JP2006351830A - Metallized film capacitor - Google Patents

Metallized film capacitor Download PDF

Info

Publication number
JP2006351830A
JP2006351830A JP2005176097A JP2005176097A JP2006351830A JP 2006351830 A JP2006351830 A JP 2006351830A JP 2005176097 A JP2005176097 A JP 2005176097A JP 2005176097 A JP2005176097 A JP 2005176097A JP 2006351830 A JP2006351830 A JP 2006351830A
Authority
JP
Japan
Prior art keywords
aluminum
metallicon
layer
metallized
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005176097A
Other languages
Japanese (ja)
Other versions
JP4596992B2 (en
Inventor
Toshinori Dosono
利徳 堂園
Setsu Tomura
節 戸村
Kiichiro Nakamura
喜一郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP2005176097A priority Critical patent/JP4596992B2/en
Publication of JP2006351830A publication Critical patent/JP2006351830A/en
Application granted granted Critical
Publication of JP4596992B2 publication Critical patent/JP4596992B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of thermal cracking between metallized contact layers, by lowering the melting point down to 1,000°C or lower for suppressing corrosion between metallized contact layers, taking into consideration degradation in heat resistance of a film on selecting an aluminum metallized contact metal as an end-face electrode contacting an aluminum vapor deposition film, taking corrosion resistance into account, in obtaining a metallized film capacitor that is compatible with high temperature reflow which uses aluminum vapor deposition. <P>SOLUTION: A metallized contact layer of brass is stacked on an aluminum added, with silica as the end face electrode of a metallized film capacitor with aluminum vapor deposited thereon. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、金属化フィルムを巻回または積層し、その端面に金属溶射によりメタリコン端面電極を形成した面実装型金属化フィルムコンデンサに関するものである。特に、アルミニウムを蒸着した高温リフロー対応金属化フィルムコンデンサに関するものである。   The present invention relates to a surface mount type metallized film capacitor in which a metallized film is wound or laminated and a metallized end surface electrode is formed on the end surface by metal spraying. In particular, the present invention relates to a high-temperature reflow-compatible metallized film capacitor on which aluminum is deposited.

従来、この種の面実装型金属化フィルムコンデンサは、プラスチックフィルムの片面に亜鉛やアルミニウム金属を蒸着した金属化フィルムを巻回または積層し、その両端面に金属溶射し、メタリコン端面電極を形成した構成となっている。この蒸着と接する側の端面電極として溶射される金属としては、銅系もの、たとえば銅と亜鉛の合金のものが使用されていた(たとえば、特許文献1)。
蒸着にアルミニウムを使用した場合には、特に、蒸着と接する側には蒸着と同金属のアルミニウムのメタリコン端面電極を使用したほうが耐食の点で好ましいが、耐食性を維持しながら、融点を低下させるために特に珪素を添加させ、溶射時におけるフィルムの熱劣化を抑えていた。ただし、アルミニウム系は、その表面がめっきし難かったり、はんだ付け用の低溶融金属に濡れ難かったりするので、鉛、錫、銀、銅などからなる合金のメタリコンを端面電極表面に積層していた(たとえば、特許文献2)。
ところで、ここに来て全世界規模で電子製品の鉛フリー化が進められるに至って、実装時のリフロー温度上限が、240−260℃へと引き上げられ、この高温リフロー対応として、端面電極にアルミニウムを溶射後、その上に融点が1000℃を越える銅またはニッケルの単独金属を溶射積層していた(たとえば、特許文献3)。
特開平1−77912号公報 特開平4−333209号公報 特開平6−151240号公報
Conventionally, this type of surface mount type metallized film capacitor has a metallized end face electrode formed by winding or laminating a metallized film on which zinc or aluminum metal is vapor-deposited on one side of a plastic film and spraying the metal on both end faces. It has a configuration. As the metal sprayed as the end face electrode in contact with the vapor deposition, a copper-based material, for example, an alloy of copper and zinc has been used (for example, Patent Document 1).
When aluminum is used for vapor deposition, it is preferable in terms of corrosion resistance to use an aluminum metallicon end face electrode of the same metal as the vapor deposition on the side in contact with the vapor deposition, in order to reduce the melting point while maintaining corrosion resistance. In particular, silicon was added to suppress thermal deterioration of the film during thermal spraying. However, since the surface of aluminum is difficult to be plated or difficult to wet with low-melting metal for soldering, alloy metallicons composed of lead, tin, silver, copper, etc. have been laminated on the end electrode surface. (For example, patent document 2).
By the way, as lead-free electronic products have been promoted globally, the upper limit of reflow temperature during mounting has been raised to 240-260 ° C. To cope with this high temperature reflow, aluminum is applied to the end face electrode. After spraying, a single metal of copper or nickel having a melting point exceeding 1000 ° C. was sprayed and laminated thereon (for example, Patent Document 3).
JP-A-1-77912 JP-A-4-333209 JP-A-6-151240

アルミニウム蒸着膜を使用した高温リフロー対応の金属化フィルムコンデンサを得るに、耐食性の点からアルミニウム蒸着膜と接する端面電極としてアルミニウム系のメタリコン金属を選ぶと、その表面にめっきしやすかったり、はんだ付け用の低溶融金属に濡れやすかったりする金属を積層する必要があるが、フィルムの耐熱劣化の点から融点が1000℃を越えないものを選ぶ必要がある。また、メタリコン金属積層間の耐食性や熱クラックの問題を解決する必要がある。
In order to obtain a metallized film capacitor compatible with high-temperature reflow using an aluminum vapor deposition film, if an aluminum-based metallicon metal is selected as an end face electrode in contact with the aluminum vapor deposition film from the viewpoint of corrosion resistance, the surface can be easily plated or used for soldering. However, it is necessary to select a metal whose melting point does not exceed 1000 ° C. from the viewpoint of heat resistance deterioration of the film. Moreover, it is necessary to solve the problem of corrosion resistance and thermal cracks between metallicon metal laminates.

本発明は上記の課題を解決するために、アルミニウムを蒸着した金属化フィルムコンデンサの、前記蒸着と接する側の端面電極として、アルミニウムに珪素を添加した第1メタリコン層に、銅に亜鉛を添加した第2メタリコン層を積層したことを特徴とした金属化フィルムコンデンサを提供するものである。
また、第2メタリコン層の亜鉛添加量が、20wt%以上40wt%未満であることを特徴とした金属化フィルムコンデンサを提供するものである。
In order to solve the above-mentioned problems, the present invention adds zinc to copper to the first metallicon layer in which silicon is added to aluminum as the end face electrode on the side in contact with the vapor deposition of the metallized film capacitor on which aluminum is evaporated. The present invention provides a metallized film capacitor characterized by laminating a second metallicon layer.
In addition, the present invention provides a metallized film capacitor characterized in that the amount of zinc added to the second metallicon layer is 20 wt% or more and less than 40 wt%.

第2メタリコン層である融点(1067℃)の銅に亜鉛を添加することにより、融点を1000℃以下に下げることができるので、フィルムの耐熱劣化を抑えることができる。
第1メタリコン層のアルミニウムに珪素を添加することにより、第1メタリコン層と第2メタリコン層との浸漬電位差が小さくなり、メタリコン層間の腐食を抑制することができる。
第1メタリコン層のアルミニウムに珪素を添加し、第2メタリコン層の銅に亜鉛を添加することにより、また、第1メタリコン層と第2メタリコン層間の熱膨張係数差が軽減されるので、メタリコン層間の熱クラック問題を解決することができる。
By adding zinc to copper having a melting point (1067 ° C.) that is the second metallicon layer, the melting point can be lowered to 1000 ° C. or less, so that heat resistance deterioration of the film can be suppressed.
By adding silicon to the aluminum of the first metallicon layer, the immersion potential difference between the first metallicon layer and the second metallicon layer is reduced, and corrosion between the metallicon layers can be suppressed.
By adding silicon to the aluminum of the first metallicon layer and adding zinc to the copper of the second metallicon layer, the difference in thermal expansion coefficient between the first metallicon layer and the second metallicon layer is reduced. Can solve the thermal crack problem.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明に係るフィルムコンデンサの斜視図および断面図である。
1はポリフェニレンサルファイド、ポリエチレンナフタレート、ポリエーテルサルフォン、ポリイミド、ポリアミド、またはポリエーテルイミド等の高耐熱フィルムに、アルミニウムを蒸着して金属薄膜を形成した金属化フィルムを2枚、互いにずらして積層して巻回し、最外周にシール用フィルムを巻き付けた素子である。ここで、シール用フィルムは、金属化フィルムの金属を高電圧印加により除去した部分で置き換えてもよい。
2は、この素子1の端面に形成し、金属薄膜に直接接続した第1メタリコン層であり、アルミニウムに珪素を添加した金属からなり、アルミニウムを80%以上、珪素を3%以上含んでいる。膜厚は0.05mmから0.3mm程度であり、0.1mmから0.2mm程度が好ましい。
アルミニウムに対して珪素を12.6%添加することにより、アルミニウムの融点を660℃から約570℃まで低下させることができる。
3は、この第1メタリコン層2に積層した第2のメタリコン層であり、銅に亜鉛を添加したものであり、表面を研磨している。膜厚は0.2mmから0.6mm程度であり、0.3mmから0.4mm程度が好ましい。
第1メタリコン層と第2のメタリコン層の界面は、メタリコン間の接続であるため平面というよりも凹凸状であり、第1メタリコン材と第2のメタリコン材が混在化した部分も存在し、また、合金化した部分のほか単に物理的に接触している部分も含まれる。
4は、第2メタリコン層3に積層した、NiまたはCuからなる第1めっき層である。膜厚は5μmから20μm程度であり、8μmから15μm程度が好ましい。
5は、第1のめっき層4に積層した錫からなる第2めっき層である。膜厚は2μmから20μm程度であり、4μmから8μm程度が好ましい。
なお、実施にあたっては、4、5のめっき層を省略してもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view and a sectional view of a film capacitor according to the present invention.
1 is a stack of two metallized films formed by depositing aluminum on a high heat-resistant film such as polyphenylene sulfide, polyethylene naphthalate, polyether sulfone, polyimide, polyamide, or polyetherimide, shifted from each other. Then, the device is wound and a sealing film is wound around the outermost periphery. Here, the sealing film may be replaced with a portion where the metal of the metallized film is removed by applying a high voltage.
Reference numeral 2 denotes a first metallicon layer formed on the end face of the element 1 and directly connected to a metal thin film, which is made of a metal obtained by adding silicon to aluminum, and contains 80% or more of aluminum and 3% or more of silicon. The film thickness is about 0.05 mm to 0.3 mm, preferably about 0.1 mm to 0.2 mm.
By adding 12.6% of silicon to aluminum, the melting point of aluminum can be lowered from 660 ° C. to about 570 ° C.
Reference numeral 3 denotes a second metallicon layer laminated on the first metallicon layer 2, which is obtained by adding zinc to copper and polishing the surface. The film thickness is about 0.2 mm to 0.6 mm, preferably about 0.3 mm to 0.4 mm.
The interface between the first metallicon layer and the second metallicon layer is an uneven shape rather than a plane because it is a connection between the metallicon layers, and there is a portion where the first metallicon material and the second metallicon material are mixed, and In addition to the alloyed part, the part merely in physical contact is also included.
Reference numeral 4 denotes a first plating layer made of Ni or Cu laminated on the second metallicon layer 3. The film thickness is about 5 μm to 20 μm, preferably about 8 μm to 15 μm.
Reference numeral 5 denotes a second plating layer made of tin laminated on the first plating layer 4. The film thickness is about 2 μm to 20 μm, preferably about 4 μm to 8 μm.
In the implementation, 4, 5 plating layers may be omitted.

第2のメタリコン層が、高温リフローに対応するためには、260℃以上の融点のメタリコン材を選定する必要があるが、フィルムの熱劣化を抑えるためにできるだけ低融点のメタリコン材を選定することが好ましい。使用上問題のある放射性元素、供給量に制約のある希土類元素を除くと、アルミニウム以外で260℃以上の融点の金属としては、融点の低い順に、ビスマス(271℃)、アスタチン(302℃)、タリウム(304℃)、カドミウム(321℃)、鉛(328℃)、亜鉛(420℃)、テルル(450℃)、アンチモン(631℃)、マグネシウム(649℃)、アルミニウム(660℃)、バリウム(725℃)、ストロンチウム(769℃)、カルシウム(839℃)、ゲルマニウム(937℃)、銀(962℃)、金(1064℃)、銅(1083℃)があげられる。
アスタチンは安定に存在しない元素であり使用できない。ビスマス、テルル、アンチモンは脆い材料で線材化できず、タリウム、鉛、カドミウムは環境問題から使用することができない。テルル、ゲルマニウムは半導体であり電極材としては使用できない。アルカリ土類金属であるマグネシウム、バリウム、ストロンチウム、カルシウムは水や酸素との反応性に富むため、溶射材料としては不適当である。亜鉛は耐食性に劣るので外層電極には適さない。
以上から、選択肢として残るのは、銀、金、銅となる。これら材料の中で、価格的に銅が最も有望な材料となる。
この銅の融点(1067℃)を1000℃以下に下げるためには、合金化して固相線、液相線を低下させることが有効である。
一般に、共晶を形成する元素を添加すると、共晶温度まで固相線温度を低下させることができる。また、包晶を形成する元素を添加した場合、包晶温度が融点より高いケースも低いケースもありうるが、包晶温度が融点より低い場合には、包晶温度まで固相線を低下させることができる。この場合、包晶組成を超えて合金元素を増加させればさらに固相線は低下するが、包晶の組み合わせとなる相が金属間化合物である場合、材料自体が硬くなり、加工しにくくなる問題がある。
たとえば、銅に亜鉛を添加すると、徐々に固相線が低下し、組成32.5wt%から37.5wt%の範囲で903℃の包晶線にまで固相線を低下させることができる。したがって、亜鉛を35%添加した銅合金では、固相線を903℃にまで下げることができる。亜鉛を37.5wt%以上添加するとさらに固相線を低下させることができるが、亜鉛を40wt%以上添加すると、亜鉛のさらに多い金属間化合物相(β相)との2相組織となり、このβ相が耐食性を著しく低下させるので、好ましくない。 したがって、銅-亜鉛合金で耐食性を損なうことなく液相線温度を低下させることのできる亜鉛量40wt%未満の黄銅が耐食性および耐熱性を考慮すると適している。ここで、黄銅とは、亜鉛量20wt%から40wt%の銅合金である。
In order for the second metallicon layer to cope with high temperature reflow, it is necessary to select a metallicon material having a melting point of 260 ° C. or higher, but in order to suppress thermal deterioration of the film, select a metallicon material having a low melting point as much as possible. Is preferred. Excluding radioactive elements that are problematic in use and rare earth elements that are limited in supply, metals other than aluminum that have a melting point of 260 ° C. or higher include bismuth (271 ° C.), astatine (302 ° C.), Thallium (304 ° C), Cadmium (321 ° C), Lead (328 ° C), Zinc (420 ° C), Tellurium (450 ° C), Antimony (631 ° C), Magnesium (649 ° C), Aluminum (660 ° C), Barium ( 725 ° C), strontium (769 ° C), calcium (839 ° C), germanium (937 ° C), silver (962 ° C), gold (1064 ° C), and copper (1083 ° C).
Astatine is an element that does not exist stably and cannot be used. Bismuth, tellurium, and antimony are brittle materials that cannot be made into wires, and thallium, lead, and cadmium cannot be used due to environmental problems. Tellurium and germanium are semiconductors and cannot be used as electrode materials. Alkaline earth metals such as magnesium, barium, strontium, and calcium are not suitable as thermal spray materials because of their high reactivity with water and oxygen. Zinc is inferior in corrosion resistance and is not suitable for the outer layer electrode.
From the above, the remaining options are silver, gold, and copper. Among these materials, copper is the most promising material in terms of price.
In order to lower the melting point (1067 ° C.) of copper to 1000 ° C. or lower, it is effective to alloy and lower the solidus and liquidus.
In general, the addition of an element that forms a eutectic can reduce the solidus temperature to the eutectic temperature. In addition, when an element that forms a peritectic is added, there may be cases where the peritectic temperature is higher or lower than the melting point, but when the peritectic temperature is lower than the melting point, the solidus is lowered to the peritectic temperature. be able to. In this case, if the alloy element is increased beyond the peritectic composition, the solidus will further decrease, but if the phase that forms the peritectic combination is an intermetallic compound, the material itself becomes hard and difficult to process. There's a problem.
For example, when zinc is added to copper, the solidus line gradually decreases, and the solidus line can be lowered to a peritectic line at 903 ° C. in the range of 32.5 wt% to 37.5 wt%. Therefore, in a copper alloy to which 35% of zinc is added, the solidus can be lowered to 903 ° C. When zinc is added in an amount of 37.5 wt% or more, the solidus can be further lowered. However, when zinc is added in an amount of 40 wt% or more, a two-phase structure is formed with an intermetallic compound phase (β phase) containing more zinc. The phase is not preferred because it significantly reduces corrosion resistance. Therefore, brass with a zinc content of less than 40 wt%, which can lower the liquidus temperature without impairing the corrosion resistance of the copper-zinc alloy, is suitable considering the corrosion resistance and heat resistance. Here, the brass is a copper alloy having a zinc content of 20 wt% to 40 wt%.

蒸着金属であるアルミニウムとの接続性のみ考慮し、第1メタリコン層にアルミニウムを使用すると、アルミニウムの浸漬電位が−0.8VvsAg/AgCl(pH=7)と低いため、その上に浸漬電位が−0.3VvsAg/AgCl(pH=7)と高い銅合金を積層して組み合わせた場合、局部電池を構成し、アルミニウムの腐食が促進される。本発明では、耐熱性のある銅合金の下地として−0.3VvsAg/AgCl(pH=7)と浸漬電位の高いアルミニウム-珪素合金を使用するため、銅合金と組み合わせた場合の電位差が小さくなり、下地合金の腐食を抑制できる。これは、アルミニウム−珪素合金中の珪素相の浸漬電位が−0.2VvsAg/AgCl(pH=7)と高いことに起因している。   Considering only connectivity with aluminum, which is a deposited metal, when aluminum is used for the first metallicon layer, since the immersion potential of aluminum is as low as −0.8 V vs Ag / AgCl (pH = 7), the immersion potential is − When 0.3VvsAg / AgCl (pH = 7) and a high copper alloy are laminated and combined, a local battery is formed and corrosion of aluminum is promoted. In the present invention, -0.3VvsAg / AgCl (pH = 7) and an aluminum-silicon alloy having a high immersion potential are used as the base of the heat-resistant copper alloy, so that the potential difference when combined with the copper alloy is reduced. Corrosion of the base alloy can be suppressed. This is because the immersion potential of the silicon phase in the aluminum-silicon alloy is as high as -0.2 V vs Ag / AgCl (pH = 7).

さらに、端面メタリコンが実質異種2層構造となるため、一般的に、加熱に伴って2層のメタリコンがバイメタルとして機能し、メタリコンに反りを発生させる。これをフィルムとの界面で拘束することから、加熱冷却の繰り返しにより、メタリコンとフィルムの界面にクラックを生じ、水分が浸入して耐湿負荷時の容量減少を増大させる。
図2にバイメタル撓みを表すモデル図、数式1にバイメタルの反りを表す式を示す。
表1に、第1メタリコン層にアルミニウムあるいはアルミニウム−12wt%珪素合金を使用し、第2メタリコン層に銅を使用した場合のバイメタル撓みおよびそれを拘束する先端集中荷重の比較例を示す。アルミニウムの熱膨張係数23.5×10−6K−1と銅の熱膨張係数17.0×10−6K−1の差は大きく、表1にみるように大きな撓みおよび拘束荷重を発生させる。第1メタリコン層の材質をアルミニウムからアルミニウム−12wt%珪素合金に変更すると、その熱膨張係数が20.5×10−6K−1と小さくなって、銅との熱膨張係数差が縮小されるため、撓みおよび拘束荷重は半減する。これをさらに軽減するには、第2メタリコン層である銅の熱膨張係数を大きくして、アルミニウム−12wt%珪素合金の値に近づけることが必要である。
固溶体の範囲の合金においては、ベース合金の結晶構造を反映するとともに、添加元素の特性が添加量に応じて影響する。熱膨張係数も同様であり、固溶体で使用する限りは、熱膨張係数の大きな合金元素を固溶体の範囲でできるだけ多く添加することが望ましい。
図2に、純物質の熱膨張係数と融点の相関を示す。熱膨張係数は、大まかに融点に反比例する。この中で、多量に合金化することの困難なアルカリ金属を除外すると最も大きな熱膨張係数を有する元素は亜鉛、カドミウム、タリウム、鉛のグループとなる。このうちカドミウム、タリウム、鉛は、環境問題を背景に、その毒性から使用することができない。したがって、熱膨張係数を向上させる合金元素として、亜鉛が最も有効な元素となる。文献によれば、亜鉛量を30wt%以上にすることにより、熱膨張係数を20×10−6K−1以上とすることができる。
表2に、第1メタリコン層にアルミニウム−12wt%珪素合金を使用し、第2メタリコン層に銅合金を使用した場合のバイメタル撓みおよびそれを拘束する先端集中荷重の比較例を示す。黄銅を使用することで、バイメタル撓みおよびそれを拘束する先端集中荷重を10分の1にまで軽減することができる。
Further, since the end face metallicon has a substantially different two-layer structure, generally, the two-layer metallicon functions as a bimetal with heating, and warps the metallicon. Since this is constrained at the interface with the film, cracking occurs at the interface between the metallicon and the film due to repeated heating and cooling, and moisture enters and increases the capacity reduction at the time of moisture resistance load.
FIG. 2 is a model diagram showing bimetal bending, and Equation 1 shows an equation representing bimetal warpage.
Table 1 shows a comparative example of bimetallic bending and tip concentrated load that restrains it when aluminum or an aluminum-12 wt% silicon alloy is used for the first metallicon layer and copper is used for the second metallicon layer. The difference between the thermal expansion coefficient 23.5 × 10 −6 K −1 of aluminum and the thermal expansion coefficient 17.0 × 10 −6 K −1 of copper is large, and as shown in Table 1, a large deflection and a restraining load are generated. . When the material of the first metallicon layer is changed from aluminum to aluminum-12 wt% silicon alloy, the thermal expansion coefficient is reduced to 20.5 × 10 −6 K −1 and the difference in thermal expansion coefficient from copper is reduced. Therefore, the bending and restraint load are halved. In order to further reduce this, it is necessary to increase the thermal expansion coefficient of copper, which is the second metallicon layer, so as to approach the value of the aluminum-12 wt% silicon alloy.
In the alloy in the range of the solid solution, the crystal structure of the base alloy is reflected, and the characteristics of the additive element are affected depending on the addition amount. The thermal expansion coefficient is the same, and as long as it is used as a solid solution, it is desirable to add as much alloy elements having a large thermal expansion coefficient as possible within the range of the solid solution.
FIG. 2 shows the correlation between the thermal expansion coefficient and the melting point of a pure substance. The coefficient of thermal expansion is roughly inversely proportional to the melting point. Among these, the elements having the largest thermal expansion coefficient excluding alkali metals that are difficult to alloy in large quantities are zinc, cadmium, thallium, and lead. Of these, cadmium, thallium, and lead cannot be used due to their toxicity due to environmental problems. Therefore, zinc is the most effective element as an alloy element that improves the thermal expansion coefficient. According to the literature, the coefficient of thermal expansion can be made 20 × 10 −6 K −1 or more by making the amount of zinc 30 wt% or more.
Table 2 shows a comparative example of bimetal bending and a concentrated tip load that restrains the bimetal bending when an aluminum-12 wt% silicon alloy is used for the first metallicon layer and a copper alloy is used for the second metallicon layer. By using brass, it is possible to reduce the bimetallic deflection and the concentrated tip load that restrains it to 1/10.

Figure 2006351830
Figure 2006351830

Figure 2006351830
Figure 2006351830

Figure 2006351830
Figure 2006351830

次に本発明の実施例について説明する。ただし、本発明は、以下実施例に限定されるものではない。   Next, examples of the present invention will be described. However, the present invention is not limited to the following examples.

先ず、金属化フィルムを巻回し最外周にシール用フィルムを巻き付けて素子を形成する。素子を形成後、アルミニウムを88%、珪素を12%含有する1.2φの合金線を用い、電気アーク溶射法によって、素子の端面に第1のメタリコン層を15μmの厚さに形成する。溶射後、銅−亜鉛 1.3φの黄銅線を用い、第1メタリコン層の表面に第2メタリコン層を約45μmの厚さで形成する。亜鉛の添加は、15wt%、20wt%、30wt%、35wt%、40wt%とした。第2メタリコン層を形成後、余剰のメタリコンを回転バレルで取り除く。次に、素子1にエポキシ樹脂を3Hr真空加圧含浸し、温度170℃で16時間加熱硬化する。この作業後、第2のメタリコン層の表面をエンドミルの刃を用いて切削し、第2メタリコン層厚さが約35μmの厚さになるよう研磨する。研磨後、Ni電気めっき法により、厚さ10μm程度の第1めっき層を形成する。第1めっき層を形成後、その表面に厚さ5μm程度の錫をめっきし、第2めっき層を形成する。   First, an element is formed by winding a metallized film and winding a sealing film around the outermost periphery. After forming the element, a first metallicon layer having a thickness of 15 μm is formed on the end face of the element by an electric arc spraying method using a 1.2φ alloy wire containing 88% aluminum and 12% silicon. After thermal spraying, a copper-zinc 1.3φ brass wire is used to form a second metallicon layer with a thickness of about 45 μm on the surface of the first metallicon layer. Zinc was added at 15 wt%, 20 wt%, 30 wt%, 35 wt%, and 40 wt%. After forming the second metallicon layer, excess metallicon is removed with a rotating barrel. Next, the element 1 is impregnated with an epoxy resin in a vacuum for 3 hours, and is cured by heating at 170 ° C. for 16 hours. After this operation, the surface of the second metallicon layer is cut with an end mill blade and polished so that the thickness of the second metallicon layer is about 35 μm. After polishing, a first plating layer having a thickness of about 10 μm is formed by Ni electroplating. After forming the first plating layer, the surface is plated with tin having a thickness of about 5 μm to form a second plating layer.

次に、作製したサンプルを、予熱150から180℃で2分以上、本加熱240℃以上10秒、ピーク温度250℃のリフロープロファイルの熱風リフローで、Sn−3wt%Ag−0.3wt%Cuはんだを用いて基板に面実装した。リフローは各サンプル計3回繰り返した。なお、リフロー温度を測定する場合には、測定物の形状、温度測定位置、熱電対の接続方法、ランドと電極間のはんだの接続状態、リフロー炉の加熱方式により同じ熱負荷でも異なったリフロー耐熱温度として評価してしまう恐れがあるため注意が必要である。本実施例では、リフロー温度の測定には、サンプルと同じ構成の製品を用い、電極面に高温はんだで熱電対を固定し、さらに、高温はんだをランドにも接続し、熱風の充分に流れた条件で温度測定し、リフロープロファイルを検証した。
リフローしたサンプルを20℃、30%RH中に12時間放置し、1kHzでの容量、tanδ、定格電圧での絶縁抵抗を測定した後、85℃、85%RHの雰囲気の炉中に投入し、定格電圧を印加した状態で250時間耐湿負荷試験し、その後、再び取り出して20℃、30%RH中に12時間放置し、1kHzでの容量、tanδ、定格電圧での絶縁抵抗を測定した。
表3に耐湿負荷試験前後の特性比較結果を示す。比較例としては、実施例1において第2のメタリコン層を銅、青銅(Cu−10wt%Sn−2wt%Zn)、りん青銅(Cu−13.5wt%Sn−0.33wt%P)に変更し、他のプロセスを同様に実施したものと、実施例1および比較例において第1のメタリコン層をアルミニウムに変更し、他のプロセスを同様に実施した。
本結果より、アルミニウム−12wt%シリコン合金第1メタリコン上に形成する第2メタリコン材料としては、銅に添加する亜鉛の量は20wt%以上40wt%未満が最適であるといえる。
Next, Sn-3 wt% Ag-0.3 wt% Cu solder was prepared by hot air reflow with a reflow profile of preheating 150 to 180 ° C. for 2 minutes or more, main heating 240 ° C. or more for 10 seconds, and peak temperature 250 ° C. Was surface mounted on the substrate. Reflow was repeated three times for each sample. When measuring the reflow temperature, the reflow heat resistance varies depending on the shape of the object to be measured, the temperature measurement position, the thermocouple connection method, the solder connection between the land and the electrode, and the heating method of the reflow furnace even under the same heat load. Care must be taken because it may be evaluated as temperature. In this example, the reflow temperature was measured using a product having the same configuration as the sample, a thermocouple was fixed to the electrode surface with high-temperature solder, and the high-temperature solder was also connected to the land, so that hot air flowed sufficiently. The temperature was measured under the conditions, and the reflow profile was verified.
The reflowed sample was allowed to stand in 20 ° C. and 30% RH for 12 hours. After measuring the capacity at 1 kHz, the tan δ, and the insulation resistance at the rated voltage, the sample was put into a furnace at 85 ° C. and 85% RH. The moisture resistance load test was performed for 250 hours with the rated voltage applied, then taken out again and left in 20 ° C. and 30% RH for 12 hours, and the capacity at 1 kHz, tan δ, and insulation resistance at the rated voltage were measured.
Table 3 shows the result of the characteristic comparison before and after the moisture resistance load test. As a comparative example, the second metallicon layer in Example 1 was changed to copper, bronze (Cu-10 wt% Sn-2 wt% Zn), phosphor bronze (Cu-13.5 wt% Sn-0.33 wt% P). The first metallicon layer was changed to aluminum in Example 1 and the comparative example in which the other processes were performed in the same manner, and the other processes were performed in the same manner.
From this result, it can be said that the optimum amount of zinc added to copper is 20 wt% or more and less than 40 wt% as the second metallicon material formed on the aluminum-12 wt% silicon alloy first metallicon.

Figure 2006351830
Figure 2006351830

本発明に係るフィルムコンデンサの斜視図および断面図である。It is the perspective view and sectional drawing of the film capacitor which concern on this invention. 本発明に係る2層メタリコンのバイメタル撓みを表すモデル図である。It is a model figure showing the bimetal bending of the two-layer metallicon which concerns on this invention. 純物質の熱膨張係数と融点の相関を示す。The correlation between the thermal expansion coefficient and the melting point of a pure substance is shown.

符号の説明Explanation of symbols

1…素子、2…第1メタリコン層、3…第2メタリコン層、4…第1めっき層、5…第2めっき層 DESCRIPTION OF SYMBOLS 1 ... Element, 2 ... 1st metallicon layer, 3 ... 2nd metallicon layer, 4 ... 1st plating layer, 5 ... 2nd plating layer

Claims (2)

アルミニウムを蒸着した金属化フィルムコンデンサの、前記蒸着と接する側の端面電極として、アルミニウムに珪素を添加した第1メタリコン層に、銅に亜鉛を添加した第2メタリコン層を積層したことを特徴とした金属化フィルムコンデンサ。   The metallized film capacitor on which aluminum is vapor-deposited is characterized in that, as an end face electrode on the side in contact with the vapor deposition, a second metallicon layer in which zinc is added to copper is laminated on a first metallicon layer in which silicon is added to aluminum. Metalized film capacitor. 請求項1において、第2メタリコン層の亜鉛添加量が、20wt%以上40wt%未満であることを特徴とした金属化フィルムコンデンサ。   2. The metallized film capacitor according to claim 1, wherein the amount of zinc added to the second metallicon layer is 20 wt% or more and less than 40 wt%.
JP2005176097A 2005-06-16 2005-06-16 Metallized film capacitors Expired - Fee Related JP4596992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005176097A JP4596992B2 (en) 2005-06-16 2005-06-16 Metallized film capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005176097A JP4596992B2 (en) 2005-06-16 2005-06-16 Metallized film capacitors

Publications (2)

Publication Number Publication Date
JP2006351830A true JP2006351830A (en) 2006-12-28
JP4596992B2 JP4596992B2 (en) 2010-12-15

Family

ID=37647355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005176097A Expired - Fee Related JP4596992B2 (en) 2005-06-16 2005-06-16 Metallized film capacitors

Country Status (1)

Country Link
JP (1) JP4596992B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060161A (en) * 2011-12-06 2012-03-22 Sabic Innovative Plastics Japan Kk Polyetherimide film for capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477912A (en) * 1987-09-18 1989-03-23 Matsushita Electric Ind Co Ltd Capacitor
JPH04333209A (en) * 1991-05-08 1992-11-20 Hitachi Aic Inc Metallized film capacitor
JPH06151240A (en) * 1992-10-30 1994-05-31 Marcon Electron Co Ltd Method of manufacturing chip type laminated film capacitor
JPH08288176A (en) * 1995-04-10 1996-11-01 Hitachi Aic Inc Metallized film capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477912A (en) * 1987-09-18 1989-03-23 Matsushita Electric Ind Co Ltd Capacitor
JPH04333209A (en) * 1991-05-08 1992-11-20 Hitachi Aic Inc Metallized film capacitor
JPH06151240A (en) * 1992-10-30 1994-05-31 Marcon Electron Co Ltd Method of manufacturing chip type laminated film capacitor
JPH08288176A (en) * 1995-04-10 1996-11-01 Hitachi Aic Inc Metallized film capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060161A (en) * 2011-12-06 2012-03-22 Sabic Innovative Plastics Japan Kk Polyetherimide film for capacitor

Also Published As

Publication number Publication date
JP4596992B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
US4441118A (en) Composite copper nickel alloys with improved solderability shelf life
EP3062956B1 (en) Lead-free, silver-free solder alloys
USRE38588E1 (en) Lead material for electronic part, lead and semiconductor device using the same
TWI234791B (en) Multilayer ceramic electronic component and mounting structure and method for the same
JP3477692B2 (en) Electronic components
JP2925986B2 (en) Fixed contact material or electrical contact parts consisting of a contact part and a terminal part
JP2801793B2 (en) Tin-plated copper alloy material and method for producing the same
EP2799181B1 (en) Sn-Cu-Al-Ti BASED LEAD-FREE SOLDER ALLOY
JP2017501879A (en) Zinc-based lead-free solder composition
JP4873332B2 (en) Lead frame and manufacturing method thereof, method of improving fatigue characteristics, electronic component and electronic device using the same
JP4596992B2 (en) Metallized film capacitors
JP2008166645A (en) Plating member, and its manufacturing method
KR20160003078A (en) Lead frame construct for lead-free solder connections
JP2012006071A (en) Zinc alloy and end face electrode material for metallized plastic film capacitor
EP2974818B1 (en) Solder joining method
JP2002373826A (en) Ceramic electronic component
US10014754B2 (en) Rotary device
JP2001274037A (en) Ceramic electronic part
JP5724638B2 (en) Pb-free solder, solder-coated conductor, and electrical parts using the same
JP4128541B2 (en) Electrode material
JP2010245488A (en) Resistor and manufacturing method of the same
JP2004238689A (en) Plating material, terminal for electronic component, connector, lead member, and semiconductor device
JP2671640B2 (en) Metallized film capacitors
JP2005109373A (en) Semiconductor device
JP2006187788A (en) Pb-FREE SOLDER, AND CONNECTING LEAD WIRE USING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080609

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100921

R150 Certificate of patent or registration of utility model

Ref document number: 4596992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees