JPH09321555A - Differential amplifier for semiconductor integrated circuit - Google Patents

Differential amplifier for semiconductor integrated circuit

Info

Publication number
JPH09321555A
JPH09321555A JP13313196A JP13313196A JPH09321555A JP H09321555 A JPH09321555 A JP H09321555A JP 13313196 A JP13313196 A JP 13313196A JP 13313196 A JP13313196 A JP 13313196A JP H09321555 A JPH09321555 A JP H09321555A
Authority
JP
Japan
Prior art keywords
voltage
differential
bias
resistors
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13313196A
Other languages
Japanese (ja)
Inventor
Hideaki Sato
秀暁 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP13313196A priority Critical patent/JPH09321555A/en
Publication of JPH09321555A publication Critical patent/JPH09321555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Abstract

PROBLEM TO BE SOLVED: To make an output bias voltage stable. SOLUTION: Load resistors 5, 6 have the same resistance, the resistance of resistors 11, 12 used to output a mean voltage Vom (in this embodiment, Vom =Vout1=Vout2) of output bias voltages Vout1, Vout2 of output terminals out1, out2 to a detection terminal dtc is sufficiently larger than that of the load resistors and is equal to each other. A voltage comparator 8 is an operational amplifier, a designed output bias voltage VrQ is given to its inverting input terminal (-). In the case of Vom >VrQ, an output voltage of the voltage comparator 8 rises to raise a gate voltage of a current source FET 3, resulting that an operating current Is of the current source FET 3 is increased, the bias current flowing to the load resistors is increased, the Vom is decreased and controlled to be the same as the voltage VrQ. Furthermore, in the case of Vom <VrQ, since the output voltage of the voltage comparator 8 is decreased to decrease the Is, the bias current flowing to the load resistors is decreased and the Vom is controlled to be the same as the voltage VrQ.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体集積回路に
おいて電界効果トランジスタ(以下、FETと呼ぶ)等
を用いて構成される差動増幅器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential amplifier constructed by using field effect transistors (hereinafter referred to as FETs) in a semiconductor integrated circuit.

【0002】[0002]

【従来の技術】一般に、トランジスタとしてFETを用
いた差動増幅器においては、温度変動によるFETや負
荷抵抗の特性の変化や電源のレベル変動等により、差動
出力端子のバイアス電圧(以下、出力バイアス電圧と称
する)が設計値からずれてしまい、差動増幅器としての
所望の特性が得られなくなる場合があるので、出力バイ
アス電圧の安定化のための手段を設ける必要がある。
2. Description of the Related Art Generally, in a differential amplifier using an FET as a transistor, a bias voltage (hereinafter referred to as an output bias) at a differential output terminal is caused by a change in the characteristics of the FET and the load resistance due to a temperature change, a level change of a power supply, and the like. (Referred to as voltage) may deviate from the designed value, and desired characteristics as a differential amplifier may not be obtained. Therefore, it is necessary to provide means for stabilizing the output bias voltage.

【0003】従来の半導体集積回路においては、例えば
特開平07−106875号公報に記載されているよう
な差動増幅器を採用している。図3はこのような従来の
差動増幅器の一例を示す回路図である。図3に示す差動
増幅器は、差動FET1および2と、負荷抵抗5および
6と、電流源FET3により差動増幅回路を構成し、こ
れらに加えて、直列接続されて電源VDDと接地電位の間
に挿入され、バイアス検出回路を構成する抵抗7および
FET4と、演算増幅器による電圧比較器8とを備え
る。抵抗5、6と抵抗7、および電流源FET3とFE
T4がそれぞれ同じ特性を有する。抵抗7およびFET
4の接続点は電圧比較器8の非反転入力端子(+)に接
続され、電圧比較器8の反転入力端子(−)は比較基準
電圧に接続される。電圧比較器8の出力端子は電流源F
ET3およびFET4のゲート電極に接続される。
In a conventional semiconductor integrated circuit, for example, a differential amplifier as described in JP-A-07-106875 is adopted. FIG. 3 is a circuit diagram showing an example of such a conventional differential amplifier. The differential amplifier shown in FIG. 3 comprises a differential amplifier circuit composed of the differential FETs 1 and 2, the load resistors 5 and 6, and the current source FET 3 and, in addition to these, is connected in series to connect the power supply VDD and the ground potential. A resistor 7 and a FET 4, which are inserted between the resistors and constitute a bias detection circuit, and a voltage comparator 8 including an operational amplifier are provided. Resistors 5 and 6 and resistor 7, and current source FET3 and FE
Each T4 has the same characteristics. Resistor 7 and FET
The connection point of 4 is connected to the non-inverting input terminal (+) of the voltage comparator 8, and the inverting input terminal (-) of the voltage comparator 8 is connected to the comparison reference voltage. The output terminal of the voltage comparator 8 is the current source F
It is connected to the gate electrodes of ET3 and FET4.

