JP2006340266A - Differential signal transmitting circuit and differential signal transmitting apparatus - Google Patents

Differential signal transmitting circuit and differential signal transmitting apparatus Download PDF

Info

Publication number
JP2006340266A
JP2006340266A JP2005165232A JP2005165232A JP2006340266A JP 2006340266 A JP2006340266 A JP 2006340266A JP 2005165232 A JP2005165232 A JP 2005165232A JP 2005165232 A JP2005165232 A JP 2005165232A JP 2006340266 A JP2006340266 A JP 2006340266A
Authority
JP
Japan
Prior art keywords
current
differential
voltage
circuit
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005165232A
Other languages
Japanese (ja)
Other versions
JP4923442B2 (en
Inventor
Yoshihiro Matsuo
嘉洋 松尾
Naohiro Higuchi
直大 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005165232A priority Critical patent/JP4923442B2/en
Publication of JP2006340266A publication Critical patent/JP2006340266A/en
Application granted granted Critical
Publication of JP4923442B2 publication Critical patent/JP4923442B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Logic Circuits (AREA)
  • Amplifiers (AREA)
  • Dc Digital Transmission (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a capacitance value of a phase compensation capacitor by suppressing variations of a common-mode voltage in LVDS signal transmission. <P>SOLUTION: The disclosed circuit includes: differential buffers M1-M4 each for switching directions of currents flowing to a pair of transmission lines OT1, OT2 in accordance with inputted differential signals IN, INB; first current source circuits (M6, M7 and 12) connected to one-side current supply nodes of the differential buffers; second current source circuits (AMP and M5) connected to other-side current supply nodes ND0 of the differential buffers; and current paths (M8, M9), different from the differential buffers, for causing to flow currents corresponding to the currents flowing to the differential buffers. Each of the second current source circuits comprises a differential amplifier AMP for regulating a common-mode voltage that becomes a reference of a voltage OUT to appear in the pair of transmission lines OT1, OT2, into a predetermined reference voltage Vref, and a phase compensation capacitor CC of the differential amplifier is provided in a current path (transistors M8, M9 are elaborates). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、入力する差動信号に応じて一対の伝送路に流れる電流の向きを切り替える差動バッファを含む差動信号伝送回路および差動信号伝送装置に関するものである。   The present invention relates to a differential signal transmission circuit and a differential signal transmission device including a differential buffer that switches the direction of a current flowing in a pair of transmission paths in accordance with an input differential signal.

小振幅信号の高速伝送用のインターフェースとしてLVDS(Low Voltage Differential Signaling)が知られている(たとえば、特許文献1参照)。LVDSは、IEEEの標準化小委員会の1つであるP1596.3において標準化作業が進められた差動小振幅インターフェースの規格である。   LVDS (Low Voltage Differential Signaling) is known as an interface for high-speed transmission of small amplitude signals (see, for example, Patent Document 1). LVDS is a differential small-amplitude interface standard that has been standardized in P1596.3, one of the IEEE standardization subcommittees.

図7に、LVDSドライバの一回路例を示す。
LVDSドライバ100は、pMOSFETであるトランジスタM1,M2およびM5と、nMOSFETであるトランジスタM3,M4,M6およびM7と、差動増幅器AMPと、位相補償キャパシタCCと、内部抵抗R1およびR2とを有する。
トランジスタM1とM3が縦続接続されてインバータを形成し、その共通ゲートに差動信号INが入力される。同様に、トランジスタM2とM4が縦続接続されてインバータを形成し、その共通ゲートに差動信号INと逆位相の差動信号INBが入力される。トランジスタM1とM3からなるインバータの出力が第1伝送路OT1に接続され、トランジスタM2とM4からなるインバータの出力が第2伝送路OT2に接続されている。第1および第2伝送路OT1,OT2の一方端、すなわち2つのインバータの出力間に内部抵抗R1とR2が縦続接続されている。これら内部抵抗R1,R2および4つのトランジスタM1〜M4は差動バッファを形成する。
一方、第1および第2伝送路OT1,OT2の他端は、LVDSレシーバ101側において終端抵抗RTを介して短絡されている。第1および第2伝送路OT1,OT2は、それぞれ負荷容量CL1,CL2を有する。
FIG. 7 shows a circuit example of the LVDS driver.
The LVDS driver 100 includes transistors M1, M2, and M5 that are pMOSFETs, transistors M3, M4, M6, and M7 that are nMOSFETs, a differential amplifier AMP, a phase compensation capacitor CC, and internal resistors R1 and R2.
Transistors M1 and M3 are cascaded to form an inverter, and a differential signal IN is input to the common gate. Similarly, transistors M2 and M4 are cascaded to form an inverter, and a differential signal INB having a phase opposite to that of the differential signal IN is input to the common gate. The output of the inverter composed of the transistors M1 and M3 is connected to the first transmission line OT1, and the output of the inverter composed of the transistors M2 and M4 is connected to the second transmission line OT2. Internal resistors R1 and R2 are cascaded between one end of the first and second transmission lines OT1 and OT2, that is, between the outputs of the two inverters. These internal resistors R1, R2 and the four transistors M1-M4 form a differential buffer.
On the other hand, the other ends of the first and second transmission lines OT1 and OT2 are short-circuited via a termination resistor RT on the LVDS receiver 101 side. The first and second transmission lines OT1, OT2 have load capacities CL1, CL2, respectively.

差動バッファの一方の電流供給ノードと接地電圧との間に第1の電流供給トランジスタM6が接続されている。また、電源供給線11と接地電圧との間に電流源12とトランジスタM7とが縦続接続されている。トランジスタM7のゲートとドレインおよび第1の電流供給トランジスタM6のゲートが互いに接続され、これによりカレントミラー回路が形成されている。これら2つのトランジスタM6とM7および電流源12によって、参照電流Irefを差動バッファに流す第1の電流源回路が形成されている。   A first current supply transistor M6 is connected between one current supply node of the differential buffer and the ground voltage. A current source 12 and a transistor M7 are cascaded between the power supply line 11 and the ground voltage. The gate and drain of the transistor M7 and the gate of the first current supply transistor M6 are connected to each other, thereby forming a current mirror circuit. The two transistors M6 and M7 and the current source 12 form a first current source circuit that allows the reference current Iref to flow to the differential buffer.

差動バッファの他の電流供給ノードND0と電源供給線10との間に第2の電流供給トランジスタM5が接続され、そのゲートが差動増幅器AMPの出力に接続されている。差動増幅器AMPの反転入力「−」に不図示の電圧発生回路から参照電圧Vrefが与えられ、差動増幅器AMPの非反転入力「+」が内部抵抗R1、R2間の接続ノードND2に接続されている。この差動増幅器AMPと第2の電流供給トランジスタM5とによって、内部抵抗R1、R2間の接続ノード内部抵抗R1、R2の電圧(コモンモード電圧)を参照電圧Vrefに調整するための第2の電流源回路が形成されている。   A second current supply transistor M5 is connected between the other current supply node ND0 of the differential buffer and the power supply line 10, and its gate is connected to the output of the differential amplifier AMP. A reference voltage Vref is applied to the inverting input “−” of the differential amplifier AMP from a voltage generation circuit (not shown), and the non-inverting input “+” of the differential amplifier AMP is connected to the connection node ND2 between the internal resistors R1 and R2. ing. A second current for adjusting the voltage (common mode voltage) of the connection node internal resistors R1 and R2 between the internal resistors R1 and R2 to the reference voltage Vref by the differential amplifier AMP and the second current supply transistor M5. A source circuit is formed.

