JP2006348759A - 可変ターボチャージャ - Google Patents

可変ターボチャージャ Download PDF

Info

Publication number
JP2006348759A
JP2006348759A JP2005172086A JP2005172086A JP2006348759A JP 2006348759 A JP2006348759 A JP 2006348759A JP 2005172086 A JP2005172086 A JP 2005172086A JP 2005172086 A JP2005172086 A JP 2005172086A JP 2006348759 A JP2006348759 A JP 2006348759A
Authority
JP
Japan
Prior art keywords
compressor
flow rate
air flow
pressure
passing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005172086A
Other languages
English (en)
Other versions
JP4577104B2 (ja
Inventor
Shinichi Soejima
慎一 副島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005172086A priority Critical patent/JP4577104B2/ja
Publication of JP2006348759A publication Critical patent/JP2006348759A/ja
Application granted granted Critical
Publication of JP4577104B2 publication Critical patent/JP4577104B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

【課題】コンプレッサの効率を高め、より加速性能を向上させることが可能な可変ターボチャージャを提供する。
【解決手段】吸気通路2には、バイパス通路が備えられ、コンプレッサ4の上流側と、コンプレッサの下流側とを連結している。さらに、バイパス通路には、空気流量を調節するためのバイパス弁が備えられる。バイパス弁調節手段は、コンプレッサの上流側の圧力12、コンプレッサの下流側の圧力13、最適空気流量、通過空気流量11を基に、バイパス弁6を調節する。このように、コンプレッサの上流側の圧力、コンプレッサの下流側の圧力、最適空気流量、通過空気流量を基に、バイパス弁の開度を調節して、バイパス通路に空気を流入させることで、コンプレッサを通過する空気流量を調節することができ、効率良くコンプレッサを駆動させることができる。
【選択図】図1

Description

本発明は、過給機付きエンジンにおける過給圧を内燃機関の低速域から高速域まで広く十分に確保する可変ターボチャージャに関する。
可変ターボチャージャは、低速からの加速時において、タービンの回転数が上がるのに時間を要するため、加速性能が悪くなる。そこで、従来から、可変ターボチャージャの効率を内燃機関の低速域から高速域まで広く十分に確保する方法が知られている。例えば、特許文献1には、可変ターボチャージャの効率を、低速域から高速域まで広く十分に確保するために、コンプレッサをバイパスするバイパス通路を設け、バイパス通路内にはバイパス弁を設置し、このバイパス弁を、内燃機関のそれぞれ異なる回転域において開閉制御する技術が記載されている。
特開2004−324522号公報
しかしながら、特許文献1に記載された可変ターボチャージャは、内燃機関の回転域を基にバイパス弁を開閉制御するものである。一方、コンプレッサの効率は、コンプレッサを通過する空気流量に左右される。特許文献1に記載された可変ターボチャージャは、コンプレッサを通過する空気流量を基にバイパス弁を開閉制御するものではないので、コンプレッサの効率は十分に良いとはいえない。
本発明は、以上の点に鑑みてなされたものであり、コンプレッサの効率を高め、より加速性能を向上させることが可能な可変ターボチャージャを提供する。
本発明の1つの観点では、可変ターボチャージャは、内燃機関の吸気通路に配置されたコンプレッサと、前記内燃機関の排気通路に配置されたタービンと、前記コンプレッサと前記タービンとを連結するシャフトと、前記吸気通路において、前記コンプレッサの上流側と、前記コンプレッサの下流側とを結ぶバイパス通路と、前記バイパス通路に流れる空気流量を調節するバイパス弁と、前記タービンの回転数を基に、前記コンプレッサの効率を最大にするときの前記コンプレッサを通過する空気流量である最適空気流量を算出するコンプレッサ最適空気流量算出手段と、前記コンプレッサを通過する空気流量である通過空気流量を計測するコンプレッサ通過空気流量計測手段と、前記コンプレッサの上流側の圧力及び前記コンプレッサの下流側の圧力を計測する圧力計測手段と、前記コンプレッサの上流側の圧力、前記コンプレッサの下流側の圧力、前記最適空気流量、前記通過空気流量を基に、前記バイパス弁を調節するバイパス弁調節手段と、を備える。
上記の可変ターボチャージャは、コンプレッサと、タービンと、前記コンプレッサと前記タービンとを連結するシャフトと、を備える。前記コンプレッサは、内燃機関の吸気通路に配置され、前記タービンは、内燃機関の排気通路に配置される。また、前記吸気通路には、バイパス通路が備えられ、前記コンプレッサの上流側と、前記コンプレッサの下流側とを連結している。さらに、前記バイパス通路には、空気流量を調節するためのバイパス弁が備えられる。コンプレッサ最適空気流量算出手段は、前記タービンの回転数を基に、前記コンプレッサの効率を最大にするときの前記コンプレッサを通過する空気流量である最適空気流量を算出する。圧力計測手段は、前記コンプレッサの上流側の圧力及び前記コンプレッサの下流側の圧力を計測する。コンプレッサ通過空気流量計測手段は、前記コンプレッサを通過する空気流量である通過空気流量を計測する。バイパス弁調節手段は、前記コンプレッサの上流側の圧力、前記コンプレッサの下流側の圧力、前記最適空気流量、前記通過空気流量を基に、前記バイパス弁を調節する。このように、前記コンプレッサの上流側の圧力、前記コンプレッサの下流側の圧力、前記最適空気流量、前記通過空気流量を基に、前記バイパス弁の開度を調節して、バイパス通路に空気を流入させることで、コンプレッサを通過する空気流量を調節することができ、効率良くコンプレッサを駆動させることができる。
上記の可変ターボチャージャの一態様では、前記バイパス弁調節手段は、前記通過空気流量が前記最適空気流量よりも大きく、かつ、前記コンプレッサの上流側の圧力が前記コンプレッサの下流側の圧力よりも大きい場合、または、前記通過空気流量が前記最適空気流量よりも小さく、かつ、前記コンプレッサの上流側の圧力が前記コンプレッサの下流側の圧力よりも小さい場合に、前記通過空気流量が前記最適空気流量になるまで、前記バイパス弁を調節する。これにより、前記通過空気流量を前記最適空気流量に合わせることができ、最大限にコンプレッサの効率を向上させることができる。
以下、図面を参照して本発明の好適な実施形態について説明する。
(可変ターボチャージャの構成)
まず、本実施形態に係る可変ターボチャージャの構成について説明する。
図1は、本実施形態に係る可変ターボチャージャ100を内燃機関に適用したときの概略構成を示す図である。
可変ターボチャージャ100は、主に、内燃機関1に接続されている吸気通路2に備えられたコンプレッサ4と、内燃機関1に接続されている排気通路3に備えられたタービン7と、コンプレッサ4とタービン7を接続するシャフト8と、吸気通路2に設置されたバイパス通路5と、ECU(Engine Control Unit)10と、を備える。
外部からの空気は、吸気回路2を通じて、内燃機関1の図示しない気筒に流入する。内燃機関1としては、ガソリンエンジンやディーゼルエンジンが挙げられる。気筒内において燃焼により生成された排気ガスは、排気通路3に排出される。排気通路3に排出された排気ガスは、タービン7を回転させる。タービン7の回転トルクは、シャフト8を通じて、コンプレッサ4に伝達される。タービン7から伝達された回転トルクにより、コンプレッサ4は、回転し、吸気通路2に流入した空気を圧縮する。
吸気通路2には、コンプレッサ4の上流側と、コンプレッサ4の下流側を、直接連結するバイパス通路5が設置される。バイパス通路5に流入する空気は、コンプレッサ4を迂回(バイパス)することができる。バイパス通路5内には、バイパス通路5を流れる空気の量を調節するためのバイパス弁6が設置される。このバイパス弁6は、バイパス通路5の任意の場所に設置可能である。
また、吸気通路2において、コンプレッサ4の上流側には、コンプレッサ4を通過する空気流量を計測するエアフロメータ(AFM)11と、コンプレッサ4の上流側の空気の圧力P0を計測する圧力計12が設置される。コンプレッサ4の下流側には、コンプレッサ4の下流側の空気の圧力P3を計測する圧力計13が設置される。AFM11は、計測された空気流量を信号S1として、圧力計12は、計測された圧力P0を信号S2として、圧力計13は、計測された圧力P3を信号S3として、それぞれECU10に供給する。従って、AFM11は、コンプレッサ通過空気流量計測手段として機能し、圧力計12、13は、圧力計測手段として機能する。
ECU10は、図示しないCPU、ROM、RAM、A/D変換器及び入出力インタフェイスなどを含んで構成される。ECU10は、車両内の各種センサから供給される出力信号によって、車両内の制御を行う。本実施形態においては、ECU10は、AFM11から供給された信号S1、圧力計12から供給された信号S2、圧力計13から供給された信号S3を基にして、バイパス弁6を開閉するか否かを決定する。バイパス弁6を開く場合、ECU10は、バイパス弁6に信号S4を供給することにより、バイパス弁6を全閉から全開まで可変制御する。従って、ECU10は、バイパス弁調節手段として機能する。
図2は、一般的な可変ターボチャージャにおけるコンプレッサを通過する空気流量と、コンプレッサの効率の関係を示すグラフであり、横軸にコンプレッサを通過する空気流量をとり、縦軸にコンプレッサの効率をとっている。図2には、複数の凸型のグラフが示されている。一つ一つの凸型のグラフ(図2でいうと、例えばグラフ31)は、それぞれ同一のタービンの回転数における、コンプレッサを通過する空気流量と、コンプレッサの効率の関係を示している。同一のタービンの回転数で見ると、黒点(図2でいうと、例えば点32)で示すある所定の空気流量のときに、コンプレッサの効率が最大となることが分かる。また、図2に示すように、タービンの回転数が上がるにつれて、全体的にコンプレッサの効率は高くなることが分かる。
図3は、タービンの回転数と、図2の黒点に対応するコンプレッサを通過する空気流量の関係を示すグラフである。図3は、タービンの回転数に対し、コンプレッサの効率が最大になるときのコンプレッサを通過する空気流量(以下、単に「最適空気流量」と称す)を示しており、横軸にタービンの回転数をとり、縦軸に最適空気流量をとっている。図3のグラフ41が示すように、タービンの回転数が低いときには、最適空気流量は小さく、タービンの回転数が高いときには、最適空気流量は大きい。図3のグラフ41を用いて、タービンの回転数より最適空気流量を求め、コンプレッサを通過する空気流量を、求められた最適空気流量に近づけることができれば、より効率よくコンプレッサを駆動させることができる。さらに、コンプレッサを通過する空気流量を、最適空気流量に合わせることができれば、最大効率でコンプレッサを駆動させることができる。このように、コンプレッサを通過する空気流量を調節することにより、可変ターボチャージャの加速性能を向上させることができる。ECU10は、タービン7の回転数より、図3のグラフ41を用いて、最適空気流量を算出する。従って、ECU10は、コンプレッサ最適空気流量算出手段としても機能する。
ECU10は、最適空気流量を算出した後、コンプレッサ4を通過する空気流量を、バイパス弁6の開度を調節することで、求められた最適空気流量に合わせる。具体的には、ECU10は、信号S4をバイパス弁6に供給して、バイパス弁6の開度を調節することで、バイパス通路5に空気を流入させ、コンプレッサ4を通過する空気流量を最適空気流量に調節する。これにより、最大効率でコンプレッサ4を駆動させることができる。
(バイパス弁制御処理)
次に、本実施形態に係る可変ターボチャージャ100におけるバイパス弁制御処理について、図4のフローチャートを用いて、具体的に述べる。まず、ECU10は、タービン7の回転数を計測する(ステップS11)。タービン7の回転数を計測する方法としては、例えば、タービン7の羽の先に磁石を取り付け、タービン7の磁場の周期変化を、図示しないセンサ等を用いて計測することにより求めることができる。
ECU10は、計測されたタービン7の回転数を基に、先に述べた図3のグラフ41の関係を用いて、最適空気流量を算出した後(ステップS12)、AFM11より供給された信号S1を基にして、コンプレッサ4を通過する空気流量を計測する(ステップS13)。さらに、ECU10は、コンプレッサ4を通過する空気流量を算出された最適空気流量に合わせるため、バイパス弁6の調整を行う(ステップS14)。
次に、ステップS14におけるバイパス弁の調整方法について、図5を参照して、具体的に述べる。図5は、流量条件及び圧力条件と、バイパス弁動作の関係を示す図表である。ここで、流量条件とは、コンプレッサ4を通過する空気流量と、最適空気流量の大小関係の条件を示し、圧力条件とは、コンプレッサ4の上流側の圧力P0の大きさと下流側の圧力P3の大小関係の条件を示す。図5では、バイパス弁動作について、バイパス弁が開くとき(中間開度時も含む)を「開」で示し、バイパス弁が完全に閉じるときを「閉」で示す。バイパス弁動作は、流量条件及び圧力条件の2つの条件により決定される。
測定されたコンプレッサ4を通過する空気流量が最適空気流量よりも大きい場合には、コンプレッサ4を通過する空気流量を減らして、最適空気流量に近づける必要がある。そこで、コンプレッサ4の上流側の圧力P0の大きさと下流側の圧力P3を比較し、圧力P0の方が大きい場合には、バイパス弁6の開度を調節して、バイパス通路5にも空気を流す。このとき、空気の流れる方向は、図1に示す矢印A1の方向となるので、コンプレッサ4に流れる空気流量を減らすことができる。これにより、コンプレッサ4に流れる空気流量を、最適空気流量に近づけることができる。ECU10は、コンプレッサ4に流れる空気流量が最適空気流量と同じ大きさになるまで、バイパス弁6の開度を調節する。
一方、圧力P0の方が圧力P3よりも小さい場合には、バイパス弁6を開くと、図1に示す矢印A2の方向に空気が流れ、コンプレッサ4を通過する空気流量は増えてしまう。そこで、圧力P0の方が小さい場合には、バイパス弁6を完全に閉じておく。実際には、この状態のときには、圧力P0と圧力P3の圧力差によって、コンプレッサ4を通過する空気流量は、既に最適空気流量とほぼ同じ大きさとなっている。
測定されたコンプレッサ4を通過する空気流量が最適空気流量よりも小さい場合には、コンプレッサ4を通過する空気流量を増やして、最適空気流量に近づける必要がある。そこで、コンプレッサ4の上流側の圧力P0の大きさと下流側の圧力P3を比較し、圧力P3の方が大きい場合には、バイパス弁6の開度を調節して、バイパス通路5にも空気を流す。このとき、空気の流れる方向は、図1に示す矢印A2の方向となるので、コンプレッサ4を通過する空気流量を増やすことができる。これにより、コンプレッサ4に流れる空気流量を、最適空気流量に近づけることができる。ECU10は、コンプレッサ4に流れる空気流量が最適空気流量と同じ大きさになるまで、バイパス弁6の開度を調節する。
一方、圧力P3の方が圧力P0よりも小さい場合には、バイパス弁6を開くと、図1に示す矢印A1の方向に空気が流れ、コンプレッサ4を通過する空気流量は減ってしまう。そこで、圧力P3の方が小さい場合には、バイパス弁6を完全に閉じておく。実際には、この状態のときには、圧力P0と圧力P3の圧力差によって、コンプレッサ4を通過する空気流量は、既に最適空気流量とほぼ同じ大きさとなっている。
以上で述べたようにバイパス弁6を開閉制御することで、コンプレッサ4を通過する空気流量を最適空気流量に合わせることができ、コンプレッサ4の効率を最大限に高めることができる。
本実施形態に係る可変ターボチャージャの概略構成を示す図である。 コンプレッサを通過する空気流量とコンプレッサの効率の関係を示す図である。 タービンの回転数と最適空気流量の関係を示す図である。 本実施形態に係るバイパス弁制御処理のフローチャートである。 流量条件及び圧力条件と、バイパス弁動作の関係を示す図表である。
符号の説明
1 内燃機関
2 吸気通路
3 排気通路
4 コンプレッサ
7 タービン
8 シャフト
5 バイパス通路
6 バイパス弁
10 ECU
100 可変ターボチャージャ

Claims (2)

  1. 内燃機関の吸気通路に配置されたコンプレッサと、
    前記内燃機関の排気通路に配置されたタービンと、
    前記コンプレッサと前記タービンとを連結するシャフトと、
    前記吸気通路において、前記コンプレッサの上流側と、前記コンプレッサの下流側とを連結しているバイパス通路と、
    前記バイパス通路を流れる空気流量を調節するバイパス弁と、
    前記タービンの回転数を基に、前記コンプレッサの効率を最大にするときの前記コンプレッサを通過する空気流量である最適空気流量を算出するコンプレッサ最適空気流量算出手段と、
    前記コンプレッサを通過する空気流量である通過空気流量を計測するコンプレッサ通過空気流量計測手段と、
    前記コンプレッサの上流側の圧力及び前記コンプレッサの下流側の圧力を計測する圧力計測手段と、
    前記コンプレッサの上流側の圧力、前記コンプレッサの下流側の圧力、前記最適空気流量、前記通過空気流量を基に、前記バイパス弁を調節するバイパス弁調節手段と、を備えることを特徴とする可変ターボチャージャ。
  2. 前記バイパス弁調節手段は、前記通過空気流量が前記最適空気流量よりも大きく、かつ、前記コンプレッサの上流側の圧力が前記コンプレッサの下流側の圧力よりも大きい場合、または、前記通過空気流量が前記最適空気流量よりも小さく、かつ、前記コンプレッサの上流側の圧力が前記コンプレッサの下流側の圧力よりも小さい場合に、前記通過空気流量が前記最適空気流量になるまで、前記バイパス弁を調節することを特徴とする請求項1に記載の可変ターボチャージャ。
JP2005172086A 2005-06-13 2005-06-13 可変ターボチャージャ Expired - Fee Related JP4577104B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005172086A JP4577104B2 (ja) 2005-06-13 2005-06-13 可変ターボチャージャ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005172086A JP4577104B2 (ja) 2005-06-13 2005-06-13 可変ターボチャージャ

Publications (2)

Publication Number Publication Date
JP2006348759A true JP2006348759A (ja) 2006-12-28
JP4577104B2 JP4577104B2 (ja) 2010-11-10

Family

ID=37644878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005172086A Expired - Fee Related JP4577104B2 (ja) 2005-06-13 2005-06-13 可変ターボチャージャ

Country Status (1)

Country Link
JP (1) JP4577104B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007017828A1 (de) * 2007-04-16 2008-10-23 Siemens Ag Turbolader, turboaufgeladene Brennkraftmaschine, Verfahren und Verwendung
JP2013509526A (ja) * 2009-10-28 2013-03-14 イートン コーポレーション エンジンのための制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01267319A (ja) * 1988-04-15 1989-10-25 Mazda Motor Corp 過給機付エンジンの制御装置
JPH01267318A (ja) * 1988-04-15 1989-10-25 Mazda Motor Corp 過給機付エンジンの制御装置
JPH1077870A (ja) * 1996-09-04 1998-03-24 Nissan Motor Co Ltd 過給機付きエンジン
JP2006266216A (ja) * 2005-03-25 2006-10-05 Isuzu Motors Ltd ディーゼルエンジンの吸排気装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01267319A (ja) * 1988-04-15 1989-10-25 Mazda Motor Corp 過給機付エンジンの制御装置
JPH01267318A (ja) * 1988-04-15 1989-10-25 Mazda Motor Corp 過給機付エンジンの制御装置
JPH1077870A (ja) * 1996-09-04 1998-03-24 Nissan Motor Co Ltd 過給機付きエンジン
JP2006266216A (ja) * 2005-03-25 2006-10-05 Isuzu Motors Ltd ディーゼルエンジンの吸排気装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007017828A1 (de) * 2007-04-16 2008-10-23 Siemens Ag Turbolader, turboaufgeladene Brennkraftmaschine, Verfahren und Verwendung
JP2013509526A (ja) * 2009-10-28 2013-03-14 イートン コーポレーション エンジンのための制御方法

Also Published As

Publication number Publication date
JP4577104B2 (ja) 2010-11-10

Similar Documents

Publication Publication Date Title
JP4306703B2 (ja) 過給機付き内燃機関の制御装置
JP4375369B2 (ja) 過給機付き内燃機関の制御装置
JP4583038B2 (ja) 過給機付き内燃機関の過給圧推定装置
US7562527B2 (en) Internal combustion engine with a supercharger
JP5734478B1 (ja) 過給機付き内燃機関の制御装置
WO2008018380A1 (fr) Dispositif de commande pour moteur à combustion interne équipé d'un turbocompresseur
JP6589932B2 (ja) 過給機付き内燃機関の制御装置
JPWO2011077517A1 (ja) 内燃機関の制御装置
JP4661536B2 (ja) ターボチャージャの制御装置
JP2012052508A (ja) 可変過給機及び可変過給機の制御方法
JP4466449B2 (ja) 過給機付きエンジンの制御装置
JP2010048225A (ja) 内燃機関の過給システム
US20180258871A1 (en) Control device for internal combustion engine and control method for internal combustion engine
JP2014196678A (ja) 過給機付き内燃機関の制御装置
EP1798394A1 (en) Internal combustion engine with supercharger
JP4577104B2 (ja) 可変ターボチャージャ
JP4770759B2 (ja) 過給機付き内燃機関の制御装置
JP2007303380A (ja) 内燃機関の排気制御装置
JP5556891B2 (ja) 内燃機関の制御装置
JP2001193573A (ja) 内燃機関の制御装置
JP2007205298A (ja) 空気流量検出器の故障判定装置
CN109989856B (zh) 内燃机的控制装置
JP6907977B2 (ja) ターボチャージャの制御装置
JP2002266690A (ja) 内燃機関の制御装置
JP4517951B2 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees