JP2006509942A - ガスタービンの冷却空気の冷却装置と方法 - Google Patents

ガスタービンの冷却空気の冷却装置と方法 Download PDF

Info

Publication number
JP2006509942A
JP2006509942A JP2004528368A JP2004528368A JP2006509942A JP 2006509942 A JP2006509942 A JP 2006509942A JP 2004528368 A JP2004528368 A JP 2004528368A JP 2004528368 A JP2004528368 A JP 2004528368A JP 2006509942 A JP2006509942 A JP 2006509942A
Authority
JP
Japan
Prior art keywords
heat
cooling air
cooling
fuel gas
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2004528368A
Other languages
English (en)
Inventor
ケスラー、アルフレート
ケーニッヒ、オリファー
ブロン、ヤン
シュティールシュトルファー、ヘルムート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2006509942A publication Critical patent/JP2006509942A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/224Heating fuel before feeding to the burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • F02C7/185Cooling means for reducing the temperature of the cooling air or gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

圧縮機空気(V)から分岐された冷却空気(K)を再冷却するための各運転状態に適合するよう設計された冷却装置(18)を備える本発明のガス蒸気複合タービン設備(1)は、一次側が圧縮機空気管から分岐された冷却空気管(17)に接続された熱交換装置(21)を有し、この熱交換装置(21)は、冷却空気(K)に随伴される熱を、ガスタービンの燃焼器(6)に供給される燃料ガス流(23)に伝達する。この結果、高効率での運転が可能となる。

Description

本発明は、ガスタービンの圧縮機空気から分岐された冷却空気を再冷却するための冷却装置に関する。また本発明は、冷却空気の冷却方法に関する。
ガス蒸気複合タービン設備では、ガスタービンからの膨張済み作動媒体(燃焼ガス)に含まれる熱は、蒸気タービン用の蒸気を発生すべく利用される。その際の熱伝達は、ガスタービンの燃焼ガス側に後置接続された廃熱ボイラで行われる。廃熱ボイラには、管や管束の形の加熱器が配置され、該加熱器に蒸気タービンの水・蒸気回路が接続される。
廃熱ボイラで発生された蒸気は、蒸気タービンに供給され、そこで、仕事をしながら膨張する。蒸気タービン内で膨張した蒸気は、通常、復水器に導かれ、そこで凝縮する。蒸気が凝縮して生じた復水は、廃熱ボイラに給水として改めて供給され、この結果水・蒸気閉回路が生ずる。
ガスタービンの出力を高め、もってガス蒸気複合タービン設備のできるだけ高い効率を得るべく、ガスタービンの燃焼ガス入口温度が特に高く、例えば1000℃〜1200℃になるように努められる。そのような高いタービン入口温度は、特にタービン翼の耐熱性に関して材料上の問題を伴う。
タービン入口温度の増大は、タービン翼が常に材料許容温度以下の温度となるようタービン翼を冷却することで可能となる。そのため欧州特許第0379880号明細書は、ガスタービンに付属した圧縮機から出る圧縮空気から部分流を分岐し、該部分流をガスタービンに冷却空気として供給することを開示する。冷却媒体として用いる空気は、ガスタービンへの流入前に冷却される。その際、通常ガス蒸気タービン複合運転中、ウォータボイラ(Kettleboiler)とも呼ばれる補助蒸気発生器が採用される。この補助蒸気発生器は、圧縮機空気から排出された熱を吸収し、例えば水を蒸発するために利用される。その際に生じた蒸気は、蒸気回路に供給される。
しかし補助蒸気発生器は、設備の蒸気回路の運転停止時には利用できない。従って、設備の純粋なガスタービン運転中、通常異なった形態として、フィンファンクーラとも呼ばれる比較的大形の空気冷却器が、冷却空気を再冷却すべく利用される。
従って純粋なガスタービン運転からガス蒸気タービン複合運転への切換は、その都度、冷却空気に対する冷却装置間の切換も必要とする。その切換過程に基づき連続して保証されない再冷却のために、純粋なガスタービン運転からガス蒸気タービン複合運転への切換時に、設備の負荷低減或いは遮断が避けられない。
本発明の課題は、ガスタービンおよび蒸気タービンの運転状態に安価な構造的経費で柔軟に適合可能な、ガス蒸気複合タービン設備における冷却空気からの熱を排出するために適した冷却装置を提供することにある。また、設備の種々の運転条件に適用される冷却空気の冷却方法を提供することにある。
この冷却装置に関する課題は、本発明に基づいて、一次側が圧縮機空気管から分岐された冷却空気管に接続された熱交換装置が、冷却空気に随伴される熱を、ガスタービンの燃焼器に供給される燃料ガス流に伝達することによって解決される。
本発明は、ガス蒸気複合タービン設備の運転状態に柔軟に適合可能な冷却装置は、蒸気タービンの水・蒸気回路への入熱量と無関係に、冷却空気の確実な再冷却を保証すべきであるとの考えから出発する。そのため、冷却空気の冷却装置は、その再冷却時に取り出された熱を、設備の各運転状態で利用できる媒体に伝達可能であらねばならない。そのために特に適した媒体は、燃焼器に供給される燃料ガス流である。媒体の加熱時、本来のエネルギ発生過程にその熱を入れることができ、これに伴い特別な効率上の利益も得られる。
本発明の有利な実施態様は、従属請求項に示す。
冷却空気の確実な再冷却のために冷却空気流から取り出される熱量は、通常、即ちガス蒸気複合タービン設備の通常設計の場合、燃料ガスの予熱に必要な熱量より大きい。従って、燃料ガス流に供給される熱量を調整可能にするとよい。これに伴い、燃料ガスを予熱するのに十分な熱量を常に利用し、残りの熱量を別の様式で排出することができる。
特に有利な実施態様では、冷却空気から排出された熱流を部分流に分割し、その1つの部分流を燃料ガス流に供給し、他の部分流を例えば蒸気タービンに供給する蒸気を発生するために利用することで、冷却空気から熱を、設備の運転状態に柔軟に合わせて排出できる。部分流への分割は、燃料ガス流に供給される部分流が、燃料ガスの予熱に必要な熱量を正確に運び入れ、残りの部分流が、燃料ガスの予熱にとって不要な熱を排出するか、他の目的に、例えば補助蒸気を発生するために利用するという条件を考慮して行われる。熱流の分割は、熱流側が並列接続された複数の中間回路で行う。この結果、各中間回路で熱を排出でき、従って、冷却装置は特に柔軟に採用できる。
設備的に特に単純な他の実施態様では、熱交換装置が、二次側が燃料ガス流に直結されて冷却空気流からの熱を燃料ガスに伝達する熱交換器を有している。
例えば機能や設備の追加時に望まれるように、ガス蒸気複合タービン設備の、例えば熱交換器や補助蒸気発生器等の既存の構成要素を利用しようとする際、熱の伝達は少なくとも1つの中間回路を経て行うとよく、該回路により、ウォータボイラとも呼ばれる補助蒸気発生器の二次側を熱交換器に接続し、該熱交換器を二次側が燃料ガス流に接続できる。この結果、冷却装置の構成を、既存設備の条件に合わせ、技術的経費を節約できる。
必要に応じて、中間回路にもう1つの補助蒸気発生器を接続することもでき、その補助蒸気発生器は、排出すべき熱を設備で必要とされる補助蒸気を発生するために利用する。
他の実施態様では、熱交換装置とそのもう1つの熱交換器との熱側接続を、補助蒸気発生器を経て行い、従って、中間回路を2段にする。この結果、熱の一層の取り出しと利用を実現し、冷却装置を特に柔軟に設計できる。その他に、2段式中間回路は、冷却装置の一層多くの形成と、冷却装置の存在する条件と構成要素への更なる適合を可能とする。
方法に関する本発明の課題は、冷却空気流から取り出された熱を、ガスタービンの燃焼器に供給される燃料ガス流に伝達することで解決される。
冷却空気に含まれる熱の最適利用を保証すべく、燃料ガス流に導入される熱量を、ガスタービン設備の運転状態に合わせると有利である。
そのため、圧縮機空気から分岐した冷却空気を多数の部分流に分割し、その1つの部分流で、燃料ガスを予熱するために必要な熱量を燃料ガス流に供給するようにするとよい。
特に単純な実施態様において、燃料ガスの予熱に利用される熱量は、目的に適って、二次側が燃料ガス流に直結された熱交換器を介して伝達される。
その代わりに、単段或いは2段式中間回路も利用できる。これは特に、冷却装置に熱交換器や補助蒸気発生器等の既存の構成要素を利用する際に目的に適う。この場合、中間回路は、熱流の部分流への柔軟な分割および既存の構成要素の柔軟な接続を可能にする。
冷却空気から排出された熱の最適利用を可能にすべく、補助蒸気発生器を、燃料ガス流に供給されない部分流に接続するとよい。この発生器は、余分な熱量を、設備において必要な補助蒸気を発生するために気化熱として利用し、従って設備効率の向上に貢献する。
本発明に伴う利点は、特に冷却ガス流から取り出された熱の少なくとも一部を燃料ガス流に伝達することで、ガス蒸気複合タービン設備の純粋なガスタービン運転時の効率向上が、外部予熱源の省略によって、達成されることにある。更に、蒸気タービンの運転状態と無関係にどんな場合も、冷却空気の再冷却時にそこから取り出される熱のかなりの部分が、燃料ガス流を介して、確実に排出されるので、純粋なガスタービン運転からガス蒸気タービン複合運転への切換が、従来避けられなかった負荷低減や遮断なしに可能となる。更に、例えば外部燃料ガス予熱器およびフィンファンクーラとも呼ばれる非常に大形の空気冷却器のような大きな空間を必要とする種々の構成要素が不要となる。
以下図を参照し、本発明の実施例を詳細に説明する。なお、各図において同一部分には同一符号を付している。
図1のガスタービン設備1は、図示しないガス蒸気複合タービン設備の一部である。ガスタービン設備1はタービン2を有し、該タービン2に圧縮機4と燃焼器6が前置接続されている。加えて、更なる燃焼器を設け得る。燃焼器或いは各燃焼器6に、燃焼空気として圧縮機4から圧縮空気Vが、配管8および燃焼空気経路を介して供給される。燃焼器6は出口側が配管10或いは統合部を介してタービン2に接続されている。タービン2に、燃料の燃焼で発生した高温燃焼ガスが、配管10を経て供給される。タービン2と圧縮機4はタービン軸12を経て互いに結合している。タービン2、圧縮機4、燃焼器6、配管8並びにタービン軸12を、全体としてガスタービンとも呼ぶ。圧縮機4は、更にもう1つの軸14を経て発電機16に結合されている。
ガスタービン設備1はできるだけ高い効率に設計される。高効率は、特にタービン2への燃焼ガスの高い入口温度により達成される。しかし、そのような高いタービン入口温度は、特にタービン翼の耐熱性に関し材料上の問題を伴う。この問題を解消すべく、タービン翼は、タービン翼が常に材料許容温度以下の温度を有するように冷却される。
図示しない静翼およびタービン軸12と共に回転する、同様に図示しない動翼を冷却するために、圧縮機空気Vから分岐された部分流が、冷却空気Kとしてタービンに供給される。そのため、冷却空気管17は入口側が、圧縮機4に後置接続された配管8に接続されている。冷却空気管17は出口側がタービン2に接続され、これによって、冷却空気Kとして利用される空気が、タービン2の静翼および動翼に供給される。
冷却空気Kとしての圧縮空気Vを再冷却すべく、冷却空気管17に挿入接続され少なくとも1つの熱交換器22を備えた熱交換装置21を有する冷却装置18を用いる。熱交換器22はウォータボイラとも呼ばれる補助蒸気発生器でよく、その二次側に冷却媒体、特に水を供給する。該熱交換器22は、特に冷却すべき媒体、即ち高温の圧縮機空気又は圧縮空気Vを多数の管を経て導き、他方で冷却媒体(水)を導入し、通常蒸発させるように設計してある。
冷却装置18は、大きな柔軟性を持ち、特に高い設備効率を持つよう設計している。そのため冷却装置18は、冷却空気Kに随伴する熱を燃料ガスの予熱に利用可能なように、その熱を燃料ガス流23に伝達すべく設計されている。この結果、外部燃料ガス予熱器および冷却空気Kを冷却するための構成要素が不要となる。また、ガス蒸気複合タービン設備の全運転状態に対し適用されるこの冷却装置18は、純粋なガスタービン運転からガス蒸気タービン複合運転に切り換える際の、負荷低減或いは負荷遮断を不要にする。
そのため、図1の実施例では、熱交換器22の一次側を冷却空気管17に接続し、二次側を、燃料ガス流23を案内するための燃料ガス管に直結している。その際冷却空気Kから燃料ガス流23への熱伝達は、少数の構成要素だけで達成される。もっとも、通常の設備設計の際、タービン2の確実な運転に対する冷却空気Kから取り出すべき熱量が、設計上、燃料ガス流23に伝達される熱量を超過することを考慮せねばならない。冷却空気Kから、例えば約7MWの加熱力に相当する熱量を取り出す必要があり、これに対し燃料ガス流23には、最大で約3MWの加熱力に相当する熱量が伝達される。この点を勘案し、この実施例では、冷却空気Kから取り出した熱の一部しか燃料ガス流23に伝達せず、なお排出すべき残りの熱は別の媒体に伝達される。
冷却空気Kから取り出した熱のそのように必要に応じた分配を保証すべく、図1の実施例では、再冷却すべき冷却空気流を2つの部分流に分割している。そのため、熱交換装置21において、(第1)熱交換器22に対し、もう1つの(第2)熱交換器24を並列接続している。これに伴い、冷却空気流が2つの部分流に分けられ、その第1部分流が、冷却空気管17を介して第1熱交換器22を経て導かれ、第2部分流が、冷却空気管17から分岐された分岐管26を介して第2熱交換器24を経て導かれる。
その場合、冷却空気Kから取り出した熱の設備運転状態に合わせた排出と第1熱交換器22への熱供給を保証すべく、冷却空気管17と分岐管26における部分流は、更に図示しない弁を経て調整される。第2熱交換器24は、燃料ガスの予熱にとって不要な熱を排除し、別の適当な用途に導き、例えば気化熱として利用する。
図2は、冷却装置18の異なった実施方式を示す。この実施例では、冷却空気Kからの熱を燃料ガス流23に間接的に伝達すべく、熱交換装置21を、中間回路32を介在して形成している。この場合、圧縮空気Vから分岐された冷却空気Kは、冷却空気管17を経て第1熱交換器22を介して導かれる。該熱交換器22の二次側は中間回路32に接続されている。この中間回路32に、燃料ガスを予熱するための熱を燃料ガス流23に伝達する熱交換器33を接続している。中間回路32で、熱交換器33に後置接続された気水分離器34は、熱伝達媒体、例えば水を熱交換器22に供給する。更に気水分離器34から水又は蒸気が取り出され、例えば図示しない補助蒸気発生器や負荷に供給される。
この実施例でも、熱流側の複数の部分流への分割を可能にすべく、熱交換器22が多構成要素で複合形成され、例えば部分熱流を別の用途に導く補助蒸気発生器やウォータボイラとして形成された部分を備える。図2は、これを加熱コイル35により示している。
図2に示す実施方式は、中間回路32を経て、冷却空気Kから取り出した熱の特に柔軟な排出と分配を可能にしている。更に、中間回路32は、主要な機能の空間的分離を可能にする。即ち、一方で冷却空気Kからの熱の排出、他方で燃料ガス流23への熱伝達の機能分離を可能にしている。この機能分離に基づき、設備に既に存在する熱交換器、補助蒸気発生器或いは冷却回路等の構成要素での回収利用が可能であり、その際、配管案内の適合しか必要とされない。この構想は、従って、特に既存の設備の有能化に適している。
図3は、冷却装置18の更に異なる実施例を示す。本実施例でも、熱交換装置21は、一次側が冷却空気管17に接続された熱交換器22を有し、該熱交換器22は、中間回路32を経て熱側がもう1つの熱交換器33に接続されている。従って、本実施例でも、中間回路32と、二次側が燃料ガス流23に接続された熱交換器33とを経て、燃料ガスに熱が伝達される。この場合、図2の配管回路と異なり、熱交換器22は二次側が中間回路32だけに接続されている。この場合、熱流を目的に合わせて分割すべく、第3熱交換器36を設けている。この第3熱交換器36は、一次側が熱交換器22の下流で冷却空気管17に直列接続され、このため冷却空気K内になお存在する残留熱を吸収する。第3熱交換器36の二次側は、残留熱を吸収するのに適するよう選択された構成要素に接続されている。この配管回路では、特にガス蒸気複合タービン設備の場合に当てはまるように、第3熱交換器36は、燃料ガス流23で利用されない余分な熱を排出する目的しか有していないと有利である。従って、既存の構成要素の改造或いは交換は不要である。
図4は、同様に中間回路32の利用を基礎とする別の実施例を示す。ここで冷却空気Kは、熱交換器22への流入に先立ち、第3熱交換器36で冷却される。中間回路32は、もう1つの熱交換器33に熱伝達するための媒体として、水/蒸気を利用するように設計されている。そのため、熱交換器22は蒸気発生器として形成されている。その際、熱交換器22で伝達される熱量が、第3熱交換器36により目的に合わせて調整される。
図5に示す実施の形態も考えられる。本実施例では、冷却空気Kから燃料ガス流23への熱伝達を、2段に形成した中間回路装置40を経て行う。この装置40で、一次側が冷却空気管17に接続された熱交換器22は、冷却空気Kの熱を、第1中間回路42内を導かれる媒体に伝達する。該回路42において、一次側にもう1つの熱交換器44が接続され、この熱交換器44は、第2中間回路46内を導かれる媒体に熱を伝達する。第2中間回路46に更に、熱を燃料ガス流に伝達する熱交換器48の一次側が接続されている。
この実施例は、冷却空気Kから取り出した熱の排出および利用が特に柔軟に行えるという利点を有する。特に、配管案内および必要に合った別の熱負荷の接続に関し、特に多くの可能性が存在し、これに伴い、既存の設備構成要素での多種多様の回収利用方式が存在する。例えば燃料ガスの予熱に対して不要な余分な熱の一部は、第2中間回路46内で熱交換器48に後置接続された補助蒸気発生器50において、設備が必要とする補助蒸気を発生すべく利用される。また、不要な熱は、図示ない空気冷却器を経て排出できる。更にこの実施例は、単段中間回路を有する実施例と同様に、設備に既に存在する構成要素の採用および接続に対して多種多様の方式を提供する。
中間回路42内を導かれる水・蒸気混合体は、特に大きな運転柔軟性を得るべく、適当に選択した種々の個所で、ガス蒸気複合タービン設備の水・蒸気回路に接続される。
図6は、ロータ冷却空気の冷却および燃料ガスの予熱を、既存の原動所構成要素に広く一体化した実施例を示す。その場合、冷却空気Kを冷却空気管17を経て、ウォータボイラとして形成した熱交換器22に供給し、必要な熱量は蒸発により排出する。その際二次側で発生した蒸気を、中間回路装置40の復水器として形成した熱交換器44に導くか、原動所の別の負荷に補助蒸気管52を介して供給する。中間回路装置40は、特に自然循環系として設計し、熱交換器44の二次側を再冷却装置51に接続する。燃料ガスの予熱に必要な熱量を随伴する熱交換器22からの媒体の部分流を、配管54を経て、二次側を燃料ガス流23に接続した熱交換器33を通って導き、続いて再び熱交換器22に戻す。
他の既存系統への媒体側の接続を、給水管37によって例示している。このような接続によって、燃料ガス燃焼におけるガスタービン運転或いはガス蒸気タービン複合運転に対する全ての運転様式が可能である。その場合、全ての運転状態において、ロータ冷却空気の冷却機能は、第2燃料(例えば燃料油)を利用する場合も(即ち、燃料ガス予熱用熱交換器を運転することなしでも)影響を受けない。本発明の構想は、特に燃料ガス予熱の追加によるガスタービン設備の追加装備或いは改造に対しても、従って、効率向上に対しても適している。それによって、また、達成し得る熱側接続方式の多様性に基づいて、ガス蒸気複合タービン設備へのガスタービン設備の追加装備も特に助長される。
ガスタービンにおける冷却空気を冷却するための冷却装置の概略図。 中間回路付き冷却装置の概略図。 中間回路付き冷却装置の異なった実施例の概略図。 中間回路付き冷却装置の更に異なった実施例の概略図。 2段式中間回路付き冷却装置の概略図。 自然循環形の2つの中間回路を備えた冷却装置の概略図。
符号の説明
1 ガス蒸気複合タービン設備、2 タービン、6 燃焼器、17 冷却空気管、18 冷却装置、21、22 熱交換器、23 燃料ガス流、24 熱交換器、32 中間回路、50 補助蒸気発生器

Claims (15)

  1. ガスタービンの圧縮機空気(V)から分岐された冷却空気(K)を再冷却するための冷却装置(18)であって、一次側が圧縮機空気管から分岐された冷却空気管(17)に接続された熱交換装置(21)を有し、該熱交換装置(21)が、冷却空気(K)に随伴される熱を、ガスタービンの燃焼器(6)に供給される燃料ガス流(23)に伝達することを特徴とするガスタービンの冷却空気の冷却装置。
  2. 燃料ガス流(23)に供給される熱量が調整可能なことを特徴とする請求項1記載の冷却装置。
  3. 熱交換装置(21)の二次側が、熱流束側に並列接続された複数の部分回路に接続されたことを特徴とする請求項1又は2記載の冷却装置。
  4. 熱交換装置(21)が、二次側が燃料ガス流(23)に直結された熱交換器(22)を有することを特徴とする請求項1から3の1つに記載の冷却装置。
  5. 熱交換装置(21)の二次側が、中間回路を介して、二次側が燃料ガス流(23)に直結された熱交換器(33)に接続されたことを特徴とする請求項1から3の1つに記載の冷却装置。
  6. 中間回路を介して、補助蒸気発生器(22)が加熱されることを特徴とする請求項5記載の冷却装置。
  7. 熱交換装置(21)ともう1つの熱交換器(33)との熱側接続が、補助蒸気発生器(22)を介して形成されたことを特徴とする請求項6記載の冷却装置。
  8. 圧縮機空気流から分岐された部分流が冷却空気(K)として供給されるタービン(2)を備えたガスタービン設備(1)において、請求項1から7の1つに記載の冷却装置(18)を備えることを特徴とするガスタービン設備。
  9. 冷却空気流から取り出した熱を、ガスタービンの燃焼器(6)に供給する燃料ガス流(23)に伝達することを特徴とするガスタービンの冷却空気(K)の冷却方法。
  10. 燃料ガス流(23)に供給する熱量を、ガスタービン設備(1)の運転状態に適合させることを特徴とする請求項9記載の方法。
  11. 冷却空気(K)から取り出した熱流を、多数の部分流に分割することを特徴とする請求項9又は10記載の方法。
  12. 前記の熱を、二次側が燃料ガス流(23)に直結された熱交換器(22)を介して伝達することを特徴とする請求項9から11の1つに記載の方法。
  13. 冷却空気管(17)からの熱を、中間回路(32)を介して燃料ガス流(23)に伝達することを特徴とする請求項9から11の1つに記載の方法。
  14. 前記の熱を、中間回路(32)に接続した補助蒸気発生器(50)に伝達することを特徴とする請求項13記載の方法。
  15. 第1中間回路(42)において、冷却空気流からの熱を、第1熱交換器(22)により第2中間回路(46)に接続した補助蒸気発生器(50)に伝達し、かつもう1つの熱交換器(48)により燃料ガス流(23)に伝達することを特徴とする請求項9から14の1つに記載の方法。

JP2004528368A 2002-07-25 2003-07-14 ガスタービンの冷却空気の冷却装置と方法 Abandoned JP2006509942A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10233948 2002-07-25
PCT/DE2003/002363 WO2004016921A1 (de) 2002-07-25 2003-07-14 Kühlsystem zur kühlung von kühlluft einer gasturbine und verfahren zur kühlung von kühlluft

Publications (1)

Publication Number Publication Date
JP2006509942A true JP2006509942A (ja) 2006-03-23

Family

ID=31724048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004528368A Abandoned JP2006509942A (ja) 2002-07-25 2003-07-14 ガスタービンの冷却空気の冷却装置と方法

Country Status (8)

Country Link
US (1) US20050241320A1 (ja)
EP (1) EP1525380A1 (ja)
JP (1) JP2006509942A (ja)
KR (1) KR20050025678A (ja)
CN (1) CN1671956A (ja)
AU (1) AU2003257386A1 (ja)
RU (1) RU2005105070A (ja)
WO (1) WO2004016921A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180774A (ja) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd ガスタービンプラントおよびこの制御方法
JP2013133825A (ja) * 2011-12-22 2013-07-08 Alstom Technology Ltd コンバインドサイクル発電所を運転する方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8127547B2 (en) 2007-06-07 2012-03-06 United Technologies Corporation Gas turbine engine with air and fuel cooling system
US8117821B2 (en) * 2009-02-11 2012-02-21 General Electric Company Optimization of low-BTU fuel-fired combined-cycle power plant by performance heating
US8307662B2 (en) * 2009-10-15 2012-11-13 General Electric Company Gas turbine engine temperature modulated cooling flow
CN102839998A (zh) * 2011-06-22 2012-12-26 镇江市科能电力设备有限公司 汽轮机快速冷却装置
JP5822608B2 (ja) * 2011-08-31 2015-11-24 三菱日立パワーシステムズ株式会社 監視装置及び方法並びにプログラム、それを備えたガスタービン設備、及びガスタービン監視システム
GB201217332D0 (en) * 2012-09-28 2012-11-14 Rolls Royce Plc A gas turbine engine
US9249730B2 (en) 2013-01-31 2016-02-02 General Electric Company Integrated inducer heat exchanger for gas turbines
US9512780B2 (en) 2013-07-31 2016-12-06 General Electric Company Heat transfer assembly and methods of assembling the same
EP2863033B1 (en) * 2013-10-21 2019-12-04 Ansaldo Energia IP UK Limited Gas turbine with flexible air cooling system and method for operating a gas turbine
SE539758C2 (en) 2014-12-04 2017-11-21 Powercell Sweden Ab Catalytic burner arrangement
US10196924B2 (en) 2015-08-17 2019-02-05 United Technologies Corporation Conduit cooling system and method of supplying cooling fluid to a conduit
US11261783B2 (en) * 2017-10-30 2022-03-01 Doosan Heavy Industries & Construction Co., Ltd. Combined power generation system employing pressure difference power generation
CN114508420A (zh) * 2021-12-29 2022-05-17 东方电气集团东方汽轮机有限公司 一种并联式燃气轮机压气机抽气余热利用系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255505A (en) * 1992-02-21 1993-10-26 Westinghouse Electric Corp. System for capturing heat transferred from compressed cooling air in a gas turbine
DE4210544A1 (de) * 1992-03-31 1993-10-07 Asea Brown Boveri Gasturbinenanlage
JP3150567B2 (ja) * 1995-04-14 2001-03-26 三菱重工業株式会社 ガスタービン燃料加熱装置
JPH1193694A (ja) * 1997-09-18 1999-04-06 Toshiba Corp ガスタービンプラント
EP0919707B1 (de) * 1997-12-01 2003-04-02 ALSTOM (Switzerland) Ltd Gasturbinen-Kühlluftkühler
GB2373299B (en) * 2001-03-12 2004-10-27 Alstom Power Nv Re-fired gas turbine engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180774A (ja) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd ガスタービンプラントおよびこの制御方法
JP2013133825A (ja) * 2011-12-22 2013-07-08 Alstom Technology Ltd コンバインドサイクル発電所を運転する方法
US9046037B2 (en) 2011-12-22 2015-06-02 Alstom Technology Ltd. Method for operating a combined cycle power plant

Also Published As

Publication number Publication date
KR20050025678A (ko) 2005-03-14
US20050241320A1 (en) 2005-11-03
CN1671956A (zh) 2005-09-21
RU2005105070A (ru) 2006-01-20
WO2004016921A1 (de) 2004-02-26
AU2003257386A1 (en) 2004-03-03
EP1525380A1 (de) 2005-04-27

Similar Documents

Publication Publication Date Title
JP3650112B2 (ja) ガス・蒸気タービン複合設備のガスタービン冷却媒体の冷却装置
JP4153662B2 (ja) ガス・蒸気複合タービン設備とその運転方法
EP0736669B1 (en) Steamed cooled gas turbine
US6298656B1 (en) Compressed air steam generator for cooling combustion turbine transition section
KR100341646B1 (ko) 가스터어빈그룹의열적부하를받는구성품의냉각방법
US5491971A (en) Closed circuit air cooled gas turbine combined cycle
US8424282B2 (en) Combined-cycle power plant with exhaust gas recycling and CO2 separation, and method for operating a combined cycle power plant
EP2300691B1 (en) Steam generation system having a main and auxiliary steam generator
JP2006509942A (ja) ガスタービンの冷却空気の冷却装置と方法
US6668538B2 (en) Steam cooled gas turbine system with regenerative heat exchange
KR19980703510A (ko) 폐열 증기 발생기의 작동 방법 및 상기 방법에 따라 작동되는폐열 증기 발생기
EP1752617A2 (en) Combined cycle power plant
KR20010092653A (ko) 복합 싸이클 시스템 및 그 작동 방법
JP5847708B2 (ja) 複合サイクル動力装置
USRE36524E (en) Steam attemperation circuit for a combined cycle steam cooled gas turbine
CN101012924A (zh) 一种提高联合循环发电效率的系统
JP2009062985A (ja) コンバインドサイクル発電プラントを運転する方法及びこの方法を実施するコンバインドサイクル発電プラント
KR20000010927A (ko) 가스 및 증기 터빈 설비 및 그 운전 방법
US20160273406A1 (en) Combined cycle system
JP3679094B2 (ja) ガス・蒸気複合タービン設備の運転方法とその設備
KR100584649B1 (ko) 가스 및 증기 터빈 장치, 그리고 상기 방식의 장치내에 있는 가스 터빈의 냉각제를 냉각하는 방법
JP7374159B2 (ja) 火力発電プラントおよび火力発電プラントの制御方法
JP3586542B2 (ja) 多軸コンバインドサイクル発電プラント
WO1999037889A1 (en) Combined cycle power plant
JP5475315B2 (ja) コンバインドサイクル発電システム

Legal Events

Date Code Title Description
A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070118