JP2006349297A - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP2006349297A
JP2006349297A JP2005178767A JP2005178767A JP2006349297A JP 2006349297 A JP2006349297 A JP 2006349297A JP 2005178767 A JP2005178767 A JP 2005178767A JP 2005178767 A JP2005178767 A JP 2005178767A JP 2006349297 A JP2006349297 A JP 2006349297A
Authority
JP
Japan
Prior art keywords
expander
refrigerant
inlet
refrigeration cycle
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005178767A
Other languages
English (en)
Inventor
Masaya Honma
雅也 本間
Yuichi Kusumaru
雄一 藥丸
Akira Komori
晃 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005178767A priority Critical patent/JP2006349297A/ja
Publication of JP2006349297A publication Critical patent/JP2006349297A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】膨張機システムにおいて、膨張機の動力回収量が大きくなるように膨張機入口ポイントを制御する
【解決手段】ヒートポンプ装置は、圧縮機1と、放熱器2と、第1の絞り装置25と、膨張機4と、蒸発器3とによって冷媒回路26を構成されており、第1の絞り装置25及び膨張機4をバイパスするバイパス回路27およびこのバイパス回路27上に第2の絞り装置28が配設されており、膨張機入口冷媒温度検出手段13や膨張機入口冷媒圧力検出手段14により把握した運転状態の変化に対応して、制御手段19によって圧縮機1の周波数、膨張機4の周波数、放熱器2のファン風量、第1の絞り装置25の開度、第2の絞り装置28の開度を制御することにより、運転状態(膨張機入口の冷媒状態)が変化しても最適な膨張機効率で運転を行えるようにする。
【選択図】図1

Description

本発明は、給湯機や空調機などに用いる、膨張機を搭載した冷凍サイクル装置の運転制御方法に関する
近年、冷凍サイクルの更なる高効率化を図る手段として、膨張弁に代えて膨張機を備え、冷媒が膨張する過程でその圧力エネルギーを膨張機によって電力又は動力の形で回収し、その回収分だけ圧縮機の入力を低減する動力回収サイクルが提案されている。(例えば、特許文献1参照)。図11は特許文献1に記載された従来のヒートポンプ装置を示すものである。
図11において、室内熱交換器2に配管接続された、圧縮機1と、圧縮機1と一軸で連結された膨張機4と、膨張機4と第一の四路切換弁7の間にレシーバ5と、第二の四路切換弁8とが備えられている。
冷房運転時には、圧縮機1から吐出された冷媒ガスは、第二の四路切換弁8を経て室外熱交換器3において冷却され凝縮する。この冷媒は、レシーバ9を経て膨張機11に導入され、膨張機11において等エントロピー膨張により減圧された後、第二の四路切換弁5を経て室内熱交換器2に導入される。室内熱交換器4に導入された液冷媒は、ここで蒸発してその蒸発熱によって室内の冷房を行うとともに、蒸発後のガス冷媒は第一の四路切換弁8を経て圧縮機1に吸入される。
一方、暖房運転時には、圧縮機1から吐出されたガス冷媒は、第二の四路切換弁8を経て室内熱交換器2に導入され、ここで凝縮するが、その際の凝縮熱によって室内の暖房が行われる。室内熱交換器2において凝縮した冷媒は、第一の四路切換弁7を経て膨張機4に導入され、膨張機4において等エントロピー膨張により減圧された後、第二の四路切換弁7を経て室外熱交換器3に導入され、ここで蒸発してガス冷媒とされた後、第二の四路切換弁8を経て圧縮機1に吸入される。
図8は膨張機4による高効率化の原理を示したモリエル線図である。図8に示すように、圧縮機1出口(点d)から凝縮されて過冷却となった冷媒ガス(点a)を膨張機4に導入し、これを膨張機4において等エントロピー膨張によって膨張させた時、蒸発器(例えば冷房時の室内熱交換器2入口(点b)と、従来のように膨張弁によって(点a)から等エンタルピ膨張させた場合における蒸発器(例えば冷房時の室内熱交換器2入口(点e)との間のエンタルピ量(ha)だけ、冷媒膨張時の圧力エネルギーが動力として冷媒システム側に回収される。その結果、圧縮機1には必要入力(hb)から上記回収動力(ha)を差し引いた値(hb−ha)だけを実際に入力すればよく、圧縮機1入力の低減分だけサイクルの高効率化が実現されるものである。しかし、膨張機を搭載したシステムにおいては、膨張機入口の冷媒状態(例えば圧力、温度、密度、クオリティ等)もしくは、冷媒の膨張のしかた(例えば単相膨張や複相膨張)が膨張機効率に影響を及ぼすため、外気温変化等で膨張機入口の冷媒状態が変化した際に膨張機効率に影響を及ぼすため、最適となる膨張機入口ポイントに制御する必要があった。
特開2001-66006号公報
しかしながら、前記従来の冷凍サイクル装置および運転方法では運転状態の変化に応じ
て膨張機効率が最適となるような膨張機入口ポイントに調整できていなかった。
本発明は前記従来の課題に鑑みてなされたものであり、膨張機入口の冷媒温度と膨張機入口の冷媒圧力をもとに制御手段を調整して膨張機入口冷媒が飽和状態となるように制御することを目的とする。
前記課題を解決するために、本発明の冷凍サイクル装置は、圧縮機と、放熱器と、膨張機と、第1の絞り装置と、膨張機と、蒸発器とを直列に接続して冷凍サイクルを構成する冷凍サイクル装置であって、
少なくとも前記膨張機をバイパスするバイパス回路と、
前記バイパス回路に配設する第2の絞り装置と
前記膨張機入口に設けられた冷媒温度検出手段および冷媒圧力検出手段と、
前記冷媒温度検出手段で検出された冷媒温度と前記冷媒圧力検出手段で検出された冷媒圧力をもとに、前記膨張機の入口冷媒が飽和状態となるように制御する制御手段とを有する。
本発明のヒートポンプ装置によれば、運転状態(膨張機入口の冷媒状態)が変化しても最適な膨張機効率で運転を行うことができる。
(実施の形態1)
以下、本発明の実施の形態1について、図面を参照しながら詳細に説明する。なお、背景技術と同一構成については同一符号を付す。
図1において、本実施形態のヒートポンプ装置は、冷媒を高温高圧に圧縮する圧縮機1と、高温高圧になった冷媒を冷却して周囲へ放熱させる放熱器2と、放熱器2よりも冷媒の流れ方向に対して下流側に配設されて冷媒を減圧膨張することにより動力を取り出す膨張機4と、膨張機4に対して直列に接続された第1の絞り装置25と、冷媒が周りから熱を奪って蒸発する蒸発器3とによって冷媒回路26を構成している。そして本実施形態による冷凍サイクルは、この冷媒回路26と、第1の絞り装置25及び膨張機4をバイパスするバイパス回路27によって形成される。このバイパス回路27には第2の絞り装置28が配設されている。
また、膨張機入口配管には膨張機入口圧力を検知する例えば圧力センサーである膨張機入口圧力検出手段14が配設されており、膨張機入口圧力検出手段14からの信号により、圧縮機1の周波数、膨張機4の周波数、放熱器2のファン風量、第1の絞り装置25の絞り開度、第2の絞り装置28の絞り開度を制御する制御手段19が備えられている。
また、膨張機入口配管には膨張機入口温度を検知する例えばサーミスタである膨張機入口温度検出手段13が配設されており、膨張機入口温度検出手段13からの信号により、圧縮機1の周波数、膨張機4の周波数、放熱器2のファン風量、第1の絞り装置25の絞り開度、第2の絞り装置28の絞り開度を制御する制御手段19が備えられている。
膨張機を搭載したシステムにおいては、膨張機入口の冷媒状態(圧力、温度、密度、クオリティ等)もしくは、冷媒の膨張のしかた(例えば、単相膨張や複相膨張)が膨張機効率に影響を及ぼすため、外気温変化等で膨張機入口の冷媒状態が変化した際に膨張機効率が最適となる膨張機入口ポイントに制御する必要がある。
図2と図3は、表1の実験条件において、膨張機入口圧力が一定(10MPa)の時、膨張機入口エンタルピ変化に応じて膨張機効率がどのように変化するか測定したものである。図3の膨張機入口ポイントA,BおよびCは、図2のそれぞれA,BおよびCに対応する。図
2,3から明らかなように、この場合には、膨張機入口エンタルピが大きくなるほど、膨張機効率が良くなることが分かる。
Figure 2006349297
次に、図4,5は、表2の実験条件において、膨張機入口エンタルピが一定の時、膨張機入口圧力に応じて、膨張機効率がどのように変化するかを測定したものである。図5の膨張機入口ポイントD,EおよびFは、図4のそれぞれD,EおよびFに対応する。図4,5の実験結果では、膨張機入口が飽和状態であるEが最も膨張機効率が高くなる。
Figure 2006349297

図2〜5の実験データの総括から、膨張機効率が最適となる膨張機入口冷媒の状態は、エンタルピが大きく且つ飽和状態であることが言える。
しかし、システム全体の最適化を考慮に入れると、必ずしも膨張機入口冷媒エンタルピを大きいほうが良いとは言えない。
例えば、図9に示すように膨張機入口が飽和曲線上をエンタルピが大きくなる方向へ変化したとすると(1)→2))、膨張機入口冷媒エンタルピが大きくなると膨張機による動力回収量は大きくなるものの、圧縮機入口冷媒エンタルピが大きくなると等エントロピ線の傾きが小さくなるため圧縮機入力が増加し、システム全体としての効率は低下する恐れがあることや、蒸発器側の二相域を占める割合が小さくなりガス単相域を占める割合が大きくなるため潜熱回収効果が小さくなり熱交換器の大型化を招く可能性もある。
そこで、膨張機入口が飽和曲線上にあり且つ膨張機入口冷媒エンタルピが大きくなり過ぎないことを踏まえると、図10の太い実線で示すような20℃の等温線と飽和曲線が交わる点から臨界点までの範囲内で膨張機効率およびシステムCOPが最適となるポイントに調整するのが適当であると考えられる。
次に、図6のフローチャートに示す手順で冷凍サイクルの運転状態の変化によって膨張機入口の冷媒状態が変化しても最適な膨張機効率で運転を行うことができることを説明する。

まず、予め実験で外気温、圧縮機周波数、吐出温度、蒸発温度に対し、それらの条件での冷凍サイクル図がモリエル線図上でどのようになるかということと、それらの条件における膨張機効率が最適となる膨張機入口ポイントを作成しておき制御手段に記憶させておく
そして、ステップ1では検出された外気温、圧縮機周波数、吐出温度、蒸発温度から冷凍サイクル図を制御手段19に記憶させておいた情報をもとに推定する。
ステップ2では、ステップ1で推定された冷凍サイクル図において、膨張機入口冷媒温度検出手段による検出値Te_inがステップ1で推定された膨張機効率が最適となる膨張機入口ポイントの温度Ta(例えば30℃)になるように圧縮機1の周波数、膨張機4の周波数、放熱器2のファン風量、第1の絞り装置25、第2の絞り装置28を制御手段19で調整する。
ステップ3では、冷媒循環流量(蒸発温度、圧縮機周波数より推定)と放熱器からの放熱量をもとに放熱器出口冷媒のエンタルピを推定する。
ステップ4では、放熱器出口冷媒のエンタルピと放熱器出口冷媒圧力から放熱器出口冷媒クオリティを推定し、クオリティが1になるように圧縮機1の周波数、膨張機4の周波数、放熱器2のファン風量、第1の絞り装置25、第2の絞り装置28を制御手段19で調整する。
ステップ5では、膨張機入口冷媒圧力検出手段による検出値Pexpがステップ1で推定された膨張機効率が最適となる膨張機入口ポイントの圧力Pa(例えば10MPa)になるように圧縮機1の周波数、膨張機4の周波数、放熱器2のファン風量、第1の絞り装置、第2の絞り装置を制御手段19で調整する。
この一連の流れを一定間隔時間ごと(例えば1時間ごと)に行う。
以上では、膨張機入口ポイントが飽和状態となるように制御するとしたが、高圧が超臨界状態で運転している場合には、例えば膨張機の上流側に直列に絞り装置等を設置して冷媒を絞ることにより膨張機入口冷媒を飽和状態にしてから膨張機で膨張させても良い。
以上のような手順を踏むことにより、膨張機入口の冷媒状態(圧力、温度、密度、クオリティ等)もしくは、冷媒の膨張のしかた(例えば、単相膨張や複相膨張)が外気温変化等で膨張機入口の冷媒状態が変化した場合でも膨張機効率が最適となるように膨張機入口ポイントを調整することができる。
(実施の形態2)
実施の形態2は、図8に示すようにバイパス回路を膨張機のみバイパスさせるように設置した構成であり、運転方法は実施の形態1と同様であるので省略する。
本発明にかかるヒートポンプ装置は、給湯機、冷凍・空調機器や乾燥装置など、他の用途のヒートポンプ装置として利用することができる。
本発明の実施の形態1における、ヒートポンプ装置の構成図 本発明の実施の形態1における、膨張機入口ポイントを説明する図 本発明の実施の形態1における、膨張機入口ポイントによる膨張機効率の変化図 本発明の実施の形態1における、膨張機入口ポイントを説明する図 本発明の実施の形態1における、膨張機入口ポイントによる膨張機効率の変化図 本発明の実施の形態1における、制御フローチャート 本発明の実施の形態2における、ヒートポンプ装置の構成図 膨張機を冷凍サイクルに搭載した場合のモリエル線図 膨張機入口冷媒がモリエル線図の飽和曲線上を動いた際の冷凍サイクルの変化図 膨張機効率が最適となる膨張機入口ポイントの範囲を示す図 従来の冷凍サイクル装置図
符号の説明
1 圧縮機
2 室内熱交換器
3 室外熱交換器
4 膨張機
5 レシーバ
6 アキュームレータ
7 第1の四路切換弁
8 第2の四路切換弁
9 膨張機の吐出側冷媒管路
10 圧縮機の吐出側冷媒管路
11 圧縮機の吸込側冷媒管路
12 膨張機の吸込側冷媒管路
13 膨張機入口冷媒温度検出手段
14 膨張機入口冷媒圧力検出手段
15 ファン
16 圧縮機周波数制御手段
17 ファン風量制御手段
18 膨張機周波数制御手段
19 制御手段
25 第1の絞り装置
26 冷媒回路
27 バイパス回路
28 第2の絞り装置
Te_in 膨張機入口温度
Ta 膨張機入口最適温度
Pe_in 膨張機入口圧力
Pa 膨張機入口最適圧力
qe_in 膨張機入口冷媒クオリティ


Claims (7)

  1. 圧縮機と、放熱器と、膨張機と、第1の絞り装置と、膨張機と、蒸発器とを直列に接続して冷凍サイクルを構成する冷凍サイクル装置であって、
    前記第1の絞り装置と前記膨張機とをバイパスするバイパス回路と、
    前記バイパス回路に配設する第2の絞り装置と
    前記膨張機入口に設けられた冷媒温度検出手段および冷媒圧力検出手段と、
    前記冷媒温度検出手段で検出された冷媒温度と前記冷媒圧力検出手段で検出された冷媒圧力をもとに、前記膨張機の入口冷媒が飽和状態となるように制御する制御手段とを有する冷凍サイクル装置。
  2. 圧縮機と、放熱器と、膨張機と、第1の絞り装置と、膨張機と、蒸発器とを直列に接続して冷凍サイクルを構成する冷凍サイクル装置であって、
    前記膨張機をバイパスするバイパス回路と、
    前記バイパス回路に配設する第2の絞り装置と
    前記膨張機入口に設けられた冷媒温度検出手段および冷媒圧力検出手段と、
    前記冷媒温度検出手段で検出された冷媒温度と前記冷媒圧力検出手段で検出された冷媒圧力をもとに、前記膨張機の入口冷媒が飽和状態となるように制御する制御手段とを有する冷凍サイクル装置。
  3. 前記制御手段が圧縮機の回転数を変化させる手段であることを特徴とする請求項1または2に記載の冷凍サイクル装置。
  4. 前記制御手段が膨張機の回転数を変化させる手段であることを特徴とする請求項1〜3に記載の冷凍サイクル装置。
  5. 前記制御手段が膨張機の直列に接続した第1の絞り装置の開度を変化させる手段であることを特徴とする請求項1〜4に記載の冷凍サイクル装置。
  6. 前記制御手段が膨張機をバイパスするバイパス回路上に設けた第2の絞り装置の開度を変化させる手段であることを特徴とする請求項1〜5に記載の冷凍サイクル装置。
  7. 前記制御手段が放熱器のファン風量を変化させる手段であることを特徴とする請求項1〜6に記載の冷凍サイクル装置。
JP2005178767A 2005-06-20 2005-06-20 冷凍サイクル装置 Pending JP2006349297A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005178767A JP2006349297A (ja) 2005-06-20 2005-06-20 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005178767A JP2006349297A (ja) 2005-06-20 2005-06-20 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
JP2006349297A true JP2006349297A (ja) 2006-12-28

Family

ID=37645330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005178767A Pending JP2006349297A (ja) 2005-06-20 2005-06-20 冷凍サイクル装置

Country Status (1)

Country Link
JP (1) JP2006349297A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014209A (ja) * 2007-06-29 2009-01-22 Daikin Ind Ltd 冷凍装置
WO2013105319A1 (ja) * 2012-01-12 2013-07-18 株式会社豊田自動織機 膨張機
CN110762912A (zh) * 2019-11-28 2020-02-07 广东美的制冷设备有限公司 运行控制方法、压缩空气换热系统以及存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014209A (ja) * 2007-06-29 2009-01-22 Daikin Ind Ltd 冷凍装置
WO2013105319A1 (ja) * 2012-01-12 2013-07-18 株式会社豊田自動織機 膨張機
CN110762912A (zh) * 2019-11-28 2020-02-07 广东美的制冷设备有限公司 运行控制方法、压缩空气换热系统以及存储介质

Similar Documents

Publication Publication Date Title
JP4053283B2 (ja) 超臨界蒸気圧縮システムおよび超臨界蒸気圧縮システムを循環する冷媒の高圧成分の圧力を調整する装置
JP4167196B2 (ja) 自然循環併用式空気調和機及び自然循環併用式空気調和機の制御方法
JP4731806B2 (ja) 冷凍サイクル装置およびその制御方法
JP5411643B2 (ja) 冷凍サイクル装置および温水暖房装置
JP2011052884A (ja) 冷凍空調装置
JP2004150750A (ja) 冷凍サイクル装置の高圧冷媒圧力の決定方法
JP5018724B2 (ja) エジェクタ式冷凍サイクル
JP6091614B2 (ja) ヒートポンプ装置
JP2010085042A (ja) 冷凍サイクル装置
JP2000234814A (ja) 蒸気圧縮式冷凍装置
JP2005291622A (ja) 冷凍サイクル装置およびその制御方法
JP2008224135A (ja) 冷凍装置
WO2020071294A1 (ja) 冷凍サイクル装置
JP4442237B2 (ja) 空気調和装置
JP2005226950A (ja) 冷凍空調装置
JP2019158308A (ja) 冷凍サイクル装置
JP2006349297A (ja) 冷凍サイクル装置
JP2006145144A (ja) 冷凍サイクル装置
JP2010133584A (ja) 冷凍サイクル装置及びこれを搭載した空気調和機
JP2008096072A (ja) 冷凍サイクル装置
JP2009204304A (ja) 冷凍空調装置
JP3863555B2 (ja) 冷凍サイクル装置
US20180202689A1 (en) Multi-stage compression refrigeration cycle device
JP4581795B2 (ja) 冷凍装置
WO2018109894A1 (ja) 冷凍サイクル装置