JP2006349349A - 未燃焼時無限増倍係数が即発臨界以下で燃焼反応度係数正の核燃料集合体を装荷せる沸騰水型原子炉改良の気体冷却原子炉 - Google Patents

未燃焼時無限増倍係数が即発臨界以下で燃焼反応度係数正の核燃料集合体を装荷せる沸騰水型原子炉改良の気体冷却原子炉 Download PDF

Info

Publication number
JP2006349349A
JP2006349349A JP2005171842A JP2005171842A JP2006349349A JP 2006349349 A JP2006349349 A JP 2006349349A JP 2005171842 A JP2005171842 A JP 2005171842A JP 2005171842 A JP2005171842 A JP 2005171842A JP 2006349349 A JP2006349349 A JP 2006349349A
Authority
JP
Japan
Prior art keywords
nuclear fuel
gas
fuel assembly
nuclear
nuclear reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005171842A
Other languages
English (en)
Inventor
Toshihisa Shirakawa
白川利久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005171842A priority Critical patent/JP2006349349A/ja
Publication of JP2006349349A publication Critical patent/JP2006349349A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

【課題】原子炉に装荷せる核燃料集合体のテロリストによる悪用を困難にするために核拡散抵抗性を高めた再処理費用が安い原子炉を提供する。
【解決手段】製造時未燃焼増倍係数が即発臨界以下のウランとプルトニウムの混合酸化物(MOX)のプルトニウム富化度が10wt%以下の核燃料ペレットを内封する核燃料棒を正方に配列し束ねた核燃料集合体及びこれを装荷するために沸騰水型原子炉を改良した気体冷却原子炉。
【選択図】図11

Description

本発明は、沸騰水型原子炉の改良に関する。
図1は沸騰水型原子炉(BWR)に装荷せる核燃料集合体(30)の概略斜視図である(特許文献1)。多数本正方格子状に配列された核燃料物質を内封している円柱形状の核燃料棒(31)と、それ等の上端及び下端を夫々支持する上側結合板(32)及び下側結合板(33)と、前記核燃料棒(31)の高さ途中に数個位置して核燃料棒(31)間の間隔を規制するスペーサ(34)と、これ等を4面で覆うチャンネルボックス(35)から構成される。
図2は従来の核燃料棒(31)の概観図である。ジルカロイの被覆管(41)と、この被覆管(41)の上下開口端を気密閉塞する上部端栓(42)及び下部端栓(43)と、スプリング(45)と、上部プレナム(48)とからなる構造材と、被覆管(41)内に核燃料である濃縮ウランの酸化物を円柱状に焼結してなる多数個の核燃料ペレット(44)から構成されている。スペーサ(34)が位置していない高さでの従来の核燃料集合体(30)を配置せる炉心平面図を図3に示した。停止時の原子炉では、核燃料集合体(30)は制御棒(22)側の漏洩水通路(51)と制御棒(22)と反対側の漏洩水通路(51)を挟んで格子状に配列されている。核燃料棒(31)の間は冷却水通路(49)となっている。運転時には、図4に示すように大半の制御棒(22)を炉心の下に引き抜いて核分裂を活発化させる。
核分裂で発生した高速中性子は水により減速され熱中性子となり、熱中性子はウラン235(U235)やプルトニウム239(Pu239)やプルトニウム241(Pu241)といった熱中性子との相互作用によって核分裂を起こす核分裂性物質を激しく核分裂させる。
沸騰水型原子炉は、核燃料で発生した熱を原子炉内に液体で入ってきた水に伝達し水を沸騰させ飽和蒸気を発生する。飽和蒸気はタービンに導かれ電気を発生する。
図5は従来の沸騰水型原子炉の圧力容器(10)内の冷却系統(非特許文献1)の概観図を示す。タービンで仕事を終えた水は、給水配管(17)を通って圧力容器(10)壁とシュラウド(18)との間のシュラウド外水(16)に混じり込む。水はポンプモータ(24)により回転する冷却材循環ポンプ(23)で加速されてシュラウド(18)の下端から矢印方向に核燃料集合体(30)に入り、熱を吸収して液体の水の一部が飽和蒸気になる。液体である水と気体である飽和蒸気が共存して流れている二相流となって上部に流れる。二相流断面において飽和蒸気が占める割合をボイド率と呼んでいる。ボイド率は核燃料集合体(30)の下部ではゼロであり、中程では約40%の中ボイド率になっており、上部では約70%の高ボイド率になっている。
核燃料集合体(30)の上部からの二相流は気水分離器(15)の中に入り旋回させられることにより、開き矢印方向に上昇する飽和蒸気と矢印方向に下に落ちる水に分離される。上昇した飽和蒸気は水分を若干含んでいるため蒸気乾燥器(12)により、開き矢印方向に上昇する乾燥した飽和蒸気と矢印方向に下に落ちる水に分離される。乾燥した飽和蒸気は蒸気ドーム(11)から、圧力容器(10)壁と蒸気乾燥器胴部(13)の間を通って飽和蒸気配管(14)からタービンへ出て行く。
蒸気乾燥器(12)内での飽和蒸気流れは破線で示した。
:昭61-37591、「核燃料集合体」 :コロナ社、都甲著、1975年「原子動力」。
製造されたばかりの核燃料棒(31)には、燃焼による核分裂性物質の消耗を考慮して多量の核分裂性物質が内包されている。したがって、製造されたばかりの核燃料棒(31)の未燃焼時無限増倍係数(pkinf0)は1.0を大幅に上回る。現行原子炉に装荷されている核燃料集合体(30)は運転効率向上のために、可燃性毒物であるガドリニアを添加して未燃焼時無限増倍係数(pkinf0)が1.0を大幅に下回るガドリニア核燃料棒(36) を数本装荷して水雰囲気での核燃料集合体(30)の未燃焼時無限増倍係数(bkinf0)を低くさせているが、ガドリニアが添加されていない核燃料棒(31)のpkinf0は1.0を大きく上回る。したがって、ガドリニアが添加されていない核燃料棒(31)からは粗悪ながらも核爆発物を作りえる。製造時や運搬時の取り扱いは元より、テロリストによる悪用に対し充分な管理が必要である。
ヘリウムや水蒸気や炭酸ガスの気体で冷却する原子炉において、気体雰囲気でのpkinf0は即発臨界以下であるが燃焼が進むにつれて即発臨界を大きく上回るように、ウランとプルトニウムの混合酸化物(MOX)のプルトニウム富化度が10wt%以下の核燃料ペレットを内封する核燃料棒を正方に配列し束ねた核燃料集合体を、制御棒(22)の周りを4バッチ交換で装荷する。
図6は本発明が意図する核燃料集合体の燃焼に伴う無限増倍係数の変化の模式図である。この核燃料集合体を4バッチ交換で装荷した原子炉における運転開始での核燃料集合体は、
新核燃料集合体:燃焼度E=E0=未燃焼、無限増倍係数bkinf0は即発臨界以下。
1サイクル燃焼した1バッチ燃焼核燃料集合体:燃焼度E1、無限増倍係数はbkinf1。
2サイクル燃焼した2バッチ燃焼核燃料集合体:燃焼度E2、無限増倍係数はbkinf2。
3サイクル燃焼した3バッチ燃焼核燃料集合体:燃焼度E3、無限増倍係数はbkinf3。
この原子炉を1サイクル運転すると、新核燃料集合体は1サイクル燃焼して1バッチ燃焼核燃料集合体になる。1サイクル燃焼した1バッチ燃焼核燃料集合体は2サイクル燃焼して2バッチ燃焼核燃料集合体になる。2サイクル燃焼した2バッチ燃焼核燃料集合体は3サイクル燃焼して3バッチ燃焼核燃料集合体になる。3サイクル燃焼した3バッチ燃焼核燃料集合体は4サイクル燃焼して4バッチ燃焼核燃料集合体で燃焼度はE4、無限増倍係数はbkinf4になる。
新核燃料集合体の無限増倍係数bkinf0が即発臨界以下であっても、運転初期炉心平均無限増倍係数Ikinf は約 (bkinf0 + bkinf1 + bkinf2 + bkinf3 ) /4 であり、bkinf1 +bkinf2 + bkinf3が臨界を大きく上回るようにして、中性子漏洩を考慮にいれても臨界以上にして出力を発生させる。
運転末期炉心平均無限増倍係数Ekinf は約 (bkinf1 + bkinf2 + bkinf3 + bkinf4 ) /4であり、臨界を上回るため制御棒を炉心に挿入する。制御棒がそれ以上挿入できなくなったり、被覆管使用期間が許容時点に達した段階で運転停止とする。
運転を再開するためには、4サイクル燃焼した核燃料集合体を炉心の外に取出し新核燃料集合体を炉心に装荷する。
テロリストが盗難できたとしても、気体中の初期無限増倍係数が即発臨界以下になるところのプルトニウム富化度が10wt%以下のMOX核燃料を核爆弾に改造するのは困難である。核爆発させるための比較的簡単なものでは、無限増倍係数が即発臨界を大きく上回る一塊の核物質を2分割して離しておくことにより各々の実効増倍係数(無限増倍係数に中性子漏洩を考慮した増倍係数)を臨界以下に保ち、核爆発させる時に一体化することにより実効増倍係数が即発臨界を大きく上回るようにしている。したがって、無限増倍係数が即発臨界以下であれば核爆発させるのは困難である。
MOX核燃料をヘリウムや蒸気や炭酸ガスの気体で冷却する核燃料棒は転換比(核分裂性物質ではないが中性子を吸収する水と核分裂性物質になる親物質から生成された核分裂性物質の数 / 消費された核分裂性物質の数)を大きくする可能性が高い。転換比が1.0を越えた時の呼称である増殖比が大きくなると燃焼が進むに連れて無限増倍係数は大きくなる。U235やPu239やPu241は核分裂性物質であり、ウラン238 (U238)やプルトニウム240(Pu240)やプルトニウム242(Pu242)は親物質である。
プルトニウム富化度が低いMOX核燃料はプルトニウムの減少割合は小さいが、U238の割合が多いためプルトニウムの生成割合は大きい。高速中性子に対して核分裂の効率が高いプルトニウムを含むMOX核燃料は転換比が大きくなり得る核燃料である。
高速中性子を減速させる能力が小さいヘリウムや水蒸気や炭酸ガスの気体冷却材の雰囲気でのMOXを内封する核燃料棒は増殖比が大きくなる。
燃焼が進んだ当該核燃料集合体をテロリストが盗難できたとしても、燃焼が進んだ当該核燃料集合体は発熱が大きかったり放射能が強いため核爆弾への製造は困難を極める。
臨界を上回る使用済み核燃料から即発臨界以下の新燃料を作るには、プルトニウムを単体抽出することなく劣化ウランを添加すれば無限増倍係数は即発臨界以下になり、発熱も下がり、放射能も弱くなるため扱いやすくなるため、再処理費用低減や再処理施設での安全性が高くなる。
事故等で冷却材である気体が喪失しても密度が小さいために反応度への影響は小さい。
圧力は低下するが大気圧程度までであり除熱ができなくなることはない。除熱低下により
核燃料温度が上昇するとウラン238による中性子吸収が顕著になり反応度は低下し出力が低下する。万一、水が炉心に入ってきてもプルトニウム240やプルトニウム242や核分裂生成物の熱中性子吸収断面積が大きいため反応度は低下し出力が低下する。
図5に示すBWRの原子炉冷却系統図に見るように、BWRは気体領域を持っているため気体冷却炉への改良は容易であり、本発明の核燃料集合体をBWRに適用して気体で冷却する炉心に改造することは容易でる。
燃料交換時には、現行BWR同様に炉心を水で満たすことにより、停止時の燃料からの発熱の除熱や放射線の遮蔽が容易である。
現在運転中のBWRに若干の改良を施すだけで、核拡散抵抗性が高く、かつ再処理費用が安い気体冷却原子炉が提供できた。
図7は、ヘリウムまたは炭酸ガスまたは水蒸気雰囲気時の未燃焼時無限増倍係数が即発臨界以下でかつ半分以上の寿命で燃焼反応度係数が正であるプルトニウム富化度が10wt%以下のMOXからなるLMOX核燃料ペレット(132)を、表面に円周方向と垂直方向にスリットのある径垂直スリット被覆管(141)に内包する本発明の径垂直スリット核燃料棒(131)の概観図である。冷却能力を高めるため、被覆管の表面に多数のスリットを入れて伝熱面積を大きくした。冷却フィンを接着することと違って、一体物にスリットを入れることは被覆管本体とスリットによってできた表面突起との熱伝導が良好である。なお、核燃料棒(131)の下半分は比較的温度が低いためスリットを入れなくても熱除去の問題は少ないため冷却材の流動抵抗を少なくできる。流動ポンプの節約になる。
図8は、ヘリウムまたは炭酸ガスまたは水蒸気雰囲気の気体通路(149)に径垂直スリット核燃料棒(131)を正方に配列して未燃焼時無限増倍係数が即発臨界以下でかつ寿命の半分以上の期間における燃焼反応度係数が正であることを特徴とする本発明の気体冷却型核燃料集合体(130)を漏洩気体通路(52)を隔てて配置せる炉心平面図である。運転時を想定しているため制御棒(22)は炉心の下に引き抜かれている。
図9に示すLMOX核燃料ペレット(132)の中心に炭化ジルコニウムまたは劣化炭化硼素または酸化ベリリウムまたは炭化珪素また黒鉛の減速材(234)を内蔵する減速材チューブ(232)を装荷した核燃料ペレットを径垂直スリット被覆管(141)に内包する希釈核燃料棒(231)を正方に配列し束ねた希釈核燃料集合体(230)は、LMOX核燃料ペレット(132)だけでは無限増倍係数の燃焼による増加が過大であるため出力ピークが過大になるのを抑制することができる。減速材により高速中性子割合を低下させることによりPu239の核分裂効率を低下させることにより Pu239が過度に増加するのを抑制する。母材のMOXは酸化物であるため化学反応は小さいが減速材をチューブに内蔵すれば化学反応の恐れが少なくなる。
LMOX核燃料ペレット(132)にアメリシウム等のマイナアクチニドの酸化物を添加してもPu239が過度に増加するのを抑制できる。マイナアクチニドは、中性子を吸収してもプルトニウムPu239とならないため核分裂性プルトニウムが過度に増加するのを抑制する。酸化物であれば耐熱性が高く、母材が酸化物であることから混合することが可能である。
図10は気体冷却型核燃料集合体(130)を制御棒(22)の回りに4バッチ交換で装荷しヘリウムまたは炭酸ガスまたは水蒸気で冷却した炉心の構成例である。
1:未燃焼の気体冷却型核燃料集合体(130)
2:1サイクル燃焼の気体冷却型核燃料集合体(130)
3:2サイクル燃焼の気体冷却型核燃料集合体(130)
4:3サイクル燃焼の気体冷却型核燃料集合体(130)
燃焼の進み具合が異なる4種類の気体冷却型核燃料集合体(130)が、制御棒(22)の回りに配置されているため局部的に出力が極端に大きくなることがない。未燃焼の気体冷却型核燃料集合体(130)の無限増倍係数が臨界以下であっても、他の気体冷却型核燃料集合体(130)の無限増倍係数が臨界以上で炉心平均実効増倍係数が臨界以上であれば出力を発生することができる。図中の点線十字は制御棒(22)の位置を示した。運転初期では殆どの制御棒(22)は炉心の下に引き抜かれている。運転末期に近づくにつれて制御棒(22)が少しづつ炉心に挿入される。
希釈核燃料集合体(230)においても上記と同様の4バッチ交換炉心の構成は有効である。
図11は本発明のBWR改良気体冷却原子炉である。従来の沸騰水型原子炉の圧力容器(10)内の気水分離器(15)と蒸気乾燥器(12)とは取り除き、従来の上部が開放しているシュラウド(18)の上部を密封した密閉シュラウド(19)内に気体冷却型核燃料集合体(130)または希釈核燃料集合体(230)を装荷した沸騰水型原子炉の炉心をヘリウムまたは炭酸ガスまたは水蒸気の気体冷却とし、従来のタービンへの飽和蒸気配管(14)は二重管とし、密封シュラウド(19)内からの高温気体は密封シュラウド(19)に接続された高温気体内管(115)からタービンへ送られる。タービンで仕事を終えた低温気体は低温気体外管(114)から圧力容器(10)内に入りシュラウド外低温気体領域(53)を経て気体冷却型核燃料集合体(130)からの熱を受けることを特徴とする。
現行運転中のBWRでも、高いボイド率で運転すれば本発明の気体冷却型核燃料集合体(130)の性能が発揮できる。
近年、炭酸ガス温室効果抑止として、石油高騰の抑止効果としての原子力が注目されだしている。一方、テロリストによる核物質の悪用が懸念されている。核拡散抵抗性の高い核燃料集合体が要望されている。
本発明の製造されたばかりの未燃焼の核燃料は即発臨界以下であるため、テロリストが盗難したとしても核爆発させるのは困難である。
従来の核燃料集合体(30)の概略斜視図。 従来の核燃料棒(31)の概観図。 スペーサ(34)が位置していない高さでの従来の核燃料集合体(30)を配置せる炉心平面図。停止時。 スペーサ(34)が位置していない高さでの従来の核燃料集合体(30)を配置せる炉心平面図。運転時。 従来の沸騰水型原子炉の圧力容器(10)内の冷却系統の概観図。 本発明が意図する核燃料集合体の燃焼に伴う無限増倍係数の変化の模式図。 本発明の径垂直スリット核燃料棒(131)の概観図。 スペーサ(34)が位置していない高さでの本発明の気体冷却型核燃料集合体(130)を配置せる炉心平面図。運転時。 本発明の減速材チューブ(232)を内蔵する希釈核燃料棒(231)の概観図。 気体冷却型核燃料集合体(130)を制御棒(22)の回りに4バッチ交換で装荷しヘリウムまたは炭酸ガスまたは水蒸気で冷却した炉心の構成例。 本発明のBWR改良気体冷却原子炉。
符号の説明
10は圧力容器。
11は蒸気ドーム。
12は蒸気乾燥器。
13は蒸気乾燥器胴部。
14は飽和蒸気配管。
15は気水分離器。
16はシュラウド外水。
17は給水配管。
18はシュラウド。
19は密封シュラウド。
22は制御棒。
23は冷却材循環ポンプ。
24はポンプモータ。
30は従来の核燃料集合体。
31は核燃料棒。
32は上側結合板。
33は下側結合板。
34はスペーサ。
35はチャンネルボックス。
36はガドリニア核燃料棒。
41は被覆管。
42は上部端栓。
43は下部端栓。
44は核燃料ペレット。
45はスプリング。
48は上部プレナム。
49は冷却水通路。
51は漏洩水通路。
52は漏洩気体通路。
53はシュラウド外低温気体領域。
114は低温気体外管。
115は高温気体内管。
130は本発明の気体冷却型核燃料集合体。
131は本発明の径垂直スリット核燃料棒。
132はLMOX核燃料ペレット。
141は径垂直スリット被覆管。
149は気体通路。
230は本発明の希釈核燃料集合体。
231は本発明の希釈核燃料棒。
232は減速材チューブ。
234は炭化ジルコニウムまたは劣化炭化硼素または酸化ベリリウムまたは炭化珪素または黒鉛の減速材。

Claims (4)

  1. ヘリウムまたは炭酸ガスまたは水蒸気雰囲気時の未燃焼時無限増倍係数が即発臨界以下でかつ半分以上の寿命で燃焼反応度係数が正であるプルトニウム富化度が10wt%以下のMOXからなるLMOX核燃料ペレット(132)を、表面に円周方向と垂直方向にスリットのある径垂直スリット被覆管(141)に内包する径垂直スリット核燃料棒(131)を正方に配列し束ねたことを特徴とする気体冷却型核燃料集合体(130)。
  2. 請求項1のLMOX核燃料ペレット(132)において、中心に炭化ジルコニウムまたは劣化炭化硼素または酸化ベリリウムまたは炭化珪素または黒鉛の減速材(234)を内蔵する減速材チューブ(232)を装荷またはアメリシウム等のマイナアクチニドの酸化物を添加し、径垂直スリット被覆管(141)に内包した希釈核燃料棒(231)を正方に配列し束ねたことを特徴とする希釈核燃料集合体(230)。
  3. 請求項1の気体冷却型核燃料集合体(130)または請求項2の希釈核燃料集合体(230)を制御棒(22)の回りに4バッチ交換で装荷したことを特徴とする炉心。
  4. 従来の沸騰水型原子炉の圧力容器(10)内の気水分離器(15)と蒸気乾燥器(12)とを取り除き、従来のシュラウド(18)の上部を密封した密閉シュラウド(19)内の炉心構成を請求項3の炉心としヘリウムまたは炭酸ガスまたは水蒸気の気体冷却とし、従来のタービンへの飽和蒸気配管(14)は二重管とし、高温気体内管(115)は密閉シュラウド(19)内から高温気体をタービンへ送り、タービンで仕事を終えた低温気体を低温気体外管(114)から圧力容器(10)内に戻すことを特徴とするBWR改良気体冷却原子炉。
JP2005171842A 2005-06-13 2005-06-13 未燃焼時無限増倍係数が即発臨界以下で燃焼反応度係数正の核燃料集合体を装荷せる沸騰水型原子炉改良の気体冷却原子炉 Pending JP2006349349A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005171842A JP2006349349A (ja) 2005-06-13 2005-06-13 未燃焼時無限増倍係数が即発臨界以下で燃焼反応度係数正の核燃料集合体を装荷せる沸騰水型原子炉改良の気体冷却原子炉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005171842A JP2006349349A (ja) 2005-06-13 2005-06-13 未燃焼時無限増倍係数が即発臨界以下で燃焼反応度係数正の核燃料集合体を装荷せる沸騰水型原子炉改良の気体冷却原子炉

Publications (1)

Publication Number Publication Date
JP2006349349A true JP2006349349A (ja) 2006-12-28

Family

ID=37645375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005171842A Pending JP2006349349A (ja) 2005-06-13 2005-06-13 未燃焼時無限増倍係数が即発臨界以下で燃焼反応度係数正の核燃料集合体を装荷せる沸騰水型原子炉改良の気体冷却原子炉

Country Status (1)

Country Link
JP (1) JP2006349349A (ja)

Similar Documents

Publication Publication Date Title
US20100054389A1 (en) Mixed oxide fuel assembly
JP6726596B2 (ja) 燃料集合体及びそれを装荷する沸騰水型原子炉の炉心
JP5006233B2 (ja) トリウム系核燃料を用いた増殖可能な核燃料集合体。
US3475272A (en) Gas-cooled fast reactor
JP5090946B2 (ja) Bwrの核燃料棒および核燃料集合体
JPH07306285A (ja) 原子炉の炉心
US6665366B2 (en) Monobloc fuel element and boiling water and fast spectrum nuclear reactor using such elements
JP2002303692A (ja) 軽水炉用燃料集合体、軽水炉およびその炉心
JP2006029797A (ja) 核燃料集合体
JP6965200B2 (ja) 燃料集合体
JP4558477B2 (ja) 沸騰水型原子炉の燃料集合体
JP2006349349A (ja) 未燃焼時無限増倍係数が即発臨界以下で燃焼反応度係数正の核燃料集合体を装荷せる沸騰水型原子炉改良の気体冷却原子炉
JP2012127749A (ja) 高転換サウナ型原子炉
Ingersoll et al. Overview and status of the advanced high-temperature reactor
US3703437A (en) Means for supporting fissile material in a nuclear reactor
JP5090687B2 (ja) Pwr核燃料棒利用型bwr用正方形の核燃料集合体製造法および核燃料集合体
JP2006064678A (ja) 原子炉の燃料集合体配置方法、燃料棒および燃料集合体
JP7168528B2 (ja) 燃料集合体
JP2016176719A (ja) 正方形沸騰水型原子炉
JP6577131B2 (ja) 燃料集合体及びそれを装荷する炉心
JP2509625B2 (ja) 高速増殖炉の炉心構成
JP2022025334A (ja) 燃料集合体
JP2731599B2 (ja) 沸騰水型原子炉及びその燃料装荷方法
JPH1194972A (ja) 沸騰水型原子炉
Brasier et al. Application of Low Critical Mass Studies to Reactor Design