JP2006337675A - 液晶表示素子 - Google Patents

液晶表示素子 Download PDF

Info

Publication number
JP2006337675A
JP2006337675A JP2005161622A JP2005161622A JP2006337675A JP 2006337675 A JP2006337675 A JP 2006337675A JP 2005161622 A JP2005161622 A JP 2005161622A JP 2005161622 A JP2005161622 A JP 2005161622A JP 2006337675 A JP2006337675 A JP 2006337675A
Authority
JP
Japan
Prior art keywords
liquid crystal
retardation plate
display element
crystal display
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005161622A
Other languages
English (en)
Inventor
Hideki Ito
秀樹 伊藤
Akio Murayama
昭夫 村山
Yuzo Hisatake
雄三 久武
Chigusa Tago
千種 多胡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Central Inc
Original Assignee
Toshiba Matsushita Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Matsushita Display Technology Co Ltd filed Critical Toshiba Matsushita Display Technology Co Ltd
Priority to JP2005161622A priority Critical patent/JP2006337675A/ja
Priority to KR1020060048474A priority patent/KR100789512B1/ko
Priority to US11/421,305 priority patent/US20060274229A1/en
Priority to TW095119316A priority patent/TW200710482A/zh
Publication of JP2006337675A publication Critical patent/JP2006337675A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】視野角特性を改善することができ且つコストの低減が可能な液晶表示素子を提供することを目的とする。
【解決手段】 液晶表示素子を構成する円偏光子構成体Pはその光学補償用に第1偏光板PL1と第1位相差板RF1との間に屈折率異方性がnx≒ny<nzとなる1軸の第3位相差板RF3及び屈折率異方性がnx>ny≒nzとなる1軸の第4位相差板RF4を備え、円検光子構成体Aはその光学補償用に第2偏光板PL2と第2位相差板RF2との間に屈折率異方性がnx≒ny<nzとなる1軸の第5位相差板RF5及び屈折率異方性がnx>ny≒nzとなる1軸の第6位相差板RF6を備え、可変リターダー構成体VRはその光学補償用に第1位相差板RF1と第2位相差板RF2との間に屈折率異方性がnx≒ny>nzとなる第7位相差板RF7を備えている。
【選択図】 図1A

Description

この発明は、液晶表示素子に係り、特に円偏光主導型の垂直配向モードの液晶表示素子に関する。
液晶表示装置は、薄型、軽量、低消費電力である等の様々な特徴を有しており、OA機器、情報端末、時計、及びテレビ等の様々な用途に応用されている。特に、薄膜トランジスタ(以下、TFTという)を有する液晶表示装置は、その高い応答性から、携帯テレビやコンピュータなどのように多量の情報を表示するモニタとして用いられている。
近年、情報量の増加に伴い、画像の高精細化や表示速度の高速化に対する要求が高まっている。これら要求のうち画像の高精細化は、例えば、上述したTFTが形成するアレイ構造を微細化することによって実現されている。
一方、表示速度の高速化に関しては、従来の表示モードに代わって、例えばネマティック液晶を用いたOCB(Optically Compensated Birefringence)モード、VAN(Vertically Aligned Nematic)モード、HAN(Hybrid Aligned Nematic)モード、およびπ配列モード、並びにスメクチック液晶を用いた界面安定型強誘電性液晶(SSFLC: Surface-Stabilized Ferroelectric Liquid Crystal)モードおよび反強誘電性液晶(AFLC: Anti-Ferroelectric Liquid Crystal)モードが検討されている。
これら表示モードのうち、特にVANモードは、従来のTN(Twisted Nematic)モードよりも速い応答速度を得ることができ、さらに静電気破壊のような不良発生の原因となるラビング処理を垂直配向により不要にできるという特長を有している。なかでも、配向分割型VANモード(以下、MVAモードという)は、視野角の拡大が比較的容易なことから特に注目されている。
MVAモードでは、マスクラビング、画素電極構造の工夫、画素内に突起を設けるなどして、これらによって画素電極及び対向電極から画素領域に印加される電界の傾きを制御することが行われている。液晶層の画素領域は、液晶分子の配向方向が電圧印加状態で互いに90°の角度をなすような例えば4つのドメインに配向分割され、これにより、視角特性の対称性改善と反転現象の抑止を実現している。
なおかつ、液晶分子が基板主面にほぼ垂直に配列した状態、すなわち黒表示状態での液晶層の法線位相差の視角依存性を負の位相差板を用いて補償し、これにより、視角に対するコントラスト(CR)を良好なものとしている。さらに、この負の位相差板が偏光板の視角依存性も補償するような面内位相差をもつ2軸位相差板であれば、さらに優れた視角−コントラスト特性を実現することができる。
しかしながら、従来のMVAモードでは、各画素内を配向分割しているため、配向分割境界及び配向分割構造である画素内突起や画素電極スリットの近傍にシュリーレン配向や意図しない方位への配向など、望ましい液晶配列方位とは異なる方位に配列した領域が形成される。
直線偏光板を用い、直線偏光主導の複屈折制御をした液晶表示素子のクロスニコル下における液晶層の透過率Tlp(LC)は次式で表わされる。
Figure 2006337675
この数式(1)において、Iは偏光板の透過軸に平行な直線偏光の透過率であり、θは液晶層の遅相軸と偏光板の光軸とのなす角度であり、Vは印加電圧であり、dは液晶層の厚みであり、λは液晶表示素子への入射光の波長である。
数式(1)において、屈折率異方性Δn(λ,V)は、その領域における実効的な印加電圧及びネマティック液晶分子の各々の傾き角に依存する。T(LC)を0乃至Iに変化させるためには、Δn(λ,V)d/λを0乃至λ/2のレンジで変化させ、なおかつ、θの値をπ/4(rad)とする必要がある。このため、液晶分子がπ/4以外の方位に配列した領域では、透過率が低下することになる。前述したように、MVAモードは、配向分割をしているために、必然的にこうした領域を伴っている。したがって、MVAモードは、TNモードなどと比較して透過率が低いといった問題を有している。
こうした問題を解決するために、円偏光主導型のMVAモードが検討されている。直線偏光板の代わりに位相差板すなわち進相軸及び遅相軸を透過する所定波長の光の間に1/4波長の位相差を与える一軸の4分の1波長板を備えた偏光板、つまり円偏光板を用いることによって前述した問題を解決している。円偏光板を用い、円偏光主導型の複屈折制御をした液晶表示素子のクロスニコル下における液晶層の透過率Tcp(LC)は次式で表わされる。
Figure 2006337675
この数式(2)からわかるように、透過率Tcp(LC)は、液晶分子の配列方位に依存しない。したがって、配向分割境界及び配向分割構造の近傍にシュリーレン配向や意図しない方位への配向など、望ましい液晶配列方位とは異なる方位に配列した領域を伴っていても液晶分子の傾きさえ制御できれば、所望の透過率を得ることができるわけである。
しかしながら、従来の円偏光主導型のMVAモードは、視野角特性が狭いといった問題を抱えている。
図9は、従来の円偏光主導型MVAモードの液晶表示素子の断面構造の一例を示したものである。図9に示すように、第1基板13は、その内面に設けられたITO(インジウム・ティン・オキサイド)からなる共通電極9を備えており、この共通電極9上に画素内を配向分割するための突起12を備えている。これと対向する第2基板14は、その内面に設けられたITOからなる画素電極10を備えており、画素内を配向分割するためのスリット11(画素電極がない領域)を備えている。共通電極9と画素電極10との間には、誘電異方性が負のネマティック液晶7が狭持されており、液晶分子8が電圧を印加しない状態にて基板主面に対してほぼ垂直に配列するよう配向処理がなされている。
こうした構造からなる液晶セルは、その両外面にそれぞれ設けられた、位相差板3,4、及び、偏光板5,6を備えている。位相差板3、4は、図2に示すような屈折率異方性を有する1軸の4分の1波長板であり、その遅相軸が偏光板5,6の透過軸とπ/4(rad)の角度をなすように設けられている。
このような構造では、一対の位相差板3,4は、それぞれの遅相軸が互いに直交する構造となるので、負の位相差板として作用する。例えば550nmの波長の光に対しては−280nm程度の負の位相差を与える。これに対し、液晶層7は、電界制御により2分の1波長の位相差変化を得るには、材料の屈折率異方性Δnと液晶層厚dとを乗じた値Δn・dを300nm以上とする必要がある。このため、液晶表示素子としてのトータルの位相差はゼロとはならず、黒表示時の視野角特性が劣化する。また、1軸の4分の1波長板を用いているので、偏光板の視野角特性に起因して液晶層に入射する円偏光の偏光特性にも視野角依存性が生じている。
このようにして、従来の円偏光主導型MVAモードは、液晶層に入射する入射光を略円偏光として前述した透過率が低い問題を解決しているが、液晶層に入射する円偏光の視角依存性や液晶層の位相差の視角依存性を補償する手段を設けていないため、コントラスト視角が狭いといった問題が生じる。
図10は、図9に示した構造を有する液晶表示素子の等コントラスト曲線の測定結果の一例である。ここで、0度(deg.)及び180度(deg.)の方位が画面の左右方向に相当し、90度(deg.)及び270度(deg.)の方位が画面の上下方向に相当する。図10に示すように、コントラスト比が10:1以上の視野は、上下左右とも±40°程度と狭く、実用に耐え得る特性は得られていなかった。
こうした問題に対し、1軸の4分の1波長板の代わりに図12に示すような屈折率異方性を有する2軸の4分の1波長板を用いて液晶層に入射する円偏光の視角依存性を補償し、視野角特性を改善する提案がなされている。
図11は、図12に示した2軸の4分の1波長板15を用いた円偏光主導型MVAモード液晶表示素子の断面構造の一例を示したものである。この構造では、用いた4分の1波長板の屈折率楕円体が図12に示すようにnx>ny>nzとなっているため、面内の位相差は4分の1波長であり、上下で面内遅相軸が互いに直交するように配置すれば負の位相差板として機能するので、その位相差値を制御すれば液晶層の法線方向の位相差を補償し、視野角特性が改善される。
図13は、図11に示した円偏光主導型MVAモード液晶表示素子の等コントラスト曲線の実測結果である。図10に示した結果と比較して、若干視野が拡大され、特性の改善がなされていることがわかる。しかしながら、斜め方位については、コントラスト比10:1以上の視野は±80°程度と広いが上下左右方位は±40°程度と実用に耐え得る視野角特性となっていない。これは、液晶層の法線方向の位相差が前述した2軸の4分の1波長板である程度改善されるものの、実際、用いることができるフィルムとしては高分子フィルムであり、液晶層の位相差の波長分散に合致させることが困難であることに起因している。また、円偏光板として見れば、十分な視角特性を得る構造とはなっていないことも前述したコントラスト比の視野角特性の一因となっている。
これに対し、図12に示した2軸の4分の1波長板の代わりに図15に示すような屈折率異方性を有する2軸の4分の1波長板を用いた円偏光主導型MVAモード液晶表示素子も提案されている。
図14は、図15に示した2軸の4分の1波長板16を用いた円偏光主導型MVAモード液晶表示素子の断面構造の一例を示したものである。この構造では、用いた4分の1波長板の屈折率異方性が図15に示すようにnx>ny<nzとなっている。図9及び図11に示した構造と同様に、MVAモードの液晶セルの外面に4分の1波長板16及び偏光板5,6を配置した構造となっている。
図14に示した構造では、用いた4分の1波長板の屈折率がny<nzとなっているため、仮にnx>nzであってもこれを液晶セルの上下で遅相軸が直交となるよう配置しても、1軸の4分の1波長板を上下で直交配置した図9の構造と比較して負の位相差としての作用が弱まるし、nx<nzの場合は正の位相差を生ずる。したがって、液晶層の屈折率異方性Δnが極めて小さい場合、つまりは液晶層の位相差変化量が2分の1波長を下回り、液晶セルの透過率が不十分となるような条件としない限り、図9の構造よりもコントラスト視角特性が狭くなってしまう。
図16は、図14に示した円偏光主導型MVAモード液晶表示素子の等コントラスト曲線の実測結果である。図16に示すように、コントラスト比が1:1以下の領域が生じており、図10及び図13より狭い視野角特性となっていることがわかる。こうした特性となっているのは、図11に示した構造と同様に、円偏光板として見れば、十分な視野角特性を得る構造とはなっていないことも一因している。
