融点を上記のように適切に設定することによって、半導体発光素子への応力を低減できる。このため、支持部材として熱伝導率の高い材料を採用できる。
本発明によれば、半導体発光素子の基板に対して熱膨張率が大きく異なる支持部材を用いた場合であっても、半導体発光素子への残留応力を小さくすることができ、放熱性を向上させた発光装置を実現できる。この結果、安定した特性を長期間得ることができる発光装置を実現できる。
以下に、本発明の実施の形態について、図面を参照して説明する。
図1は、本実施形態に係る発光装置に構成要素として含まれる半導体レーザ素子10の概略構成を示す斜視図である。半導体レーザ素子10は、本発明の半導体発光素子の一実施形態である。
半導体レーザ素子10は、例えば630nm以上690nm以下の波長域に発振波長を有する赤色レーザ発光素子である。半導体レーザ素子10は、例えば、複数のレーザダイオード(LD)チップ11が例えば30個程度並んだレーザダイオードバーである。半導体レーザ素子10の寸法は、長さ約10mm、奥行き約700μm、厚み約100μmである。
ここで、厚みとは、半導体レーザ素子10の第1面10aおよび第2面10bの対向方向(z方向)における寸法である。奥行きは、半導体レーザ素子10からの光LBの出射方向(y方向)すなわち共振器方向における寸法である。長さは、第1面10aおよび第2面10bの対向方向と共振器方向との両方に直交する方向(x方向)である。半導体レーザ素子10の寸法と同様に、本願明細書では、他の部材のx方向の寸法を長さとし、y方向の寸法を奥行きとし、z方向の寸法を厚さとする。
各レーザダイオードチップ11は、ガリウム砒素(GaAs)よりなる100μm程度の厚さの基板12上に、AlGaInP系化合物半導体よりなる、活性層を含む半導体層13を有する。半導体層13の厚さは、4μm程度である。なお、AlGaInP系化合物半導体とは、3B族元素のうちアルミニウム(Al)およびガリウム(Ga)の少なくとも一方と、5B族元素のうちインジウム(In)およびリン(P)の少なくとも一方を含む4元系半導体のことであり、例えばAlGaInP混晶、GaInP混晶またはAlInP混晶などが挙げられる。これらは、必要に応じて珪素(Si)またはセレン(Se)などのn型不純物、または、マグネシウム(Mg)、亜鉛(Zn)または炭素(C)などのp型不純物を含有している。
半導体層13の上には、例えば、各レーザダイオードチップ11に対応して、p側電極14が形成されている。p側電極14は、例えば、チタン(Ti)層、白金(Pt)層および金(Au)層が半導体層13の側から順に積層されて形成されている。また、基板12の裏面には、例えば、各レーザダイオードチップ11に対応してn側電極15が設けられている。n側電極15は、例えば、金(Au)層、金(Au)とゲルマニウム(Ge)の合金層および金(Au)層が基板12の側から順に積層されて形成されている。n側電極15は、p側電極14と同様に、例えば、チタン(Ti)層、白金(Pt)層および金(Au)層が基板12の側から順に積層されて形成されていてもよい。
図2は、半導体レーザ素子10を備えた発光装置の全体構成を示す斜視図である。
半導体レーザ素子10を備えた発光装置は、例えば、放熱部材(ヒートシンク)20上に、支持部材(サブマウント)30および半導体レーザ素子10が、各々の端面を放熱部材20の一端面に揃えるようにして順に積層されて構成されている。
また、半導体レーザ素子10は、第1面10a側から支持部材30に接合されている。半導体レーザ素子10からの光LBは、支持部材30の積層方向に直交する方向に出射される。
放熱部材20上には、例えば放熱部材20と同一材料よりなる電極部材23が、例えばネジ26により固定されている。放熱部材20と電極部材23との間には、例えばガラスエポキシ材よりなる絶縁板24が設けられており、放熱部材20と電極部材23とは電気的に絶縁されている。
電極部材23には、半導体レーザ素子10側に段部23aが設けられており、この段部23aには、例えば金(Au)よりなるワイヤ27の一端が接合されている。ワイヤ27の他端は半導体レーザ素子10の第2面10b側に形成されたn側電極15に接続されている。なお、電極部材23の段部23aには、ワイヤ27および半導体レーザ素子10等を保護するため、放熱部材20と同一材料よりなる保護部材25がネジ26により固定される。
図3は、図2に示す発光装置のA−A’線に沿った断面図である。
支持部材30と半導体レーザ素子10の第1面10aは、第1溶着層41により接合されている。支持部材30と放熱部材20は、第2溶着層42により接合されている。
以下に、各部の詳細について説明する。図4に、基板材料の熱膨張率と熱伝導率を示す。図5に、はんだ材料の融点を示す。
放熱部材20は、例えば銅(Cu)などの電気的および熱的な伝導性の高い金属材料により形成されており、例えば表面には金(Au)などの薄膜が被着されている。熱伝導性は、半導体レーザ素子10から発生する大量の熱を放出させ、半導体レーザ素子10を適当な温度に維持するための特性である。電気伝導性は、電流を半導体レーザ素子10に効率よく伝導させるために必要な特性である。放熱部材20の厚さは、約4.4mmである。
支持部材30としては、半導体レーザ素子10の基板12に対して熱膨張率が大きく異なる材料を採用する。支持部材30として、基板12(例えば、GaAs基板)に近い熱膨張率をもつAlNやCuWを採用すると、基板12への残留応力は小さくなるが、これらの材料は熱膨張率が低い。基板12に近い熱膨張率をもち、かつ熱伝導率が高い材料が理想的であるが、そのような材料は現在ではない。このため、AlNやCuWよりも熱膨張率の高いSiCやダイヤモンドを主成分とする材料を採用する。これらの材料は、支持部材30に対して熱膨張率が50%以上異なる。図4では、純粋な人工ダイヤモンドの熱膨張率および熱伝導率を示しているが、支持部材30として採用するダイヤモンドを主成分とする材料は、純粋な人工ダイヤモンド以外にも、ダイヤモンドと他の元素を混ぜたダイヤモンドコンポジット材料であってもよい。また、支持部材30に対して熱膨張率が大きく異なるが、熱伝導率の高い他の材料を採用してもよい。
支持部材30の厚さは、50μm以上200μm以下が好ましく、50μm以上150μm以下がさらに好ましい。50μm以上としたのは、50μm以下の厚さの場合には支持部材30の強度が低下してクラックの原因となるからである。また、支持部材30には平面性が要求されるが、50μm以下の厚さの場合には面精度が低下するためである。200μm以下としたのは、後述する応力測定結果に基づく。
第1溶着層41としては、融点が120℃以上230℃以下のはんだ材料を用いることが好ましい。融点を120℃以上としたのは、素子の特性を損なうことなく動作させる周囲温度として約85℃が要求され、さらに半導体レーザ素子10の発熱により35℃程度上昇することから、融点が120℃未満であると使用中に第1溶着層41が溶融する可能性があるためである。融点を230℃以下としたのは、後述する応力測定結果に基づく。上記した条件を満たすはんだ材料としては、例えばAu−90Sn、Sn−3.5Agがある。Au−90Snは、Snの割合が90%のはんだ材料である。Sn−3.5Agは、Agの割合が3.5%のはんだ材料である。
第2溶着層42としては、融点が120℃以上230℃以下のはんだ材料を用いることが好ましい。融点の上限および下限を上記のように定めたのは、第1溶着層41の場合と同様である。さらに、第2溶着層42の融点は、第1溶着層41よりも低いことが好ましい。本実施形態では、後述するように、第1溶着層41を用いて半導体レーザ素子10を支持部材30に接合した後に、第2溶着層42を用いて半導体レーザ素子10を搭載した支持部材30を放熱部材20に接合する。このため、第2溶着層42の溶融時に第1溶着層41が溶融して半導体レーザ素子10の位置ずれが発生することを防止するためである。上記した条件を満足するはんだ材料としては、例えばIn−Agがある。
次に、上記の発光装置の製造方法について、図6を参照して説明する。
まず、例えば上記した材料の基板12の表側に、例えばMOCVD(Metal Organic Chemical Vapor Deposition:有機金属化学気相成長)またはMBE(Molecular Beam Epitaxy:電子ビーム蒸着)法により、上述した材料からなる半導体層13を形成する。続いて、p側電極14およびn側電極15を形成し、基板12を所定の大きさに整える。これにより、バー状の半導体レーザ素子10が形成される(図1参照)。
続いて、半導体レーザ素子10を、例えばSn−3.5Agはんだよりなる第1溶着層41(融点221℃)を介して支持部材30に載せ、加熱処理(221℃)を施す(1回目のボンディング工程)。これにより、半導体レーザ素子10が、支持部材30上に第1溶着層41を介して接合される。
1回目のボンディング工程の後、半導体レーザ素子10を搭載した支持部材30を、例えばIn−Agよりなる第2溶着層42(融点141℃)を介して放熱部材20に載せ、加熱処理(141℃)を施す(2回目のボンディング工程)。これにより、半導体レーザ素子10を搭載した支持部材30が、放熱部材20上に第2溶着層42を介して接合される。
支持部材30と放熱部材20とを接着させた後、放熱部材20上に絶縁板24を介して電極部材23を固定し、ワイヤ27の一端を電極部材23の段部23aに接合し、ワイヤ27の他端を半導体レーザ素子10のn側電極15に接合する。その後、電極部材23の段部23aに保護部材25を固定する。以上により、図2に示した発光装置が完成する。
次に、上記のように支持部材30の厚さ、第1溶着層41および第2溶着層42の融点を選択した理由について説明する。
支持部材30としては、通常、半導体レーザ素子10よりも厚い300μm程度のCuW、AlNなどが用いられる。その理由は、半導体レーザ素子10の基板12であるGaAsと熱膨張率が近いためである。しかしながらレーザが高出力化するにつれて、このような材料では、発熱の問題が顕著になる。特に、図1に示すようにレーザダイオードチップ11を数十個並べたアレイレーザにおいては発生する熱量が大きく、これを効率よく排出することが重要である。レーザ素子の温度が上昇すると、効率の低下や寿命の短縮などを招き、特性が大きく劣化する。
そこで熱伝導性の良い支持基板30としてSiCやダイヤモンドの利用が検討されるが、これらの材料はGaAsとは熱膨張率が大きく異なり、はんだによる溶着などのプロセスにおいて、半導体レーザ素子10へ応力がかかりクラックが発生しやすくなる。これは基板面積の大きなアレイレーザでは特に大きな問題である。
そこで様々な測定を行った結果、クラックの原因となる残留応力の低減には、はんだ温度を低くすること、および支持部材30を薄くすることが非常に効果があるという知見が得られた。
図7は、1回目のボンディング工程における温度と、半導体レーザ素子10に残留する応力との関係を測定した結果を示す図である。図8は、支持部材の材料と、半導体レーザ素子10に残留する応力との関係を測定した結果を示す図である。図9は、支持部材30の厚さと、半導体レーザ素子10に残留する応力との関係を測定した結果を示す図である。
Aは、支持部材30としてSiCを採用し、支持部材30の厚さを300μmとし、1回目のボンディング工程の温度を280℃とし、2回目のボンディング工程の温度を140℃としたものである。Bでは、1回目のボンディング工程の温度を210℃とし、その他の条件については、Aと同じとした。Cでは、支持部材30の厚さを150μmとし、その他の条件はBと同じとした。Dでは、支持部材30としてCuWを採用し、その他の条件については、Aと同じとした。Eでは、支持部材30としてCuWを採用し、その他の条件については、Bと同じとした。