【0004】温度変動等によりバイアス検出電圧(FE
T4のドレイン電圧)が比較基準電圧よりも小さくなる
と、電圧比較器8の出力電圧が下降するので、FET4
に流れる電流が減少し、バイアス検出電圧は比較基準電
圧と等しくなる。またバイアス検出電圧が比較基準電圧
よりも大きくなると、電圧比較器8の出力電圧が上昇す
るので、FET4に流れる電流が増加し、バイアス検出
電圧は比較基準電圧と等しくなる。このように、バイア
ス検出電圧を比較基準電圧に等しくなるように制御し、
この電圧比較器8の出力電圧をFET3のゲート電極に
も印加することにより、差動出力端子out1、out
2のバイアス電圧の変動を上記のバイアス検出電圧と同
様に抑えることができる。
Bias detection voltage (FE
When the drain voltage of T4) becomes smaller than the comparison reference voltage, the output voltage of the voltage comparator 8 drops, so that the FET4
The current flowing in the transistor decreases, and the bias detection voltage becomes equal to the comparison reference voltage. When the bias detection voltage becomes higher than the comparison reference voltage, the output voltage of the voltage comparator 8 rises, so that the current flowing through the FET 4 increases and the bias detection voltage becomes equal to the comparison reference voltage. In this way, the bias detection voltage is controlled to be equal to the comparison reference voltage,
By applying the output voltage of the voltage comparator 8 to the gate electrode of the FET 3 as well, the differential output terminals out1, out
The fluctuation of the bias voltage of 2 can be suppressed similarly to the above bias detection voltage.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図3に
示す差動増幅器においては、製造ばらつきにより、抵抗
5、6と抵抗7、または電流源FET3とFET4の特
性に差異を生じると、出力バイアス電圧は安定化されな
いという課題があった。
However, in the differential amplifier shown in FIG. 3, when the characteristics of the resistors 5, 6 and 7 or the current source FET 3 and FET 4 differ due to manufacturing variations, the output bias voltage There was a problem that was not stabilized.

【0006】本発明はこのような課題を解決するもので
あり、出力バイアス電圧の安定度の向上を図ることを目
的とするものである。
The present invention solves such a problem, and an object thereof is to improve the stability of the output bias voltage.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の差動増幅器は、各第1電極がそれぞれの負
荷抵抗を介して第1電源に接続され、第2電極が共通接
続され、各制御電極を差動入力端子とし、前記各第1電
極を差動出力端子とする一対のトランジスタと、前記差
動トランジスタの第2電極と第2電源の間に接続された
電流源トランジスタと、前記各差動出力端子のバイアス
電圧の加重平均電圧を検出するバイアス検出手段と、前
記加重平均電圧と予め設定されている基準電圧との差電
圧に応じて前記電流源トランジスタの制御電極に印加す
る電圧を変化させることにより、前記加重平均電圧を前
記基準電圧に等しくなるように制御するバイアス制御手
段とを備えたことを特徴とするものである。
In order to achieve the above object, in the differential amplifier of the present invention, each first electrode is connected to the first power source through each load resistor, and the second electrode is commonly connected. And a pair of transistors having each control electrode as a differential input terminal and each of the first electrodes as a differential output terminal, and a current source transistor connected between a second electrode of the differential transistor and a second power supply. A bias detecting means for detecting a weighted average voltage of the bias voltages of the differential output terminals, and a control electrode of the current source transistor according to a difference voltage between the weighted average voltage and a preset reference voltage. Bias control means for controlling the weighted average voltage to be equal to the reference voltage by changing the applied voltage is provided.

【0008】また請求項2に記載の差動増幅器は、前記
バイアス検出手段が、直列接続されて前記差動出力端子
間に挿入された2つの抵抗と、この2つの抵抗の接続点
と前記第1電源の間、またはこの接続点と第2電源の間
に挿入されたコンデンサからなり、前記2つの抵抗の接
続点を前記加重平均電圧の検出端子とし、前記2つの抵
抗の抵抗値をこれらの抵抗に流れる電流の最大値が前記
負荷抵抗に流れる電流の最小値よりも充分小さくなるよ
うな値としたものであり、前記バイアス制御手段が、前
記加重平均電圧が非反転入力端子に入力され、前記基準
電圧が反転入力端子に入力され、出力端子が前記電流源
トランジスタの制御電極に接続された演算増幅器からな
るものであることを特徴とするものである。
According to a second aspect of the present invention, in the differential amplifier, the bias detecting means is connected in series and two resistors are inserted between the differential output terminals, a connection point of the two resistors and the first resistor. It consists of a capacitor inserted between one power supply or between this connection point and a second power supply, and the connection point of the two resistors is the detection terminal of the weighted average voltage, and the resistance values of the two resistors are these. The maximum value of the current flowing through the resistor is sufficiently smaller than the minimum value of the current flowing through the load resistor, the bias control means, the weighted average voltage is input to the non-inverting input terminal, The reference voltage is input to an inverting input terminal, and the output terminal is composed of an operational amplifier connected to the control electrode of the current source transistor.

【0009】請求項3に記載の差動増幅器は、前記第1
電源を接地電位としたことを特徴とするものである。
A differential amplifier according to a third aspect is the first amplifier.
This is characterized in that the power supply is set to the ground potential.