また、図11に示した構造及び図14に示した構造は、ともに2軸の4分の1波長板を用いている。こうした2軸の位相差板は、高分子フィルムを2軸延伸して得ているため、製造コストが高くなる問題を抱えている。また、屈折率の制御も限られた範囲でしかなしえないので、所望の屈折率楕円体を実現することが困難となっている。さらには、2軸性を得るために、材料の選択範囲が狭く、液晶の屈折率の波長分散特性に合致させることが困難であるといった問題も抱えている(例えば、非特許文献1、非特許文献2、及び、非特許文献2参照。)
T.Ishinabe etal, A Wide Viewing Angle Polarizer and a Quarter-wave plate with a Wide Wavelength Range for Extremely High Quality LCDs,IDW'01 Proceedings,p485(2001) Y.Iwamoto etal, Improvement of Display Performance of High Transmittance Photo-Alined Multi-domain Vertical Alignment LCDs Using Circular Polarizers,IDW'02 Proceedings,p85(2002)
この発明は、上述した問題点に鑑みなされたものであって、その目的は、視野角特性を改善することができ、しかも、コストの低減が可能な液晶表示素子を提供することにある。
この発明の第1の態様による液晶表示素子は、
2枚の電極付基板間に液晶を挟持したドットマトリクス型の液晶セルを、光源側に位置する第1偏光板と観察者側に位置する第2偏光板との間に配置し、前記第1偏光板と前記液晶セルとの間にその遅相軸が前記第1偏光板の吸収軸とほぼ45°の角度をなすように一軸の第1位相差板を配置し、前記第2偏光板と前記液晶セルとの間にその遅相軸が前記第2偏光板の吸収軸とほぼ45°の角度をなすように一軸の第2位相差板を配置した表示素子であり、
前記第1偏光板及び前記第1位相差板を含む円偏光子構成体と、
前記液晶セルを含む可変リターダー構成体と、
前記第2偏光板及び前記第2位相差板を含む円検光子構成体と、を、
光源側から、前記円偏光子構成体、前記可変リターダー構成体、前記円検光子構成体の順に配置し、前記可変リターダー構成体が黒表示状態において法線位相差が光学的に正である液晶表示素子であって、
前記第1位相差板及び前記第2位相差板は、進相軸及び遅相軸を透過する所定波長の光の間に1/4波長の位相差を与える一軸の4分の1波長板であり、
さらに、前記円偏光子構成体は、その光学補償用に前記第1偏光板と前記第1位相差板との間に、屈折率異方性がnx≒ny<nzとなる1軸の第3位相差板及び屈折率異方性がnx>ny≒nzとなる1軸の第4位相差板を含む第1光学補償層を備え、かつ、前記第4位相差板は、その遅相軸が前記第1偏光板の吸収軸とほぼ直交するように配置され、
前記円検光子構成体は、その光学補償用に前記第2偏光板と前記第2位相差板との間に、屈折率異方性がnx≒ny<nzとなる1軸の第5位相差板及び屈折率異方性がnx>ny≒nzとなる1軸の第6位相差板を含む第2光学補償層を備え、かつ、前記第6位相差板は、その遅相軸が前記第2偏光板の吸収軸とほぼ直交するとともに前記第4位相差板の遅相軸とほぼ直交するように配置され、
前記可変リターダー構成体は、その光学補償用に前記第1位相差板と前記第2位相差板との間に配置されるとともに屈折率異方性がnx≒ny>nzとなる第7位相差板を含む第3光学補償層を備えたことを特徴とする。
この発明の第2の態様による液晶表示素子は、
2枚の電極付基板間に液晶を挟持し各画素に反射層を備えたドットマトリクス型の液晶セルと、第2偏光板との間にその遅相軸が前記第2偏光板の吸収軸とほぼ45°の角度をなすように一軸の第2位相差板を配置した表示素子であり、
前記第2偏光板及び前記第2位相差板を含む円偏光子兼円検光子構成体と、
前記液晶セルを含む可変リターダー構成体と、備え、
前記可変リターダー構成体が黒表示状態において法線位相差が光学的に正である液晶表示素子であって、
前記第2位相差板は、進相軸及び遅相軸を透過する所定波長の光の間に1/4波長の位相差を与える一軸の4分の1波長板であり、
さらに、前記円偏光子兼円検光子構成体は、その光学補償用に前記第2偏光板と前記第2位相差板との間に、屈折率異方性がnx≒ny<nzとなる第5位相差板及び屈折率異方性がnx>ny≒nzとなる1軸の第6位相差板を含む第2光学補償層を備え、かつ、前記第6位相差板は、その遅相軸が前記第2偏光板の吸収軸とほぼ直交するように配置され、
前記可変リターダー構成体は、その光学補償用に前記第2位相差板と前記液晶セルとの間に配置されるとともに屈折率異方性がnx≒ny>nzとなる第7位相差板を含む第3光学補償層を備えたことを特徴とする。
この発明によれば、視野角特性を改善することができ、しかも、コストの低減が可能な液晶表示素子を提供することができる。
以下、この発明の一実施の形態に係る液晶表示素子について図面を参照して説明する。
(第1実施形態)
図1Aは、第1実施形態に係る液晶表示素子の構成を概略的に示す図である。図1Aに示すように、液晶表示素子は、各画素の液晶分子配列が画素に電圧を印加していない状態において基板主面に対してほぼ垂直に配向した円偏光主導型の垂直配向モードの液晶表示素子であって、円偏光子構成体Pと、可変リターダー構成体VRと、円検光子構成体Aと、を備えている。
可変リターダー構成体VRは、2枚の電極付基板間に液晶層を挟持したドットマトリクス型の液晶セルCを備えている。すなわち、この液晶セルCは、MVAモードの液晶セルであって、アクティブマトリクス基板14と対向基板13との間に液晶層7を挟持した構造を有している。また、これらアクティブマトリクス基板14と対向基板13との間隔は、図示しないスペーサによって一定に維持されている。このような液晶セルCは、画像を表示する表示領域DPを備えている。表示領域DPは、マトリクス状に配置された画素PXによって構成されている。
アクティブマトリクス基板14は、ガラス基板などの光透過性を有する絶縁基板を備えて構成され、その一方の主面上に、走査線や信号線などの各種配線、走査線と信号線との交差部付近に設けられたスイッチング素子などを備えているが、発明の作用効果に関与しないので省略する。また、アクティブマトリクス基板14は、これらの上に画素PX毎に配置された画素電極10を備えている。画素電極10の表面は、配向膜によって覆われている。
走査線及び信号線などの各種配線は、アルミニウム、モリブデン、銅などによって形成されている。また、スイッチング素子は、例えば、アモルファスシリコンやポリシリコンを半導体層とし、アルミニウム、モリブデン、クロム、銅、タンタルなどをメタル層とした薄膜トランジスタ(TFT)である。このスイッチング素子は、走査線、信号線、並びに画素電極10と接続されている。アクティブマトリクス基板14では、このような構成により、所望の画素電極10に対して選択的に電圧を印加することを可能としている。