各図の一番下には、33個のレーザダイオードチップをアレイ状に並べた半導体レーザ素子10をレーザ出射面から見た図を載せている。各図の一番下に表示されているのが個々のレーザダイオードチップ11のリッジ構造であり、右端から内側へ5番目のレーザダイオードチップ11までを表示している。各図の両端の棒グラフは、右端のレーザダイオードチップ11と、右端から5番目のレーザダイオードチップ11の応力を比較したものである。なお、右端から6番目以降は殆ど定常状態(同一結果)となり、かつ半導体レーザ素子10は左右対称な構造なので、この端部の5つのレーザダイオードチップ11の測定結果からレーザ素子全体の応力が把握できる。
図7に示すように、1回目のボンディング工程の温度を低減することにより、応力が約25%低減されることがわかる。また、図8に示すように、1回目のボンディング工程の温度を低減したBでは、CuWを採用したDに比べて応力を小さくすることができる。なお、支持部材30としてCuWを採用し、かつ1回目のボンディング工程の温度を低減した場合には、半導体レーザ素子10の応力はさらに低減される(図8のE参照)。
支持部材30として半導体レーザ素子10の基板12に対して熱膨張率が大きく異なるSiCなどの材料を採用した場合に、支持部材30としてCuWを採用したDと同等以下の残留応力にする必要がある。図8に示すBとDの測定結果から、Dと同等の応力を実現するために1回目のボンディング工程に要求される温度、すなわち第1溶着層41の融点を計算した結果、230℃であった。このため、半導体レーザ素子10の熱膨張率に近い材料を支持部材30として採用した場合と同等以下の残留応力を実現するためには、第1溶着層41の融点は、230℃以下とすることが好ましい。
図9に示すように、支持部材30を薄くすることも応力の低減に有効である。加えて実効的な熱伝導率も同時に改善できる。例えば厚さが300μmの支持部材30を用いた場合に比べて、その半分の厚さの150μmの支持部材30を用いることにより、応力を約15%低減できることがわかる。
単位時間に流れる熱量qは、下記式(1)により示される。
〔数1〕
q=kA/L・Δt (1)
式(1)において、kは熱伝導度(kcal/(m・hr・℃))、Aは伝熱断面積(m)、Lは伝熱距離(m)、Δtは温度差(℃)である。上記式(1)に示すように、支持部材30の厚さを300μmから150μmと半分にすることにより、熱伝導性は2倍となる。
支持部材30としてCuWを採用し、かつ1回目のボンディング工程における温度を低減したE(図8参照)に比べて、同等以下の残留応力にする必要がある。図8に示すEと、図9に示すCの測定結果から、Eと同等の応力を実現できる支持部材30の厚さを計算した結果、200μmであった。このため、半導体レーザ素子10の熱膨張率に近い材料を支持部材30として採用した場合と同等以下の残留応力を実現するためには、支持部材30の厚さは、200μm以下とすることが好ましい。
以上のように、半導体レーザ素子10の基板12とは熱膨張率が大きく違う材料を支持部材30として用いた場合でも、支持部材30の厚さと、1回目のボンディング工程(はんだ付け)の温度、すなわち第1溶着層41の融点を適切に選択することによって、応力を低減しつつ熱伝導性の高い発光装置を実現することができる。
すなわち、半導体レーザ素子10の基板12に対して熱膨張率が50%以上異なる材料からなる支持部材30を採用した場合に、支持部材30の厚さを50μm以上200μm以下とし、第1溶着層41として120℃以上230℃以下の融点をもつ材料を選択することにより、熱膨張係数が近い材料を用いた場合と同等以下の応力を維持しつつ、熱伝導性を高めることができる。
その結果、クラックが少なく、熱特性の良い発光装置を高歩留まりで製造することがでできる。熱特性を向上させることができる結果、半導体レーザ素子10の発光効率の向上、発光波長の安定化、長寿命化を図ることができる。これは、複数のレーザダイオードチップ11を備えた高出力の半導体レーザ素子10を採用する場合に、特に有効である。
本発明は、上記の実施形態の説明に限定されない。
本実施形態では、発光装置がバー状の半導体レーザ素子10を備えた例について説明したが、半導体レーザ素子10は1つのレーザダイオードチップでもよい。また、半導体レーザ素子10は発光ダイオード(LED:Light Emitting Diode)であってもよい。また、本実施形態では、半導体レーザ素子10の第1面10a側を支持部材30に接合させる例について説明したが、半導体レーザ素子10の第2面10b側を支持部材30に接合させてもよい。
さらに、上記実施形態において説明した各層の材料および厚み、または成膜方法および成膜条件などは限定されるものではない。例えば、上記実施形態では、GaAsよりなる基板12上にAlGaInP系化合物半導体よりなる半導体層13を有する赤色半導体レーザを例に説明したが、本発明は、例えば、GaAs系(赤外:780nm〜850nm)あるいはGaN系(発振波長400nm〜500nm)などの他の材料系にも適用可能である。
その他、本発明の要旨を逸脱しない範囲で、種々の変更が可能である。
半導体レーザ素子の一部を拡大して示す斜視図である。 本実施形態に係る発光装置の全体構成を示す分解斜視図である。 図2に示す発光装置のA−A’線に沿った断面図である。 基板材料の特性を示す図である。 はんだ材料の融点を示す図である。 本実施形態に係る発光装置の製造工程を示す図である。 1回目のボンディング工程における温度と、半導体レーザ素子に残留する応力との関係を測定した結果を示す図である。 支持部材の材料と、半導体レーザ素子に残留する応力との関係を測定した結果を示す図である。 支持部材の厚さと、半導体レーザ素子に残留する応力との関係を測定した結果を示す図である。
符号の説明
10…半導体レーザ素子、10a…第1面、10b…第2面、11…レーザダイオードチップ、12…基板、13…半導体層、14…p側電極、15…n側電極、20…放熱部材、23…電極部材、23a…段部、24…絶縁板、25…保護部材、26…ネジ、27…ワイヤ、30…支持部材、41…第1溶着層、42…第2溶着層