このように形成されているLVDSドライバ100は、信号伝送時に入力される差動信号IN,INBに応じて、トランジスタM1とM4、トランジスタM2とM3を各々対として、その一方のトランジスタ対をオフ状態、他方のトランジスタ対をオフ状態とする。トランジスタM1とM4がオン、トランジスタM2とM3がオフの場合、LVDSドライバ100から終端抵抗RTに電流が流れる。第2伝送路OT2側を電位の基準とすると、このとき終端抵抗RTの両端に、終端抵抗RTの抵抗値と流れる電流との積となる値を有する正の電圧が発生する。逆に、トランジスタM1とM4がオフ、トランジスタM2とM3がオンの場合は、電流が上記と逆向きに流れることから、終端抵抗RTの両端には負の電圧が発生する。   The LVDS driver 100 formed in this way has transistors M1 and M4 and transistors M2 and M3 as a pair in accordance with differential signals IN and INB input at the time of signal transmission, and one transistor pair is turned off. Then, the other transistor pair is turned off. When the transistors M1 and M4 are on and the transistors M2 and M3 are off, a current flows from the LVDS driver 100 to the termination resistor RT. If the second transmission line OT2 side is used as a potential reference, then a positive voltage having a value that is the product of the resistance value of the termination resistor RT and the flowing current is generated at both ends of the termination resistor RT. On the other hand, when the transistors M1 and M4 are off and the transistors M2 and M3 are on, a current flows in the opposite direction, so that a negative voltage is generated across the termination resistor RT.

LVDSにおいて第1および第2伝送路OT1,OT2は、その電気的特性が等しい、いわゆる平衡伝送路を形成しており、この2本の伝送路により1つの2値信号の伝送を行う。つまり、差動信号IN,INBに応じて、内部抵抗R1,R2の抵抗値が同じ場合、内部抵抗R1,R2の接続ノードND2の電圧(コモンモード電圧)を中心に、LVDSレシーバ101が受け取る終端抵抗RT両端の電圧(出力電圧OUT)の極性が反転する。この出力電圧OUTの極性を「1」と「0」に対応させることにより、LVDSドライバ100に入力された差動信号IN,INBをLVDSレシーバ101側で復元できる。   In the LVDS, the first and second transmission lines OT1 and OT2 form so-called balanced transmission lines having the same electrical characteristics, and one binary signal is transmitted through these two transmission lines. That is, when the resistance values of the internal resistors R1 and R2 are the same according to the differential signals IN and INB, the termination received by the LVDS receiver 101 centering on the voltage (common mode voltage) of the connection node ND2 of the internal resistors R1 and R2. The polarity of the voltage across the resistor RT (output voltage OUT) is inverted. By making the polarity of the output voltage OUT correspond to “1” and “0”, the differential signals IN and INB input to the LVDS driver 100 can be restored on the LVDS receiver 101 side.

第1および第2伝送路OT1,OT2を流れる信号電流は大きさがほぼ同じで、向きが逆であるため、平衡伝送線全体の電流は「0」になるため、電流変動はほとんどない。一方、LVDSレシーバ101も、電流切り替え型のコンパレータを用いるならば、伝送系全体での電流の変動はほとんど無いと考えてよい。
このことは、伝送系の電流変動によって生ずるノイズが小さいことを意味しており、送信側と受信側で同時スイッチングによる干渉が小さい。また、伝送路に重畳する同相ノイズの影響を排除できることから、LVDSは200MHz以上といった高速の信号伝送に適している。
なお、LVDSにおいては、信号電流は3mA程度であり、終端抵抗RTの両端の電圧、つまり信号振幅は300mV程度である。
Since the signal currents flowing through the first and second transmission lines OT1 and OT2 have substantially the same magnitude and opposite directions, the current of the entire balanced transmission line becomes “0”, so that there is almost no current fluctuation. On the other hand, if the LVDS receiver 101 also uses a current switching type comparator, it may be considered that there is almost no current fluctuation in the entire transmission system.
This means that noise generated by current fluctuations in the transmission system is small, and interference due to simultaneous switching is small on the transmission side and the reception side. In addition, since the influence of common-mode noise superimposed on the transmission path can be eliminated, LVDS is suitable for high-speed signal transmission of 200 MHz or higher.
In LVDS, the signal current is about 3 mA, and the voltage across the termination resistor RT, that is, the signal amplitude is about 300 mV.

このような小信号伝送では、信号を判別する基準となるコモンモード電圧の変動が小さいことが重要であり、図7に示す回路例においては、差動増幅器AMPに対し、トランジスタM1,M2およびM5ならびに内部抵抗R1,R2等の各素子が、コモンモード・フィードバック(CMFB)を形成している。このため、コモンモード電圧が現出するノードND2は、差動増幅器AMPの反転入力端子「−」と仮想短絡され、参照電圧Vrefに調整される。
CMFBなどのフィードバックループで位相差が生じやすいため位相補償を行う必要がある。このため図5に示す回路例では、位相補償キャパシタCCを差動増幅器AMPの出力と電流供給ノードND0との間に接続している。
特開平11−330947号公報
In such a small signal transmission, it is important that the variation of the common mode voltage serving as a reference for determining the signal is small. In the circuit example shown in FIG. 7, the transistors M1, M2, and M5 are compared with the differential amplifier AMP. In addition, each element such as the internal resistances R1 and R2 forms common mode feedback (CMFB). Therefore, the node ND2 at which the common mode voltage appears is virtually short-circuited with the inverting input terminal “−” of the differential amplifier AMP, and is adjusted to the reference voltage Vref.
Since a phase difference is likely to occur in a feedback loop such as CMFB, phase compensation must be performed. Therefore, in the circuit example shown in FIG. 5, the phase compensation capacitor CC is connected between the output of the differential amplifier AMP and the current supply node ND0.
JP-A-11-330947

ところが、信号伝送時において、トランジスタM1,M2,M3,M4のソースの変動が位相補償キャパシタCCを介して参照電圧Vrefに伝播し、コモンモード電圧を変動させる。コモンモード電圧の変動は、とくにトランジスタM1〜M4のバイアス点を変動させることから利得を変化させ、場合によっては出力電圧OUTの振幅を制限することとなる。LVDSではコモン電圧変動として、±50[mV]が規格として規定されている。
また、位相余裕を確保するため、位相補償キャパシタCCの容量値を大きくする必要があり、レイアウト面積が大きくなる。
However, at the time of signal transmission, changes in the sources of the transistors M1, M2, M3, and M4 propagate to the reference voltage Vref through the phase compensation capacitor CC, thereby changing the common mode voltage. The fluctuation of the common mode voltage changes the gain because the bias points of the transistors M1 to M4 are changed. In some cases, the amplitude of the output voltage OUT is limited. In LVDS, ± 50 [mV] is defined as a standard as a common voltage fluctuation.
Further, in order to ensure the phase margin, it is necessary to increase the capacitance value of the phase compensation capacitor CC, and the layout area increases.

図8は、図7に示す回路でのコモンモード電圧の波形例である。
周波数が高く除去可能なスイッチングノイズのほかに、コモンモード電圧が大きく(本例では300[mV]程度)変動していることが分かる。
FIG. 8 is a waveform example of the common mode voltage in the circuit shown in FIG.
It can be seen that, in addition to switching noise having a high frequency and removable, the common mode voltage fluctuates greatly (in this example, about 300 [mV]).

本発明が解決しようとする課題は、信号伝送時のコモンモード電圧の変動を抑え、位相補償キャパシタの容量値を小さくすることである。   The problem to be solved by the present invention is to suppress the variation of the common mode voltage during signal transmission and reduce the capacitance value of the phase compensation capacitor.