画素電極10は、ITO(インジウム・ティン・オキサイド)のような光透過性を有する導電材料によって形成され得る。この画素電極10は、例えばスパッタリング法などにより薄膜を形成した後、フォトリソグラフィ技術及びエッチング技術を用いてその薄膜をパターニングすることにより形成される。
配向膜は、ポリイミドなどの光透過性を有する樹脂材料からなる薄膜によって構成されている。なお、この実施形態では、配向膜には、ラビング処理は施さずに液晶分子8に垂直配向性を付与している。
対向基板13は、ガラス基板などの光透過性を有する絶縁基板を備えて構成され、その一方の主面上に、共通電極9を備えている。この共通電極9の表面は、配向膜によって覆われている。
共通電極9は、画素電極10と同様に、光透過性を有する導電材料、例えばITOによって形成され得る。また、配向膜は、アクティブマトリクス基板14側の配向膜と同様に、光透過性を有する樹脂材料、例えばポリイミドによって形成され得る。なお、この実施形態では、共通電極9は、すべての画素電極と切れ目なく対向するよう平坦な連続膜として形成されている。
カラー液晶表示素子として構成する場合、液晶セルCは、カラーフィルタ層を備えている。カラーフィルタ層は、3色例えば青、緑、赤にそれぞれ着色された着色層で構成されている。このカラーフィルタ層は、アクティブマトリクス基板14側の絶縁基板と画素電極10との間に設けてCOA(color filter on array)構造を採用しても良いし、対向基板13に設けてもよい。
COA構造を採用した場合、カラーフィルタ層にはコンタクトホールが設けられており、画素電極10は、このコンタクトホールを介してスイッチング素子と接続されている。このようなCOA構造は、アクティブマトリクス基板14と対向基板13とを貼り合わせて液晶セルCを構成する際に、アライメントマークなどを利用した高精度な位置合わせが不要となる利点を有している。
円偏光子構成体Pは、液晶セルCの光源すなわちバックライトユニットBL側に位置する第1偏光板PL1、及び、第1偏光板PL1と液晶セルCとの間に配置された一軸の第1位相差板RF1を含んでいる。円検光子構成体Aは、液晶セルCの観察側に位置する第2偏光板PL2、及び、第2偏光板PL2と液晶セルCとの間に配置された一軸の第2位相差板RF2を含んでいる。
第1偏光板PL1及び第2偏光板PL2は、その面内において、互いにほぼ直交する透過軸及び吸収軸を有している。これらの第1偏光板PL1及び第2偏光板PL2は、それぞれの透過軸が互いに直交するように配置されている。これらの第1偏光板PL1及び第2偏光板PL2は、例えばポリビニルアルコールで形成された偏光子をトリアセテート・セルロース(TAC)などで形成されたベースフィルムで挟持することによって構成されている。
第1位相差板RF1及び第2位相差板RF2は、その面内において、互いにほぼ直交する進相軸及び遅相軸を有しており、進相軸及び遅相軸をそれぞれ透過する所定波長(例えば550nm)の光の間に1/4波長の位相差(すなわち140nmの面内位相差)を与える一軸の4分の1波長板である。このような第1位相差板RF1及び第2位相差板RF2は、それぞれの遅相軸が互いに直交するように配置されている。また、第1位相差板RF1は、その遅相軸が第1偏光板PL1の吸収軸とほぼ45°の角度をなすように配置されている。同様に、第2位相差板RF2は、その遅相軸が第2偏光板PL1の吸収軸とほぼ45°の角度をなすように配置されている。
このような構成の液晶表示素子、特に、画素PXの少なくとも一部の領域、または、表示領域DPの少なくとも一部にバックライト光を透過可能な透過部を備えた液晶表示素子は、バックライトユニットBL、円偏光子構成体P、可変リターダー構成体VR、円検光子構成体Aの順に積層して構成されている。
ところで、このように構成された液晶表示素子は、円偏光子構成体P(第1偏向板PL1のベースフィルムを含む)の光学補償用に第1偏光板PL1と第1位相差板RF1との間に配置された第1光学補償層OC1、円検光子構成体A(第2偏向板PL2のベースフィルムを含む)の光学補償用に第2偏光板PL2と第2位相差板RF2との間に配置された第2光学補償層OC2、及び、可変リターダー構成体VRの光学補償用に第1位相差板RF1と第2位相差板RF2との間に配置された第3光学補償層OC3を備えている。
すなわち、第1光学補償層OC1は、円偏光子構成体Pを出射した出射光の偏光状態が出射方位によらず略円偏光となるように円偏光子構成体Pの視角特性を補償する。第2光学補償層OC2は、円検光子構成体Aを出射した出射光の偏光状態が出射方位によらず略円偏光となるように円検光子構成体Aの視角特性を補償する。第3光学補償層OC3は、可変リターダー構成体VRにおける液晶セルCの位相差(液晶分子8が基板主面にほぼ垂直に配列した状態、すなわち黒表示状態において液晶層7における光学的に正の法線位相差)の視角特性を補償する。
第1光学補償層OC1は、少なくとも、屈折率異方性がnx≒ny<nzとなる光学的に1軸の第3位相差板(ポジティブCプレート)RF3、及び、屈折率異方性がnx>ny≒nzとなる光学的に1軸の第4位相差板(ポジティブAプレート)RF4を含んでいる。第4位相差板RF4は、その遅相軸が第1偏光板PL1の吸収軸とほぼ直交するように配置されている。
第2光学補償層OC2は、少なくとも、屈折率異方性がnx≒ny<nzとなる光学的に1軸の第5位相差板(ポジティブCプレート)RF5、及び、屈折率異方性がnx>ny≒nzとなる光学的に1軸の第6位相差板(ポジティブAプレート)RF6を含んでいる。第6位相差板RF6は、その遅相軸が第2偏光板PL2の吸収軸とほぼ直交するとともに第4位相差板RF4の遅相軸とほぼ直交するように配置されている。
第3光学補償層OC3は、屈折率異方性がnx≒ny>nzとなる光学的に1軸の第7位相差板(ネガティブCプレート)RF7を含んでいる。図1Aに示した例では、第7位相差板RF7は、液晶セルCと第2位相差板RF2との間に配置されている。なお、第7位相差板RF7は、液晶セルCと第1位相差板RF1との間に配置されても良い。
第1位相差板RF1、第2位相差板RF2、第4位相差板RF4、及び、第6位相差板RF6としては、図2に示すような構造の屈折率楕円体(nx>ny≒nz)を有するものが適用可能である。第4位相差板RF4、及び、第6位相差板RF6は、例えば50nmの面内位相差を有している。第3位相差板RF3及び第5位相差板RF5としては、図3に示すような構造の屈折率楕円体(nx≒ny<nz)を有するものが適用可能である。第3位相差板RF3、及び、第5位相差板RF5は、例えば100nmの法線位相差を有している。第7位相差板RF7としては、図4に示すような構造の屈折率楕円体(nx≒ny>nz)を有するものが適用可能である。第7位相差板RF7は、例えば−220nmの法線位相差を有している。なお、図2乃至図4において、nx及びnyはそれぞれの位相差板の主面内での互いに直交する2方向(X軸及びY軸)での屈折率を示し、nzはそれぞれの位相差板の主面に対する法線方向(Z軸)での屈折率を示すものとする。
図5は、図1Aに示した液晶表示素子の視野角特性の光学原理を説明するための各光路における偏光状態を概念的に示す図である。