Claims (7)

  1. 対向する第1面および第2面を有し、前記第1面および前記第2面の対向方向に直交する方向に光を出射する半導体発光素子と、
    前記半導体発光素子の前記第1面に第1溶着層を介して接合された支持部材と、
    前記支持部材に第2溶着層を介して接合された放熱部材と
    を有し、
    前記支持部材の熱膨張率は、前記半導体発光素子の基板の熱膨張率に対して50%以上異なり、
    前記支持部材の厚さは、50μm以上200μm以下であり、
    前記第1溶着層の融点が、120℃以上230℃以下である
    発光装置。
  2. 前記支持部材は、SiC、あるいはダイヤモンドを主成分とする材料からなる
    請求項1記載の発光装置。
  3. 前記第2溶着層の融点が、120℃以上230℃以下である
    請求項1記載の発光装置。
  4. 前記第2溶着層の融点が、前記第1溶着層の融点よりも低い
    請求項1記載の発光装置。
  5. 前記放熱部材は、金属材料により形成された
    請求項1記載の発光装置。
  6. 前記半導体発光素子は、半導体レーザ素子である
    請求項1記載の発光装置。
  7. 前記半導体発光素子は、複数のレーザダイオードを備える
    請求項1記載の発光装置。
JP2005182228A 2005-06-22 2005-06-22 半導体発光装置 Pending JP2007005473A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005182228A JP2007005473A (ja) 2005-06-22 2005-06-22 半導体発光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005182228A JP2007005473A (ja) 2005-06-22 2005-06-22 半導体発光装置

Publications (1)

Publication Number Publication Date
JP2007005473A true JP2007005473A (ja) 2007-01-11

Family

ID=37690809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005182228A Pending JP2007005473A (ja) 2005-06-22 2005-06-22 半導体発光装置

Country Status (1)

Country Link
JP (1) JP2007005473A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7973321B2 (en) 2007-11-05 2011-07-05 Rohm Co., Ltd. Nitride semiconductor light emitting device having ridge parts
WO2013175697A1 (ja) * 2012-05-22 2013-11-28 パナソニック株式会社 窒化物半導体発光装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7973321B2 (en) 2007-11-05 2011-07-05 Rohm Co., Ltd. Nitride semiconductor light emitting device having ridge parts
WO2013175697A1 (ja) * 2012-05-22 2013-11-28 パナソニック株式会社 窒化物半導体発光装置
JP5796181B2 (ja) * 2012-05-22 2015-10-21 パナソニックIpマネジメント株式会社 窒化物半導体発光装置
US9385277B2 (en) 2012-05-22 2016-07-05 Panasonic Intellectual Property Management Co., Ltd. Nitride semiconductor light emitting device
US9735314B2 (en) 2012-05-22 2017-08-15 Panasonic Intellectual Property Management Co., Ltd. Nitride semiconductor light emitting device

Similar Documents

Publication Publication Date Title
US9001856B1 (en) Diode laser bar mounted on a copper heat-sink
JP2013191787A (ja) 半導体レーザアレイおよび半導体レーザ装置
US6479325B2 (en) Method of stacking semiconductor laser devices in a sub-mount and heatsink
US11641092B2 (en) High-power laser packaging utilizing carbon nanotubes between metallic bonding materials
US7724791B2 (en) Method of manufacturing laser diode packages and arrays
EP2378616B1 (en) High-power semiconductor laser and method for manufacturing the same
JP2006344743A (ja) 半導体レーザ装置
JP4966283B2 (ja) 半導体レーザ装置およびその製造方法
JP4811629B2 (ja) 半導体レーザ装置
JP2006294805A (ja) 半導体レーザ装置
JP2004349595A (ja) 窒化物半導体レーザ装置およびその製造方法
JP4697488B2 (ja) マルチビーム半導体レーザ
JP2007005473A (ja) 半導体発光装置
JP2006351847A (ja) 半導体発光装置
JP2010171250A (ja) 半導体レーザ装置
JP2003249724A (ja) 窒化物系化合物半導体レーザ装置およびその製造方法
JP2010010509A (ja) 半導体レーザ装置
JP2005101149A (ja) 半導体発光装置及びその製造方法
JP2008283064A (ja) 半導体レーザ装置
US11114817B2 (en) Semiconductor laser device
JP2008288256A (ja) 半導体レーザ素子の製造方法および半導体レーザ装置
JP2007027375A (ja) レーザモジュール
JP2006339511A (ja) 半導体レーザ装置の製造方法および接合方法、並びに半導体レーザ装置
JP6678427B2 (ja) レーザ光源装置
JP2004055683A (ja) 窒化物半導体レーザ素子チップとそれを含むレーザ装置