本発明に係る差動信号伝送回路は、入力する差動信号に応じて一対の伝送路に流れる電流の向きを切り替える差動バッファと、前記差動バッファの一方の電流供給ノードに接続されている第1の電流源回路と、前記差動バッファの他方の電流供給ノードに接続されている第2の電流源回路と、前記差動バッファに流れる電流に対応する電流を流す前記差動バッファとは別の電流経路と、を有し、前記第2の電流源回路が、前記一対の伝送路に現出する電圧の基準となるコモンモード電圧を所定の参照電圧に調整する差動増幅器を備え、前記電流経路に、前記差動増幅器の位相補償キャパシタが設けられている。   A differential signal transmission circuit according to the present invention is connected to a differential buffer that switches a direction of a current flowing in a pair of transmission paths according to an input differential signal, and one current supply node of the differential buffer. The first current source circuit, the second current source circuit connected to the other current supply node of the differential buffer, and the differential buffer for flowing a current corresponding to the current flowing through the differential buffer Another current path, and the second current source circuit includes a differential amplifier that adjusts a common mode voltage serving as a reference of a voltage appearing in the pair of transmission lines to a predetermined reference voltage, A phase compensation capacitor of the differential amplifier is provided in the current path.

本発明では好適に、前記差動バッファが、前記差動信号が入力され出力に前記一対の伝送路が接続されている2つのインバータと、当該2つのインバータの出力間に互いに縦続接続されている2つの内部抵抗と、を備え、前記第2の電流源回路が、前記2つの内部抵抗間に現出する前記コモンモード電圧を前記参照電圧と比較する差動増幅器と、前記差動バッファの一方の電流供給点と電源電圧供給線との間に接続され、前記差動増幅器の出力によって制御される電流供給トランジスタと、を備え、前記位相補償キャパシタが、前記差動増幅器の出力と前記電流経路との間に接続されている。
さらに好適に、前記第1の電流源回路が、前記差動バッファの他方の電流供給点に接続されている電流供給トランジスタに所定の電流を流すカレントミラー回路を有し、前記カレントミラー回路の前記電流供給トランジスタと制御ノードが共通な第1トランジスタと、前記第2の電流源回路の前記電流供給トランジスタと制御ノードが共通な第2トランジスタとが電源電圧と基準電圧との間に縦続接続され、前記位相補償キャパシタが、前記第1および第2トランジスタの接続点と、前記第2トランジスタの制御ノードとの間に接続されている。
In the present invention, preferably, the differential buffer is cascade-connected between two inverters to which the differential signal is input and the pair of transmission lines are connected to outputs, and between the outputs of the two inverters. Two internal resistors, wherein the second current source circuit compares the common mode voltage appearing between the two internal resistors with the reference voltage, and one of the differential buffers A current supply transistor connected between the current supply point and the power supply voltage supply line and controlled by the output of the differential amplifier, wherein the phase compensation capacitor includes the output of the differential amplifier and the current path Connected between and.
More preferably, the first current source circuit includes a current mirror circuit for supplying a predetermined current to a current supply transistor connected to the other current supply point of the differential buffer, and the current mirror circuit includes the current mirror circuit. A first transistor having a common control node with a current supply transistor, and a second transistor having a common control node with the current supply transistor of the second current source circuit are cascaded between a power supply voltage and a reference voltage; The phase compensation capacitor is connected between a connection point of the first and second transistors and a control node of the second transistor.

本発明に係る差動信号伝送装置は、入力する差動信号に応じて一対の伝送路に流れる電流の向きを切り替える差動バッファを含む伝送回路と、前記一対の伝送路間に接続されている終端抵抗によって、当該終端抵抗に流れる電流の向きに応じて極性が異なる電圧を発生させる受信回路とを備える差動信号伝送装置であって、前記伝送回路は、前記差動バッファの一方の電流供給ノードに接続されている第1の電流源回路と、前記差動バッファの他方の電流供給ノードに接続されている第2の電流源回路と、前記差動バッファに流れる電流に対応する電流を流す前記差動バッファとは別の電流経路と、を有し、前記第2の電流源回路が、前記一対の伝送路に現出する電圧の基準となるコモンモード電圧を所定の参照電圧に調整する差動増幅器を備え、前記電流経路に、前記差動増幅器の位相補償キャパシタが設けられている。   A differential signal transmission device according to the present invention is connected between a transmission circuit including a differential buffer that switches a direction of a current flowing in a pair of transmission lines according to an input differential signal, and the pair of transmission lines. A differential signal transmission device including a reception circuit that generates a voltage having a polarity different depending on a direction of a current flowing through the termination resistor by the termination resistor, wherein the transmission circuit supplies one current of the differential buffer A first current source circuit connected to the node; a second current source circuit connected to the other current supply node of the differential buffer; and a current corresponding to a current flowing through the differential buffer. A current path different from the differential buffer, and the second current source circuit adjusts a common mode voltage serving as a reference of a voltage appearing in the pair of transmission lines to a predetermined reference voltage. Differential amplifier For example, the current path, a phase compensation capacitor of the differential amplifier is provided.

本発明によれば、差動バッファの入力対に逆位相の差動信号が入力されると、その差動信号に応じて、差動バッファの一方の出力がハイレベルの電圧、他方の出力がローレベルの電圧となる。2つの出力には一対の伝送路が接続され、また、より詳細な構成によれば当該出力間に2つの抵抗が接続されている。したがって、第1および第2の電流源回路から差動バッファに供給されている電流の一部が一対の伝送路に流れ、残りが2つの抵抗に流れる。2つの抵抗間の電圧(コモンモード電圧)は差動増幅器で参照電圧と比較され、当該コモンモード電圧が参照電圧に調整されるように第2の電流源回路が働く。このとき第1の電流源回路は所定の電流を差動バッファに流し続けようとすることから、その電流差分によって一対の伝送路の負荷容量が充放電される。このためコモンモード電圧が差動増幅器に与えられている参照電圧に近づくように調整される。
差動バッファに入力される差動信号が切り替わると、差動バッファの出力の電圧レベルが反転し、一対の伝送路には上記と逆の向きに電流が流れる。この場合も、同じようにして第2の電流源回路によって、コモンモード電圧が参照電圧に調整される。
この差動信号の切り替えによって差動バッファが反転動作し、そのスイッチング時の電位変動が第2の電流源回路に伝えられる。しかし、本発明では、差動増幅器の位相補償キャパシタは、差動バッファとは別に設けられ、差動バッファに流れる電流に応じた電流を流す電流経路に形成されている。したがって、この電位変動が差動増幅器の出力にまで到達しない。また、位相補償キャパシタの容量値は、これを差動バッファの電流供給ノードと差動増幅器の出力との間に接続する場合と比較すると、ミラー効果によって比較的小さいもので同じ作用を生じる。
According to the present invention, when a differential signal having an opposite phase is input to the input pair of the differential buffer, one output of the differential buffer is a high level voltage and the other output is in response to the differential signal. Low level voltage. A pair of transmission lines are connected to the two outputs, and according to a more detailed configuration, two resistors are connected between the outputs. Therefore, part of the current supplied from the first and second current source circuits to the differential buffer flows through the pair of transmission lines, and the rest flows through the two resistors. The voltage between the two resistors (common mode voltage) is compared with the reference voltage by the differential amplifier, and the second current source circuit operates so that the common mode voltage is adjusted to the reference voltage. At this time, the first current source circuit tries to keep a predetermined current flowing in the differential buffer, and the load capacity of the pair of transmission lines is charged / discharged by the current difference. For this reason, the common mode voltage is adjusted so as to approach the reference voltage applied to the differential amplifier.
When the differential signal input to the differential buffer is switched, the voltage level of the output of the differential buffer is inverted, and a current flows in the opposite direction to the pair of transmission lines. Also in this case, the common mode voltage is adjusted to the reference voltage by the second current source circuit in the same manner.
The differential buffer is inverted by switching the differential signal, and the potential fluctuation at the time of switching is transmitted to the second current source circuit. However, in the present invention, the phase compensation capacitor of the differential amplifier is provided separately from the differential buffer, and is formed in a current path through which a current corresponding to the current flowing through the differential buffer flows. Therefore, this potential fluctuation does not reach the output of the differential amplifier. In addition, the capacitance value of the phase compensation capacitor is relatively small due to the Miller effect and produces the same effect as compared with the case where it is connected between the current supply node of the differential buffer and the output of the differential amplifier.