【0010】従って本発明によれば、バイアス検出手段
により各差動出力端子のバイアス電圧(出力バイアス電
圧)の加重平均電圧を検出し、バイアス制御手段によ
り、前記加重平均電圧と予め設定されている基準電圧と
の差電圧に応じて電流源トランジスタの制御電極に印加
する電圧を変化させて電流源トランジスタに流れる電流
を変化させ、前記加重平均電圧を前記基準電圧に等しく
なるように制御することにより、出力バイアス電圧の変
動を抑えることができる。
Therefore, according to the present invention, the bias detection means detects the weighted average voltage of the bias voltage (output bias voltage) of each differential output terminal, and the bias control means presets the weighted average voltage. By changing the voltage applied to the control electrode of the current source transistor according to the voltage difference from the reference voltage to change the current flowing through the current source transistor, and controlling the weighted average voltage to be equal to the reference voltage. The fluctuation of the output bias voltage can be suppressed.

【0011】また請求項3に記載の差動増幅器によれ
ば、第1電源を接地電位とすることにより、電源の変動
による出力バイアス電圧の変動をなくすことができるの
で、さらに出力バイアス電圧を安定化させることができ
る。
According to the differential amplifier of the third aspect, by setting the first power supply to the ground potential, it is possible to eliminate the fluctuation of the output bias voltage due to the fluctuation of the power supply, so that the output bias voltage is further stabilized. Can be transformed.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

第1の実施形態 図1は本発明の第1の実施形態を示す差動増幅器の回路
図である。この差動増幅器は、一対の差動トランジスタ
となるN型の差動FET1および2と、差動FET1の
負荷抵抗5と、差動FET2の負荷抵抗6と、定電流源
となるN型の電流源FET3と、出力バイアス電圧の平
均値を検出するための抵抗11および12と、演算増幅
器を用いた電圧比較器8と、コンデンサ13とを有す
る。
First Embodiment FIG. 1 is a circuit diagram of a differential amplifier according to a first embodiment of the present invention. This differential amplifier includes N-type differential FETs 1 and 2 serving as a pair of differential transistors, a load resistance 5 of the differential FET 1, a load resistance 6 of the differential FET 2, and an N-type current serving as a constant current source. It has a source FET 3, resistors 11 and 12 for detecting the average value of the output bias voltage, a voltage comparator 8 using an operational amplifier, and a capacitor 13.

【0013】図1の差動増幅器は、差動FET1のゲー
ト電極(制御電極)を差動入力端子in1とし、ドレイ
ン電極(第1電極)を差動出力端子out1とし、また
差動FET2のゲート電極(制御電極)を差動入力端子
in2とし、ドレイン電極(第1電極)を差動出力端子
out2とする。差動FET1のドレイン電極は負荷抵
抗5を介して正電源VDDに接続されており、差動FET
2のドレイン電極は負荷抵抗6を介して正電源VDDに接
続されている。差動FET1と2のソース電極(第2電
極)は共通接続され、電流源FET3のドレイン電極
(第1電極)に接続されており、電流源FET3のソー
ス電極(第2電極)は接地されている。尚、ここでは差
動FET1と2は同じ特性であり、また負荷抵抗5と6
は同じ抵抗値であるものとする。
In the differential amplifier of FIG. 1, the gate electrode (control electrode) of the differential FET1 is used as the differential input terminal in1, the drain electrode (first electrode) is used as the differential output terminal out1, and the gate of the differential FET2 is used. The electrode (control electrode) is the differential input terminal in2, and the drain electrode (first electrode) is the differential output terminal out2. The drain electrode of the differential FET 1 is connected to the positive power supply VDD through the load resistor 5, and the differential FET
The drain electrode of 2 is connected to the positive power supply VDD through the load resistor 6. The source electrodes (second electrodes) of the differential FETs 1 and 2 are commonly connected and connected to the drain electrode (first electrode) of the current source FET3, and the source electrode (second electrode) of the current source FET3 is grounded. There is. Here, the differential FETs 1 and 2 have the same characteristics, and the load resistors 5 and 6 have the same characteristics.
Have the same resistance value.

【0014】さらに、一端が差動FET1のドレイン電
極に接続された抵抗11の他端と、一端が差動FET2
のドレイン電極に接続された抵抗12の他端とを接続
し、この抵抗11と12の接続点をout1の出力バイ
アス電圧Vout1とout2のバイアス電圧Vout2の平均
電圧Vomの検出端子dtcとし、抵抗11と12の抵抗
値は同じ値であるものとする。ここでは負荷抵抗5と6
は同じ抵抗値であるので、Vom=Vout1=Vout2とな
る。この構成は、単純に片側の出力端子のバイアス電圧
を検出する場合に比べて差動信号成分の影響を除去する
ことができるものとなっている。尚、抵抗11と12の
抵抗値は、差動増幅器の特性に影響を与えないように設
定すること、すなわち、抵抗5または6に流れる瞬時電
流の最小値に比べて、抵抗11および12に流れる瞬時
電流の最大値が無視できるほど小さくなるような値に設
定することが好ましい。
Furthermore, the other end of the resistor 11 whose one end is connected to the drain electrode of the differential FET 1 and one end of the differential FET 2
Is connected to the other end of the resistor 12 connected to the drain electrode of the resistor 11, and the connection point of the resistors 11 and 12 is used as the detection terminal dtc of the average voltage Vom of the output bias voltage Vout1 of out1 and the bias voltage Vout2 of out2. It is assumed that the resistance values of 12 and 12 are the same. Here load resistances 5 and 6
Have the same resistance value, Vom = Vout1 = Vout2. This configuration can eliminate the influence of the differential signal component as compared with the case of simply detecting the bias voltage of the output terminal on one side. Note that the resistance values of the resistors 11 and 12 are set so as not to affect the characteristics of the differential amplifier, that is, compared with the minimum value of the instantaneous current flowing through the resistors 5 or 6, the resistance values of the resistors 11 and 12 flow. It is preferable to set the value such that the maximum value of the instantaneous current becomes small enough to be ignored.

【0015】コンデンサ13は、抵抗11および12と
ともにバイアス検出手段を構成しており、一端が検出端
子dtcに接続され、他端が接地されており、同相信号
除去比が有限であるために平均電圧Vomに混入する同相
信号成分を除去するものである。
The capacitor 13 constitutes bias detecting means together with the resistors 11 and 12, one end of which is connected to the detection terminal dtc and the other end of which is grounded. The in-phase signal component mixed in the voltage Vom is removed.

【0016】電圧比較器8は、バイアス制御手段に該当
するものであり、反転入力端子(−)と非反転入力端子
(+)と出力端子を有し、2つの入力端子の間が仮想接
地となる大きな利得Aをもつ演算増幅器である。反転入
力端子(−)には比較基準電圧として出力バイアス電圧
Vout1、Vout2の設計値VrQが入力され、非反転入力端
子(+)は検出端子dtcに接続され、出力端子は電流
源FET3のゲート電極に接続される。dtcからのV
omがVrQと等しいときに、電流源FET3のゲートバイ
アス電圧の設計値VgQを出力し、VdとVrQが異なると
きは、出力電圧をVgQからA×(Vd−VrQ)だけ変化
させて電流源FET3に流れる電流を変化させ、Vomを
VrQと等しい値になるように制御する。
The voltage comparator 8 corresponds to bias control means, has an inverting input terminal (-), a non-inverting input terminal (+) and an output terminal, and has a virtual ground between the two input terminals. Is an operational amplifier having a large gain A. The design value VrQ of the output bias voltages Vout1 and Vout2 is input to the inverting input terminal (−) as a comparison reference voltage, the non-inverting input terminal (+) is connected to the detection terminal dtc, and the output terminal is the gate electrode of the current source FET3. Connected to. V from dtc
When om is equal to VrQ, the designed value VgQ of the gate bias voltage of the current source FET3 is output, and when Vd and VrQ are different, the output voltage is changed from VgQ by A × (Vd−VrQ) and the current source FET3. Vom is controlled to be equal to VrQ.

【0017】尚、負荷抵抗5と6が異なる値に設計され
ているときには、コンデンサ13は、Vomに混入する差
動信号成分も同時に除去する。またこのときは、Vomに
差動信号成分が混入することを回避するために、抵抗1
1と12の抵抗比を負荷抵抗5と6の抵抗比に応じて設
定し、出力バイアス電圧の加重平均値を検出するように
しても良い。例えば、負荷抵抗5と6の抵抗比が1:2
のときは、抵抗11と12の抵抗比を1:2に設定し、
検出端子dtcから加重平均電圧(2Vout1+Vout2)
/3を検出するようにしても良い。
When the load resistors 5 and 6 are designed to have different values, the capacitor 13 simultaneously removes the differential signal component mixed in Vom. Further, at this time, in order to avoid mixing the differential signal component into Vom, the resistance 1
The resistance ratio of 1 and 12 may be set according to the resistance ratio of the load resistors 5 and 6, and the weighted average value of the output bias voltage may be detected. For example, the resistance ratio of the load resistors 5 and 6 is 1: 2.
In case of, the resistance ratio of the resistors 11 and 12 is set to 1: 2,
Weighted average voltage (2Vout1 + Vout2) from the detection terminal dtc
/ 3 may be detected.

【0018】次に、図1の差動増幅器の動作について説
明する。電流源FET3と負荷抵抗5および6の特性が
設計値に等しければ、出力バイアス電圧Vout1およびV
out2はともに設計値出力バイアス電圧(比較基準電圧)
VrQに等しく、従ってVomはVrQと等しく、電圧比較器
8の出力電圧は設計値ゲートバイアス電圧VgQとなり、
このとき電流源FET3に流れる電流Isは動作電流の
設計値IsQとなる。
Next, the operation of the differential amplifier shown in FIG. 1 will be described. If the characteristics of the current source FET 3 and the load resistors 5 and 6 are equal to the design values, the output bias voltages Vout1 and Vout
Both out2 are design value output bias voltage (comparison reference voltage)
Equal to VrQ, and thus Vom equal to VrQ, the output voltage of the voltage comparator 8 becomes the design gate bias voltage VgQ,
At this time, the current Is flowing through the current source FET3 becomes the design value IsQ of the operating current.

【0019】まず、温度変動により電流源FET3の特
性が変化した場合、あるいは製造ばらつきにより電流源
FET3の特性が設計値からずれた場合の動作について
説明する。尚、温度変動の場合は、差動FET1および
2の特性も同時に変化するが、差動FET1および2の
特性変化は出力バイアス電圧の変動には影響しない(差
動FET1および2の共通ソース電極の電位を変動させ
るだけである)。また温度変動の場合は、負荷抵抗5お
よび6の特性も同時に変化するが、これについては後述
する。
First, the operation when the characteristics of the current source FET 3 change due to temperature change or when the characteristics of the current source FET 3 deviate from the design values due to manufacturing variations will be described. In the case of temperature fluctuation, the characteristics of the differential FETs 1 and 2 also change at the same time, but the characteristic change of the differential FETs 1 and 2 does not affect the fluctuation of the output bias voltage (the common source electrode of the differential FETs 1 and 2 is It only changes the potential). Further, in the case of temperature fluctuation, the characteristics of the load resistors 5 and 6 also change at the same time, which will be described later.

【0020】このとき、仮に電流源FET3のゲート電
極に設計値ゲートバイアス電圧VgQが印加されていて
も、電流Isは設計値動作電流IsQとはならず、これに
よりVout1、Vout2は設計値出力バイアス電圧VrQとは
ならない。
At this time, even if the design value gate bias voltage VgQ is applied to the gate electrode of the current source FET3, the current Is does not become the design value operating current IsQ, whereby Vout1 and Vout2 are designed value output bias. It does not become the voltage VrQ.

【0021】Vom>VrQとなる温度変動または製造誤差
が生じた場合には、電圧比較器8の出力電圧が増加して
電流源FET3のゲート・ソース間電圧がVgQよりも大
きくなる。これにより電流Isは増加し、負荷抵抗5お
よび6に流れるバイアス電流が増加するので、Vomは降
下する。電圧比較器8の入力端子間は仮想接地とみなす
ことができるので、電圧比較器8により形成される負帰
還ループにより、Vomすなわち出力バイアス電圧Vout1
およびVout2は比較基準電圧VrQと等しい値に制御され
る。尚、このとき電流Isは電流源FET3の設計値動
作電流IsQと等しい値に制御される。
When a temperature variation or manufacturing error such that Vom> VrQ occurs, the output voltage of the voltage comparator 8 increases and the gate-source voltage of the current source FET 3 becomes higher than VgQ. As a result, the current Is increases and the bias current flowing through the load resistors 5 and 6 increases, so that Vom drops. Since the input terminals of the voltage comparator 8 can be regarded as virtual ground, the negative feedback loop formed by the voltage comparator 8 causes Vom, that is, the output bias voltage Vout1.
And Vout2 are controlled to a value equal to the comparison reference voltage VrQ. At this time, the current Is is controlled to a value equal to the design value operating current IsQ of the current source FET3.

【0022】またVom<VrQとなる温度変動または製造
誤差が生じた場合には、電圧比較器8の出力電圧がVgQ
よりも小さくなり、電流Isが減少するので、負荷抵抗
5および6に流れるバイアス電流が減少し、Vout1およ
びVout2は降下してVrQと等しい値に制御され、電流I
sはIsQと等しい値に制御される。
When a temperature variation or manufacturing error such that Vom <VrQ occurs, the output voltage of the voltage comparator 8 becomes VgQ.
And the current Is decreases, the bias current flowing through the load resistors 5 and 6 decreases, and Vout1 and Vout2 drop and are controlled to a value equal to VrQ.
s is controlled to a value equal to IsQ.

【0023】次に、温度変動により負荷抵抗5および6
の抵抗値が変化した場合、あるいは製造ばらつきにより
負荷抵抗5および6の抵抗値が設計値からずれた場合の
動作について説明する。このとき、仮に電流IsがIsQ
に等しい値であっても、Vout1およびVout2はVrQと等
しい値にはならない。
Next, the load resistances 5 and 6 are changed due to temperature fluctuations.
The operation will be described when the resistance value of No. 1 changes, or when the resistance values of the load resistors 5 and 6 deviate from the designed values due to manufacturing variations. At this time, if current Is is IsQ
, Vout1 and Vout2 will not be equal to VrQ.

【0024】Vom>VrQとなる製造誤差が生じた場合に
は、電圧比較器8の出力電圧はVgQよりも増加し、電流
IsはIsQよりも増加するので、負荷抵抗5および6に
流れるバイアス電流が増加し、VomすなわちVout1およ
びVout2は降下してVrQに等しい値に制御される。
When a manufacturing error of Vom> VrQ occurs, the output voltage of the voltage comparator 8 increases more than VgQ and the current Is increases more than IsQ. Therefore, the bias current flowing through the load resistors 5 and 6 is increased. Is increased and Vom, that is, Vout1 and Vout2, is decreased and controlled to a value equal to VrQ.

【0025】またVom<VrQとなる製造誤差が生じた場
合には、電圧比較器8の出力電圧はVgQよりも減少し、
電流IsはIsQよりも減少するので、負荷抵抗5および
6に流れるバイアス電流が減少し、VomすなわちVout1
およびVout2は上昇してVrQに等しい値に制御される。
When a manufacturing error of Vom <VrQ occurs, the output voltage of the voltage comparator 8 becomes lower than VgQ,
Since the current Is is lower than IsQ, the bias current flowing through the load resistors 5 and 6 is reduced, and Vom, that is, Vout1.
And Vout2 are raised and controlled to a value equal to VrQ.

【0026】尚、電流源FET3と負荷抵抗5および6
の特性が同時に変化した、あるいは設計値からずれた場
合にも、Vout1およびVout2はVrQに等しい値に制御さ
れることは言うまでもない。
The current source FET 3 and the load resistors 5 and 6
It is needless to say that Vout1 and Vout2 are controlled to a value equal to VrQ even when the characteristics of 1 change at the same time or deviate from the designed values.

【0027】このように上記第1の実施形態によれば、
抵抗11および12により出力バイアス電圧の平均電圧
Vomを直接検出し、電圧比較器8により、Vomと設計値
出力バイアス電圧(基準電圧)VrQとの差電圧に応じて
電流源FET3のゲートバイアスを変化させて電流源F
ET3の動作電流を変化させ、VomをVrQと等しくなる
ように制御することにより、負荷抵抗5および6や電流
源FET3の特性の製造ばらつきや温度変化に対して出
力バイアス電圧Vout1およびVout2の変動を抑えること
ができる。
As described above, according to the first embodiment,
The resistors 11 and 12 directly detect the average voltage Vom of the output bias voltage, and the voltage comparator 8 changes the gate bias of the current source FET 3 according to the difference voltage between Vom and the design value output bias voltage (reference voltage) VrQ. Let the current source F
By changing the operating current of ET3 and controlling Vom to be equal to VrQ, fluctuations in the output bias voltages Vout1 and Vout2 due to manufacturing variations in the characteristics of the load resistors 5 and 6 and the current source FET3 and temperature changes. Can be suppressed.

【0028】尚、上記第1の実施形態においては、差動
FET1および2、電流源FET3をN型としたが、こ
れに限定されることはなく、上記のFETをP型とし、
正電源VDDに替えて負電源を用いて構成しても良い。ま
た上記のトランジスタはFETに限定されることはな
く、バイポーラトランジスタを用いても良い。
In the first embodiment, the differential FETs 1 and 2 and the current source FET3 are N type, but the present invention is not limited to this, and the FET is P type.
A negative power source may be used instead of the positive power source VDD. Further, the above transistor is not limited to the FET, and a bipolar transistor may be used.

【0029】第2の実施形態 図2は本発明の第2の実施形態を示す差動増幅器の回路
図であり、図1の要素と共通の要素には共通の符号を付
してある。
Second Embodiment FIG. 2 is a circuit diagram of a differential amplifier showing a second embodiment of the present invention. Elements common to those in FIG. 1 are designated by common reference numerals.

【0030】図2に示す差動増幅器は、図1において、
負荷抵抗5と6の接続点を正電源VDDに接続せずに接地
し、電流源FET3のソース電極を接地せずに負電源V
EEに接続したものである。
The differential amplifier shown in FIG.
The connection point of the load resistors 5 and 6 is grounded without being connected to the positive power supply VDD, and the source electrode of the current source FET3 is not grounded but the negative power supply V
It is connected to EE.

【0031】従って出力端子out1およびout2の
出力バイアス電圧は負電圧となり、コンデンサ13の極
性が反転し、電圧比較器の反転入力端子(−)に入力さ
れる比較基準電圧は負電圧となる。尚、動作は図1に示
す差動増幅器と同様である。
Therefore, the output bias voltage of the output terminals out1 and out2 becomes a negative voltage, the polarity of the capacitor 13 is inverted, and the comparison reference voltage input to the inverting input terminal (-) of the voltage comparator becomes a negative voltage. The operation is similar to that of the differential amplifier shown in FIG.

【0032】図1に示す差動増幅器においては、正電源
VDDのレベル変動によっても出力バイアス電圧が変動
し、この変動についても電圧比較器8による負帰還ルー
プによって制御していたが、上記第2の実施形態によれ
ば、正電源VDDを用いずに接地電位とすることによっ
て、電源のレベル変動による出力バイアス電圧の変動が
なくなるので、さらに出力バイアス電圧を安定化させる
ことができる。
In the differential amplifier shown in FIG. 1, the output bias voltage also fluctuates due to the level fluctuation of the positive power supply VDD, and this fluctuation was also controlled by the negative feedback loop by the voltage comparator 8. According to the embodiment of the present invention, by setting the ground potential without using the positive power supply VDD, the fluctuation of the output bias voltage due to the fluctuation of the level of the power supply is eliminated, so that the output bias voltage can be further stabilized.

【0033】尚、上記第2の実施形態における差動FE
T1および2、電流源FET3をP型とし、負電源VEE
に替えて正電源を用いて構成しても良い。また上記のト
ランジスタはFETに限定されることはなく、バイポー
ラトランジスタを用いても良い。
The differential FE according to the second embodiment described above.
T1 and 2, current source FET3 are P type, negative power source VEE
Alternatively, a positive power source may be used. Further, the above transistor is not limited to the FET, and a bipolar transistor may be used.

【0034】[0034]

【発明の効果】以上説明したように本発明によれば、各
差動出力端子のバイアス電圧の加重平均電圧を検出し、
前記加重平均電圧と予め設定されている基準電圧との差
電圧に応じて電流源トランジスタの制御電極に印加する
電圧を変化させ、前記加重平均電圧を前記基準電圧に等
しくなるように制御することにより、出力バイアス電圧
の変動を抑えることができるという効果を有する。
As described above, according to the present invention, the weighted average voltage of the bias voltage of each differential output terminal is detected,
By changing the voltage applied to the control electrode of the current source transistor according to the difference voltage between the weighted average voltage and the preset reference voltage, and controlling the weighted average voltage to be equal to the reference voltage. This has the effect of suppressing fluctuations in the output bias voltage.

【0035】また請求項3に記載の差動増幅器によれ
ば、第1電源を接地電位とすることにより、電源の変動
による出力バイアス電圧の変動がなくなるので、さらに
出力バイアス電圧を安定化させることができるという効
果を有する。
Further, according to the third aspect of the present invention, the output bias voltage does not fluctuate due to the fluctuation of the power supply by setting the first power supply to the ground potential, so that the output bias voltage can be further stabilized. It has the effect that

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態を示す差動増幅器の回
路図である。
FIG. 1 is a circuit diagram of a differential amplifier according to a first embodiment of the present invention.

【図2】本発明の第1の実施形態を示す差動増幅器の回
路図である。
FIG. 2 is a circuit diagram of a differential amplifier showing the first embodiment of the present invention.

【図3】従来の差動増幅器の一例を示す回路図である。FIG. 3 is a circuit diagram showing an example of a conventional differential amplifier.

【符号の説明】[Explanation of symbols]

1、2 差動FET 3 電流源FET 5、6 負荷抵抗 8 電圧比較器 11、12 抵抗 13 コンデンサ in1、in2 差動入力端子 out1、out2 差動出力端子 dtc 検出端子 1, 2 Differential FET 3 Current source FET 5, 6 Load resistance 8 Voltage comparator 11, 12 Resistance 13 Capacitor in1, in2 Differential input terminal out1, out2 Differential output terminal dtc Detection terminal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 各第1電極がそれぞれの負荷抵抗を介し
て第1電源に接続され、第2電極が共通接続され、各制
御電極を差動入力端子とし、前記各第1電極を差動出力
端子とする一対のトランジスタと、 前記差動トランジスタの第2電極と第2電源の間に接続
された電流源トランジスタと、 前記各差動出力端子のバイアス電圧の加重平均電圧を検
出するバイアス検出手段と、 前記加重平均電圧と予め設定されている基準電圧との差
電圧に応じて前記電流源トランジスタの制御電極に印加
する電圧を変化させることにより、前記加重平均電圧を
前記基準電圧に等しくなるように制御するバイアス制御
手段とを備えたことを特徴とする半導体集積回路の差動
増幅器。
1. Each of the first electrodes is connected to a first power source through a respective load resistor, the second electrodes are commonly connected, each control electrode serves as a differential input terminal, and each first electrode is differential. A pair of transistors serving as output terminals, a current source transistor connected between a second electrode of the differential transistor and a second power supply, and a bias detection for detecting a weighted average voltage of bias voltages of the differential output terminals. Means to change the voltage applied to the control electrode of the current source transistor according to a difference voltage between the weighted average voltage and a preset reference voltage, thereby making the weighted average voltage equal to the reference voltage. A differential amplifier for a semiconductor integrated circuit, comprising:
【請求項2】 前記バイアス検出手段は、 直列接続されて前記差動出力端子間に挿入された2つの
抵抗と、この2つの抵抗の接続点と前記第1電源の間、
またはこの接続点と第2電源の間に挿入されたコンデン
サからなり、前記2つの抵抗の接続点を前記加重平均電
圧の検出端子とし、前記2つの抵抗の抵抗値をこれらの
抵抗に流れる電流の最大値が前記負荷抵抗に流れる電流
の最小値よりも充分小さくなるような値としたものであ
り、 前記バイアス制御手段は、 前記加重平均電圧が非反転入力端子に入力され、前記基
準電圧が反転入力端子に入力され、出力端子が前記電流
源トランジスタの制御電極に接続された演算増幅器から
なるものであることを特徴とする請求項1に記載の半導
体集積回路の差動増幅器。
2. The bias detecting means includes two resistors connected in series and inserted between the differential output terminals, and a connection point between the two resistors and the first power supply.
Alternatively, it is composed of a capacitor inserted between this connection point and the second power supply, and the connection point of the two resistors is used as the detection terminal of the weighted average voltage, and the resistance value of the two resistors is set to the value of the current flowing through these resistors. The maximum value is set to a value that is sufficiently smaller than the minimum value of the current flowing through the load resistor, and the bias control means inputs the weighted average voltage to a non-inverting input terminal and inverts the reference voltage. 2. The differential amplifier for a semiconductor integrated circuit according to claim 1, wherein the differential amplifier is input to an input terminal and comprises an operational amplifier whose output terminal is connected to the control electrode of the current source transistor.
【請求項3】 前記第1電源を接地電位としたことを特
徴とする請求項1または2に記載の半導体集積回路の差
動増幅器。
3. The differential amplifier for a semiconductor integrated circuit according to claim 1, wherein the first power supply is at ground potential.
JP13313196A 1996-05-28 1996-05-28 Differential amplifier for semiconductor integrated circuit Pending JPH09321555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13313196A JPH09321555A (en) 1996-05-28 1996-05-28 Differential amplifier for semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13313196A JPH09321555A (en) 1996-05-28 1996-05-28 Differential amplifier for semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH09321555A true JPH09321555A (en) 1997-12-12

Family

ID=15097511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13313196A Pending JPH09321555A (en) 1996-05-28 1996-05-28 Differential amplifier for semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH09321555A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1263129A1 (en) * 2001-05-21 2002-12-04 Agilent Technologies, Inc. (a Delaware corporation) DC feedback control circuit
JP2006033840A (en) * 2004-07-14 2006-02-02 Sst Communications Corp Adaptive bias type mixer
JP2006340266A (en) * 2005-06-06 2006-12-14 Sony Corp Differential signal transmitting circuit and differential signal transmitting apparatus
WO2008129629A1 (en) * 2007-04-11 2008-10-30 Fujitsu Limited Mixer
CN103684411A (en) * 2012-09-03 2014-03-26 株式会社巨晶片 Output buffer circuit
JP2014515588A (en) * 2011-05-31 2014-06-30 日本テキサス・インスツルメンツ株式会社 Wide bandwidth class C amplifier with in-phase feedback
JP2016134877A (en) * 2015-01-22 2016-07-25 株式会社メガチップス Differential output buffer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1263129A1 (en) * 2001-05-21 2002-12-04 Agilent Technologies, Inc. (a Delaware corporation) DC feedback control circuit
US6741134B2 (en) 2001-05-21 2004-05-25 Agilent Technologies, Inc. DC feedback control circuit
JP2006033840A (en) * 2004-07-14 2006-02-02 Sst Communications Corp Adaptive bias type mixer
JP4657839B2 (en) * 2004-07-14 2011-03-23 エスエスティー コミュニケイションズ コーポレイション Adaptive bias mixer
KR101118925B1 (en) * 2004-07-14 2012-02-27 마이크로칩 테크놀로지 인코포레이티드 Adaptive-biased mixer
JP2006340266A (en) * 2005-06-06 2006-12-14 Sony Corp Differential signal transmitting circuit and differential signal transmitting apparatus
WO2008129629A1 (en) * 2007-04-11 2008-10-30 Fujitsu Limited Mixer
JP2014515588A (en) * 2011-05-31 2014-06-30 日本テキサス・インスツルメンツ株式会社 Wide bandwidth class C amplifier with in-phase feedback
CN103684411A (en) * 2012-09-03 2014-03-26 株式会社巨晶片 Output buffer circuit
JP2014064272A (en) * 2012-09-03 2014-04-10 Mega Chips Corp Output buffer circuit
CN103684411B (en) * 2012-09-03 2018-04-03 株式会社巨晶片 Output buffer circuit
JP2016134877A (en) * 2015-01-22 2016-07-25 株式会社メガチップス Differential output buffer

Similar Documents

Publication Publication Date Title
US7486061B2 (en) Power supply apparatus
JP2665025B2 (en) Amplifier circuit
US7317358B2 (en) Differential amplifier circuit
JP2000049585A (en) Output buffer circuit
JPH08204470A (en) Operational amplifier
JPH07106875A (en) Semiconductor integrated circuit
JPS63136712A (en) Differential comparator
US7405547B2 (en) Stabilized DC power supply circuit having a current limiting circuit and a correction circuit
JPH02206210A (en) Source driving type differential amplifier by common base method
JPH0993055A (en) Operational amplifier
JPH09321555A (en) Differential amplifier for semiconductor integrated circuit
US6249153B1 (en) High slew rate input differential pair with common mode input to ground
JP2004259902A (en) Semiconductor integrated circuit device
EP1422588A1 (en) Constant voltage power supply
JP3618189B2 (en) Stabilized current mirror circuit
JP2021096554A (en) Constant current circuit
JPH1117470A (en) Electronic volume
US6316999B1 (en) Operational amplifier
EP1206033A2 (en) Isolator circuit
US6831516B2 (en) Method of forming a variable propagation delay semiconductor device and structure therefor
JP2647208B2 (en) Class A push-pull output circuit
JP2788746B2 (en) Variable duty circuit
JPH01188016A (en) Hysteresis comparator
JPH11308055A (en) Push-pull amplifier circuit
JP3063345B2 (en) Saturation prevention circuit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021105