JP2010245488A - Resistor and manufacturing method of the same - Google Patents

Resistor and manufacturing method of the same Download PDF

Info

Publication number
JP2010245488A
JP2010245488A JP2009108424A JP2009108424A JP2010245488A JP 2010245488 A JP2010245488 A JP 2010245488A JP 2009108424 A JP2009108424 A JP 2009108424A JP 2009108424 A JP2009108424 A JP 2009108424A JP 2010245488 A JP2010245488 A JP 2010245488A
Authority
JP
Japan
Prior art keywords
resistor
manufacturing
shaped
roll
resistance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009108424A
Other languages
Japanese (ja)
Inventor
Ryoji Shibata
良治 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009108424A priority Critical patent/JP2010245488A/en
Publication of JP2010245488A publication Critical patent/JP2010245488A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resistor and manufacturing method of the same for reducing variations in characteristics in a manufacturing process, in a small resistor manufactured by processing a material composed of an alloy. <P>SOLUTION: An alloy wire material with a nearly circular cross section obtained by machining an ingot which has a resistive element 1 and connection terminals 2a, 2b, whose cross section is formed to a lateral U-shape by rolling is cut depending on the measured value of the thickness of the resistive element 1. A solder plating is formed on the connection surface of the connection terminals 2a, 2b, and an insulating film is formed in the resistive element 1. Thus, the small resistor which can be surface-mounted, and has an extremely small variation in properties is obtained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、各種の電気電子機器に用いられる抵抗器とその製造方法に関わり、特に全体の寸法がおおむね7mm以下の、小型で板状の抵抗素子部の両端に接続端子を具備する形状の抵抗器とその製造方法に関するものである。  The present invention relates to a resistor used for various electric and electronic devices and a method for manufacturing the same, and in particular, a resistor having a shape in which the overall dimensions are approximately 7 mm or less and a connection terminal is provided at both ends of a small plate-like resistor element portion. The present invention relates to a container and a manufacturing method thereof.

携帯電話に代表されるように、近年の電気電子機器の小型化への要求はより厳しくなり、それらに用いられる部品にも小型化とともに、特性の精度向上が求められている。また構造の観点で見ると、組立作業の自動化に対応するために、面実装型であることが必須要件となっている。  As represented by mobile phones, demands for downsizing of electric and electronic devices in recent years have become stricter, and parts used for them are required to be downsized and to improve accuracy of characteristics. Also, from the viewpoint of structure, in order to cope with the automation of assembly work, it is an essential requirement to be a surface mounting type.

このような部品の一つに、携帯電話、ノート型パーソナルコンピュータなどのバッテリーパックに用いられる数mΩ程度の抵抗器がある。図4はこのような抵抗器の従来例を示す斜視図である。図4において、7は抵抗素子部、8a、8bはハンダメッキを施した接続端子部である。抵抗素子部7には、絶縁被膜が形成されているのが一般的である。  One of such components is a resistor of about several mΩ used for battery packs such as mobile phones and notebook personal computers. FIG. 4 is a perspective view showing a conventional example of such a resistor. In FIG. 4, 7 is a resistance element portion, and 8a and 8b are connection terminal portions subjected to solder plating. In general, an insulating film is formed on the resistance element portion 7.

このような抵抗器は、抵抗値を調整した合金の板材を、所要の形状に切断した後、絶縁処理やハンダメッキを施すという方法で製造され、低コストで得られる。しかしながら、このような抵抗器においては、板材の厚みのばらつきや、切断工程でのばらつきにより、製品としての抵抗値のばらつきが±5%程度となり、要求される特性に適合しない場合が生じる。  Such a resistor is manufactured by a method in which an alloy plate whose resistance value is adjusted is cut into a required shape and then subjected to an insulation treatment or solder plating, and is obtained at low cost. However, in such a resistor, due to variations in the thickness of the plate material and variations in the cutting process, the variation in resistance value as a product is about ± 5%, which may not meet the required characteristics.

また、従来の抵抗器においては、製造工程の精度の他に、面実装工程におけるハンダ付けの状態のばらつきにより、抵抗値のばらつき増加を助長するという問題がある。この対処方法として、特許文献1には、端子部以外の部分に酸化皮膜を形成ることにより、ハンダにより基板と接合する面積のばらつきを抑制した抵抗器が開示されている。しかしながら、本特特許文献には、前記の製造工程のばらつき抑制について、必ずしも十分には開示されていない。  In addition to the accuracy of the manufacturing process, the conventional resistor has a problem of promoting an increase in resistance value variation due to variations in the soldering state in the surface mounting process. As a coping method, Patent Document 1 discloses a resistor in which an oxide film is formed on a portion other than the terminal portion to suppress variation in the area to be bonded to the substrate by solder. However, this patent document does not necessarily sufficiently disclose the above-described variation in manufacturing process.

特開2002−075714号公報  JP 2002-075714 A

従って、本発明の課題は、合金の材料に加工を施して製造される小型の抵抗器において、製造工程における特性ばらつきを低減した抵抗器と、その製造方法を提供することにある。  Accordingly, an object of the present invention is to provide a resistor in which variation in characteristics in a manufacturing process is reduced in a small resistor manufactured by processing an alloy material, and a manufacturing method thereof.

本発明は、製造工程と、抵抗値の調整方法を再検討した結果なされたものである。  The present invention has been made as a result of reviewing the manufacturing process and the method of adjusting the resistance value.

即ち、本発明は、金属の板状部材からなる抵抗素子部と、前記抵抗素子部の一方の面の両端にほぼ垂直に突設されてなる接続端子と、前記接続端子の先端部に設けられてなるメッキ層と、前記先端部以外の部分に形成されてなる絶縁被膜を有することを特徴とする抵抗器である。  That is, the present invention is provided at a resistance element portion made of a metal plate member, a connection terminal projecting substantially perpendicular to both ends of one surface of the resistance element portion, and a tip end portion of the connection terminal. A resistor having an insulating coating formed on a portion other than the tip portion.

また、本発明は、前記金属の成分は、6.0〜8.0重量%のMn、1.5〜3.0重量%のSn、残部がCuであることを特徴とする、前記の抵抗器である。  In the present invention, the metal component is 6.0 to 8.0 wt% Mn, 1.5 to 3.0 wt% Sn, and the balance is Cu. It is a vessel.

また、本発明は、前記メッキ層が、SnとAgを含むハンダからなることを特徴とする、前記の抵抗器である。  Further, the present invention is the resistor described above, wherein the plating layer is made of solder containing Sn and Ag.

また、本発明は、金属からなり、断面がほぼ円形状の棒状の材料に、表面に凹部を有するロールと表面に凸部を有するロールとの間で圧延加工を施し、断面がコ字形状の帯状材料となす工程と、ことにより、板状部材の一方の面の両端にほぼ垂直な突設部を有する部材を形成する工程と、前記帯状部材に絶縁被膜を形成する工程と、前記突設部の先端にメッキ処理を施す工程、前記帯状材料を長さ方向と垂直な方向に切断する工程を有することを特徴とする、前記の抵抗器の製造方法である。  In addition, the present invention is a rod-shaped material made of metal and having a substantially circular cross section, and is rolled between a roll having a concave portion on the surface and a roll having a convex portion on the surface, and the cross section is U-shaped. A step of forming a band-shaped material, a step of forming a member having projecting portions substantially perpendicular to both ends of one surface of the plate-shaped member, a step of forming an insulating film on the band-shaped member, and the projecting The method of manufacturing a resistor according to claim 1, further comprising a step of plating the tip of the part, and a step of cutting the strip material in a direction perpendicular to the length direction.

また、本発明は、前記板状部材のほぼ中央部の厚さの測定値により、前記帯状材料の切断長を決定する工程を有することを特徴とする、前記の抵抗器の製造方法である。  Moreover, this invention has the process of determining the cutting length of the said strip | belt-shaped material by the measured value of the thickness of the substantially center part of the said plate-shaped member, The manufacturing method of the said resistor characterized by the above-mentioned.

本発明による抵抗器の製造方法においては、棒状の金属材料にロールによる圧延加工を施して抵抗素子部と端子部を形成するので、抵抗素子部の厚みを高精度で制御することが可能となり、製品の特性ばらつきを低減することができる。  In the method of manufacturing a resistor according to the present invention, the resistance element portion and the terminal portion are formed by rolling the rod-shaped metal material with a roll, so that the thickness of the resistance element portion can be controlled with high accuracy. Product characteristic variation can be reduced.

さらに、製造工程における抵抗値は、抵抗素子部の厚みの測定結果を、圧延材料の切断長さにフィードバックして調整することも可能なので、製品の特性ばらつきを、より低減することに寄与できる。  Furthermore, since the resistance value in the manufacturing process can be adjusted by feeding back the measurement result of the thickness of the resistance element portion to the cutting length of the rolled material, it is possible to contribute to further reducing product characteristic variations.

また、接続端子の部分には、ハンダメッキを施すことで、実装工程の信頼性を向上することができるとともに、端子以外の部分には、絶縁被膜を形成するので、実装工程で余分なハンダが抵抗素子の部分に付着することがなく、特性ばらつきの要因を減殺することができる。  Also, solder plating can be applied to the connection terminal part to improve the reliability of the mounting process, and an insulating film is formed on the part other than the terminal, so there is no extra solder in the mounting process. It is not attached to the portion of the resistance element, and the cause of characteristic variation can be reduced.

なお、本発明において、材料として用いる金属の成分を限定したのは、所要の抵抗値を得るためと、圧延の加工性を考慮した結果であり、メッキに用いるハンダの組成を限定したのは、環境への負荷を考慮してPbを用いないことと、絶縁被膜の耐熱性を考慮した結果である。  In the present invention, the metal component used as a material is limited to obtain a required resistance value and the result of considering the workability of rolling, and the composition of the solder used for plating is limited. This is a result of not using Pb in consideration of environmental load and considering the heat resistance of the insulating coating.

本発明に係る抵抗器の一例を示す斜視図  The perspective view which shows an example of the resistor which concerns on this invention 本発明の抵抗器の製造工程を示すフローチャート  The flowchart which shows the manufacturing process of the resistor of this invention. 本発明の抵抗器の製造工程におけるロール圧延を模式的に示した図  The figure which showed typically the roll rolling in the manufacturing process of the resistor of this invention 従来の抵抗器の一例を示す図  The figure which shows an example of the conventional resistor

次に、本発明の実施の形態について説明する。  Next, an embodiment of the present invention will be described.

図1は、本発明に係る抵抗器の一例を示す斜視図である。図1において、1は抵抗素子部、2a、2bは接続端子部、3a、3bはハンダメッキ層である。この例で用いた金属の成分は、Mnが2.0重量%、Snが2.3重量%、残部がCuである。また、接続端子2a、2bの部分と切断面を除いた部分には、ポリイミドからなる絶縁被膜が形成されている。  FIG. 1 is a perspective view showing an example of a resistor according to the present invention. In FIG. 1, 1 is a resistance element portion, 2a and 2b are connection terminal portions, and 3a and 3b are solder plating layers. The metal components used in this example are 2.0% by weight of Mn, 2.3% by weight of Sn, and the balance is Cu. In addition, an insulating coating made of polyimide is formed on the portions excluding the connection terminals 2a and 2b and the cut surface.

ここでは、絶縁被膜の形成にポリイミドを用いたが、リフロー工程で絶縁被膜としての特性を喪失しない程度の耐熱性を具備したものであれば、これに限定されるものではなく、テフロン(登録商標)を代表とするフッ素系の高分子材料や、ポリアミドイミド系の高分子材料を用いることができる。また、各種の無機酸化物も用いることができるが、絶縁被膜としての機械的な強度などを考慮すると、前記の高分子材料を用いるのが望ましい。  Here, polyimide was used for forming the insulating film, but it is not limited to this as long as it has heat resistance that does not lose the characteristics as the insulating film in the reflow process. ) And a polymer material of polyamide-imide and the like can be used. Various inorganic oxides can also be used, but it is desirable to use the above-described polymer material in consideration of mechanical strength as an insulating film.

寸法は、全体の幅が及び奥行きが、それぞれ6〜7mm、3〜4mmであり、抵抗素子1の部分の幅及び厚さが、それぞれ2mm、0.2mmであり、抵抗素子1の部分と接続端子2aまたは2bの部分の合計の厚さが0.3mmであり、接続端子2aまたは2bの部分の幅が2mmである。このような寸法で得られる抵抗値は、おおよそ0.5mΩとなる。  The overall width and depth are 6 to 7 mm and 3 to 4 mm, respectively. The width and thickness of the resistive element 1 part are 2 mm and 0.2 mm, respectively, and are connected to the resistive element 1 part. The total thickness of the terminal 2a or 2b portion is 0.3 mm, and the width of the connection terminal 2a or 2b portion is 2 mm. The resistance value obtained with such dimensions is approximately 0.5 mΩ.

図2は、本発明の抵抗器の製造工程を示すフローチャートであり、図3は、本発明の抵抗器の製造工程におけるロール圧延を模式的に示した図である。図3において、4は棒状の金属材料、5は表面に凹部が形成されたロール、6は表面に凸部が形成されたロールである。  FIG. 2 is a flowchart showing a manufacturing process of the resistor of the present invention, and FIG. 3 is a diagram schematically showing roll rolling in the manufacturing process of the resistor of the present invention. In FIG. 3, 4 is a rod-shaped metal material, 5 is a roll having concave portions formed on the surface, and 6 is a roll having convex portions formed on the surface.

以下、図2のフローチャートを参照しながら、本発明にかかる抵抗器の製造工程について説明する。まず、Mnが2.0重量%、Snが2.3重量%、Cuが95.7重量%となるように、それぞれ原料を秤量し、高周波溶解炉を用いて溶解し、インゴットを得た。  Hereafter, the manufacturing process of the resistor concerning this invention is demonstrated, referring the flowchart of FIG. First, raw materials were weighed so that Mn was 2.0% by weight, Sn was 2.3% by weight, and Cu was 95.7% by weight, and melted using a high-frequency melting furnace to obtain an ingot.

次に、得られたインゴットに、多段ロールを用いて熱間圧延を施し、厚さ約3mmの板状とした。この板状の材料に幅切を施し、次いで、ダイス引加工と、センタレス研磨加工を施し、直径が2mmの円形の断面を有する線材とした。この線材の表面に傷が存在すると、完成品の表面に大きな欠陥を生じることがあるので、次工程に供する前に表面の傷を除くための研磨を行った。  Next, the obtained ingot was hot-rolled using a multistage roll to form a plate having a thickness of about 3 mm. The plate-like material was cut into a width, and then subjected to a die drawing process and a centerless polishing process to obtain a wire having a circular cross section with a diameter of 2 mm. If there is a scratch on the surface of the wire, a large defect may be generated on the surface of the finished product. Therefore, polishing for removing the scratch on the surface was performed before the next step.

次に、図3に示すように表面に凹部を形成されたロール5と、表面に凸部が形成されたロール6を用いて、線材に圧延加工を施し、抵抗素子1の部分と、接続端子2a、2bの部分を有する断面形状とした。このように断面を製品形状と同じにした後、ポリアミック酸溶液からなるポリイミド樹脂の前駆体を用い、厚さが約30μmのポリイミド樹脂の絶縁被膜を形成した。  Next, as shown in FIG. 3, the wire 5 is rolled using the roll 5 having a concave portion formed on the surface and the roll 6 having a convex portion formed on the surface, and the portion of the resistance element 1 and the connection terminal It was set as the cross-sectional shape which has the part of 2a, 2b. After making the cross section the same as the product shape in this way, a polyimide resin precursor made of a polyamic acid solution was used to form a polyimide resin insulating film having a thickness of about 30 μm.

次に、抵抗素子1の部分の厚さを測定し、得られた測定値に基づいて切断長を決定し、プレス切断を施した。Agが3.5重量%、残部がSnなる組成のハンダを用いメッキ処理を施した。ちなみにこのSn−Agハンダの固相線は221℃、液相223℃であり、リフロー工程における絶縁被膜の熱劣化は極めて少ない。  Next, the thickness of the portion of the resistance element 1 was measured, the cutting length was determined based on the obtained measurement value, and press cutting was performed. Plating was performed using solder having a composition of Ag of 3.5% by weight and the balance of Sn. Incidentally, the solid line of this Sn-Ag solder is 221 ° C. and the liquid phase 223 ° C., and the thermal degradation of the insulating coating in the reflow process is extremely small.

以上に説明したように、本発明の抵抗素子は、小型で特性のばらつきが非常に少なく、電気電子機器の小型化、高性能化に寄与するところには、極めて大きいものがある。なお、本発明は、前記実施の形態に限定されるものではなく、例えば、絶縁被膜として別材質を用いるような、本発明の分野における通常の知識を有する者であれば想到し得る、各種変形、修正を含む要旨を逸脱しない範囲の設計変更があっても、本発明に含まれることは勿論である。  As described above, the resistance element of the present invention is extremely small in size and has very little variation in characteristics, and contributes to miniaturization and high performance of electrical and electronic equipment. Note that the present invention is not limited to the above-described embodiment, and various modifications that can be conceived by those having ordinary knowledge in the field of the present invention, for example, using another material as the insulating coating. Needless to say, even if there is a design change within a range that does not depart from the gist including the correction, it is included in the present invention.

1,7 抵抗素子部
2a,2b,8a,8b 接続端子部
3a,3b ハンダメッキ層
4 棒状の金属材料
5 表面に凹部が形成されたロール
6 表面に凸部が形成されたロール
DESCRIPTION OF SYMBOLS 1,7 Resistance element part 2a, 2b, 8a, 8b Connection terminal part 3a, 3b Solder plating layer 4 Rod-shaped metal material 5 Roll with the concave part formed on the surface 6 Roll with the convex part formed on the surface

Claims (5)

金属の板状部材からなる抵抗素子部と、前記抵抗素子部の一方の面の両端にほぼ垂直に突設されてなる接続端子と、前記接続端子の先端部に設けられてなるメッキ層と、前記先端部以外の部分に形成されてなる絶縁被膜を有することを特徴とする抵抗器。  A resistance element portion made of a metal plate-like member, a connection terminal projecting substantially perpendicular to both ends of one surface of the resistance element portion, and a plating layer provided at the tip of the connection terminal; A resistor having an insulating film formed on a portion other than the tip portion. 前記金属の成分は、6.0〜8.0重量%のMn、1.5〜3.0重量%のSn、残部がCuであることを特徴とする、請求項1に記載の抵抗器。  The resistor according to claim 1, wherein the metal component is 6.0 to 8.0 wt% Mn, 1.5 to 3.0 wt% Sn, and the balance is Cu. 前記メッキ層は、SnとAgを含むハンダからなることを特徴とする、請求項1または請求項2に記載の抵抗器。  The resistor according to claim 1, wherein the plated layer is made of solder containing Sn and Ag. 金属からなり、断面がほぼ円形状の棒状の材料に、表面に凹部を有するロールと表面に凸部を有するロールとの間で圧延加工を施し、断面がコ字形状の帯状材料となす工程と、ことにより、板状部材の一方の面の両端にほぼ垂直な突設部を有する部材を形成する工程と、前記帯状部材に絶縁被膜を形成する工程と、前記突設部の先端にメッキ処理を施す工程、前記帯状材料を長さ方向と垂直な方向に切断する工程を有することを特徴とする、請求項1ないし請求項3のいずれかに記載の抵抗器の製造方法。  A step of rolling a bar-shaped material made of metal and having a substantially circular cross section between a roll having a concave portion on the surface and a roll having a convex portion on the surface to form a band-shaped material having a U-shaped cross section; Thus, a step of forming a member having protruding portions substantially perpendicular to both ends of one surface of the plate-shaped member, a step of forming an insulating film on the belt-shaped member, and a plating treatment on the tip of the protruding portion The method of manufacturing a resistor according to any one of claims 1 to 3, further comprising a step of cutting the strip-shaped material in a direction perpendicular to a length direction. 前記板状部材のほぼ中央部の厚さの測定値により、前記帯状材料の切断長を決定する工程を有することを特徴とする、請求項4に記載の抵抗器の製造方法。  5. The method of manufacturing a resistor according to claim 4, further comprising a step of determining a cutting length of the band-shaped material from a measured value of a thickness of a substantially central portion of the plate-shaped member.
JP2009108424A 2009-04-06 2009-04-06 Resistor and manufacturing method of the same Pending JP2010245488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009108424A JP2010245488A (en) 2009-04-06 2009-04-06 Resistor and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009108424A JP2010245488A (en) 2009-04-06 2009-04-06 Resistor and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2010245488A true JP2010245488A (en) 2010-10-28

Family

ID=43098128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009108424A Pending JP2010245488A (en) 2009-04-06 2009-04-06 Resistor and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2010245488A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055130A (en) * 2011-09-01 2013-03-21 Rohm Co Ltd Jumper resistor
CN111304490A (en) * 2020-03-23 2020-06-19 西安斯瑞先进铜合金科技有限公司 Preparation method and application of CuMn7Sn3 alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055130A (en) * 2011-09-01 2013-03-21 Rohm Co Ltd Jumper resistor
CN111304490A (en) * 2020-03-23 2020-06-19 西安斯瑞先进铜合金科技有限公司 Preparation method and application of CuMn7Sn3 alloy
CN111304490B (en) * 2020-03-23 2021-03-12 西安斯瑞先进铜合金科技有限公司 Preparation method and application of CuMn7Sn3 alloy

Similar Documents

Publication Publication Date Title
CN107658095B (en) Coil assembly and method of manufacturing the same
JP5970695B2 (en) Current detection resistor and its mounting structure
JP4433909B2 (en) Surface mount electronic components
TWI645047B (en) Solder alloys, solder balls and solder joints
KR101986557B1 (en) Sn-Cu-BASED LEAD-FREE SOLDER ALLOY
US20150279605A1 (en) Fuse and manufacturing method thereof
KR20160053838A (en) Lead-free solder, lead-free solder ball, solder joint obtained using said lead-free solder, and semiconductor circuit including said solder joint
JP6904383B2 (en) Laminated electronic components and their mounting structure
JP6015689B2 (en) Coil parts and terminal parts used therefor
JP2011129696A (en) Mounting structure for electronic component
JP3775172B2 (en) Solder composition and soldered article
TWI395233B (en) Resistive metal plate low resistance chip resistor and its manufacturing method
JP5332025B2 (en) Coil-enclosed dust core, device having coil-enclosed dust core, method for producing coil-enclosed dust core, and method for producing device
US10454445B2 (en) Common mode filter
JP2010245488A (en) Resistor and manufacturing method of the same
JP5505142B2 (en) Fuse and manufacturing method thereof
JP4363372B2 (en) Solder composition and soldered article
CN113767469A (en) Core material, electronic component, and method for forming bump electrode
JP6376266B1 (en) Nuclear material, solder joint and bump electrode forming method
JP2006257408A (en) Conductive adhesive
JP5822777B2 (en) 2-core parallel lead wire and thermistor with lead wire
JP5844033B2 (en) Zinc alloy and metallized plastic film capacitor end face electrode material
JP3536615B2 (en) Chip impedance element
JP2019114586A (en) Thermistor and method for manufacturing the same
JP2005109373A (en) Semiconductor device