本発明によれば、信号伝送時のコモンモード電圧の変動を抑え、位相補償キャパシタの容量値を小さくできるという利点がある。   According to the present invention, there is an advantage that the fluctuation of the common mode voltage during signal transmission can be suppressed and the capacitance value of the phase compensation capacitor can be reduced.

以下、本発明の実施の形態を、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、本実施の形態における差動信号伝送装置を2つの半導体チップ間のLVDS通信に用いた例を示す。
図示例の差動信号伝送装置は、その伝送回路(LVDSドライバ)をチップAに形成し、受信回路(LVDSレシーバ)をチップBに形成し、その間を平衡伝送線OTにより接続している。所定数のLVDSドライバ1がチップAに配置され、不図示の内部回路から差動信号IN,INBが各LVDSドライバ1に入力されている。また、LVDSドライバ1の差動出力がESD(Electrostatic Discharge)部3を介して平衡伝送線OTに接続されている。平衡伝送線OTのチップB側の端部が終端抵抗RTを介して短絡されたうえで、各々LVDSレシーバ2に接続されている。LVDSレシーバ2の各出力は、不図示の内部回路に接続されている。
なお、差動信号IN,INBは、チップAからチップBに伝送する逆位相の2つの信号であればよい。差動信号IN,INBの具体例としては、チップAの内部回路の出力信号(データ信号)、または、チップAからチップBに引き継ぐクロック信号などを挙げることができる。
FIG. 1 shows an example in which the differential signal transmission device according to the present embodiment is used for LVDS communication between two semiconductor chips.
In the illustrated differential signal transmission device, its transmission circuit (LVDS driver) is formed on a chip A, and a reception circuit (LVDS receiver) is formed on a chip B, and these are connected by a balanced transmission line OT. A predetermined number of LVDS drivers 1 are arranged in the chip A, and differential signals IN and INB are input to each LVDS driver 1 from an internal circuit (not shown). The differential output of the LVDS driver 1 is connected to the balanced transmission line OT via an ESD (Electrostatic Discharge) unit 3. The end of the balanced transmission line OT on the chip B side is short-circuited via a termination resistor RT and then connected to the LVDS receiver 2. Each output of the LVDS receiver 2 is connected to an internal circuit (not shown).
The differential signals IN and INB may be two signals having opposite phases transmitted from the chip A to the chip B. Specific examples of the differential signals IN and INB include an output signal (data signal) of an internal circuit of the chip A or a clock signal taken over from the chip A to the chip B.

ESD部3は、たとえば図2に示すように、平衡伝送路となる第1伝送路OT1と第2伝送路OT2のそれぞれに設けられている2つの保護ダイオードD31,D32を有する。本例では、保護ダイオード31のアノードが第1伝送路OT1に接続され、そのカソードが電源供給線33に接続され、保護ダイオード32のアノードが接地され、そのカソードが第2伝送路OT2に接続されている。電源電圧を超えるような正のサージ電圧(たとえば静電ノイズ)が伝送路に印加されたときに保護ダイオード31がオンし、負のサージ電圧が伝送路に印加されたときに保護ダイオード32がオンし、これらのサージ電圧を電源供給線33や接地電圧に流す。SED部3は、必須の構成ではなく省略が可能である。ただし、差動信号伝送装置やチップ内部回路の保護の観点から、たとえば図2に示す構成のESD部3を平衡伝送路に設けることが望ましい。   For example, as shown in FIG. 2, the ESD unit 3 includes two protection diodes D31 and D32 provided in each of the first transmission path OT1 and the second transmission path OT2 that are balanced transmission paths. In this example, the anode of the protection diode 31 is connected to the first transmission line OT1, the cathode is connected to the power supply line 33, the anode of the protection diode 32 is grounded, and the cathode is connected to the second transmission line OT2. ing. The protection diode 31 is turned on when a positive surge voltage (for example, electrostatic noise) exceeding the power supply voltage is applied to the transmission line, and the protection diode 32 is turned on when a negative surge voltage is applied to the transmission line. These surge voltages are supplied to the power supply line 33 and the ground voltage. The SED unit 3 is not an essential configuration and can be omitted. However, from the viewpoint of protecting the differential signal transmission device and the chip internal circuit, it is desirable to provide, for example, the ESD unit 3 having the configuration shown in FIG. 2 in the balanced transmission path.

図3に、LVDSドライバ1の回路例を示す。
LVDSドライバ1は、pMOSFETであるトランジスタM1,M2およびM5と、nMOSFETであるトランジスタM3,M4,M6,M7,M8およびM9と、差動増幅器AMPと、位相補償キャパシタCCと、内部抵抗R1およびR2とを有する。
トランジスタM1とM3が縦続接続されてインバータを形成し、その共通ゲートに信号INが入力される。同様に、トランジスタM2とM4が縦続接続されてインバータを形成し、その共通ゲートに信号INと逆位相の信号INBが入力される。トランジスタM1とM3からなるインバータの出力が第1伝送路OT1に接続され、トランジスタM2とM4からなるインバータの出力が第2伝送路OT2に接続されている。第1および第2伝送路OT1,OT2の一方端、すなわち2つのインバータの出力間に内部抵抗R1とR2が縦続接続されている。これら内部抵抗R1,R2および4つのトランジスタM1〜M4は差動バッファを形成する。
一方、第1および第2伝送路OT1,OT2の他端は、LVDSレシーバ2側において終端抵抗RTを介して短絡されている。第1および第2伝送路OT1,OT2は、それぞれ負荷容量CL1,CL2を有する。
FIG. 3 shows a circuit example of the LVDS driver 1.
The LVDS driver 1 includes transistors M1, M2 and M5 which are pMOSFETs, transistors M3, M4, M6, M7, M8 and M9 which are nMOSFETs, a differential amplifier AMP, a phase compensation capacitor CC, and internal resistors R1 and R2. And have.
Transistors M1 and M3 are cascaded to form an inverter, and a signal IN is input to the common gate. Similarly, transistors M2 and M4 are cascaded to form an inverter, and a signal INB having a phase opposite to that of the signal IN is input to the common gate. The output of the inverter composed of the transistors M1 and M3 is connected to the first transmission line OT1, and the output of the inverter composed of the transistors M2 and M4 is connected to the second transmission line OT2. Internal resistors R1 and R2 are cascaded between one end of the first and second transmission lines OT1 and OT2, that is, between the outputs of the two inverters. These internal resistors R1, R2 and the four transistors M1-M4 form a differential buffer.
On the other hand, the other ends of the first and second transmission lines OT1 and OT2 are short-circuited via a termination resistor RT on the LVDS receiver 2 side. The first and second transmission lines OT1, OT2 have load capacities CL1, CL2, respectively.

差動バッファの一方の電流供給ノードと接地電圧との間に第1の電流供給トランジスタM6が接続されている。また、電源供給線11と接地電圧との間に電流源12とトランジスタM7とが縦続接続されている。トランジスタM7のゲートとドレインおよび第1の電流供給トランジスタM6のゲートが互いに接続され、これによりカレントミラー回路が形成されている。これら2つのトランジスタM6とM7および電流源12によって、参照電流Irefを差動バッファに流す第1の電流源回路が形成されている。   A first current supply transistor M6 is connected between one current supply node of the differential buffer and the ground voltage. A current source 12 and a transistor M7 are cascaded between the power supply line 11 and the ground voltage. The gate and drain of the transistor M7 and the gate of the first current supply transistor M6 are connected to each other, thereby forming a current mirror circuit. The two transistors M6 and M7 and the current source 12 form a first current source circuit that allows the reference current Iref to flow to the differential buffer.

差動バッファの他の電流供給ノードND0と電源供給線10との間に第2の電流供給トランジスタM5が接続され、そのゲートが差動増幅器AMPの出力に接続されている。差動増幅器AMPの反転入力「−」に不図示の電圧発生回路から参照電圧Vrefが与えられ、差動増幅器AMPの非反転入力「+」が内部抵抗R1、R2間の接続ノードND2に接続されている。この差動増幅器AMPと第2の電流供給トランジスタM5とによって、内部抵抗R1、R2間の接続ノードND2の電圧(コモンモード電圧)を参照電圧Vrefに調整するための第2の電流源回路が形成されている。   A second current supply transistor M5 is connected between the other current supply node ND0 of the differential buffer and the power supply line 10, and its gate is connected to the output of the differential amplifier AMP. A reference voltage Vref is applied to the inverting input “−” of the differential amplifier AMP from a voltage generation circuit (not shown), and the non-inverting input “+” of the differential amplifier AMP is connected to the connection node ND2 between the internal resistors R1 and R2. ing. The differential amplifier AMP and the second current supply transistor M5 form a second current source circuit for adjusting the voltage (common mode voltage) of the connection node ND2 between the internal resistors R1 and R2 to the reference voltage Vref. Has been.

本実施の形態においては、電流源(第2の電流源回路)を負荷とするソース接地増幅回路が追加されている。ソース接地増幅回路は、pMOSFETであるトランジスタM8と、nMOSFETであるトランジスタM9とを、電源供給線13と接地電圧との間に縦続接続させたものである。トランジスタM9は、トランジスタM7および電流源12とともにカレントミラー回路を構成する。したがって、差動バッファに第1の電流供給トランジスタM6によって流す電流を、このトランジスタM9に流すことが可能である。また、トランジスタM8は、第2の電流供給トランジスタM5とサイズおよび供給電源電圧が同じであれば、第2の電流供給トランジスタM5により差動バッファに流す電流と同じ電流を流すことができる。
このように構成されているソース接地増幅回路は、本発明の「差動バッファに流れる電流に対応した電流の電流経路」に該当し、本例では、このソース接地増幅回路に位相補償キャパシタCCが設けられている。つまり、位相補償キャパシタCCは、トランジスタM8のドレインとゲート間に接続されている。したがって、差動バッファの電流供給ノードND0に対して、位相補償キャパシタCCは絶縁されている。
In the present embodiment, a common source amplifier circuit having a current source (second current source circuit) as a load is added. The source-grounded amplifier circuit is formed by cascading a transistor M8 that is a pMOSFET and a transistor M9 that is an nMOSFET between a power supply line 13 and a ground voltage. Transistor M9 forms a current mirror circuit together with transistor M7 and current source 12. Therefore, it is possible to flow the current flowing through the differential buffer by the first current supply transistor M6 to the transistor M9. Further, the transistor M8 can flow the same current as the current that flows to the differential buffer by the second current supply transistor M5 if the size and the supply power supply voltage are the same as those of the second current supply transistor M5.
The grounded source amplifier circuit configured in this manner corresponds to the “current path of the current corresponding to the current flowing through the differential buffer” of the present invention. In this example, the phase compensation capacitor CC is included in the grounded source amplifier circuit. Is provided. That is, the phase compensation capacitor CC is connected between the drain and gate of the transistor M8. Therefore, the phase compensation capacitor CC is insulated from the current supply node ND0 of the differential buffer.

このように形成されているLVDSドライバ1は、信号伝送時に入力される差動信号IN,INBに応じて、トランジスタM1とM4、トランジスタM2とM3を各々対として、その一方のトランジスタ対をオフ状態、他方のトランジスタ対をオフ状態とする。トランジスタM1とM4がオン、トランジスタM2とM3がオフの場合、LVDSドライバ1から終端抵抗RTに電流が流れる。第2伝送路OT2側を電位の基準とすると、このとき終端抵抗RTの両端に、終端抵抗RTの抵抗値と流れる電流との積となる値を有する正の電圧が発生する。逆に、トランジスタM1とM4がオフ、トランジスタM2とM3がオンの場合は、電流が上記と逆向きに流れることから、終端抵抗RTの両端には負の電圧が発生する。   The LVDS driver 1 thus formed has transistors M1 and M4 and transistors M2 and M3 as a pair in accordance with differential signals IN and INB input at the time of signal transmission, and one transistor pair is turned off. Then, the other transistor pair is turned off. When the transistors M1 and M4 are on and the transistors M2 and M3 are off, a current flows from the LVDS driver 1 to the termination resistor RT. If the second transmission line OT2 side is used as a potential reference, then a positive voltage having a value that is the product of the resistance value of the termination resistor RT and the flowing current is generated at both ends of the termination resistor RT. On the other hand, when the transistors M1 and M4 are off and the transistors M2 and M3 are on, a current flows in the opposite direction, so that a negative voltage is generated across the termination resistor RT.

LVDSにおいて第1および第2伝送路OT1,OT2は、その電気的特性が等しい、いわゆる平衡伝送路を形成しており、この2本の伝送路により1つの2値信号の伝送を行う。つまり、差動信号IN,INBに応じて、内部抵抗R1,R2の抵抗値が同じ場合、内部抵抗R1,R2の接続ノードND2の電圧(コモンモード電圧)を中心に、LVDSレシーバ2が受け取る終端抵抗RT両端の電圧(出力電圧OUT)の極性が反転する。この出力電圧OUTの極性を「1」と「0」に対応させることにより、LVDSドライバ1に入力された差動信号IN,INBをLVDSレシーバ2側で復元できる。   In the LVDS, the first and second transmission lines OT1 and OT2 form so-called balanced transmission lines having the same electrical characteristics, and one binary signal is transmitted through these two transmission lines. That is, when the resistance values of the internal resistors R1 and R2 are the same according to the differential signals IN and INB, the termination received by the LVDS receiver 2 centering on the voltage (common mode voltage) of the connection node ND2 of the internal resistors R1 and R2. The polarity of the voltage across the resistor RT (output voltage OUT) is inverted. By making the polarity of the output voltage OUT correspond to “1” and “0”, the differential signals IN and INB input to the LVDS driver 1 can be restored on the LVDS receiver 2 side.

第1および第2伝送路OT1,OT2を流れる信号電流は大きさがほぼ同じで、向きが逆であるため、平衡伝送線全体の電流は「0」になるため、電流変動はほとんどない。一方、LVDSレシーバ2も、電流切り替え型のコンパレータを用いるならば、伝送系全体での電流の変動はほとんど無いと考えてよい。
このことは、伝送系の電流変動によって生ずるノイズが小さいことを意味しており、送信側と受信側で同時スイッチングによる干渉が小さい。また、伝送路に重畳する同相ノイズの影響を排除できることから、LVDSは200MHz以上といった高速の信号伝送に適している。
Since the signal currents flowing through the first and second transmission lines OT1 and OT2 have substantially the same magnitude and opposite directions, the current of the entire balanced transmission line becomes “0”, so that there is almost no current fluctuation. On the other hand, if the LVDS receiver 2 also uses a current switching type comparator, it may be considered that there is almost no current fluctuation in the entire transmission system.
This means that noise generated by current fluctuations in the transmission system is small, and interference due to simultaneous switching is small on the transmission side and the reception side. In addition, since the influence of common-mode noise superimposed on the transmission path can be eliminated, LVDS is suitable for high-speed signal transmission of 200 MHz or higher.

図4に、LVDSドライバの入力信号と出力信号の波形図を示す。
図4(A)に示す差動信号IN,INBが入力信号として与えられたときに、図4(B)に示すように、上述した動作によって、ほぼ基準電圧Vrefに制御されるコモンモード電圧を交点として互いにスイッチングする出力信号が得られる。LVDSにおいては、通常、信号電流は3mA程度であり、このとき終端抵抗RTの両端の電圧、つまり出力信号の電圧振幅Wは300mV程度である。
FIG. 4 shows waveform diagrams of the input signal and output signal of the LVDS driver.
When the differential signals IN and INB shown in FIG. 4A are given as input signals, as shown in FIG. 4B, the common mode voltage controlled to approximately the reference voltage Vref is obtained by the above-described operation. Output signals that switch to each other are obtained as intersections. In LVDS, the signal current is usually about 3 mA, and at this time, the voltage across the termination resistor RT, that is, the voltage amplitude W of the output signal is about 300 mV.

本実施形態において、このような小信号伝送では信号を判別する基準となるコモンモード電圧の変動が抑圧される。以下、このことを説明する。
図3に示す回路例においては、差動増幅器AMPに対し、トランジスタM1,M2およびM5ならびに内部抵抗R1,R2等の各素子が、コモンモード・フィードバック(CMFB)を形成している。このため、コモンモード電圧が現出するノードND2は、差動増幅器AMPの反転入力端子「−」と仮想短絡され、参照電圧Vrefに調整される。
CMFBの位相補償に関し、図3に示す回路例では、位相補償キャパシタCCをトランジスタM8のゲート(差動増幅器AMPの出力)とドレインとの間に接続している。このようにしても、CMFBは、そのフィードバックループにおいて、トランジスタM1,M2,M3,M4および終端抵抗RTの分だけ電圧余裕を持つことから、トランジスタM8およびM9の追加が、差動バッファの各トランジスタの動作点に与える影響はない。
本回路では位相補償キャパシタCCをソース接地増幅回路に設けていることから、差動バッファがスイッチング動作する時に生じる電流供給ノードND0の電位変動が第2の電流供給トランジスタM5で遮断され、差動増幅器AMPの出力に影響を与えることが防止または抑制されている。
In the present embodiment, such small signal transmission suppresses fluctuations in the common mode voltage, which is a reference for discriminating signals. This will be described below.
In the circuit example shown in FIG. 3, each element such as transistors M1, M2, and M5 and internal resistors R1, R2 forms a common mode feedback (CMFB) with respect to the differential amplifier AMP. Therefore, the node ND2 at which the common mode voltage appears is virtually short-circuited with the inverting input terminal “−” of the differential amplifier AMP, and is adjusted to the reference voltage Vref.
Regarding the CMFB phase compensation, in the circuit example shown in FIG. 3, a phase compensation capacitor CC is connected between the gate (output of the differential amplifier AMP) and the drain of the transistor M8. Even in this case, the CMFB has a voltage margin corresponding to the transistors M1, M2, M3, and M4 and the termination resistor RT in the feedback loop. Therefore, the addition of the transistors M8 and M9 is performed by each transistor of the differential buffer. There is no effect on the operating point.
In this circuit, since the phase compensation capacitor CC is provided in the common-source amplifier circuit, the potential fluctuation of the current supply node ND0 that occurs when the differential buffer performs a switching operation is blocked by the second current supply transistor M5, and the differential amplifier Influencing the output of AMP is prevented or suppressed.

図5は、図3に示す回路でのコモンモード電圧の波形例である。
周波数が高く除去可能なスイッチングノイズのほかに、コモンモード電圧が変動しているが、そのレンジは数[mV]程度に収まっている。したがって、図8の場合よりコモンモード電圧の変動幅が1桁程度改善されている。具体的には、ある必要な時間幅で見ると、コモンモード電圧が37[mV]から7.3[mV]に抑制することができている。
FIG. 5 is a waveform example of the common mode voltage in the circuit shown in FIG.
In addition to switching noise with a high frequency that can be removed, the common mode voltage fluctuates, but its range is within a few [mV]. Therefore, the fluctuation range of the common mode voltage is improved by about one digit compared with the case of FIG. Specifically, the common mode voltage can be suppressed from 37 [mV] to 7.3 [mV] in a certain required time width.

また、位相補償キャパシタCCは、ミラー効果により増幅され、図7の場合に比べ、小さい容量とすることを可能としている。たとえば位相補償キャパシタCCの容量値は、図5の場合に20[pF]であったものが、図3の回路にすることによって4[pF]に大幅に低減している。   Further, the phase compensation capacitor CC is amplified by the mirror effect, and can have a smaller capacity than the case of FIG. For example, the capacitance value of the phase compensation capacitor CC, which was 20 [pF] in the case of FIG. 5, is greatly reduced to 4 [pF] by using the circuit of FIG.

図6に、LVDSドライバ1の配置例を示す。
図6に示す配置例では、LVDSドライバ1を6個連続して配置し、電源電圧Vddの供給ブロック20と基準電圧Vssの供給ブロック21を配置し、この配列をチップA(図1参照)の一辺に沿って繰り返している。このチップAの辺と直交する方向のLVDSドライバ1の長さHは、位相補償キャパシタCCの容量の大幅低減により短縮され、これによりLVDSドライバ1のセル面積で約30[%]、チップ面積で約150[μm2]削減されている。
FIG. 6 shows an arrangement example of the LVDS driver 1.
In the arrangement example shown in FIG. 6, six LVDS drivers 1 are arranged in succession, a supply block 20 for the power supply voltage Vdd and a supply block 21 for the reference voltage Vss are arranged, and this arrangement is arranged on the chip A (see FIG. 1). It repeats along one side. The length H of the LVDS driver 1 in the direction orthogonal to the side of the chip A is shortened by greatly reducing the capacity of the phase compensation capacitor CC. As a result, the cell area of the LVDS driver 1 is about 30%, It is reduced by about 150 [μm 2 ].

なお、LVDSドライバをCMOS回路により構成した場合を説明したが、他のトランジスタ素子により形成してもよいし、位相補償キャパシタCCが差動バッファ以外の電流経路に設けられていればよく、具体的な回路は図3に限定されるものではない。LVDSドライバをCMOS回路で構成した場合、小さな電圧振幅のCMOSレベルの信号をノイズの影響を回避しながら高速に伝送できる。このため、当該差動信号伝送装置(伝送回路および受信回路)は、CMOSセンサのチップと他のチップとの間の信号伝送装置として好適に実施可能である。   Although the case where the LVDS driver is configured by a CMOS circuit has been described, it may be formed by other transistor elements, or the phase compensation capacitor CC may be provided in a current path other than the differential buffer. Such a circuit is not limited to FIG. When the LVDS driver is composed of a CMOS circuit, a CMOS level signal having a small voltage amplitude can be transmitted at high speed while avoiding the influence of noise. Therefore, the differential signal transmission device (transmission circuit and reception circuit) can be suitably implemented as a signal transmission device between the chip of the CMOS sensor and another chip.

本発明の実施形態における差動信号伝送装置を2つの半導体チップ間のLVDS通信に用いた例を示す図である。It is a figure which shows the example which used the differential signal transmission apparatus in embodiment of this invention for LVDS communication between two semiconductor chips. ESD部の回路図である。It is a circuit diagram of an ESD unit. LVDSドライバの回路図である。It is a circuit diagram of an LVDS driver. (A)および(B)はLVDSドライバの入力信号と出力信号の波形図である。(A) and (B) are waveform diagrams of the input signal and output signal of the LVDS driver. 図3に示す回路でのコモンモード電圧の測定波形図である。FIG. 4 is a measurement waveform diagram of a common mode voltage in the circuit shown in FIG. 3. LVDSドライバの配置例を示す図である。It is a figure which shows the example of arrangement | positioning of an LVDS driver. 背景技術のLVDSドライバの回路図である。It is a circuit diagram of the LVDS driver of background art. 図7に示す回路でのコモンモード電圧の測定波形図である。FIG. 8 is a measurement waveform diagram of a common mode voltage in the circuit shown in FIG. 7.

符号の説明Explanation of symbols

1…LVDSドライバ、2…LVDSレシーバ、3…ESD部、10,13…電源供給線、12…電流源、20…電源電圧Vddの供給ブロック、21…基準電圧Vssの供給ブロック、31,32…保護ダイオード、M1等…トランジスタ、R1,R2…内部抵抗、RT…終端抵抗、AMP…差動増幅器、CC…位相補償キャパシタ、CL1,CL2…負荷容量、OT1…第1伝送路、OT2…第2伝送路
DESCRIPTION OF SYMBOLS 1 ... LVDS driver, 2 ... LVDS receiver, 3 ... ESD part 10,13 ... Power supply line, 12 ... Current source, 20 ... Supply block of power supply voltage Vdd, 21 ... Supply block of reference voltage Vss, 31,32 ... Protection diode, M1, etc .... transistor, R1, R2 ... internal resistance, RT ... termination resistor, AMP ... differential amplifier, CC ... phase compensation capacitor, CL1, CL2 ... load capacitance, OT1 ... first transmission line, OT2 ... second Transmission line

Claims (4)

入力する差動信号に応じて一対の伝送路に流れる電流の向きを切り替える差動バッファと、
前記差動バッファの一方の電流供給ノードに接続されている第1の電流源回路と、
前記差動バッファの他方の電流供給ノードに接続されている第2の電流源回路と、
前記差動バッファに流れる電流に対応する電流を流す前記差動バッファとは別の電流経路と、を有し、
前記第2の電流源回路が、前記一対の伝送路に現出する電圧の基準となるコモンモード電圧を所定の参照電圧に調整する差動増幅器を備え、
前記電流経路に、前記差動増幅器の位相補償キャパシタが設けられている
差動信号伝送回路。
A differential buffer that switches the direction of the current flowing in the pair of transmission paths according to the differential signal to be input;
A first current source circuit connected to one current supply node of the differential buffer;
A second current source circuit connected to the other current supply node of the differential buffer;
A current path different from the differential buffer for flowing a current corresponding to a current flowing through the differential buffer;
The second current source circuit includes a differential amplifier that adjusts a common mode voltage serving as a reference of a voltage appearing in the pair of transmission lines to a predetermined reference voltage;
A differential signal transmission circuit, wherein a phase compensation capacitor of the differential amplifier is provided in the current path.
前記差動バッファが、
前記差動信号が入力され出力に前記一対の伝送路が接続されている2つのインバータと、
当該2つのインバータの出力間に互いに縦続接続されている2つの内部抵抗と、を備え、
前記第2の電流源回路が、
前記2つの内部抵抗間に現出する前記コモンモード電圧を前記参照電圧と比較する差動増幅器と、
前記差動バッファの一方の電流供給点と電源電圧供給線との間に接続され、前記差動増幅器の出力によって制御される電流供給トランジスタと、を備え、
前記位相補償キャパシタが、前記差動増幅器の出力と前記電流経路との間に接続されている
請求項1に記載の差動信号伝送回路。
The differential buffer is
Two inverters to which the differential signal is input and the pair of transmission lines are connected to outputs;
Two internal resistors connected in cascade between the outputs of the two inverters,
The second current source circuit comprises:
A differential amplifier for comparing the common mode voltage appearing between the two internal resistors with the reference voltage;
A current supply transistor connected between one current supply point of the differential buffer and a power supply voltage supply line and controlled by the output of the differential amplifier; and
The differential signal transmission circuit according to claim 1, wherein the phase compensation capacitor is connected between an output of the differential amplifier and the current path.
前記第1の電流源回路が、前記差動バッファの他方の電流供給点に接続されている電流供給トランジスタに所定の電流を流すカレントミラー回路を有し、
前記カレントミラー回路の前記電流供給トランジスタと制御ノードが共通な第1トランジスタと、前記第2の電流源回路の前記電流供給トランジスタと制御ノードが共通な第2トランジスタとが電源電圧と基準電圧との間に縦続接続され、
前記位相補償キャパシタが、前記第1および第2トランジスタの接続点と、前記第2トランジスタの制御ノードとの間に接続されている
請求項2に記載の差動信号伝送回路。
The first current source circuit includes a current mirror circuit for supplying a predetermined current to a current supply transistor connected to the other current supply point of the differential buffer;
A first transistor having a common control node with the current supply transistor of the current mirror circuit, and a second transistor having a common control node with the current supply transistor of the second current source circuit have a power supply voltage and a reference voltage. Cascaded between and
The differential signal transmission circuit according to claim 2, wherein the phase compensation capacitor is connected between a connection point of the first and second transistors and a control node of the second transistor.
入力する差動信号に応じて一対の伝送路に流れる電流の向きを切り替える差動バッファを含む伝送回路と、前記一対の伝送路間に接続されている終端抵抗によって、当該終端抵抗に流れる電流の向きに応じて極性が異なる電圧を発生させる受信回路とを備える差動信号伝送装置であって、
前記伝送回路は、
前記差動バッファの一方の電流供給ノードに接続されている第1の電流源回路と、
前記差動バッファの他方の電流供給ノードに接続されている第2の電流源回路と、
前記差動バッファに流れる電流に対応する電流を流す前記差動バッファとは別の電流経路と、を有し、
前記第2の電流源回路が、前記一対の伝送路に現出する電圧の基準となるコモンモード電圧を所定の参照電圧に調整する差動増幅器を備え、
前記電流経路に、前記差動増幅器の位相補償キャパシタが設けられている
差動信号伝送装置。
A transmission circuit including a differential buffer that switches the direction of the current flowing in the pair of transmission paths according to the input differential signal, and a termination resistance connected between the pair of transmission paths, the current flowing in the termination resistance A differential signal transmission device comprising a receiving circuit for generating a voltage having a different polarity according to a direction,
The transmission circuit is
A first current source circuit connected to one current supply node of the differential buffer;
A second current source circuit connected to the other current supply node of the differential buffer;
A current path different from the differential buffer for flowing a current corresponding to a current flowing through the differential buffer;
The second current source circuit includes a differential amplifier that adjusts a common mode voltage serving as a reference of a voltage appearing in the pair of transmission lines to a predetermined reference voltage;
The differential signal transmission device, wherein a phase compensation capacitor of the differential amplifier is provided in the current path.
JP2005165232A 2005-06-06 2005-06-06 Differential signal transmission circuit and differential signal transmission device Expired - Fee Related JP4923442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005165232A JP4923442B2 (en) 2005-06-06 2005-06-06 Differential signal transmission circuit and differential signal transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005165232A JP4923442B2 (en) 2005-06-06 2005-06-06 Differential signal transmission circuit and differential signal transmission device

Publications (2)

Publication Number Publication Date
JP2006340266A true JP2006340266A (en) 2006-12-14
JP4923442B2 JP4923442B2 (en) 2012-04-25

Family

ID=37560386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165232A Expired - Fee Related JP4923442B2 (en) 2005-06-06 2005-06-06 Differential signal transmission circuit and differential signal transmission device

Country Status (1)

Country Link
JP (1) JP4923442B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329550A (en) * 2006-06-06 2007-12-20 Nec Electronics Corp Differential signal drive circuit and differential signal drive method
JP2009153097A (en) * 2007-11-30 2009-07-09 Sony Corp Differential drive circuit and communication device
US7911244B2 (en) 2007-11-30 2011-03-22 Sony Corporation Differential drive circuit and communication device
CN101471630B (en) * 2007-12-24 2011-06-01 瑞昱半导体股份有限公司 Whole differential amplifier
JP2011201527A (en) * 2010-03-04 2011-10-13 Denso Corp Communication device for vehicle and communication system for vehicle
JP2012060214A (en) * 2010-09-06 2012-03-22 Sony Corp Driver amplifier circuit and communication system
JP2012247418A (en) * 2011-05-27 2012-12-13 General Electric Co <Ge> System and method used for providing sensor signal unrelated to ground
JP2013251636A (en) * 2012-05-30 2013-12-12 Nsk Ltd Circuit for protecting line driver, and motor system
JP2015192447A (en) * 2014-03-31 2015-11-02 株式会社メガチップス Semiconductor circuit and amplifier circuit
JP2016051906A (en) * 2014-08-28 2016-04-11 ラピスセミコンダクタ株式会社 High frequency amplifier circuit
WO2016185847A1 (en) * 2015-05-18 2016-11-24 長瀬産業株式会社 Input/output interface circuit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03154507A (en) * 1989-10-31 1991-07-02 Internatl Business Mach Corp <Ibm> Amplifier
JPH0629761A (en) * 1992-02-03 1994-02-04 Motorola Inc Differential amplifier provided with reinforced in-phase mode stability
JPH09321555A (en) * 1996-05-28 1997-12-12 Oki Electric Ind Co Ltd Differential amplifier for semiconductor integrated circuit
JPH11330947A (en) * 1998-02-19 1999-11-30 Lucent Technol Inc Method and device for controlling common mode output voltage of differential buffer
JP2000354055A (en) * 1999-04-06 2000-12-19 Matsushita Electric Ind Co Ltd Constant-current outputting circuit
JP2002084181A (en) * 2000-09-07 2002-03-22 Mitsubishi Electric Corp Differential output circuit
JP2003347920A (en) * 2002-05-28 2003-12-05 Fujitsu Ltd Output circuit apparatus
JP2004172980A (en) * 2002-11-20 2004-06-17 Fujitsu Ltd Buffer circuit device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03154507A (en) * 1989-10-31 1991-07-02 Internatl Business Mach Corp <Ibm> Amplifier
JPH0629761A (en) * 1992-02-03 1994-02-04 Motorola Inc Differential amplifier provided with reinforced in-phase mode stability
JPH09321555A (en) * 1996-05-28 1997-12-12 Oki Electric Ind Co Ltd Differential amplifier for semiconductor integrated circuit
JPH11330947A (en) * 1998-02-19 1999-11-30 Lucent Technol Inc Method and device for controlling common mode output voltage of differential buffer
JP2000354055A (en) * 1999-04-06 2000-12-19 Matsushita Electric Ind Co Ltd Constant-current outputting circuit
JP2002084181A (en) * 2000-09-07 2002-03-22 Mitsubishi Electric Corp Differential output circuit
JP2003347920A (en) * 2002-05-28 2003-12-05 Fujitsu Ltd Output circuit apparatus
JP2004172980A (en) * 2002-11-20 2004-06-17 Fujitsu Ltd Buffer circuit device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329550A (en) * 2006-06-06 2007-12-20 Nec Electronics Corp Differential signal drive circuit and differential signal drive method
JP2009153097A (en) * 2007-11-30 2009-07-09 Sony Corp Differential drive circuit and communication device
US7911244B2 (en) 2007-11-30 2011-03-22 Sony Corporation Differential drive circuit and communication device
CN101471630B (en) * 2007-12-24 2011-06-01 瑞昱半导体股份有限公司 Whole differential amplifier
JP2011201527A (en) * 2010-03-04 2011-10-13 Denso Corp Communication device for vehicle and communication system for vehicle
JP2012060214A (en) * 2010-09-06 2012-03-22 Sony Corp Driver amplifier circuit and communication system
JP2012247418A (en) * 2011-05-27 2012-12-13 General Electric Co <Ge> System and method used for providing sensor signal unrelated to ground
JP2013251636A (en) * 2012-05-30 2013-12-12 Nsk Ltd Circuit for protecting line driver, and motor system
JP2015192447A (en) * 2014-03-31 2015-11-02 株式会社メガチップス Semiconductor circuit and amplifier circuit
JP2016051906A (en) * 2014-08-28 2016-04-11 ラピスセミコンダクタ株式会社 High frequency amplifier circuit
WO2016185847A1 (en) * 2015-05-18 2016-11-24 長瀬産業株式会社 Input/output interface circuit
JP2016219948A (en) * 2015-05-18 2016-12-22 長瀬産業株式会社 I/o interface circuit

Also Published As

Publication number Publication date
JP4923442B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP4923442B2 (en) Differential signal transmission circuit and differential signal transmission device
US7391825B2 (en) Comparator circuit having reduced pulse width distortion
JP3575453B2 (en) Reference voltage generation circuit
US9013226B2 (en) Circuits for improving linearity of metal oxide semiconductor (MOS) transistors
JP4097149B2 (en) Differential drive circuit and electronic device incorporating the same
US8558581B2 (en) Analog rail-to-rail comparator with hysteresis
US8957708B2 (en) Output buffer and semiconductor device
US20110291759A1 (en) Rail-to-rail amplifier
US8963637B2 (en) Semiconductor device and communication device
JP2004032689A (en) Current-sense amplifier
CN110611497B (en) Comparator and oscillating circuit
US7256652B1 (en) Differential input receiver having over-voltage protection
US9971370B2 (en) Voltage regulator with regulated-biased current amplifier
JP5000292B2 (en) Serial transmission output device
JP4885633B2 (en) Transmission device, transmission device using the same, and electronic device
US9135960B2 (en) Signal receiver circuit
KR100420689B1 (en) Buffer circuit
TWI781598B (en) Amplifier and lpddr3 input buffer
CN111147065B (en) Signal output circuit
US8754673B1 (en) Adaptive reference voltage generators that support high speed signal detection
US20240210981A1 (en) Constant voltage circuit
JP2011248467A (en) Hot-line insertion/exertion control circuit
US9281968B2 (en) Differential circuit system
KR100500445B1 (en) Differential output circuit
US20080048713A1 (en) Transmission/reception apparatus for differential signals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees