JP2006500568A - 2信号間の遅延時間を高精度に測定するための方法および装置 - Google Patents

2信号間の遅延時間を高精度に測定するための方法および装置 Download PDF

Info

Publication number
JP2006500568A
JP2006500568A JP2004538470A JP2004538470A JP2006500568A JP 2006500568 A JP2006500568 A JP 2006500568A JP 2004538470 A JP2004538470 A JP 2004538470A JP 2004538470 A JP2004538470 A JP 2004538470A JP 2006500568 A JP2006500568 A JP 2006500568A
Authority
JP
Japan
Prior art keywords
value
delay
channel
signal
input signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004538470A
Other languages
English (en)
Inventor
シェラー エルンスト
Original Assignee
アクセリス テクノロジーズ インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクセリス テクノロジーズ インコーポレーテッド filed Critical アクセリス テクノロジーズ インコーポレーテッド
Publication of JP2006500568A publication Critical patent/JP2006500568A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F10/00Apparatus for measuring unknown time intervals by electric means
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F10/00Apparatus for measuring unknown time intervals by electric means
    • G04F10/10Apparatus for measuring unknown time intervals by electric means by measuring electric or magnetic quantities changing in proportion to time
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/05Arrangements for energy or mass analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30472Controlling the beam

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Measurement Of Radiation (AREA)
  • Particle Accelerators (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

【課題】入力信号間の遅延時間の測定およびイオン注入システムのイオンビームエネルギーの測定のための装置および方法を提供する。
【解決手段】1つの入力信号に可変遅延器が適用され、信号が相関器で比較され、この相関器は、可変遅延の遅延値が第1、第2信号間の遅延時間を表すときに極小値、極大値、または他の識別可能な値となる出力値を出力する。識別可能な相関器出力値が得られるまで可変遅延を調整することによって、その値が生成されたときの可変遅延の遅延値として、実際の遅延時間を決定することができる。遅延時間測定のための装置および方法は、イオン注入システムにおいて、飛行時間測定用プローブ210,220を使用してイオビームエネルギーを測定するために使用できる。遅延時間測定装置204を較正し、システムの残留遅延を除去することができる。さらに、電子装置による誤差を最小化する独自の誤差訂正方法も提供される。

Description

(関連する特許出願)
本出願は、「2つのパルスストリームの間の遅延時間を高精度に測定するための方法および装置」と称する、2002年9月23日に出願された米国特許出願第60/412,751号に基づいて優先権およびその利益を主張するものであり、その特許出願は、完全に記載されているものとして、参考文献として本明細書に含まれる。
(文献の引用)
マッキンタイア等に付与された米国特許第6,137,112号、チェン等に付与された米国特許第5,691,537号、およびグラビッシュ等に付与された米国特許4,667,111号は、それらが完全に記載されているものとして、参考文献として本明細書に含まれる。
本発明は、一般的には、遅延時間測定に関し、より詳しくは、信号間の遅延時間を測定するための方法および装置、また、イオン注入システムで使用するための飛行時間型エネルギー測定システムに関する。
遅延時間の測定は、様々な状況で必要とされまた要望されており、そのような状況には、例えば、半導体加工物にイオンをドーピングするためのイオン注入システムにおけるイオンビーム中のイオンの平均運動エネルギーの測定、粒子加速器における飛行時間(time of flight:TOF)測定、信号処理、音響測深等がある。これらの状況では、共通の周波数(クロック)から派生する2つのパルスストリームのような、2信号間の遅延時間を高精度に判別する必要がある。従来のシステムには、実時間での波形表示またはデータの記録(例えば、スコープ、データ収集)のために、信号波形に基づいて基準時刻(タイムスタンプ)の取得を開始するものがある。このような方法において、時間の精度(例えば、時間ジッタ)は、パルスの立ち上がり時間(例えば、スロープ、または波形)に強く依存するものであり、(例えば、信号振幅が小さい場合など、)信号対雑音比(signal-to-noise ratio:SNR)が低下するにつれて、急速に悪化するものであった。
米国特許出願第60/412,751号 米国特許第6,137,112号明細書 米国特許第5,691,537号明細書 米国特許第4,667,111号明細書
イオン注入システムまたはイオン注入装置において、遅延時間の測定は、イオンビームエネルギーを測定するための飛行時間法によるエネルギー測定で使用される。このようなシステムにおいて、遅延時間に誤差があると、半導体ウエハまたは他の加工物に注入するために使用されるイオンビームの実際のエネルギーの判別に誤差が生じることになる。したがって、2つの入力信号の間の遅延時間を判別するための遅延時間の測定システムおよび測定方法を改善し、また、イオン注入装置のためのエネルギー測定システムを改善して、遅延時間およびエネルギーの測定値の高精度化を達成することが望まれている。
以下、本発明のいくつかの態様の基本的理解のために、本発明の要約を記載する。この要約は、本発明の全範囲を示すものではなく、本発明の重要な要素または決定的な要素を同定するものでも、また、本発明の範囲を規定するものでもない。この要約の目的は、後述するより詳細な説明の導入として、本発明のいくつかの概念を簡単に提示することである。
本発明は、パルスストリームまたは他の入力信号の間の遅延時間を測定するための方法および装置に関するものであり、遅延時間の測定が望まれている任意の用途に使用することができる。その用途には、イオン注入システムが含まれるが、それに限定されるものではない。本発明の一態様は、遅延時間測定システムに関し、この遅延時間測定システムは、イオン注入システムにおけるイオンビームエネルギーの決定、粒子加速器、信号処理、音響測深、または、他の用途に使用することができる。この遅延時間測定システムは、第1、第2入力信号を受信する第1、第2入力チャネルを含み、この入力信号は、任意の性質を有するものであってもよく、例えば、イオン注入装置の飛行時間(TOF)システムから取得された電気的パルス信号またはパルスストリームのようなものである。このような例において、複数のパルスは、イオンビーム経路に沿ってTOFシステムを通過するイオンのグループまたはバンチを表すものである。
チャネルの1つには、遅延器が関連しており、この遅延器は、対応する入力信号の1つに対して可変遅延値を与えるものである。また、遅延時間測定システムには、第1、第2チャネルからの出力をそれぞれ受信する第1、第2相関器入力を有する相関器が備えられている。この相関器は、第1、第2チャネルからの出力が時間的にほぼ一致するときに識別可能な相関器出力値となる相関器出力信号を出力し、識別可能な相関器出力値は、例えば極小値、極大値、または他の識別可能な信号値である。可変遅延は、手動で調整されるかまたは測定回路(例えば、イオン注入システムの飛行時間型測定回路)によって自動的に調整され、その間、相関器出力は監視されており、第1、第2チャネルからの出力が時間的にほぼ一致したときの識別可能な相関器出力値に対応する遅延値が判別される。例えば、測定回路は、可変遅延値を掃引することによって、相関器出力における極小値または他の識別可能値を探索するものであってもよい。この点において、入力信号の間の遅延時間は、識別可能な相関器出力値が達成されたところでの遅延値として決定される。
本発明の別の態様において、遅延時間測定システムは、さらに、振幅調整器を含んでおり、この振幅調整器は、チャネルの1つに関連する利得を選択的に調整するように動作する。ここで、測定回路は、遅延器と振幅調整器とを選択的に制御するように動作するものであってもよい。この特徴によって、(例えば、振幅を一定に維持した状態で)、可変遅延値を初期的に掃引または調整し、両チャネルの出力が時間的にほぼ一致したときの識別可能な相関器出力値に対応する第1遅延値を決定することができる。その後、相関器出力信号が監視されている間に、遅延値をこの第1遅延値に保持した状態で、振幅調整器によりチャネルの1つの利得が掃引方式または他の方式で調整される。このようにして、識別可能な相関器出力値に対応する第1利得値が決定され、その後、次の遅延掃引を実施して、改善された遅延値を決定することができる。可変遅延と可変振幅とを交互に調整するこの方法は、任意の回数だけ繰返すことができ、それによって、第1チャネルの出力と第2チャネルの出力とが時間的にほぼまたは正確に一致していることを示す相関器を使用して、遅延時間の推定を改善することができる。
本発明のさらに別の態様において、遅延時間測定システムは、さらに、入力信号と第1、第2チャネルとの間に配置された誤差訂正回路を含んでいる。較正動作の間に、誤差訂正回路は、ほぼ等しい振幅を有しかつ相対的な遅延時間のない1つの入力信号を、両方のチャネルに供給する。
本発明のさらに別の態様は、イオン注入システム、および、そのイオン注入システムにおいてイオンビームの選択されたイオンパルスに含まれるイオンの平均運動エネルギーを測定するための飛行時間型イオンビームエネルギー測定システムを提供するものである。この飛行時間型イオンビームエネルギー測定システムは、イオンビーム経路に沿って互いに離れて配置された第1、第2センサを含んでおり、第2センサは、経路に沿って第1センサの下流側に配置されている。ここで、第1センサは、イオンビームのイオンパスルが第1センサを通過するときに第1センサ信号を発生し、第2センサは、そのイオンパルスが第2センサを通過するときに第2センサ信号を発生する。飛行時間型エネルギー測定システムは、さらに、第1センサ信号と第2センサ信号との間の遅延時間を測定するための遅延時間測定システムを含み、この遅延時間測定システムには、上述したような遅延器および相関器が含まれている。
飛行時間型イオンビームエネルギー測定システムは、また、相関器出力信号を受信する測定回路を含んでおり、この測定回路は、相関器出力信号を監視しながら遅延器を制御して可変遅延を選択的に調整するために適しており、第1チャネルからの出力と第2チャネルからの出力とが時間的にほぼ一致したときの識別可能な相関器出力値に対応する第1遅延値を決定するものである。次いで、第1遅延値、イオンビーム中の粒子の質量、およびセンサ間の距離に従って、この測定回路によってイオンビームエネルギーの測定値を決定することができる。
遅延時間測定システムは、さらに、チャネルの1つの関連する利得を掃引または調整することができる振幅調整器を含んでいる。一例において、測定回路の動作は、可変遅延を第1遅延値に設定し、相関器出力信号を監視しながら利得を選択的に調整し、識別可能な相関器出力値に対応する第1利得値を決定し、利得を第1利得値に設定し、そして、相関器出力を監視しながら可変遅延を再度調整するものである。次いで、測定回路は、第1チャネルからの出力と第2チャネルからの出力とが時間的にほぼ一致したときの識別可能な相関器出力値に対応する第2遅延値を決定し、この第2遅延値、イオンビーム中の粒子の質量、およびセンサ間距離に従って、イオンビームエネルギーの測定値を決定することができる。
本発明の別の態様には、第1入力信号と第2入力信号との間の遅延時間を測定するための方法が含まれており、この方法は、イオン注入システム、粒子加速器、試験装置、信号処理、音響測深、または遅延時間の測定が望まれている他の用途における遅延時間の測定で使用することができる。この方法は、入力信号1つに可変遅延時間を与えるステップと、例えば減算により入力信号同士を相関させて相関出力信号を生成するステップと、可変遅延時間を、相関出力信号が、入力信号が時間的にほぼ一致したときの識別可能な値となる遅延値に調整するステップと、相関出力信号が識別可能な値となる遅延値に従って遅延時間の測定値を決定するステップとを含んでいる。
本発明のさらに別の態様は、イオンビーム中の粒子の平均運動エネルギーを測定するための方法を提供するものである。この方法は、イオン注入システムに離れて配置されたイオンビームセンサからの第1、第2入力信号を入力するステップと、入力信号の1つに可変遅延時間を与えるステップと、入力信号同士を相関させて相関出力信号を生成するステップとを含んでいる。この方法、さらに、可変遅延時間を、相関出力信号が、入力信号が時間的にほぼ一致するときの識別可能な値となる遅延値に調整するステップと、相関出力信号が識別可能な値となる遅延値およびセンサ間距離に従って、ビーム速度の測定値を決定するステップとを含んでいる。次いで、ビーム速度の測定値およびイオンビーム中の粒子の質量に従って、イオンビーム中の粒子の平均運動エネルギーが算出される。この方法は、さらに、入力信号の1つの可変振幅を、相関出力信号が識別可能な値となる値に調整するステップと、可変遅延時間を、相関出力信号が、入力信号が時間的にほぼ一致するときの識別可能な値となる遅延値に再度調整するステップとを含んでいてもよい。
本発明のさらに別の態様は、イオン注入システムの飛行時間型エネルギー測定システムを較正するための方法を提供するものである。この方法は、直流イオンビームを、既知の直流ビームエネルギーで、イオン注入システムのビーム経路に沿って供給するステップと、直流イオンビームを小さな交流成分で変調するステップと、飛行時間型エネルギー測定システムを使用してビームエネルギーを測定するステップと、ビームエネルギーの測定値および既知の直流ビームエネルギーに従って、飛行時間型エネルギー測定システムを較正するステップとを含んでいる。直流イオンビームを小さな交流成分で変調するステップは、例えば、イオン注入システムの高周波(RF)加速装置に、イオンビームの平均エネルギーをほぼ変動させることなく飛行時間システムのプローブにパルス信号を発生させるための低電圧を印加することによって達成することができる。
上記目的および関連する目的を達成するために、以下の説明および添付図面には、本発明の特定の例示的な態様および実施形態が詳細に記載されているが、これらは、本発明の原理を使用可能な様々な態様のごく一部を示すものである。本発明の他の態様、利点、および新規な特徴は、以下の本発明の詳細な説明を図面と共に考慮することによって、明らかになるであろう。
以下、添付図面を参照して本発明を説明する。全体を通じて、同様の構成要素には同様の符号を付して参照する。本発明は、例えばイオンビームセンサからの電気的パルスストリームまたは他の第1および第2の入力信号のような、2つ以上の信号の間の遅延時間を測定するための装置および方法に関するものであり、イオン注入システムまたは遅延時間を測定することが望まれている他のシステム(例えば、粒子加速器、信号処理、音響測深等)と関連させて使用することができる。本発明の遅延時間測定の態様および添付請求項は、本明細書において、例示したイオン注入システムに関連する範囲で説明および図示されていても、イオン注入装置に関連する使用に限定されるものではない。
イオン注入システムにおいて、加工物表面におけるイオン注入の注入深さの精度は、注入処理の間に半導体ウエハ加工物に注入されるイオンの量についての精度と共に、集積回路デバイスのような最終製品の製造において、合格品を製造するための重要なパラメータである。多くの半導体デバイスの製造における注入深さおよび全イン注入量または線量に許容される公差は、多くの用途に対して+/−1%程度に小さい。イオンビーム注入装置における加工物のイオン注入深さは、イオンビームのエネルギーに直接的に依存するため、所望の深さを達成することにおける精度は、イオンビームのエネルギーの(例えば、keV単位の)正確な制御、測定、および監視によって促進される。
高周波加速を使用する高エネルギー(high energy:HE)イオン注入装置は、いくつかの点で静電方式のイオン注入装置よりも有利なものである。しかしながら、そのようなシステムのビームエネルギーを測定することは、加速カラムの電圧から直接的にビームエネルギーを導出できる静電方式のシステムと比較して困難である。従来の静電方式のイオン注入装置では、エネルギーの制御は、最終エネルギー磁石(final energy magnet:FEM)からのビームのコリメーションに基づくものである。飛行時間(TOF)法によるエネルギー測定には、ビーム経路に沿って空間的に離れて配置された2つのビーム電流プローブで発生するパルスの遅延時間に従って、イオンビーム中のイオン粒子の特定の質量に対するエネルギーを算出することが含まれている。その例は、本出願の譲受人に譲渡された米国特許第6,137,112号(特許文献2)に開示されており、その全体は、完全に記載されているものとして、参考文献として本明細書に含まれる。
本発明では、コンパクトで費用対効果の優れた遅延時間測定システムの設計思想が使用されており、例えば高精度可変遅延ライン等の遅延器と、独自の信号相関器とを含むものである。本明細書に記載された例では、プローブを含むシステム全体が、自律型のユニットとして完全に統合化されており、イオン注入システムの分解チャンバー中に据え付けることによって、既存のイオン注入装置に容易に実装することができる。ただし、本発明の様々な態様は、他のシステムとの関連における有用性を有するものであり、その応用は、イオン注入装置に限定されるものではない。例示的な飛行時間(TOF)システムは、既存の封止蓋(blank-off plate)を取り外し、それをTOF組立体で置き換えることによって、イオン注入システムまたは装置に有利に取り付けることができる。これに関連して、プロトタイプの装置において、+/−100ピコ秒(+/−0.3%)よりも良好な遅延分解能および再現性が達成された。システムの絶対的なエネルギー較正は、核反応測定、または他の適切な方法によって確立することができる。本発明の別の態様では、僅かに交流変調された直流ビームを使用してエネルギー較正を実施することができ、その詳細は後述する。
イオン注入システム構成に関連して言えば、現行の方法は、イオンビームがビーム経路に沿って輸送される際に、2つのビームセンサまたはプローブによって発生する連続的なパルスストリームの時間のずれの正確な測定を使用するものである。そのような測定における困難の1つは、そのような時間のずれまたは遅延が極端に小さいという事実に関連する。例えば、図2Bを参照すると、典型的なエネルギー範囲の最大値/最小値および質量から算出された遅延は、本明細書に記載された例示的なイオン注入装置において、約30nsから約300nsに変動する。図2Bには、この様子が、ホウ素152、リン154、およびヒ素156に対して、イオンエネルギー(keV)に対する遅延時間(ns)の曲線を示すプロット図150として示されている。したがって、エネルギーの分解能の目標である+/−1%を達成するためには、遅延時間を、数10分の1パーセント程度の精度で処理および測定する必要がある。実際には、平均二乗誤差をエネルギーの精度の目標である+/−1%に適合させるために、遅延を+/−100ps程度の精度で分解し、測定することが望ましい。理論上は、小さな遅延時間を測定するための多くの方法があり、それらには、ビーム物理に基づく方法(干渉計(inferometer)、ビーム位置決め(beam indexing))、高機能デジタルスコープ、タイムインターバルアナライザまたは他のオシロスコープと同様の装置、位相計(ロックインアンプ)、遅延発生器(カウンタ、DDS)、プログラム可能な遅延ラインが含まれる。
図1および図2Aには、10keV〜5000keVの範囲のビームエネルギーを有するイオンビーム14を生成するための、例示的な高エネルギーイオンビーム注入装置またはイオンビーム注入システム10が示されている。注入装置10は、イオンビーム14を形成するイオンを供給するイオン源12を含み、イオンビーム14は、ビーム経路を通過して注入ステーションまたはエンドステーション16に到達する。注入装置10では、高周波(radio frequency:rf)イオン加速装置18が使用されており、これによって、イオンビーム14中のイオンを、所望のイオンビームエネルギーを達成するために適切な高速度まで加速する。高エネルギー注入装置での使用のために適切な高周波イオン加速装置18は、グラビッシュ等に付与されかつ本出願の譲受人に譲渡された、米国特許第4,667,111号(特許文献4)に開示されており、その全体は参考文献として本明細書に含まれる。注入装置10のような高エネルギー注入装置では、イオンビーム14は、一連の離散的なパルスまたはバンチとして分解され、それぞれのパルスは、例えば1013個程度の多数個のイオンのグループまたはバンチを含んでいる。注入ステーション16の注入領域または注入チャンバー22内に配置された複数の半導体ウエハ加工物21に与えられるイオン線量(dosage)を監視および制御するため、制御電子装置20が設けられている。操作者は、ユーザーコンソール67によって、制御電子装置20に対して入力することができる。
イオン源12でイオンビーム14が発生し、エンドステーション16の注入チャンバー22中の加工物21に衝突する。加工物21は、一例として、回転しかつ移動するディスク90上に配置されている。イオンビーム14中のイオンは、イオンビーム14がイオン源12と注入ステーション16との間を通過するにつれて、拡散する傾向を有する。イオン源12は、イオン源材料が射出される内部領域を形成するプラズマチャンバー28を含んでいる。イオン源材料には、イオン化可能ガスまたは気化されたイオン源材料が含まれていてもよい。固体のイオン源材料は、気化器内に配置され、次いで、プラズマチャンバー28に射出される。「n」型の不純物ウエハ材料が必要な場合には、ホウ素、ガリウム、またはインジウムを使用することができる。ガリウムおよびインジウムは、固体のイオン源材料である。一方、ホウ素は、通常、ガスとしてプラズマチャンバー28に射出されるものであり、ホウ素の蒸気圧が低いことにより単なる固体ホウ素の加熱では使用可能な圧力が生じないため、典型的には三フッ化ホウ素またはジボランが使用される。「p」型の不純物材料を生成するためには、アンチモン、ヒ素、またはリンを固体イオン源材料として使用することができる。イオン源材料にエネルギーを印加すると、プラズマチャンバー28内に正イオンが発生する。正イオンは、プラズマチャンバー28の開口側に積層されたカバープレート30の、例えば楕円弧状のスリットである開口部29(図2A)を通じてプラズマチャンバーから出射する。
イオンビーム14は、イオン源12からエンドステーション16の注入チャンバー22に延在するビーム形成/輸送構造体(beam forming and directing structure)50によって形成される内部領域52を通じて、排気された経路に沿って移動し、エンドステーションも排気されている。製造動作時のビーム経路14を形成する内部領域52の排気は、真空ポンプシステム31を含むポンプシステムによって実施される。プラズマチャンバー28内のイオンは、プラズマチャンバーのカバープレート30の円弧状のスリット29を通じて引き出され、ビーム形成/輸送構造体50によって、イオン源12と注入ステーション16との間を移動するイオンビーム14が形成される。ビーム形成/輸送構造体またはビームライン組立体50は、質量分析磁石または質量分解磁石24、高周波イオン加速装置18、最終エネルギー磁石(FEM)32、イオン源12に関連する1組の引出電極34を含んでいる。電極34は、プラズマチャンバー内のプラズマからイオンを引き出して、質量分析磁石24に向けてイオンを加速するものである。
質量分析磁石24は、質量分析磁石ハウジング25内に支持され、この磁石領域を通過するイオンビーム14の経路の境界は、アルミニウム製のビームガイド26によって形成されている。質量分析磁石24は、適切な質量対電荷比を有するイオンのみをイオン注入ステーション16に到達させるように機能する。これに関連して、プラズマチャンバー28におけるイオン源材料のイオン化では、所望の原子質量を有する正イオンと共に、所望の原子質量以外の原子質量を有するイオンも発生する。所望の原子質量よりも大きいまたは小さい原子質量を有するイオンは、注入に適さない。質量分析磁石24によって発生する磁界のために、イオンビーム14中のイオンは、曲線軌道に沿って移動する。制御電子装置20により形成される磁界により、所望の原子質量に等しい原子質量を有するイオンのみが、注入ステーションの注入チャンバー22への曲線状のビーム経路に沿って移動する。
所望の原子量を有するイオンは、質量分析磁石24を出た後、引き続いて高周波加速装置18の加速モジュール18a、18b、18c、18d、18eにより、さらに高速度に加速される。所望のエネルギーレベルへのイオンの加速は、高周波制御電子装置19によって制御される。加速装置18によるイオンビーム中のイオンの高周波加速の結果、イオンビーム14は、一連のイオンパルスまたはイオンバンチから構成されるものとなる。エネルギーの測定および分析のために、イオンビーム14を一連の離散的なイオンパルスと見なすことができ、それぞれのイオンパルスは、例えば1013個オーダーの、多数個の個別のイオンを含んでいる。高周波イオン加速装置18の特性により、イオンビーム14をなすイオンパルスの周波数は所定の既知の値であり、例えば、13.56メガヘルツ(MHz)である。したがって、ビーム経路14に沿った所定に位置における、一連のパルスの間の時間Tは、T=1/f=1/13.56MHz=73.75ナノ秒(ns)である。
加速装置18の下流において、イオンビーム14は、FEM制御回路40によって動作するFEM32により形成された磁界を横断する。FEM32は、ハウジング33内に支持されており、イオンビーム14が内部を通過するアルミニウム製のビームガイドを含んでいる。FEM32によって形成される磁界の強さおよび方向は、例えば、磁石の界磁巻線を流れる電流を調整することによって、制御電子装置20のFEM制御回路40により制御される。イオンビーム14のエネルギーは、イオンビームを適切な円弧状の経路に沿って曲げ、それによって、注入チャンバー22内のターゲットウエハ21に導くために必要な磁界のエネルギーに比例するため、FEM32によって、イオンビームのエネルギーの近似値が与えられる。このように、FEM32は、特定のエネルギー範囲またはウィンドウ内にあるイオンのみがFEMを通過可能となることによって、特定のイオンビームエネルギーを選択し、したがって、注入イオンエネルギーを制御するものである。FEMによるエネルギーの制御は、典型的には、所望のイオンビームエネルギーの+/−10%の精度である。
ビーム形成/輸送構造体50には、FEM32の下流側に配置された、四極子組立体70、分解プレート80、ピボット回転するファラデーフラッグまたはファラデーカップ72、およびイオンビーム中性化装置80も含まれている。四極子組立体70は、イオンビーム14の回りに向き付けられた1組の電極を含み、それらの電極は、電子制御装置20により選択的に励起されて、イオンビーム14の高さを調整するものである。四極子組立体70は、注入装置ハウジング74内に支持されている。分解プレート80は、四極子組立体70のFEM32に対向する端部に結合されている。ファラデーカップ72は、ビーム特性を測定するためにイオンビーム14に交差する位置に配置できるように、ハウジング75にピボット結合されており、測定の完了後は、ファラデーカップ72を、注入チャンバー22におけるウエハ加工物への注入に干渉しないように、ビームラインの外に回転させる。分解プレート80は、ガラス質グラファイト(vitreous graphite)からなり、イオンビーム14中のイオンが通過する細長い開口部を形成する。FEM32は、不要なイオン種をイオンビーム14から除去する機能も有しており、所望のイオン原子質量よりも非常に大きいかまたは非常に小さい原子質量を有するイオンは、鋭く偏向されて、アルミニウム製のビームガイド42、または、分解プレート80によって形成されるスリットの境界に衝突する。
ビーム中性化装置74は、電子シャワーとしても知られ、ウエハに注入する前にイオンの正電荷を中和して、ドーピングされるウエハ21が、注入の間に正に帯電することを防止または抑制するものである。イオン中性化装置74で発生する電子は、イオンビーム14の経路に沿って下流側に流されて、イオンビーム中性化装置74の下流側の空間電荷密度を中性化する。イオンビーム中性化装置74の直ぐ上流側には、磁気リペラ82があり、磁気リペラは、中性化装置74からの電子の逆流を抑制するための永久磁石を含んでいる。例示した中性化装置74およびリペラ82は、統合された単一のユニットとして形成されており、注入装置ハウジング75の共通のベース部85により支持されている。適切なイオン中性化装置およびリペラは、チェン等に付与されかつ本出願の譲受人に譲渡された米国特許第5,691,537号(特許文献3)に開示されており、その全体は、参考文献として本明細書に含まれる。
半導体ウエハ21は、エンドステーションまたは注入チャンバー22におけるバッチ式イオン注入のために、ディスク状の加工物支持体90に支持される。ウエハ21は、ウエハ支持体90の外縁付近に配置されており、支持体90は、モータ92によって一定の角速度で回転する。これによって、1回の製造動作の間に複数のウエハ21に対して注入を実施することができる。モータ92の出力シャフトは、ベルト96によって支持体の駆動シャフト94に連結されている。あるいは、ウエハ支持体90の駆動シャフト94は、モータ92の出力シャフトに直接連結されていてもよい。イオンビーム14は、ウエハ21が約1200RPMの速度で円形の経路を回転するにつれて、ウエハ21に衝突する。また、支持体90は、ステップモータ98が親ネジ99を駆動することによって、図2Aに矢印Aで示す垂直方向に移動する。ウエハ21は、ロードロックを通じてロードまたはアンロードされ、これによって、ロードまたはアンロードの間にビームラインを排気状態に維持することができる。注入ステーション16は、柔軟なベローズ100により、ビーム中性化装置のハウジング75に対して回転可能でり、これによって、イオンビームがウエハ21に衝突する際の、イオンビーム14の入射角を調整することができる。加工物支持体90の背後にはファラデーケージ110が取り付けられており、支持体90に形成されたスロット112を通過するイオンビームのファラデー電流(Faraday ion beam current)、If、を測定するために使用される。
図1および図2Aに示すように、制御電子装置20は、ウエハ21が受け取るイオン線量と共に注入深さを制御する注入制御回路または線量制御回路66を含んでいる。注入制御回路66は、チャンバー22内のイオンゲージ114からのチャンバー圧Pに関する入力、および、ファラデーケージ110からのビーム電流Ifに関する入力を受信する。また、注入制御回路66は、モータ制御システム68を制御して、支持体90の角速度および垂直移動を調整する。注入深さの制御のために、注入制御回路66は、高周波制御回路19を制御してイオンビームのエネルギーを調整する。図示された注入システム10は、例示のためのものであり、本発明の様々な態様は、遅延時間の測定が望ましい多くの種類のシステムに実装することができる。それらのシステムには、例示したシステム10とは異なるイオン注入装置、および、イオン注入装置以外の装置またはシステムが含まれるが、それらに限定されない。これに関連して、本発明は、例えば、経路に沿ったイオンビームを生成することに適した任意の適切なイオン源、イオン源の下流でイオンビームが経路に沿って輸送される通路を形成するビームライン組立体、および1つまたは複数のウエハを注入経路に沿って支持することに適した(例えば、逐次式、バッチ式、またはその他の)エンドステーションを使用する、別の構成要素を有するイオン注入システムに関連させて、実装することができる。
例示した注入装置10は、イオンビーム14の選択されたイオンパルスに含まれるイオンの平均運動エネルギーを測定するための、飛行時間(TOF)型イオンビームエネルギー測定システム200を含んでおり、このシステムは、いくつかの点において、米国特許第6,137,112号(特許文献2)に図示および説明されているものと同様のものである。例示的な飛行時間型イオンビームエネルギー測定システム200は、ビーム経路に沿ってセンサ間距離222だけ互いに間隔をおいて配置された第1センサ210および第2センサ220を含んでおり、第2センサ220は、第1センサ210の下流側に配置されている。第1センサ210は、イオンビーム14のイオンパルスが第1センサ210を通過する時に第1センサ信号を発生させ、第2センサ220は、イオンパルスが第2センサ220を通過する時に第2センサ信号を発生させる。
本発明に従って、注入装置10は、第1入力信号と第2入力信号との間の遅延時間を測定し、制御電子装置20のエネルギー測定回路202に相関器出力信号VOを出力する遅延時間測定システム204を備えている。エネルギー測定回路202は、相関器出力VOから遅延時間の測定値を導出し、その遅延値およびセンサ間距離222に従って速度値を決定する。次いで、エネルギー測定回路202は、その速度値を使用して、例えば、等式E=0.5×M×V2によりビームエネルギーを決定する。ここで、Mは、注入される化学種の質量である。このエネルギー値は、ユーザーコンソール67を介して操作者に表示され、高周波制御19、イオン源12、または他のシステム動作上のパラメータを調整するために使用することができる。
本明細書において、例示した遅延時間測定システム204は、イオン注入装置10のための飛行時間型エネルギー測定システム200に関連させて図示および説明されているが、例示した遅延時間測定システム204および本発明に従った他の遅延時間測定システムは、本明細書において図示および説明されたものとは異なる他の応用例における遅延時間測定のために使用するものであってもよく、本発明および添付請求項の範囲には、そのようなすべての実施形態が含まれるものである。
図3および図4A〜図4Cも含めて参照すると、図3に簡略化して示す遅延時間測定システム204は、センサまたはプローブ210からの第1入力信号を受信する第1チャネルCH1と、センサ220からの第2入力信号を受信する第2チャネルCH2とを含んでいる。第1、第2入力信号は、それぞれの入力端子228、229を介してチャネルCH1、CH2に接続され、それぞれ第1、第2チャネルCH1、CH2の第1、第2プリアンプ231、232によって前置増幅/信号調整が実施される。また、システム204は、第1チャネルCH1(図4A)に、ギガビット(Gigabit)社製のプログラム可能な遅延ライン(programmable delay line:PDL)、部品番号PADL−100−X、224を含んでいる。ただし、本発明に従って、任意の遅延器を第1チャネルCH1または第2チャネルCH2のいずれに使用してもよく、それによって、該当するチャネルに関連する信号に対して変動可能または調整可能な遅延を選択的に与えることができる。図示された例では、プログラム可能な遅延ライン224は、エネルギー測定回路202の制御の下に、10ビットの遅延掃引範囲0〜76.7nsを有する回路部品であるが、他の可変遅延器を使用してもよい。
システム204は相関器240を備え、この相関器は、それぞれ第1、第2チャンネルCH1、Ch2からの出力を受信する第1、第2相関器入力と、相関器出力信号VOを出力する相関器出力とを備えており、この相関器出力信号は、2つのチャネルの出力が時間的にほぼ一致したときに識別可能な出力値となるものである。2つのチャネルのパルスがほぼ同時に発生する場合に、最小値または最大値、あるいは他の識別可能な値のいずれかをとるアナログ出力信号VOを生成する様々な相関器を、相関240として使用することができる。例示したシステム204では、相関器240は、時間的な一致点において極小値または最小値を生成するものであり、これによって、最も鋭敏な識別性(例えば、最良の感度)が得られることが確認されている。ただし、本発明は、2つのチャネルにおけるパルスが同時に発生する場合に識別可能な値またはレベルをとる相関器出力を有する任意の実施形態を含むものであり、例えば、その識別可能値は、極大値、または、チャネル出力信号が時間的にほぼ一致することを示す他の識別可能値である。動作時に、可変遅延器224は、掃引または他の方法によって選択的に調整され、その間、エネルギー測定システム202は、相関器出力信号VOを監視して、識別可能値(例えば、最小値)242が生じた点における遅延値を決定し、それによって、この遅延値がプローブ210からの入力信号とプローブ220からの入力信号との間の遅延時間(例えば、図3に示すTDELAY)に相当することを示すものである。
図4Bには、例示的な掃引曲線252を表すプロット図250が示されており、この曲線は、第1部分252aと第2部分252bを有し、43nsよりも僅かに小さいところで、極小値である識別可能値242をとるものである。また、Y軸(すなわち、相関器出力VO)の単位は任意である。図4Bに示す例において、遅延時間の測定値は、識別可能な(例えば、最小値)相関器出力242が達成されたところでのプログラム可能な遅延器224の値とすることができる。図4Bには、可変遅延器224が、測定回路202によって掃引方式で選択的に調整される例が示されている。ただし、本発明の範囲内において他の方式による選択的遅延調整も可能であり、例えば、ニュートン法、または、エネルギー測定回路202によって相関器出力VOの識別可能な出力値242に対応する可変遅延器の値が識別されるような、任意の他の方法を使用することができる。
プローブ210とプローブ220を通過するイオンのパケットまたはバンチが一度に1つの場合(例えば、図2Aに示すセンサ間距離222が小さいおよび/またはビーム速度が低いため、センサの間隔が近い場合)、この可変遅延器の値を、第1推定値としてまたは後述する反復処理を使用して修正し、信号の遅延時間の測定値(例えば、図3に示すTDELAY)として使用することができる。しかしながら、プローブ210とプローブ220との間のビーム経路に沿って、イオンのパケットまたはバンチが同時に1つ以上存在する場合は、エネルギー測定回路202は、米国特許第6、137,112号(特許文献2)に記載されているような方法を使用して、センサ間のイオンパルスの数を判別し、測定対象のパケットが第1プロープ210と第2プローブ220との間を移動している間に第2センサ220を通過する介入パケットの数の推定値または想定値を考慮に入れて、第1プローブ210から第2プローブ220へと移動する個々のイオンパケットに関連する遅延時間の測定値を判別することができる。
本発明の別の態様では、例示した遅延時間測定システム204は、さらに、振幅調整器を含んでいてもよく、それによって、第1チャネルCH1および第2チャネルCH2の1つに関連する利得を選択的に調整するものである。図3に簡略に示すように、第2チャネルCH2のプリアンプ232の増幅利得は、エネルギー測定回路202によって選択的に調整される。図4Aに詳細に示すように、第1、第2チャネルCH1、CH2は、それぞれ自動利得制御(automatic gain control:AGC)アンプ261、262を備えており、例えば、アナログ・デバイセズ社(Anlog Devices,Corp.)から部品番号AD 603として市販されている30dBの利得を有するデバイス、または他のデバイスを使用することができる。第1入力信号は、第1チャネルCH1の第1入力端子228を介してプログラム可能な遅延ライン224に供給され、遅延された第1入力信号は、遅延器224からAGCアンプ261に供給される。アンプ261の利得は、帰還要素264からの利得制御信号AGC1に従って調整され、この帰還要素は、可変抵抗または分圧器266を使用して調整または設定される。
AGCアンプ261の出力は、部品番号ZPUL−30Pとして市販されているデバイスまたは他のデバイスのような、例えば20dBの利得を有する非反転アンプ268に供給され、この非反転アンプは、帰還タップまたは帰還端子270に非反転出力を供給する。タップ270は、要素264および任意選択の位相調整器272に帰還信号を供給する。任意選択の位相調整器272からの出力は、タップ276を介して任意選択の第1モニタ端子274に供給されると共に、相関器240中の加算アンプ280の入力端子に供給される。
第2チャネルCH2では、第2入力信号が第2入力端子262を介して遅延等価器282に供給され、次いで、AGCアンプ262に供給される。アンプ262の利得は、帰還要素284からの利得制御信号AGC2に従って調整され、この帰還要素は、可変抵抗または分圧器286を使用して調整または設定される。AGCアンプの利得は、後述するように、エネルギー測定回路202から分圧器286に供給される振幅掃引信号(AMPLITUDE SWEEP)に従って調整することもできる。第2チャネルCH2のAGCアンプ262の出力は、部品番号ZPUL−21として市販されているデバイスまたは他のデバイスのような、例えば20dBの利得を有する反転アンプ288に供給され、この反転アンプは、帰還タップまたは帰還端子290に反転出力を供給する。これによって、反転アンプの出力は、帰還信号として要素284に供給されると共に、可変抵抗または他のレベル調整器のような任意選択の振幅調整器292に供給される。任意選択の振幅調整器292からの出力は、タップ296を介して任意選択の第2モニタ端子294に供給されると共に、相関器240中の加算アンプ280の他方の入力端子に供給される。
位相調整器274および振幅調整器284の目的は、主として、部品および組立体の公差によって生じる遅延および振幅の変動を補償することである。システムを均等化(すなわち、両チャネルの絶対的な遅延および振幅を等しく)し、両チャネルCH1、CH2の入力に対して遅延差がゼロの信号を供給したときの、相関器における実際の遅延差をゼロに近付けることは、有利である。このような条件の下で、入力信号に関連するノイズを要因とする相関器出力のノイズは、最小限に抑制される(すなわち、ノイズ除去)。位相調整は、電子的手段または機械的手段を使用する任意の公知の方法で達成することができる。一例として、位相調整器272は、適切な長さに切断された同軸線の断片を含むものである(遅延は、Lに比例する)。振幅調整器292は、(機械的または電子的な)可変減衰器を含んでいてもよい。その代りに、または、それに加えて、アンプの利得を調整(例えば、動作点の変更、直流バイアス)することによって、振幅調整を達成するものであってもよい。これは、AGCアンプ261および/またはAGCアンプ262の動作点を変更することによって、達成することもできる。
図4Aに示す実施形態における加算アンプ280は、遅延調整された非反転信号である第1チャネルCH1からの第1入力信号と、振幅調整された反転信号である第2チャネルCH2からの第2入力信号との和を表す出力信号を出力する。このようにして、例示したシステム204は、反転加算(すなわち、減算)回路網を形成するものであり、本発明に従って、平衡トランス、1〜180°の信号分配器、差動アンプ(例えば、オペアンプ)等の部品または回路からなる任意の適切なシステムにより実施するものであってもよい。この点に関して、減算システムは、数ナノ秒程度の短い立ち上がり時間を有する大きく歪んだパルスを処理するために、線形かつ広帯域のものであることが好ましい。また、アンプ288を非反転型(あるいは、両方のアンプ268、288を反転型)とし、相関器240のアンプ280を差動アンプとして、1つの信号の遅延を制御することで第1入力信号と第2入力信号との間の差を得るような、他の実施形態も可能であり、この場合でも、信号の1つを振幅調整してもよい。
遅延時間測定システム204において、遅延調整を第2チャネルCH2で実施してもよく、また、振幅調整を第1チャネルCH1で実施することも、あるいは、振幅調整および遅延調整を同じチャネルで実施することもできる。例示した相関器240は、遅延調整された第1入力信号と、振幅調整されかつ反転された第2入力信号とを受信し、それらを加算して相関器出力信号VOを生成するものである。図示された実施形態では、相関器240は、13.56MHzを通過帯域の中央値とする任意選択のバンドパスフィルタ300を含み、このバンドパスフィルタは、フィルタリングされた出力を任意選択の対数アンプ302に出力する。対数アンプとして、例えば、アナログ・デバイセズ社により部品番号AD8308として市販されているデバイスまたは他のデバイスを使用することができる。
相関器出力VOは、制御電子装置20のエネルギー測定回路202に供給され、エネルギー測定回路は、遅延器224および第2チャネルCH2のAGCアンプ262の振幅調整器を選択的に制御するように動作する。例示した実施形態における遅延調整は、エネルギー測定回路202からプログラム可能な遅延ライン224に遅延掃引信号(DELAY SWEEP)またはデジタル値を供給することによって達成され、この信号は、この例では、10ビットのデジタル値である。他の実施形態として、遅延掃引制御信号(DELAY SWEEP)をアナログ信号として供給することもできる。さらに、図示された例では、遅延は、相関器出力信号VOの極小値242(図4B)または他の識別可能値を確認するために、掃引方式により調整されるものであるが、本発明の範囲内において、識別可能値を見分けるために、例えば、ニュートン法または他の方法などの任意の調整方法を使用することができる。例示した電圧調整は、第2チャネルCH2における可変抵抗286の上側端子に結合された振幅掃引電圧信号(AMPLITUDE SWEEP)を、例えば、一実施形態ではおよそ4.5Vから5Vの範囲で、変動させることによって実施される。また、図示された実施形態では、この調整は、掃引方式によって実施されるが、本発明および添付請求項の範囲には、任意の他の利得調整方法または振幅調整法が含まれるものである。
動作の可能な一形態では、測定回路202は、相関器出力信号VOを監視しながら、遅延器224を制御して第1チャネルCH1の可変遅延値を選択的に調整し、第1および第2チャネルCH1、CH2の出力が時間的にほぼ一致したときの識別可能な相関器出力242に相当する第1遅延値を決定する。図示された実施形態では、時間的な一致は、加算アンプ280の入力がほぼ同一の振幅で異なる(反対の)極性を有している場合に達成され、この点において、プログラム可能な遅延ライン224の遅延値(例えば、極小値242を示す点における遅延掃引信号(DELAY SWEEP)の値)は、TOFプローブセンサ210、220からの第1、第2入力信号の間の実際の遅延時間の約1%の範囲内にある。ただし、「時間的にほぼ一致する」という用語は、他の測定精度または他の予め定められた関係を含むものであり、本発明には、そのような意味において「時間的にほぼ一致する」ことを示すすべての値が含まれる。この点に関して、本発明における相関器は、可変遅延器の遅延値が第1入力信号と第2入力信号との間の遅延時間を表す場合に、識別可能な出力値を出力するものである。
図示された実施形態では、識別可能な相関器出力値242は、チャネル出力が時間的にほぼ一致していることを示すものであり、現在の遅延値は、入力信号間の実際の遅延時間を表している。しかしながら、本発明の範囲内において、例えば、現在の遅延値と入力信号間の実際の遅延時間とが他の関連性を有している場合に、識別可能な相関器出力値が出力されるような他の実施形態も可能である。一例として、相関器出力の識別可能値は、現在の遅延値が入力信号間の実際の遅延時間よりも短いまたは長い所定の時間であることを示すものであってもよい。識別可能な出力242を与える現在の遅延値と測定される実際の遅延時間とは、例えば非線形関係を含む、他の関係を有するものであってもよく、本発明は、そのような関係のすべてを含むものである。
このようにして、第1遅延値が決定されると、測定回路202は、この値を使用してビーム速度の測定値およびイオンビームエネルギーの測定値を決定することができる。あるいは、イオンビームの速度およびエネルギーを決定する前に、遅延調整および振幅調整を1回以上反復して実施することができる。例えば、図示された実施形態における測定回路202は、相関器出力信号VOを監視しながら、遅延器224を制御して可変遅延値を第1遅延値に調整し、また、振幅掃引信号(AMPLITUDE SWEEP)により振幅調整器を制御して第2チャネルCH2の利得を選択的に調整し、識別可能な相関器出力値242に対応する第1利得値を決定する。図示された実施形態では、振幅掃引は、図4Aに示す第2チャネルCH2のAGC調整抵抗286の上端において、約4.5〜5Vの範囲で電圧を変動させることによって達成される。ただし、任意の適切な利得調整または振幅調整の装置および方法を使用することができる。この例では、遅延器224は、振幅掃引信号(AMPLITUDE SWEEP)の値が掃引方式で(または、任意の他の調整方法に従って)調整されている間一定に維持されており、それによって、相関器出力VOについて、図4Bに示す曲線と同様の曲線が得られる。出力VOが最小値(または、他の識別可能値)を示したところでの振幅掃引信号(AMPLITUDE SWEEP)の値は、引き続き、遅延器224の次回の掃引における第1振幅値または第1利得値として使用される。
例えば、第1利得値に設定された振幅掃引信号(AMPLITUDE SWEEP)を使用して、遅延器224は、再度掃引または調整され、識別可能な相関器出力値が再び得られたところでの第2遅延値が判別される。このようにして、測定回路202は、遅延掃引信号(DELAY SWEEP)による可変遅延器224の(掃引方式または他の方式による)調整と、振幅掃引信号(AMPLITUDE SWEEP)による利得調整とを交互に反復し、第1チャネルCH1からの出力と第2チャネルCH2からの出力とが時間的にほぼ一致したときの識別可能な相関器出力値242に対応する遅延値を決定することができる。この反復処理は、任意の回数だけ繰返すことができ、また、任意の適切な基準に従って終了させることができる。例えば、この反復処理は、複数の引き続く遅延値が互いに特定の時間(例えば、数ナノ秒(ns)または任意の所望の精度値)内にある場合に終了してもよく、あるいは、所定の反復回数だけ続けるものであってもよい。
測定回路202において、2つのパルス信号間の時間のずれまたは遅延が決定されたならば、既知のセンサ間距離222(図2A)を使用して対応する速度を算出することができる。次いで、イオン注入システム10における既知の注入用化学種の質量から、イオンビームのエネルギーを決定することができる。上述したように、例示した遅延時間測定システム204および本発明に従った他の遅延時間測定システムは、イオン注入以外の応用例における信号の時間のずれまたは遅延を測定するために使用することもでき、その応用例には、例えば、信号処理、音響測深、レーダー、または遅延時間の測定が望ましい他の状況が含まれるが、それらに限定されるものではない。
調整抵抗または分圧器266、268は、チャネルCH1、CH2を通じてほぼ同一の利得が得られるように初期設定することができる。しかしながら、システム204において、振幅掃引信号(AMPLITUDE SWEEP)により振幅調整を実施することで、チャネルの利得の初期設定に関わらず、入力信号間の実際の遅延時間を容易に判別することができる。AGCアンプおよび関連する帰還要素によって、チャネルCH1、CH2における利得の安定性が保証されると共に、図示された実施形態では、約40〜50dBのダイナミックレンジが得られる。図4Aに示すプログラム可能な遅延ライン224の調整の間に、遅延値は、目的値または予想値の近辺でほぼ連続的にまたは掃引方式で調整され、この際、掃引が必要な遅延時間の範囲は、通常、数ナノ秒(ns)程度でしかない。図4Bのプロット図250に示す例では、所定の化学種のエネルギーおよび質量、およびセンサ間距離222に対して、予想される遅延時間を約43nsと推定することができる。この例では、可変遅延器224は、約40〜46nsの範囲で掃引または調整され、識別可能値242(例えば、極小値)は、43nsよりも僅かに小さいところに現れている。ただし、このような目的値を特定した(例えば、局所的な)掃引で極小値が現れない場合には、より広い範囲の掃引を実施することもできる。
これに関連して、例示したプログラム可能な遅延ライン224は、約0〜76.7nsの範囲で調整可能なものであり、加速装置18(図1および図2A)の加速周波数13.56MHzに対応する周期は、約73.75nsである。この場合、パケットは、約73.75nsの時間をおいて隣接していることが予想される。例示したイオン注入システム10では、典型的な注入用化学種に対して、対象とする遅延時間は0〜約300nsであることが確認されており、この場合、エネルギー測定回路202では、任意の適切な方法の使用により、センサ210、220間のビーム経路に沿って同時に存在する複数のイオンバンチまたはイオンパケットが考慮される。その適切な方法には、米国特許第6,137,112号(特許文献2)に記載された方法が含まれるが、それに限定されるものではない。本発明の範囲内において、任意の適切な調整範囲を有する他の遅延器224を使用することもできる。
相関器240中の例示したバンドパスフィルタ(band pass filter:BPF)300は、約13.56MHzの周波数を中央値とする通過帯域を有するものであり、この周波数は、加速装置18で使用される励起周波数に相当する。これによって、測定感度が改善され、また、システム10におけるノイズが除去されて信号対ノイズ比(S/N)が改善されることが確認されている。ただし、本発明は、バンドパスフィルタ300を備えることなく実施することもできる。相関器240中の対数アンプ302は、広いダイナミックレンジでの増幅において有利に使用される。これに関連して、曲線252の極小値242と最大値との間のダイナミックレンジは、約80〜100dBの程度であることが確認されている。対数アンプ302は、このダイナミックレンジを適切に捉えるために有利なものであり、図4Bに示す識別可能値(例えば、極小値)242を容易に判別することができる。上述したように、本発明は、入力信号が時間的にほぼ一致したときの出力VOにおいて、任意の識別可能値を出力する相関器を含むものである。例示した実施形態では、相関器出力VOの識別可能値242は極小値であり、これは、掃引または他の収束値探索アルゴリズムにおいて非常に鋭い収束点を示す。したがって、識別可能値を極大値とした場合と比較して、対象点242の識別が非常に容易になると考えられる。
イオン注入システム10において、TOFシステムの較正は、プローブ210、220間の経路に沿って既知の平均運動エネルギーを有するイオンビームを与え、遅延時間測定システム204およびエネルギー測定回路202を動作させて極小値242を判別することによって、実施することができる。この際、振幅調整および遅延調整の交互反復は、実施しても実施しなくてもよい。対応する遅延値を使用して、速度の測定値およびエネルギーの測定値(keV単位)が決まる。次いで、既知の(例えば、実際の)エネルギーと測定されたエネルギーとを減算または比較して、測定されたエネルギーのオフセット値を決定することができ、このオフセット値は、その後、システムを動作させる際にシステムの較正に使用される。この方法は、一点較正の例であるが、多点較正を使用することもでき、その場合には、適切な曲線フィット法または他の方法を使用して、較正動作の間に測定された既知の較正用ビームのエネルギーに対応させて、エネルギーの測定値を適切に調整することができる。この方法は、例えば、TOFセンサ210、220中のコイルの中心が機械的に不明確であるためセンサ間距離222(図2A)が正確には不明である場合に、TOFシステムを較正してその誤差を取り除くために有利に使用される。本発明の別の態様には、変調された直流イオンビームを使用してイオン注入システムのエネルギー測定装置を較正するための較正方法が含まれており、その詳細は図8を参照して後述する。例示したシステム204は、経時的に十分に安定であることが確認されている。図4Cに示すプロット図230は、例示した遅延時間測定システム204における測定値の短期安定性を示すものである。プロット図230には、始動からの経過時間(時間)に対する遅延時間測定値のドリフトがピコ秒(ps)単位で示されており、システム204において、常温始動(cold power up)から数時間のうちに+/−10ps以内に安定することが分かる。
ここで、図1、図2A、および図5A〜図5Cを参照すると、本発明の別の態様では、TOFセンサ220、220からの入力信号と遅延時間測定回路204へのチャネルCH1、CH2の入力との間に、誤差訂正回路206が設けられている。誤差訂正動作の間に回路206は、遅延時間測定システム204に、ほぼ同一の振幅を有する、相対的な遅延時間がゼロの信号を供給する。この信号によって、例えば、位相調整器272および/または振幅調整器292(図4A)を使用して第1チャネルCH1と第2チャネルCH2とを調整または均等化することにより、遅延時間測定システム204の誤差を訂正することができる。図5Aに示すように、例示した誤差訂正回路206は、センサ210、220から第1、第2プリアンプPA1、PA2へ第1、第2入力信号をそれぞれ供給する入力端子331、332を含んでいる。第1負荷要素PAD1は、―6dBの負荷を有しており、プリアンプPA1の出力を受信して、遅延時間測定システム204の第1入力端子228に接続された第1スイッチング要素SW1に、第1入力信号を供給するものである。
第2プリアンプPA2は、入力端子を介して第2入力信号を受信し、第2プリアンプPA2の出力は、―3dBの負荷を有する第1信号分配器SS1を介して、同様に−3dBの負荷を有する第2負荷要素PAD2に接続されている。第2負荷要素PAD2は、第2スイッチング要素SSW2に接続され、第2スイッチング要素は、遅延時間測定システム204の第2入力端子229に接続されている。また、第1信号分配器SS1は、プリアンプPA2からの第2入力信号を、−3dBの負荷を有する第2信号分配器SS2に接続する。第2信号分配器SS2からの2つの出力信号は、スイッチング要素SW1、SW2の下側端子に接続されている。
エネルギー測定回路202の制御の下に、スイッチング要素SW1、SW2は、通常動作および誤差訂正動作にそれぞれ対応する第1状態および第2状態を有するスイッチング制御信号に従って動作する。このようにして、エネルギー測定回路は、スイッチング制御信号が第1状態にある場合には、第1チャネルの入力端子228に第1入力信号を選択して接続し、スイッチング制御信号が第2状態にある場合には、第1チャネルの入力端子228に第2入力信号を接続する。通常モードの動作(例えば、スイッチング要素SW1、SW2は図示された(第1の)状態に設定される)において、センサ210からの第1入力信号は、入力端子331、プリアンプPA1、第1負荷要素PAD1、および第1スイッチング要素SW1を介して第1チャネルの入力端子228に供給される。このモードでは、第1入力信号にかかる誤差訂正回路206からの負荷の合計は−6dBである。また、通常モードの動作において、センサ220からの第2入力信号は、入力端子332、プリアンプPA2、第1信号分配器SS1、第2負荷要素PAD2、および第2スイッチング要素SW2を介して第2入力端子229に供給され、同様に、負荷の合計は−6dBである。このように、通常モードの動作では、誤差訂正回路206により第1入力信号と第2入力信号に等しい負荷がかかっている。
誤差訂正モードでは、第1および第2スイッチング要素は、他方の状態設定に切り替えられる。この場合、センサ220からの第2入力信号は、第2プリアンプPA2、第1および第2信号分配器SS1、SS2、および第1スイッチング要素SW1を介して、遅延時間測定システム204の第1入力端子228に供給され、負荷の合計は−6dBである。同時に、第2入力信号は、第2プリアンプPA2、第1信号分配器SS1、第2負荷要素PAD2、および第2スイッチング要素SW2を介して、遅延時間測定システム204の第2入力端子229にも供給されており、その負荷の合計は、同様に−6dBである。このようにして、遅延時間測定システム204の第1チャネルCH1および第2チャネルCH2は、ほぼ等しい振幅を有しかつ相対的な遅延が無い同一の信号を受信することになる。
本発明者は、遅延時間の測定値には波形依存性があり、1つまたは両方の入力信号の振幅変動によって測定回路における遅延時間が変動することを確認した。これに関連して、AGCアンプ261、262(図4A)の内部遅延は、通常、様々な利得において十分一定である。これは、これらのAGCアンプ261、262には、前段に可変減衰器を有する高い固定利得のアンプが組み込まれているからであると考えられる。この場合、高利得アンプの動作点は変動しないため、増幅利得もかなり一定に維持される。しかしながら、このようなAGCアンプでも、ある程度の遅延対利得変動特性を有しており、他の構成要素におけるこの特性は、より大きなものである。イオン注入装置システムにおける遅延時間測定では、注入装置10におけるビーム電流は、例えば3〜4桁(60〜80dB)の幅で、大きく変動する。加えて、本発明者は、入力信号の波形変動が回路部品の遅延変動の要因となることを確認した。このような変動に対して遅延測定システム204を調整または安定化するため、例示した誤差訂正回路206では、遅延時間測定システム204の両方のチャネルに、同一波形、同一振幅、および(相対的な遅延時間が無い)同一位相を有する信号を供給することによって、誤差訂正動作において、波形および信号レベルと遅延との関連性を補償することができる。
図5Bは、本発明に従って誤差訂正が実施されたTOFシステムにおいて、基準の信号レベルに対する遅延時間測定値の誤差(ns)を、2つの異なる信号波形の場合342(サイン波(sine))および344(サイン二乗波(sine2))に示したプロット図340である。図から、例示した誤差訂正回路206を使用した誤差訂正により、信号レベルに対する誤差変動は、−10dBから−70dBに渡って+/−0.1nsよりも小さく、同様に、サイン波形とサイン二乗波形との間の信号波形に対する誤差変動は、同じダイナミックレンジに渡って、約0.1nsよりも小さいことが分かる。同じシステムを、このような誤差訂正を実施せずに動作させた場合、その誤差は0.4〜0.5ns程度になる可能性がある。このように、誤差訂正回路206は、本発明の様々な態様を使用した遅延時間測定の他の可能な改善と、有利に適合させることができる。
図5Cには、例示的な誤差訂正方法または動作350が示されており、この方法または動作は、例えば、TOFシステムの始動時に使用することができる。以下では、イオン注入に関連させて誤差訂正を説明するが、誤差訂正回路204は、任意の遅延時間測定システムに関連させて使用することもできる。ステップ352において誤差訂正が開始し、ステップ354において、スイッチング要素SW1、SW2は、例えばエネルギー測定回路202からのスイッチング制御信号によって、誤差訂正モードのための第2状態に設定される。ステップ356において、誤差訂正回路206の少なくとも1つの入力(例えば、331および/または332)に対して入力信号が与えられる。例えば、注入装置10を動作させてイオンビームを生成し、センサ220からの第2信号を、誤差訂正回路206を介して遅延時間測定システム204の両方のチャネルCH1、CH2に供給するものであってもよい。
ステップ358〜364において、遅延時間測定システム204は、(例えば、遅延時間測定システム204の様々な調整要素によって、)遅延時間の測定値がゼロになるように調整される。ステップ358において、(例えば、両方のチャネルに同一の振幅および波形を有する遅延ゼロの信号を与えた)誤差訂正モードの誤差訂正回路206を使用して、遅延時間の最初の測定値が取得される。ステップ358における遅延時間の測定は、反復処理を含んでいてもよい。その場合、可変遅延時間(例えば、図4Aに示すシステム204のプログラム可能な遅延ライン224)、およびチャネルの振幅(例えば、図4Aに示す振幅掃引信号(AMPLITUDE SWEEP))が調整されるものであり、この詳細は、図6および図7を参照して後述する。
チャネルが調整または均等化されたならば、遅延時間の測定値は理想的にはゼロになるものである。したがって、ステップ360において、遅延時間の測定値がゼロに近いかどうか、例えば、一実施形態では、約100psよりも小さいかどうかが判別される。そうでない場合(ステップ360における「いいえ」))、システム204は、ステップ362において、図4Aに示す位相調整器272および振幅調整器292の1つまたは両方を調整することにより、調整される。したがって、システム204の1つまたは両方のチャネルCH1またCH2に残留する、例えば、部品の公差、配線長の公差等を要因とする遅延は、ステップ362で均等化される。ステップ364において、ステップ358での測定と同様にして、遅延時間の次の測定値が取得され、ステップ360において、その遅延時間の測定値がゼロに近いかどうかが再度判別される。ステップ360、362、364における処理は、遅延時間の測定値がゼロに近付くまで、任意の回数だけ繰返すことができる。この時点(ステップ360における「はい」)で、誤差訂正回路206は、ステップ366において通常モードの状態に設定され、その後、誤差訂正動作350は、ステップ368で終了する。誤差訂正動作350に引き続いて、通常の遅延時間測定を開始してもよく、例えば、図6を参照して後述する例示的な遅延時間測定400におけるステップ402に続くものである。
スイッチング要素SW1、SW2の通常動作状態において、任意の波形および/または信号レベルの変動が考慮される。別の例では、調整を実施することなく、代りに、誤差訂正の間の遅延値を読み取り、測定回路202は、引き続く通常動作における測定値をその遅延値に従ってオフセットするものである。このように、誤差訂正回路206は、システム204が、本質的には遅延差がゼロであってかつ等しい振幅および波形を有する信号に対して、実際の測定の間に現状のままの信号レベルおよび波形を受信するように設計することもできる。このようなゼロ遅延条件は、受動的な0°信号分配器SS1、SS2を、例えば、ほぼ等しい長さの同軸線と共に使用することによって実施される。したがって、最初の誤差訂正測定の間に検出されるゼロ遅延からの偏差は、処理用電子回路の性質に帰することができる。
ここで、図6を参照すると、本発明の別の態様として、第1入力信号と第2入力信号との間の遅延時間を測定するための方法が示されており、この方法は、イオン注入システム、粒子加速器、試験装置、信号処理、音響測深、または、遅延時間の測定が望まれている他の用途における遅延時間の測定で使用することができる。図6のフローチャートには、本発明のこの態様に従った例示的な方法400が示されている。例示した方法400および本発明に従った他の方法は、以下では、一連の動作または事象として記載および図示されているが、本発明は、そのような動作および事象の記載または図示された順序によって限定されるものではない。例えば、ここに記載および/または図示された順序から離れて、本発明に従って、いくつかの動作を、異なる順序で実施しても、または、他の動作または事象と同時に実施しても、あるいは、それらの両方が含まれるものであってもよい。加えて、本発明に従った方法を実施するために、必ずしも図示されたすべてのステップが必要なわけではない。さらに、本発明に従った方法は、ここに記載および図示されたシステムおよび装置に関連させて実施することができるだけでなく、図示されていない他の装置に関連させて使用することもできる。
例示した方法400を含む方法は、本発明のこの態様に従って、入力信号の1つに可変遅延時間を与えるステップと、例えば減算によって入力信号を相関させて相関出力信号を生成するステップと、可変遅延時間を、相関出力信号が、入力信号が時間的にほぼ一致したときの識別可能値となるような遅延値に調整するステップと、相関出力信号が識別可能値となる遅延値に対応する遅延時間の測定値を決定するステップとを含んでいる。さらに、この方法は、遅延時間の測定値を決定する前に、入力信号の1つの可変振幅を、相関出力信号が極小値をとる値に調整するステップと、可変遅延時間を、相関出力信号が、入力信号が時間的に一致したときの識別可能値となるような遅延値に、再度調整するステップとを含んでいてもよい。
ステップ402から開始する方法400には、ステップ404において第1信号および第2信号を入力すること、ステップ406において第1信号および第2信号の1つに可変遅延時間を与えること(例えば、この例では第1入力信号が遅延される)が含まれる。次いで、ステップ408において、例えば、第1入力信号と第2入力信号とを減算することによって信号を相関させ、相関出力信号を生成する。ステップ408における相関は、本発明の範囲内において、減算以外の他の相関生成方法を含むものであってもよい。例えば、図4Aに示す例では、入力信号の1つが(例えば、第2チャネルCH2の反転アンプ288により)相関器240の前段で反転され、相関器240では加算が実行される。これに関連して、本発明において相関の取得を実施し、信号が時間的にほぼ一致することを示す識別可能値を有する相関出力信号を生成するために、ここに図示または記載されていない他の方法を含む任意の適切な相関生成方法を使用することができ、本発明および添付請求項の範囲には、そのような相関のすべてが含まれるものである。
次いで、ステップ410において、可変遅延時間は、相関出力信号が、第1、第2入力信号の一方と第1、第2入力信号の他方とが時間的にほぼ一致したときの識別可能値をとるような遅延値に調整される。ステップ410における調整は、上述したように、掃引方式で実施してもよく、または、入力信号が時間的に一致したときの遅延値を識別するための任意の適切な方法またはアルゴリズムに従って実施してもよい。例えば、例示した遅延時間測定システム204(図4A)では、遅延器224は、相関器出力VOが識別可能値(例えば、極小値)に到達するまで調整され、そこで、タップ276、296における信号が時間的にほぼ一致するものである。これに関連して、遅延値を判別するために使用される識別可能値には、極小値、極大値、または信号が時間的にほぼ一致することを示す他の値が含まれるが、これらに限定されるものではない。
上述したように、この遅延値を測定値として使用することもできるが、そうする代りに、振幅(例えば、利得)調整と遅延調整とを一回以上交互に反復して実施して、遅延時間の測定値を改善するものであってもよい。図示した方法400は、本発明のこの態様の例を示すものであり、ステップ410における遅延調整に続いて、ステップ412において、反復が望ましいかどうかの判別が実施される。反復が不要な場合(例えば、ステップ412における「いいえ」)、遅延時間の測定値は、ステップ420において、ステップ410で取得された現在の遅延値に従って決定され、その後、方法400はステップ422で終了する。反復を使用する場合(例えば、ステップ412における「はい」)、この方法400は、ステップ414に進み、ここで、ステップ410で判別された値に遅延値を維持したまま、入力信号の1つの可変振幅を、相関出力信号が最小値となる値に調整する。ステップ416では、可変遅延時間を、相関出力信号が最小値となる遅延値に再度調整する。ステップ414、416における反復は、任意の回数だけ繰返すことができ、ステップ418において、整数N回だけ反復を実施したかどうかが判別される。実施していない場合(例えば、ステップ418における「いいえ」)、ステップ414およびステップ416において、さらなる振幅調整および遅延調整がそれぞれ実施される。所望の回数の反復が実施された場合(例えば、ステップ418における「はい」)、方法400は、ステップ420に進み、最後の遅延値が遅延時間の測定値として使用され、ステップ422で終了する。
ここで、図7に示すように、本発明の別の態様に従って、上述した遅延時間の測定方法を、イオンビーム中の粒子の平均運動エネルギーを測定する方法に適用することができる。本発明のこの態様に従った例示的な方法500は、ステップ502において開始する。ステップ504において、イオンビームが測定されるイオン注入システムまたは他のシステム中に互いに離れて配置された第1イオンビームセンサおよび第2イオンビームセンサから、第1信号および第2信号が入力される。ステップ506において、第1入力信号および第2入力信号の1つ(例えば、図示した例では、第1信号)に、可変遅延時間が与えられる。ステップ508において、遅延された信号と他方の信号とを、減算または他の相関生成方法を使用して相関させ、相関出力信号を生成または出力する。ステップ510において、可変遅延時間が、相関出力信号が最小値(または、例えば、信号が時間的にほぼ一致するところにおける任意の他の識別可能値)となる遅延値に調整される。
ステップ512において、反復が望ましいかどうかが判別される。反復が不要な場合(例えば、ステップ512における「いいえ」)、ステップ520において、イオンビーム速度が、現在の遅延値とセンサ間の距離(例えば、図2Aに示す距離222)に応じて、例えば、式V=D/TDELAYに従って決定される。以下、ステップ522において、ビームエネルギーが、ビーム速度の測定値とイオンビーム中の粒子質量に従って、例えば、式E=0.5×M×V2を使用して算出され、その後、方法500は、ステップ524で終了する。あるいは、上述した方法400と同様に、ビームの速度およびエネルギーを算出する前に、遅延時間の測定値をさらに改善するために、ステップ512において、反復を使用すると判別されるものであってもよい。この場合(例えば、ステップ512における「はい」)、方法500は、ステップ514に進み、ここで、ステップ510で判別された値に遅延値を維持したまま、入力信号の1つ(例えば、図4Aに示す第2チャネルCH2)の可変振幅を、相関出力信号が最小値となる値に調整する。ステップ516では、可変遅延時間を、相関出力信号が最小値となる遅延値に再度調整する。次いで、ステップ518において、反復が整数N回だけ実施されたかどうかが判別される。実施されていない場合(例えば、ステップ518における「いいえ」)、ステップ514およびステップ516において、さらなる振幅調整および遅延調整がそれぞれ実施される。所望の回数の反復が実施された場合(例えば、ステップ518における「はい」)、ステップ520において、ビーム速度の算出に最後の遅延値が使用され、ステップ522においてビームエネルギーが算出され、その後、方法500は、ステップ522で終了する。
ここで、図1、図2A、および図8を参照すると、本発明のさらに別の態様が示されてており、例えばTOFシステムとして図示および上述したような、イオン注入システムにおけるエネルギー測定システムを較正するための方法を提供するものである。本発明のこの態様を、例示的な方法600として図8に示し、以下に説明する。ステップ602で開始する例示的な方法600には、ステップ604において、イオン注入システムのビーム経路に沿って、既知の直流ビームエネルギーで、直流イオンビームを供給することが含まれる。一例として、図1および図2Aに示す注入システム10において、イオン源12の引出電極に既知の引出用直流電圧を印加してもよく、これによって、公知の方法を使用して直流ビームのエネルギーを決定することができる。次いで、ステップ606において、例えば、線形加速器18中の高周波共振器に低電圧を印加するか、または、任意の適切な交流変調の方法によって、直流ビームを小さな交流成分によって変調する。
ステップ608では、飛行時間型エネルギー測定システムにより、例えば、図7を参照して上述した方法を使用して、ビームエネルギーが測定される。ステップ610において、ビームエネルギーの測定値と既知の直流ビームエネルギーに従って飛行時間型エネルギー測定システムが較正され、その後、方法600は、ステップ612で終了する。この較正動作には、例えば、ステップ610において、ビームエネルギーの測定値と既知の直流ビームエネルギーに従って、エネルギーのオフセット値を算出することが含まれる。ほぼ直流のビームを使用することの利点は、ビーム中のイオンのエネルギーを容易にイオン源引出電圧と関連させることができ、この直流エネルギー(keV単位)は、1%以内の精度で確定できることである。しかし、純粋な直流イオンビームでは、例えば、図1および図2Aに示すプローブ210、220のような、誘導的または容量的なセンサプローブに信号が発生しないため、本発明は、例えば、低電圧で動作する加速器共振器を使用して、適度な交流励起を実施するものである。これは、イオンビームの平均エネルギーをほぼ変動させることなく、プローブセンサによるビームの測定が容易に実施できるような、低い交流レベルで実施することができる。このような交流変調レベルにおいて、TOFシステムでの測定を実施し、エネルギーの測定値と既知の直流エネルギーの実際の値とを比較して、較正用オフセット値を決定することができる。このようにして、本発明は、エンドステーションのプローブ210、220の、イオン源引出からの直流の読取り値に従った較正を提供するものである。
図2Aに示すプローブ間の機械的な距離222を、「実効的な」電気的距離に関連させることは困難であるため、既知の標準に対して初期的な較正を実施することが好ましい。これは、部分的には、プローブセンサ210および/または220のハウジング中のコイルの機械的位置を、注封後に決定することが困難であることによる。加えて、プロープのコイル/シールド組立体中の磁界または電界(field)の非対称性の結果として、プローブの電気的中心と機械的中心とが異なっている可能性がある。初期的なTOF較正は、装置上の既知の正確なエネルギーの読取り値に対して最適なフィット曲線を生成するように値を選択することで、「正しい」プローブ距離222を決定するように動作する。これらの較正点は、例えば、図8に示す直流ビーム変調法を使用して、および/または核反応測定から、または、狭いスリットを組み込んでFEMの精度を改善することによって、取得することができる。
個別のTOF測定の前に追加的な較正ステップを実施して、測定システム自体によってもたらされる不確定性を除去することができる。これらには、機械的構成要素(例えば、幾何学的配置)の変動、および電子装置20の誤差が含まれる。1つの方法は、プローブ210、220上に個別に較正ポートを設け、ビーム電流をシミュレートする較正信号を入射できるようにすることである。較正モードにおいて、これらの2つのポートは遅延差ゼロの信号によって駆動され、そのような信号は、主発信器からの13.56MHzの信号を分離し、整合された(例えば、長さの等しい)供給ラインを使用して取得されるか、または、上述した誤差訂正回路206を使用して取得される。したがって、遅延時間のゼロからの偏差は、システム由来の誤差に帰することができ、実際の測定を訂正するために使用することができる。この方法は、意図した通りに機能することが確認されているが、プローブ組立体が複雑になると共に、較正ステップの間は「ビームオフ(beam-off)」状態にする必要がある。加えて、この方法では、波形および信号レベルに依存する遅延誤差の訂正が考慮されていない。信号レベルに依存する遅延誤差に対処するために、制御電子装置20のソフトウェアにルックアップテーブルを実装することもできる。(例えば、対数アンプの出力として取得可能な)信号レベルの関数として遅延誤差を保存することによって、この誤差の大部分を除去することが可能になる。あるいは、上述した誤差訂正回路および方法(例えば、図5A参照)を使用して、この種の作用を考慮するものであってもよい。
以上、本発明を1つまたは複数の実施形態に関連させて図示および説明してきたが、本明細書および添付された図面の理解に基づいて、当業者が同等な変更および修正に想至し得ることは理解されるであろう。特に、上述した構成要素(組立体、装置、回路、システム等)によって実行される種々の機能に関して、そのような構成要素を説明するために使用された用語(「手段」に対する参照を含む)は、特に明示されない限り、ここに示された本発明の例示的な実施形態において特定の機能を実行する上述した構成要素のその機能を実行する(すなわち、機能的に同等である)任意の構成要素に、たとえ開示された構成に構造的に同等でなくても、相当するものである。これに関連して、本発明は、本発明の様々な方法のステップを実施するためのコンピュータで実行可能な指令を有する、コンピュータで読取り可能な媒体を含むものである。加えて、本発明の特定の特徴がいくつかの実施形態のうちの1つのみに関連して開示された場合であっても、所定のまたは特定の用途のために望ましくかつ有利であるように、そのような特徴を他の実施形態の1つまたは複数の特徴と組み合わせることもできる。さらに、用語「含む(include)」、「含んでいる(including)」、「有する(have)」、「有している(having)」、及びそれらの変化形が発明の詳細な説明または請求項で使用されている範囲に関して、これらの用語は、用語「含んでいる(comprising)」と同様な意味で包含的なものであることが意図されている。
図1は、本発明の1つまたは複数の態様に従った遅延時間測定システムを備えた飛行時間型エネルギー測定システムを有する、例示的なイオンビーム注入装置またはイオン注入システムを模式的に示す上面図である。 図2Aは、図1に示す例示的なイオン注入システムをの詳細を模式的に示す透視図である。 図1および図2Aに示す例示的なイオン注入システムにおいて、様々な化学種に対して、イオンエネルギーに対する遅延時間を示す例示的な曲線を描いたプロット図である。 図3は、本発明に従って、図1および図2Aに示す注入システムにおける第1入力信号と第2入力信号との間の遅延時間を測定するための、例示的な遅延時間測定システムを示す簡略化された回路図である。 図4Aは、図1および図2Aに示す注入システムにおける、例示的な遅延時間測定システムをさらに詳細を示す詳細回路図である。 図4Bは、図4Aに示す例示的な遅延時間測定システムにおける、例示的な相関器出力曲線を描いたプロット図である。 図4Cは、図4Aに示す例示的な遅延時間測定システムにおける、例示的な遅延測定の安定性曲線を示すプロット図である。 図5Aは、本発明の別の態様に従って、図4Aに示す遅延時間測定システムの精度を改善するための、例示的な誤差訂正回路を示す回路図である。 図5Bは、例示的な遅延時間測定システムにおいて、図5Aにおける誤差訂正スキームを使用して、異なる複数の波形に対して、信号レベルに対する遅延時間測定の誤差を示す曲線を描いたプロット図である。 図5Cは、図5Aに示す誤差訂正回路を図4Aに示す遅延時間測定システムと共に使用して誤差訂正するための例示的な方法を示すフローチャートである。 図6は、本発明の別の態様に従って、第1入力信号と第2入力信号との間の遅延時間を測定するための例示的な方法を示すフローチャートである。 図7は、本発明のさらに別の態様に従って、イオン注入システムにおいてイオンビームエネルギーを測定するための例示的な方法を示すフローチャートである。 図8は、本発明の別の態様に従って、イオン注入装置のTOF型エネルギー測定を較正するための例示的な方法を示すフローチャートである。

Claims (32)

  1. 第1入力信号と第2入力信号との間の遅延時間を測定するための遅延時間測定システムであって、
    前記第1入力信号を受信する第1チャネルと、
    前記第2入力信号を受信する第2チャネルと、
    前記第1チャネルおよび前記第2チャネルの1つに関連し、前記第1チャネルおよび前記第2チャネルの1つに関連する入力信号に対して可変遅延を選択的に与えるように動作する遅延器と、
    前記第1チャネルおよび前記第2チャネルからの出力をそれぞれ受信する第1相関器入力および第2相関器入力を有し、かつ、前記可変遅延の遅延値が前記第1入力信号と前記第2入力信号との間の遅延時間を表すときに識別可能な相関器出力値となる相関器出力信号を出力する相関器出力を有する相関器と、
    を含むことを特徴とする遅延時間測定システム。
  2. 前記相関器は、前記第1チャネルからの出力と前記第2チャネルからの出力とが時間的にほぼ一致したときに最小の出力値を出力することを特徴とする請求項1に記載の遅延時間測定システム。
  3. 前記第1チャネルおよび前記第2チャネルの1つに関連する利得を選択的に調整するように動作する振幅調整器をさらに含むことを特徴とする請求項1に記載の遅延時間測定システム。
  4. 前記相関器出力信号を受信する測定回路をさらに含み、該測定回路は、前記遅延器および前記振幅調整器を選択的に制御するために適していることを特徴とする請求項3に記載の遅延時間測定システム。
  5. 前記測定回路は、前記相関器出力信号を監視しながら前記遅延器を制御して前記可変遅延を選択的に調整し、前記第1チャネルからの出力と前記第2チャネルからの出力とが時間的にほぼ一致したときの前記識別可能な相関器出力値に対応する第1遅延値を決定することを特徴とする請求項4に記載の遅延時間測定システム。
  6. 前記相関器は、前記第1チャネルからの出力と前記第2チャネルからの出力とが時間的にほぼ一致したときに最小の出力値を出力し、前記測定回路は、前記最小の出力値に対応する前記第1遅延値を決定することを特徴とする請求項5に記載の遅延時間測定システム。
  7. 前記測定回路は、前記遅延器を制御して前記可変遅延を前記第1遅延値に調整し、前記相関器を監視しながら前記振幅調整器を制御して利得を選択的に調整して、前記識別可能な相関器出力値に対応する第1利得値を決定することを特徴とする請求項5に記載の遅延時間測定システム。
  8. 前記測定回路は、前記可変遅延の調整と前記利得の調整とを交互に反復し、前記第1チャネルからの出力と前記第2チャネルからの出力とが時間的にほぼ一致したときの前記識別可能な相関器出力値に対応する遅延値を決定することを特徴とする請求項7に記載の遅延時間測定システム。
  9. 前記相関器は、前記第1チャネルからの出力と前記第2チャネルからの出力とが時間的にほぼ一致したときに最小の出力値を出力し、前記測定回路は、前記最小の出力値に対応する前記第1遅延値を決定することを特徴とする請求項8に記載の遅延時間測定システム。
  10. 前記遅延器は、前記第1チャネルに関連し、前記第1チャネルの前記第1入力信号に対して前記可変遅延を選択的に与えるように動作し、前記振幅調整器は、前記第2チャネルに関連する利得を選択的に調整するように動作することを特徴とする請求項3に記載の遅延時間測定システム。
  11. 前記相関器出力信号を受信する測定回路をさらに含み、該測定回路は、前記相関器出力信号を監視しながら前記遅延器を制御して前記可変遅延を選択的に調整して、前記第1チャネルからの出力と前記第2チャネルからの出力とが時間的にほぼ一致したときの前記識別可能な相関器出力値に対応する遅延値を決定するために適していることを特徴とする請求項1に記載の遅延時間測定システム。
  12. 前記第1入力信号と前記第1チャネルとの間かつ前記第2入力信号と前記第2チャネルとの間に配置された誤差訂正回路をさらに含み、該誤差訂正回路は、第1状態および第2状態を有するスイッチング制御信号に従って動作する第1スイッチング要素を含んでおり、該第1スイッチング要素は、前記スイッチング制御信号が前記第1状態のときに前記第1チャネルを前記第1入力信号に接続し、前記スイッチング制御信号が前記第2状態のときに前記第1チャネルを前記第2入力信号に接続することを特徴とする請求項1に記載の遅延時間測定システム。
  13. 前記誤差訂正回路は、前記スイッチング制御信号に従って動作する第2スイッチング要素、第1負荷値をそれぞれ有する第1信号分配器および第2信号分配器、および、第1負荷要素および第2負荷要素をさらに含み、
    前記第1負荷要素は、前記第1負荷値の約2倍の第2負荷値を有して前記第1入力信号と前記第1スイッチング要素との間に接続され、前記第2負荷要素は、前記第1負荷値を有し、前記第1信号分配器および前記第2負荷要素は、前記第2入力信号と前記第2スイッチング要素との間に接続され、前記第2信号分配器は、前記第1信号分配器と前記第1スイッチング要素との間に接続されており、
    前記第1スイッチング要素は、前記スイッチング制御信号が前記第1状態のときに前記第1負荷要素を介して前記第1チャネルを前記第1入力信号に選択的に接続し、前記スイッチング制御信号が前記第2状態のときに前記第1、第2信号分配器を介して前記第1チャネルを前記第2入力信号に接続するために適しており、
    前記第2スイッチング要素は、前記スイッチング制御信号が前記第1状態のときに前記第1信号分配器および前記第2負荷要素を介して前記第2チャネルを前記第2入力信号に選択的に接続し、前記スイッチング制御信号が前記第2状態のときに前記第1、第2信号分配器を介して前記第2チャネルを前記第2入力信号に接続するために適しており、
    前記スイッチング制御信号が前記第2状態のときに前記第1チャネルおよび前記第2チャネルに供給される前記第2入力信号は、ほぼ等しい振幅を有しかつ相対的な遅延時間が無いことを特徴とする請求項12に記載の遅延時間測定システム。
  14. イオンビーム注入装置のイオンビーム中の選択されたイオンパルスに含まれるイオンの平均運動エネルギーを測定するための飛行時間型イオンビームエネルギー測定システムであって、
    イオンビーム経路に沿ってセンサ間距離だけ互いに離れて配置された第1センサおよび第2センサを含み、前記第2センサは前記第1センサの下流側に配置され、前記第1センサは、前記イオンビームのイオンパルスが前記第1センサを通過するときに第1センサ信号を発生し、前記第2センサは、前記イオンパルスが前記第2センサを通過するときに第2センサ信号を発生するものであり、
    さらに、前記第1センサ信号と前記第2センサ信号との間の遅延時間を測定するための遅延時間測定システムを含み、該遅延時間測定システムは、
    前記第1センサ信号を受信する第1チャネルと、
    前記第2センサ信号を受信する第2チャネルと、
    前記第1チャネルおよび前記第2チャネルの1つに関連し、前記第1チャネルおよび前記第2チャネルの1つに関連するセンサ信号に対して可変遅延を選択的に与えるように動作する遅延器と、
    前記第1チャネルおよび前記第2チャネルからの出力をそれぞれ受信する第1相関器入力および第2相関器入力を有し、かつ、前記可変遅延の遅延値が前記第1入力信号と前記第2入力信号との間の遅延時間を表すときに識別可能な相関器出力値となる相関器出力信号を出力する相関器出力を有する相関器と、
    前記相関器出力信号を受信し、前記相関器を監視しながら前記遅延器を制御して前記可変遅延を選択的に調整し、前記可変遅延の前記遅延値が前記第1入力信号と前記第2入力信号との間の遅延時間を表すときの前記識別可能な相関器出力値に対応する第1遅延値を決定し、前記第1遅延値、前記イオンビーム中の粒子の質量、および前記センサ間距離に従ってイオンビームエネルギーの測定値を決定するために適した測定回路と、を含んでいることを特徴とする飛行時間型イオンビームエネルギー測定システム。
  15. 前記相関器は、前記第1チャネルからの出力と前記第2チャネルからの出力とが時間的にほぼ一致したときに最小の出力値を出力することを特徴とする請求項14に記載の飛行時間型イオンビームエネルギー測定システム。
  16. 前記遅延時間測定システムは、前記第1チャネルおよび前記第2チャネルの1つに関連する利得を選択的に調整するように動作する振幅調整器をさらに含んでおり、
    前記測定回路は、
    前記遅延器を制御して前記可変遅延を前記第1遅延値に調整し、
    前記相関器出力信号を監視しながら前記振幅調整器を制御して前記利得を選択的に調整し、
    前記識別可能な相関器出力値に対応する第1利得値を決定し、
    前記振幅調整器を制御して前記利得を前記第1利得値に調整し、
    前記相関器出力信号を監視しながら前記遅延器を制御して前記可変遅延を再度選択的に調整し、
    前記第1チャネルからの出力と前記第2チャネルからの出力とが時間的にほぼ一致したときの前記識別可能な相関器出力値に対応する第2遅延値を決定し、
    前記第2遅延値、前記イオンビーム中の粒子の質量、および前記センサ間距離に従ってイオンビームエネルギーの測定値を決定すること、を特徴とする請求項14に記載の飛行時間型イオンビームエネルギー測定システム。
  17. 経路に沿ってイオンビームを生成するために適したイオン源と、
    前記イオン源の下流側に配置され、前記イオンビームが前記経路に沿って輸送される通路を形成するビームライン組立体と、
    前記経路に沿って前記ビームライン組立体の下流側に配置され、前記イオンビームを使用した注入のために前記経路に沿ってウエハを支持するために適したエンドステーションとを含み、
    前記ビームライン組立体は、前記イオン源から前記経路に沿って前記イオンビームを受け取って所望の電荷対質量比を有するイオンを前記経路に沿って前記エンドステーションに導く質量分析装置を含んでいる、イオン注入システムであって、
    前記イオンビーム中の選択されたイオンパルスに含まれるイオンの平均運動エネルギーを測定するための飛行時間型イオンビームエネルギー測定システムを含み、
    該飛行時間型イオンビームエネルギー測定システムは、
    前記経路に沿ってセンサ間距離だけ互いに離れて配置された第1センサおよび第2センサを含み、前記第2センサは前記第1センサの下流側に配置され、前記第1センサは、前記イオンビームのイオンパルスが前記第1センサを通過するときに第1センサ信号を発生し、前記第2センサは、前記イオンパルスが前記第2センサを通過するときに第2センサ信号を発生するものであり、
    さらに、前記第1センサ信号と前記第2センサ信号との間の遅延時間を測定するための遅延時間測定システムを含み、該遅延時間測定システムは、
    前記第1センサ信号を受信する第1チャネルと、
    前記第2センサ信号を受信する第2チャネルと、
    前記第1チャネルおよび前記第2チャネルの1つに関連し、前記第1チャネルおよび前記第2チャネルの1つに関連するセンサ信号に対して可変遅延を選択的に与えるように動作する遅延器と、
    前記第1チャネルおよび前記第2チャネルからの出力をそれぞれ受信する第1相関器入力および第2相関器入力を有し、かつ、前記可変遅延の遅延値が前記第1入力信号と前記第2入力信号との間の遅延時間を表すときに識別可能な相関器出力値となる相関器出力信号を出力する相関器出力を有する相関器と、
    前記相関器出力信号を受信し、前記相関器を監視しながら前記遅延器を制御して前記可変遅延を選択的に調整し、前記可変遅延の前記遅延値が前記第1入力信号と前記第2入力信号との間の遅延時間を表すときの前記識別可能な相関器出力値に対応する第1遅延値を決定し、前記第1遅延値、前記イオンビーム中の粒子の質量、および前記センサ間距離に従ってイオンビームエネルギーの測定値を決定するために適した測定回路と、を含んでいることを特徴とするイオン注入システム。
  18. 前記相関器は、前記第1チャネルからの出力と前記第2チャネルからの出力とが時間的にほぼ一致したときに最小の出力値を出力することを特徴とする請求項17に記載のイオン注入システム。
  19. 前記遅延時間測定システムは、前記第1チャネルおよび前記第2チャネルの1つに関連する利得を選択的に調整するように動作する振幅調整器をさらに含んでおり、
    前記測定回路は、
    前記遅延器を制御して前記可変遅延を前記第1遅延値に調整し、
    前記相関器出力信号を監視しながら前記振幅調整器を制御して前記利得を選択的に調整し、
    前記識別可能な相関器出力値に対応する第1利得値を決定し、
    前記振幅調整器を制御して前記利得を前記第1利得値に調整し、
    前記相関器出力信号を監視しながら前記遅延器を制御して前記可変遅延を再度選択的に調整し、
    前記第1チャネルからの出力と前記第2チャネルからの出力とが時間的にほぼ一致したときの前記識別可能な相関器出力値に対応する第2遅延値を決定し、
    前記第2遅延値、前記イオンビーム中の粒子の質量、および前記センサ間距離に従ってイオンビームエネルギーの測定値を決定すること、を特徴とする請求項17に記載のイオン注入システム。
  20. 第1入力信号と第2入力信号との間の遅延時間を測定するための方法であって、
    前記第1入力信号および前記第2入力信号の1つに可変遅延時間を与えるステップと、
    前記第1入力信号および前記第2入力信号の遅延された一方と、前記第1入力信号および前記第2入力信号の他方とを相関させて、相関出力信号を生成するステップと、
    前記可変遅延時間を、前記相関出力信号が、前記可変遅延時間の遅延値が前記第1入力信号および前記第2入力信号の遅延された一方と前記第1入力信号および前記第2入力信号の他方との間の遅延時間を表すときの識別可能な値となる遅延値に調整するステップと、
    前記相関出力信号が前記識別可能な値となる前記遅延値に従って、遅延時間の測定値を決定するステップと、
    を含むことを特徴とする方法。
  21. 前記第1入力信号および前記第2入力信号の遅延された一方と、前記第1入力信号および前記第2入力信号の他方とを相関させるステップは、前記第1入力信号および前記第2入力信号の遅延された一方と、前記第1入力信号および前記第2入力信号の他方とを減算して前記相関出力信号を生成することを含み、前記相関出力信号は、前記第1入力信号および前記第2入力信号の遅延された一方と前記第1入力信号および前記第2入力信号の他方とが時間的にほぼ一致するときに最小値となるものであり、前記可変遅延時間を調整するステップは、前記可変遅延時間を、前記相関出力信号が最小値となる遅延値に調整することを含んでいる請求項20に記載の方法。
  22. 前記入力信号の1つの可変振幅を、前記相関出力信号が最小値となる値に調整するステップと、前記遅延時間の測定値を決定する前に、前記可変遅延時間を、前記相関出力信号が最小値となる遅延値に再度調整するステップと、をさらに含むことを特徴とする請求項21に記載の方法。
  23. 前記入力信号の1つの可変振幅を、前記相関出力信号が前記識別可能な値となる値に調整するステップと、前記遅延時間の測定値を決定する前に、前記可変遅延時間を、前記相関出力信号が前記識別可能な値となる遅延値に再度調整するステップと、をさらに含むことを特徴とする請求項20に記載の方法。
  24. イオンビーム中の粒子の平均運動エネルギーを測定する方法であって、
    イオン注入システムに離れて配置された第1イオンビームセンサおよび第2イオンビームセンサからの第1入力信号および第2入力信号を入力するステップと、
    前記第1入力信号および前記第2入力信号の1つに可変遅延時間を与えるステップと、
    前記第1入力信号および前記第2入力信号の遅延された一方と、前記第1入力信号および前記第2入力信号の他方とを相関させて、相関出力信号を生成するステップと、
    前記可変遅延時間を、前記相関出力信号が、前記可変遅延時間の遅延値が前記第1入力信号および前記第2入力信号の遅延された一方と前記第1入力信号および前記第2入力信号の他方との間の遅延時間を表すときの識別可能な値となる遅延値に調整するステップと、
    前記相関出力信号が前記識別可能な値となる前記遅延値および前記センサ間の距離に従って、ビーム速度の測定値を決定するステップと、
    前記ビーム速度の測定値および前記イオンビーム中の粒子の質量に従って、前記イオンビーム中の粒子の平均運動エネルギーを算出するステップと、
    を含むことを特徴とする方法。
  25. 前記第1入力信号および前記第2入力信号の遅延された一方と、前記第1入力信号および前記第2入力信号の他方とを相関させるステップは、前記第1入力信号および前記第2入力信号の遅延された一方と、前記第1入力信号および前記第2入力信号の他方とを減算して前記相関出力信号を生成することを含み、前記相関出力信号は、前記第1入力信号および前記第2入力信号の遅延された一方と前記第1入力信号および前記第2入力信号の他方とが時間的にほぼ一致するときに最小値となるものであり、前記可変遅延時間を調整するステップは、前記可変遅延時間を、前記相関出力信号が最小値となる遅延値に調整することを含んでいる請求項24に記載の方法。
  26. 前記入力信号の1つの可変振幅を、前記相関出力信号が最小値となる値に調整するステップと、前記ビーム速度の測定値を決定する前に、前記可変遅延時間を、前記相関出力信号が最小値となる遅延値に再度調整するステップと、をさらに含むことを特徴とする請求項25に記載の方法。
  27. 前記入力信号の1つの可変振幅を、前記相関出力信号が前記識別可能な値となる値に調整するステップと、前記ビーム速度の測定値を決定する前に、前記可変遅延時間を、前記相関出力信号が前記識別可能な値となる遅延値に再度調整するステップと、をさらに含むことを特徴とする請求項24に記載の方法。
  28. イオン注入システムの飛行時間型エネルギー測定システムを較正するための方法であって、
    直流イオンビームを、既知の直流ビームエネルギーで、前記イオン注入システムのビーム経路に沿って供給するステップと、
    前記直流イオンビームを小さな交流成分で変調するステップと、
    前記飛行時間型エネルギー測定システムを使用してビームエネルギーを測定するステップと、
    前記ビームエネルギーの測定値および前記既知の直流ビームエネルギーに従って、前記飛行時間型エネルギー測定システムを較正するステップと、
    を含むことを特徴とする方法。
  29. 前記直流イオンビームを小さな交流成分で変調するステップは、前記イオン注入システムの高周波加速装置に、前記イオンビームの平均エネルギーをほぼ変動させることなく前記飛行時間型エネルギー測定システムのプローブにパルス信号を発生させるための低電圧を印加することを含んでいる請求項28に記載の方法。
  30. 前記ビームエネルギーの測定値および前記既知の直流ビームエネルギーに従って、前記飛行時間型エネルギー測定システムを較正するステップは、前記ビームエネルギーの測定値および前記既知の直流ビームエネルギーに従って、エネルギーのオフセット値を算出することを含んでいる請求項28に記載の方法。
  31. 第1パルスストリームと第2パルスストリームとの間の遅延時間を測定するためのシステムであって、
    前記第1入力パルスストリームを受信する第1チャネルと、
    前記第2入力パルスストリームを受信する第2チャネルと、
    前記第1チャネルおよび前記第2チャネルの1つに関連し、前記第1チャネルおよび前記第2チャネルの1つに関連するパルスストリームに対して可変遅延を選択的に与えるために適したプログラム可能な遅延ラインと、
    前記第1チャネルおよび前記第2チャネルからの前記第1パルスストリームおよび前記第2パルスストリームをそれぞれ受信し、前記第1チャネルおよび前記第2チャネルからの前記パルスストリームが時間的にほぼ一致するときに識別可能な出力値を出力するために適した相関器と、
    を含むことを特徴とするシステム。
  32. 前記相関器は、前記第1チャネルおよび前記第2チャネルからの前記パルスストリームが時間的にほぼ一致するときに最小の出力値を出力するために適していることを特徴とする請求項31に記載のシステム。
JP2004538470A 2002-09-23 2003-09-23 2信号間の遅延時間を高精度に測定するための方法および装置 Pending JP2006500568A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US41275102P 2002-09-23 2002-09-23
US10/368,825 US6831280B2 (en) 2002-09-23 2003-02-19 Methods and apparatus for precise measurement of time delay between two signals
PCT/US2003/030099 WO2004027448A2 (en) 2002-09-23 2003-09-23 Methods and apparatus for precise measurement of time delay between two signals

Publications (1)

Publication Number Publication Date
JP2006500568A true JP2006500568A (ja) 2006-01-05

Family

ID=31997098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004538470A Pending JP2006500568A (ja) 2002-09-23 2003-09-23 2信号間の遅延時間を高精度に測定するための方法および装置

Country Status (4)

Country Link
US (1) US6831280B2 (ja)
EP (1) EP1547122A2 (ja)
JP (1) JP2006500568A (ja)
WO (1) WO2004027448A2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529765A (ja) * 2006-03-10 2009-08-20 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド プラズマプロセスの監視制御技術
JP2014217027A (ja) * 2013-04-30 2014-11-17 日本無線株式会社 補正装置、及び補正方法
JP2014229599A (ja) * 2013-05-27 2014-12-08 株式会社Sen 高エネルギーイオン注入装置
CN108505009A (zh) * 2017-02-27 2018-09-07 住友重机械离子科技株式会社 离子注入装置
JP2022547916A (ja) * 2019-09-10 2022-11-16 アプライド マテリアルズ インコーポレイテッド パルスイオンビームにおけるイオンエネルギー測定のための装置および技法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078679B2 (en) * 2002-11-27 2006-07-18 Wisconsin Alumni Research Foundation Inductive detection for mass spectrometry
US7009193B2 (en) * 2003-10-31 2006-03-07 Infineon Technologies Richmond, Lp Utilization of an ion gauge in the process chamber of a semiconductor ion implanter
US7102146B2 (en) * 2004-06-03 2006-09-05 Axcelis Technologies, Inc. Dose cup located near bend in final energy filter of serial implanter for closed loop dose control
JP5100963B2 (ja) * 2004-11-30 2012-12-19 株式会社Sen ビーム照射装置
GB2428149B (en) * 2005-07-07 2009-10-28 Agilent Technologies Inc Multimode optical fibre communication system
US7839792B2 (en) * 2005-08-30 2010-11-23 Tektronix, Inc. Time-correlated, simultaneous measurement and analysis of network signals from multiple communication networks
US7518108B2 (en) * 2005-11-10 2009-04-14 Wisconsin Alumni Research Foundation Electrospray ionization ion source with tunable charge reduction
US7402821B2 (en) * 2006-01-18 2008-07-22 Axcelis Technologies, Inc. Application of digital frequency and phase synthesis for control of electrode voltage phase in a high-energy ion implantation machine, and a means for accurate calibration of electrode voltage phase
KR100725372B1 (ko) * 2006-02-03 2007-06-07 삼성전자주식회사 복수 매의 포토마스크 상에 전자빔을 조사할 수 있는전자빔 리소그래피 장치 및 그것을 이용한 포토마스크제조방법
US20080173807A1 (en) * 2006-04-11 2008-07-24 Oh-Kyu Yoon Fragmentation modulation mass spectrometry
US7463983B1 (en) 2007-05-25 2008-12-09 Thermo Finnigan Llc TOF with clock phase to time bin distribution
GB2486484B (en) * 2010-12-17 2013-02-20 Thermo Fisher Scient Bremen Ion detection system and method
US8854048B2 (en) * 2011-03-10 2014-10-07 Mitsubishi Electric Corporation Sensitivity correction method for dose monitoring device and particle beam therapy system
JP5920564B2 (ja) * 2011-12-05 2016-05-18 セイコーエプソン株式会社 タイマー装置及び電子機器
US9055523B2 (en) * 2012-12-02 2015-06-09 Intel Corporation Apparatus, system and method of calibrating a radio delay of a wireless device
JP6662549B2 (ja) * 2016-11-21 2020-03-11 住友重機械イオンテクノロジー株式会社 イオン注入方法およびイオン注入装置
EP3499732B1 (en) * 2017-12-18 2020-03-11 Rohde & Schwarz GmbH & Co. KG Test arrangement, device and method for measuring a directed signal
US10832913B2 (en) * 2018-02-14 2020-11-10 Taiwan Semiconductor Manufacturing Company Ltd. Method and apparatus for forming semiconductor structure
CN109613523B (zh) * 2018-10-23 2023-04-07 南通赛洋电子有限公司 一种测探仪信号预处理电路
JP6613008B1 (ja) * 2019-05-31 2019-11-27 日本たばこ産業株式会社 エアロゾル吸引器用の制御装置及びエアロゾル吸引器
JP6678936B1 (ja) 2019-05-31 2020-04-15 日本たばこ産業株式会社 エアロゾル吸引器用の制御装置及びエアロゾル吸引器
US11181617B2 (en) * 2019-06-10 2021-11-23 GM Global Technology Operations LLC Ultra short range radar sensor systems and methods
WO2021159005A1 (en) * 2020-02-07 2021-08-12 Juniper Networks, Inc. Method and system for estimating communication latency
CN111537995B (zh) * 2020-05-19 2022-08-12 北京爱笔科技有限公司 一种时延获取方法、装置及电子设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1389894A (en) * 1972-10-28 1975-04-09 Ferranti Ltd Apparatus for the measurement of short time intervals
CA1028039A (en) 1974-12-19 1978-03-14 John N. Barry Range or time-delay determining subsystem for use in certain radar-like systems
DE2850246A1 (de) * 1978-11-20 1980-05-29 Interatom Verfahren zur laufzeitmessung mittels signalverzoegerung
US4604717A (en) * 1983-02-18 1986-08-05 Rca Corporation Method and apparatus for measuring the time delay between signals
US4667111C1 (en) 1985-05-17 2001-04-10 Eaton Corp Cleveland Accelerator for ion implantation
US4818100A (en) 1987-09-30 1989-04-04 Eaton Corporation Laser doppler and time of flight range measurement
DE4322101C2 (de) 1993-07-02 1995-06-14 Bergmann Thorald Ionenquelle für Flugzeit-Massenspektrometer
US5396065A (en) 1993-12-21 1995-03-07 Hewlett-Packard Company Sequencing ion packets for ion time-of-flight mass spectrometry
US5388461A (en) 1994-01-18 1995-02-14 General Electric Company Beamforming time delay correction for a multi-element array ultrasonic scanner using beamsum-channel correlation
US5591969A (en) 1995-04-12 1997-01-07 The United States Of America As Represented By The Secretary Of The Navy Inductive detector for time-of-flight mass spectrometers
US5614711A (en) 1995-05-04 1997-03-25 Indiana University Foundation Time-of-flight mass spectrometer
US5691537A (en) 1996-01-22 1997-11-25 Chen; John Method and apparatus for ion beam transport
US6137112A (en) * 1998-09-10 2000-10-24 Eaton Corporation Time of flight energy measurement apparatus for an ion beam implanter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529765A (ja) * 2006-03-10 2009-08-20 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド プラズマプロセスの監視制御技術
JP2014217027A (ja) * 2013-04-30 2014-11-17 日本無線株式会社 補正装置、及び補正方法
JP2014229599A (ja) * 2013-05-27 2014-12-08 株式会社Sen 高エネルギーイオン注入装置
CN108505009A (zh) * 2017-02-27 2018-09-07 住友重机械离子科技株式会社 离子注入装置
JP2018142434A (ja) * 2017-02-27 2018-09-13 住友重機械イオンテクノロジー株式会社 イオン注入装置
CN108505009B (zh) * 2017-02-27 2020-10-23 住友重机械离子科技株式会社 离子注入装置
TWI744491B (zh) * 2017-02-27 2021-11-01 日商住友重機械離子科技股份有限公司 離子植入裝置
JP2022547916A (ja) * 2019-09-10 2022-11-16 アプライド マテリアルズ インコーポレイテッド パルスイオンビームにおけるイオンエネルギー測定のための装置および技法
JP7326593B2 (ja) 2019-09-10 2023-08-15 アプライド マテリアルズ インコーポレイテッド パルスイオンビームにおけるイオンエネルギー測定のための装置および技法

Also Published As

Publication number Publication date
US6831280B2 (en) 2004-12-14
US20040056210A1 (en) 2004-03-25
WO2004027448A2 (en) 2004-04-01
WO2004027448A3 (en) 2004-09-30
EP1547122A2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
JP2006500568A (ja) 2信号間の遅延時間を高精度に測定するための方法および装置
JP4432003B2 (ja) イオンビーム注入装置、イオンビームのエネルギー測定装置、及びイオンの平均運動エネルギーの測定方法
US7586100B2 (en) Closed loop control and process optimization in plasma doping processes using a time of flight ion detector
KR100631443B1 (ko) 플라즈마 처리 시스템내의 전류 측정값으로부터 변위전류를 제거하기 위한 방법 및 장치
KR101724389B1 (ko) 정전 이온 트랩
US6965116B1 (en) Method of determining dose uniformity of a scanning ion implanter
EP0534935B1 (en) Method and apparatus for generating particle beams
JP6062243B2 (ja) 不利な条件下であっても均一な量の注入を実施するシステムおよび方法
EP2774169A2 (en) Method and apparatus for tuning an electrostatic ion trap
JP5131576B2 (ja) イオン注入機における圧力補償ファクタを決定するための方法及びシステム
EP4100991A1 (en) Time-domain analysis of signals for charge detection mass spectrometry
TW201030793A (en) Method and apparatus for plasma dose measurement
US20040256573A1 (en) Methods and systems for optimizing ion implantation uniformity control
Milosavljević et al. Experimental determination of the differential cross-section surface for elastic electron–atom (molecule) scattering
Dombrowski et al. Low energy proton-proton scattering near the interference minimum using a windowless gas jet target
Heindorff et al. Velocity analysis of on‐axis cesium atoms by the time‐of‐flight method
Scherer et al. Implant energy determination from time-of-flight measurement
CN103165371B (zh) 一种用于等离子体浸没注入中剂量检测装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090603

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090901

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091202