すなわち、液晶表示素子では、光学的に負の第7位相差板RF7を含む第3光学補償層OC3を用い、その他に別途に設けた第1位相差板RF1及び第2位相差板RF2とともに負の位相差板として作用させ、Δn・dが280nm以上となる液晶層7の法線方向に沿った光学的に正の位相差(法線位相差)の視野角依存性を補償している。このような補償機能を有した第3光学補償層OC3を第1位相差板RF1と第2位相差板RF2との間に設けている。このため、第1位相差板RF1及び第2位相差板RF2に入射する光が直線偏光である限り、第1位相差板RF1及び第2位相差板RF2を出射した光は出射角度や出射方位によらず略円偏光となる。
したがって、第3光学補償層OC3が液晶層7と第2位相差板RF2との間に位置する場合、液晶層7に入射する光は入射角度や方位に依らず円偏光となる。液晶層7の法線位相差により、円偏光が楕円偏光になったとしても第3光学補償層OC3の作用により円偏光に戻されるので、第3光学補償層OC3の上に位置する第2位相差板RF2に入射する光は、入射角度や入射方位に依らず円偏光となる。したがって、観察する方向に関わらず良好な表示特性を得ることができる。
また、第3光学補償層OC3が液晶層7と第1位相差板RF1との間に位置する場合、第3光学補償層OC3に入射する光は入射角度や入射方位に依らず円偏光となる。第3光学補償層OC3の法線位相差により、円偏光が楕円偏光になったとしても液晶層7の作用により円偏光に戻されるので、液晶層7の上に位置する第2位相差板RF2に入射する光は、入射角度や入射方位に依らず円偏光となる。したがって、第3光学補償層OC3を液晶層7と第2位相差板RF2との間に配置した場合と同様に、観察する方向に関わらず良好な表示特性を得ることができる。
これに対し、前述した図11の構造からなる円偏光主導型MVAモード液晶表示素子では、屈折率異方性がnx>ny>nzである2軸の4分の1波長板15を配置し、これら一対の4分の1波長板15の遅相軸を互いに直交させた構造となっている。これらの4分の1波長板15は、上述した実施の形態に採用した第3光学補償層OC3、及び、第1位相差板RF1及び第2位相差板RF2の機能を同時に実現する機能を有しているが、液晶層7の法線位相差をも補償する条件とした場合、2軸の4分の1波長板を出射した光は必然的に楕円偏光となる。したがって、2軸の4分の1波長板を出射した光は、楕円長軸方向に方位を持った偏光となっている。結果的に、液晶分子配列方位に依存した透過率特性となるため、図13に示したように、方位によっては、十分な視野角補償効果が得られない。
これに対して、この実施の形態の液晶表示素子構造では、液晶層7及びこれの法線位相差を補償する第3光学補償層OC3に入射する偏光を方位的な極性のない円偏光としているので、前述した問題は発生せず、方位に依存しない補償効果が得られる。
こうした効果を十分に得るには、入射側に位置する第1位相差板RF1及び第1偏光板PL1との間に、第1位相差板RF1及び第1偏光板PL1の視角特性を補償するような光学的に1軸の位相差板からなる第1光学補償層OC1を配置するとともに、出射側に位置する第2位相差板RF2及び第2偏光板PL2との間に、第2位相差板RF2及び第2偏光板PL2の視角特性を補償するような光学的に1軸の位相差板からなる第2光学補償層OC2を配置すれば尚良い視角特性を得ることができる。
つまり、2軸の位相差板を用いることにより視野角特性が改善できることは従来技術で説明した通りであるが、本構成によれば、1軸の第1位相差板(4分の1波長板)RF1と第1光学補償層OC1に含まれる第3位相差板RF3及び第4位相差板RF4とを組み合わせることにより、視野角特性を改善可能な2軸の位相差板と実質的に同等の機能を持たせることが可能となる。同様に、1軸の第2位相差板(4分の1波長板)RF2と第2光学補償層OC2に含まれる第5位相差板RF5及び第6位相差板RF6とを組み合わせることにより、視野角特性を改善可能な2軸の位相差板と実質的に同等の機能を持たせることが可能となる。これにより、視野角特性を改善するとともに、2軸の位相差板を用いる場合よりもコストの低減が可能となる。
上述した実施の形態に係る液晶表示素子は、液晶セルCにおいて、電圧を印加した状態にて画素内の液晶分子配列が少なくとも2方位を向くように制御された配向分割型の垂直配向モードであって、各画素PXにおける開口領域のうち、少なくとも半分の領域において、電圧を印加した状態における画素PX内の液晶分子8の配列方位が第1偏光板PL1の吸収軸若しくは透過軸と略平行となるように制御されることが望ましい。
このような配向制御は、図1Aに示したように、画素PX内に配向分割制御用の突起12を備えることで実現可能であるし、また、各画素PXに配置された画素電極10及び対向電極9の少なくとも一方の一部に配向分割制御用のスリット11を設けることでも実現可能であり、さらには、アクティブマトリクス基板14及び対向基板13における液晶層7を挟持する面に配向分割制御用のラビング等の配向処理を施した配向膜を設けることでも実現可能である。さらには、これらの突起12、スリット11、及び、配向処理を施した配向膜の少なくとも2つを組み合わせても良いことは言うまでもない。
前述したように、直線偏光主導型MVAモード液晶表示素子では、液晶分子配列方位が偏光板の透過軸に対してπ/4(rad)の角度をなすとき(Tlp(LC)の数式(1)中のθの値がπ/4(rad)となるとき)、最大の透過率を得ることができる。したがって、直線偏光主導型MVAモードの場合、電圧を印加した状態における画素内の液晶分子配列方位が偏光板の透過軸に対してπ/4(rad)の角度をなすように画素内に配向分割構造(突起やスリット)を設けたり、配向膜にラビング等の配向処理を施したりしている。
これに対して、円偏光主導型MVAモードの液晶表示素子の場合、透過率は電圧を印加した状態における画素内の液晶分子配列方位に依存しない。したがって、液晶層7及び第7位相差板RF7にて2分の1波長の位相差を得られれば、液晶分子配列方位に依らず、優れた透過率特性を得ることができる。
配向分割方垂直配向モードでは、前述した2分の1波長の位相差を光の入射角度に依存せず得られるように配向分割をなしている。しかしながら、入射角度や液晶分子の傾き角によっては、配向分割効果による位相差の方位性の補償がなされない場合が生じる。こうした問題を最小限に抑えるためには、前述したように、液晶分子配列方位を偏光板の透過軸若しくは吸収軸と平行な方位にすると良い。これは、液晶層7及び第7位相差板RF7を出射した光が円偏光にならず楕円偏光となったときにその楕円偏光の長軸の方位が検光子である第1偏光板PL1の光軸(透過軸及び吸収軸)と平行となるためである。
上述した実施の形態に係る液晶表示素子では、第1位相差板RF1、第2位相差板RF2、第4位相差板RF4、及び、第6位相差板RF6は、アートン樹脂、ポリビニルアルコール樹脂、ゼオノア樹脂、トリアセチルセルロース樹脂など、その面内でのリターデーション値が入射光波長に殆ど依存しない樹脂のいずれかによって形成されることが望ましい。または、第1位相差板RF1、第2位相差板RF2、第4位相差板RF4、及び、第6位相差板RF6は、変性ポリカーボネート樹脂など、その面内でのリターデーション値が入射光波長にかかわらず入射光波長の約1/4となる樹脂によって形成されることが望ましい。このようなに、ポリカーボネートなどのように短波長側でリターデーションが大きくなる材料よりも、どの波長領域においても屈折率が一定であるような材料、もしくは変性ポリカーボネートのような入射光波長に関わらず、リターデーション値が常に波長の4分の1となるような材料を用いることにより、入射光波長分散依存性の小さい偏光が可能となる。
第3位相差板RF3及び第5位相差板RF5は、光軸が法線方位のネマティック液晶ポリマーによって形成されることが望ましい。法線方向に正の位相差を持つフィルムは、従来の延伸技術では作成困難な為、光軸が法線方位のネマティック液晶ポリマー、もしくは、ディスコティック液晶ポリマーのいずれかを用いる方が実現が容易になる。
第7位相差板RF7は、カイラルネマティック液晶ポリマー、若しくは、コレステリック液晶ポリマー、若しくは、ディスコティック液晶ポリマーのいずれかの液晶ポリマーによって形成されることが望ましい。
前述したように、この実施の形態では、液晶層7の法線位相差を補償する目的で第7位相差板RF7を適用している。補償する液晶層7の位相差には波長分散があり、この波長分散を含めて液晶層7の位相差を補償するには、第7位相差板RF7も同等の波長分散を持っていた方がより優れた補償効果が得られる。したがって、第7位相差板RF7は、前述したように液晶ポリマーにて形成した方が良い。
(第1実施形態;変形例)
第1実施形態の変形例として、液晶表示素子は、2つのセグメントに機能を分離した第3光学補償層OC3を備えて構成しても良い。すなわち、図1Bに示すように、第3光学補償層OC3を構成する第7位相差板RF7は、第1位相差板RF1と液晶セルCとの間に配置された第1セグメント層RF7Aと、第2位相差板RF2と液晶セルCとの間に配置された第2セグメント層RF7Bと、に機能的に分離されている。このとき、例えば、第7位相差板RF7として機能する機能層の膜厚をTとしたときに、第1セグメント層RF7Aの膜厚と第2セグメント層RF7Bとの膜厚の総和がTとなるように形成することにより、図1Aに示した液晶表示素子と同等の機能を実現することが可能である。より具体的には、第7位相差板RF7として−220nmの法線位相差を必要とする場合、第1セグメントRF7A及び第2セグメントRF7Bのそれぞれが−110nmの法線位相差を有するように構成される。
(第2実施形態)
第2実施形態に係る液晶表示素子は、第1光学補償層OC1及び第2光学補償層OC2の構成を除いて、すなわち、この第2実施形態においては、第1光学補償層OC1及び第2光学補償層OC2の少なくとも一方は、主平面内において正の一軸性を示す液晶性高分子が法線方向に沿ってネマティックハイブリッド配向した2つの液晶フィルムを積層した単一の光学フィルムによって構成されている。
図6Aは、第2実施形態に係る液晶表示素子の構成を概略的に示す図である。図6Aに示すように、液晶表示素子は、各画素の液晶分子配列が画素に電圧を印加していない状態において基板主面に対してほぼ垂直に配向した円偏光主導型の垂直配向モードの液晶表示素子であって、円偏光子構成体Pと、可変リターダー構成体VRと、円検光子構成体Aと、を備えている。なお、上述した第1実施形態と同一の構成要素については同一の参照符号を付して詳細な説明を省略する。
第1光学補償層OC1は、単一の光学フィルム100によって構成されている。この光学フィルム100は、第1実施形態で説明した第3位相差板と第4位相差板とのトータルの屈折率異方性と同等の光学機能を有している。つまり、この第2実施形態では、第1実施形態における第3位相差板RF3及び第4位相差板RF4は、単一の光学フィルム100に置き換えられている。
同様に、第2光学補償層OC2は、単一の光学フィルム200によって構成されている。この光学フィルム200は、第1実施形態で説明した第5位相差板と第6位相差板とのトータルの屈折率異方性と同等の光学機能を有している。つまり、この第2実施形態では、第1実施形態における第5位相差板RF5及び第6位相差板RF6は、単一の光学フィルム200に置き換えられている。
これらの光学フィルム100及び200は、ほぼ同一構成であるため、ここでは光学フィルム100の構成について詳細に説明する。すなわち、光学フィルム100は、図6Aに示すように、第1液晶フィルム110と、第1液晶フィルム110に積層された第2液晶フィルム120と、を備えている。第1液晶フィルム110は、液晶表示装置の外面側(すなわち光学フィルム100については第1偏向板PL1側)に配置されている。第2液晶フィルム120は、液晶表示装置の内面側(すなわち光学フィルム100については第1位相差板RF1側)に配置されている。
第1液晶フィルム110及び第2液晶フィルム120は、ともに主平面内において正の一軸性を示す液晶性高分子を有している。これらの第1液晶フィルム110及び第2液晶フィルム120に含まれる液晶性高分子は、液晶状態において法線方向に沿ってネマティックハイブリッド配向した状態で固定化されている。
なお、ここでの主平面とは、各液晶フィルムが延在する平面であるものとし、互いに直交するX軸及びY軸で規定され、また、法線とは、この主平面の法線に相当するものとし、X軸及びY軸に直交するZ軸で定義される。
このような光学フィルム100において、第1液晶フィルム110及び第2液晶フィルム120におけるそれぞれの液晶性高分子110L及び120Lのダイレクタ110D及び120Dは、主平面内において平行であるとともに、法線方向に沿った断面内で直交する。また、第1液晶フィルム110及び第2液晶フィルム120におけるそれぞれの液晶性高分子110L及び120Lのダイレクタ110D及び120Dは、第1液晶フィルム110と第2液晶フィルム120との接合面130に対して対称に配向している。
すなわち、X軸及びY軸で規定される主平面内において、第1液晶フィルム110に含まれる液晶性高分子110Lはねじれることはなく、液晶性高分子110Lを正射影したときに液晶性高分子110Lのダイレクタ110Dは1方位に方向付けられている。液晶性高分子110Lのダイレクタ110DがX軸とほぼ平行であるとしたとき、X軸及びZ軸で規定される断面では、液晶性高分子110Lは、接合面130近傍で接合面130に対してほぼ垂直に配向するとともに第1液晶フィルム110の外面140近傍でほぼ平行に配向している。つまり、第1液晶フィルム110においては、液晶性高分子110Lは、それぞれのダイレクタ110Dと接合面130とのなす角度(チルト角)が0°以上90°以下の範囲の角度を形成するように法線Zに沿って分布している。
同様に、X軸及びY軸で規定される主平面内において、第2液晶フィルム120に含まれる液晶性高分子120Lはねじれることはなく、液晶性高分子120Lを正射影したときに液晶性高分子120Lのダイレクタ120Dは1方位に方向付けられている。このとき、第2液晶フィルム120は、液晶性高分子120Lのダイレクタ120DがX軸とほぼ平行となるように配置される。つまり、液晶性高分子110Lのダイレクタ110L及び液晶性高分子120Lのダイレクタ120Dは、主平面内において平行である。
また、X軸及びZ軸で規定される断面では、液晶性高分子120Lは、接合面130近傍で接合面130に対してほぼ垂直に配向するとともに第2液晶フィルム120の外面150近傍でほぼ平行に配向している。つまり、第2液晶フィルム110においても、液晶性高分子120Lは、それぞれのダイレクタ120Dと接合面130とのなす角度(チルト角)が0°以上90°以下の範囲の角度を形成するように法線Zに沿って分布している。
このため、第2液晶フィルム120は、X軸及びZ軸で規定される断面内において、第1液晶フィルム110に含まれる液晶性高分子110Lのそれぞれのダイレクタ110Dと直交するダイレクタ120Dを有する液晶性高分子120Lを含んでいる。
このような光学フィルム100については、液晶性高分子110L及び120Lのそれぞれのダイレクタ110D及び120Dの方位(X軸と平行)の屈折率をnxとし、これに直交する方位(Y軸と平行)の屈折率をnyとし、法線の方位(Z軸と平行)の屈折率をnzとしたとき、接合面130の近傍における屈折率異方性がnx=ny<nzであり、第1液晶フィルム110及び第2液晶フィルム120のそれぞれの外面140及び150近傍における屈折率異方性がnx>ny=nzである。
つまり、第1液晶フィルム110については、接合面130の近傍においてポジティブCプレート(nx=ny<nz)と等価な屈折率異方性を呈し、法線位相差は約50nmに設定され、また、外面140の近傍においてポジティブAプレート(nx>ny=nz)と等価な屈折率異方性を呈し、面内位相差は約25nmに設定されている。
また、第2液晶フィルム120についても同様に、接合面130の近傍においてポジティブCプレート(nx=ny<nz)と等価な屈折率異方性を呈し、法線位相差は約50nmに設定され、また、外面150の近傍においてポジティブAプレート(nx>ny=nz)と等価な屈折率異方性を呈し、面内位相差は約25nmに設定されている。
つまり、光学フィルム100は、トータルとして約100nmの法線位相差を有するとともに、約50nmの面内位相差を有する。また、光学フィルム200も同様に構成されている。要するに、光学フィルム100及び200のそれぞれについては、第3位相差板RF3及び第5位相差板RF5と同等の機能を実現するために、法線方向において、正の法線位相差(例えば100nm)を有する位相差板としての機能を有している。また、これらの光学フィルム100及び200は、第4位相差板RF4及び第6位相差板RF6と同等の機能を実現するために、主平面内において、正の面内位相差(例えば50nm)を有する位相差板としての機能を有している。
上述した第2実施形態においては、第1光学補償層OC1として機能する光学フィルム100は、そのフィルム表面に対して略水平に配向した液晶分子のダイレクタが、第1偏光板PL1の吸収軸に対して直交するように配置されている。また、第2光学補償層OC2として機能する光学フィルム200は、そのフィルム表面に対して略水平に配向した液晶分子のダイレクタが、第2偏光板PL2の吸収軸に対して直交するように配置されている。
このような構成の第2実施形態によれば、上述した第1実施形態と同様の機能が実現できるのに加えて、複数の位相差板としての機能を単一の光学フィルムによって実現可能となり、部材点数を削減できるとともに、装置全体の層厚が削減でき、薄型化に有利である。また、上述したように複数の位相差板として機能する単一の光学フィルムによれば、2軸延伸フィルムでは困難な条件であっても、容易に作成することができ、しかも製造コストを低減することができる。
(第2実施形態;変形例1)
第2実施形態の変形例1として、液晶表示素子は、2つのセグメントに機能を分離した第3光学補償層OC3を備えて構成しても良い。すなわち、図6Bに示すように、第3光学補償層OC3を構成する第7位相差板RF7は、図1Bに示した変形例と同様に、第1位相差板RF1と液晶セルCとの間に配置された第1セグメント層RF7Aと、第2位相差板RF2と液晶セルCとの間に配置された第2セグメント層RF7Bと、に機能的に分離されている。より具体的には、第7位相差板RF7として−220nmの法線位相差を必要とする場合、第1セグメントRF7A及び第2セグメントRF7Bのそれぞれが−110nmの法線位相差を有するように構成される。このような構成であっても、図6Aに示した液晶表示素子と同等の機能を実現することが可能である。
(第2実施形態;変形例2)
また、図6Bに示した変形例1のさらに別の変形例2として、第1セグメント層RF7A及び第1位相差板RF1は、トータルの光学機能が進相軸及び遅相軸を透過する所定波長の光の間に1/4波長の位相差を与え、且つ、nx>ny>nzの2軸の屈折率異方性と同等である単一の2軸の位相差板BR1によって構成しても良い。この位相差板BR1は、液晶セルCと光学フィルム100との間に配置されている。
同様に、第2セグメント層RF7B及び第2位相差板RF2は、トータルの光学機能が進相軸及び遅相軸を透過する所定波長の光の間に1/4波長の位相差を与え、且つ、nx>ny>nzの2軸の屈折率異方性と同等である単一の2軸の位相差板BR2によって構成してもよい。この位相差板BR2は、液晶セルCと光学フィルム200との間に配置されている。
これらの位相差板BR1及びBR2のそれぞれについては、第1位相差板RF1及び第2位相差板RF2と同等の機能を実現するために、主平面内において、進相軸及び遅相軸をそれぞれ透過する所定波長(例えば550nm)の光の間に1/4波長の面内位相差(140nm)を与える4分の1波長板としての機能を有している。また、これらの位相差板BR1及びBR2のそれぞれについては、第1セグメント層RF7A及び第2セグメント層RF7Bと同等の機能を実現するために、法線方向において、負の法線位相差(例えば−110nm)を有する位相差板としての機能を有している。
このような構成であっても、図6Aに示した液晶表示素子と同等の機能を実現することが可能である。また、複数の位相差板としての機能を単一の位相差板によって実現することにより、部材点数を削減できるとともに、装置全体の層厚が削減でき、薄型化に有利である。
なお、上述した第2実施形態では、図6A乃至図6Cに記載した各構成において、第1光学補償層OC1を光学フィルム100で構成すると同時に第2光学補償層OC2を光学フィルム200で構成したが、いずれか一方のみを光学フィルムで構成しても同様の機能を実現可能である。
同様に、図6Cに記載した構成において、第1位相差板RF1及び第1セグメントRF7Aを単一の2軸の位相差板BR1で構成すると同時に第2位相差板RF2及び第2セグメントRF7Bを単一の2軸の位相差板BR2で構成したが、いずれか一方のみを単一の2軸の位相差板で構成しても同様の機能を実現可能である。
(第3実施形態)
第3実施形態においては、第1実施形態の第1位相差板RF1と第3位相差板RF3との組み合わせ、及び、第2位相差板RF2と第5位相差板RF5との組み合わせの少なくとも一方は、主平面内において正の一軸性を示す液晶性高分子が法線方向に沿ってネマティックハイブリッド配向した2つの液晶フィルムを積層した単一の光学フィルムによって構成されている。他の構成については、上述した第1実施形態の構成と同一であり、これらについては同一の参照符号を付して詳細な説明を省略する。
図7Aに示すように、円偏光子構成体Pは、単一の光学フィルム100と、第1偏向板PL1と、これらの間に配置された第4位相差板RF4と、を備えている。この光学フィルム100は、第1実施形態で説明した第1位相差板と第3位相差板とのトータルの屈折率異方性と同等の光学機能を有している。つまり、この第3実施形態では、第1実施形態における第1位相差板RF1及び第3位相差板RF3は、単一の光学フィルム100に置き換えられている。
同様に、円検光子構成体Aは、単一の光学フィルム200と、第2偏光板PL2と、これらの間に配置された第6位相差板RF6と、を備えている。この光学フィルム200は、第1実施形態で説明した第2位相差板と第5位相差板とのトータルの屈折率異方性と同等の光学機能を有している。つまり、この第3実施形態では、第1実施形態における第2位相差板RF2及び第5位相差板RF5は、単一の光学フィルム200に置き換えられている。
これらの光学フィルム100及び200の詳細な構成は、第2実施形態で説明した通りである。
このような光学フィルム100については、液晶性高分子110L及び120Lのそれぞれのダイレクタ110D及び120Dの方位(X軸と平行)の屈折率をnxとし、これに直交する方位(Y軸と平行)の屈折率をnyとし、法線の方位(Z軸と平行)の屈折率をnzとしたとき、接合面130の近傍における屈折率異方性がnx=ny<nzであり、第1液晶フィルム110及び第2液晶フィルム120のそれぞれの外面140及び150近傍における屈折率異方性がnx>ny=nzである。
つまり、第1液晶フィルム110については、接合面130の近傍においてポジティブCプレート(nx=ny<nz)と等価な屈折率異方性を呈し、法線位相差は約50nmに設定され、また、外面140の近傍においてポジティブAプレート(nx>ny=nz)と等価な屈折率異方性を呈し、面内位相差は約70nmに設定されている。
また、第2液晶フィルム120についても同様に、接合面130の近傍においてポジティブCプレート(nx=ny<nz)と等価な屈折率異方性を呈し、法線位相差は約50nmに設定され、また、外面150の近傍においてポジティブAプレート(nx>ny=nz)と等価な屈折率異方性を呈し、面内位相差は約70nmに設定されている。
つまり、光学フィルム100は、トータルとして約100nmの法線位相差を有するとともに、約140nmの面内位相差を有する。また、光学フィルム200も同様に構成されている。要するに、光学フィルム100及び200のそれぞれについては、第1位相差板RF1及び第2位相差板RF2と同等の機能を実現するために、主平面内において、進相軸及び遅相軸をそれぞれ透過する所定波長(例えば550nm)の光の間に1/4波長の面内位相差(140nm)を与える4分の1波長板としての機能を有している。また、これらの光学フィルム100及び200は、第3位相差板RF3及び第5位相差板RF5と同等の機能を実現するために、法線方向において、正の法線位相差(例えば100nm)を有する位相差板としての機能を有している。
上述した第3実施形態においては、光学フィルム100は、そのフィルム表面に対して略水平に配向した液晶分子のダイレクタが、第1偏光板PL1の吸収軸に対して直交するように配置されている。また、光学フィルム200は、そのフィルム表面に対して略水平に配向した液晶分子のダイレクタが、第2偏光板PL2の吸収軸に対して直交するように配置されている。
このような構成の第3実施形態によれば、上述した第1実施形態と同様の機能が実現できるのに加えて、複数の位相差板としての機能を単一の光学フィルムによって実現可能となり、部材点数を削減できるとともに、装置全体の層厚が削減でき、薄型化に有利である。また、上述したように複数の位相差板として機能する単一の光学フィルムによれば、2軸延伸フィルムでは困難な条件であっても、容易に作成することができ、しかも製造コストを低減することができる。
(第3実施形態;変形例)
第3実施形態の変形例として、液晶表示素子は、2つのセグメントに機能を分離した第3光学補償層OC3を備えて構成しても良い。すなわち、図7Bに示すように、第3光学補償層OC3を構成する第7位相差板RF7は、図1Bに示した変形例と同様に、第1位相差板RF1と液晶セルCとの間に配置された第1セグメント層RF7Aと、第2位相差板RF2と液晶セルCとの間に配置された第2セグメント層RF7Bと、に機能的に分離されている。より具体的には、第7位相差板RF7として−220nmの法線位相差を必要とする場合、第1セグメントRF7A及び第2セグメントRF7Bのそれぞれが−110nmの法線位相差を有するように構成される。このような構成であっても、図7Aに示した液晶表示素子と同等の機能を実現することが可能である。
なお、上述した第3実施形態では、図7A及び図7Bに記載した各構成において、第1位相差板RF1及び第3位相差板RF3を光学フィルム100で構成すると同時に第2位相差板RF2及び第5位相差板RF5を光学フィルム200で構成したが、いずれか一方のみを光学フィルムで構成しても同様の機能を実現可能である。
以下に、この発明の具体的な実施例について説明する。なお、主要な構成は、図1Aに示した第1実施形態と同一である。
《実施例》
実施例に係る液晶表示素子においては、液晶層7は、誘電異方性が負のネマティック液晶材料として、メルク(株)社製のF系液晶を用いた。ここで用いた液晶材料の屈折率異方性Δnは、0.095(測定波長は550nm。以下位相差板の屈折率や位相差は全て波長550nmでの測定値を記す)であり、液晶層7の厚みdは3.5μmである。したがって、液晶層7のΔn・dは、330nmである。
この実施例では、第1位相差板RF1及び第2位相差板RF2として、日本ゼオン社製のゼオノア樹脂からなる1軸の4分の1波長板(面内位相差は140nm)を適用した。また、第1位相差板RF1として用いたフィルムの表面(偏光板との対向面)に垂直配向膜としてJSR社製JALS214−R14を成膜した後、メルク社製のネマティック液晶ポリマーを塗布した。この液晶ポリマーの屈折率異方性Δnは、0.040であり、その厚みdは2.5μmである。したがって、液晶ポリマーの法線位相差は、100nmである。このような液晶ポリマー層は、第3位相差板RF3として機能する。さらに、この第3位相差板RF3として機能する液晶ポリマー層の表面に、第4位相差板RF4として、日本ゼオン社製のゼオノア樹脂からなる1軸の位相差板(面内位相差は50nm)を適用した。
また、同様に、第2位相差板RF2として用いたフィルムの表面にも法線位相差が100nmの第5位相差板RF5を形成した後、第5位相差板RF5の表面に、面内位相差が50nmの第6位相差板RF6として機能する位相差板を配置する。
一方、第2位相差板RF2として用いたフィルムの裏面(液晶セルCとの対向面)をラビングして、その上に屈折率異方性Δnが0.102であり、ヘリカルピッチが0.9μmであるメルク社製の紫外線架橋型のカイラルネマティック液晶を層厚2.36μmとなるよう塗布し、螺旋軸がフィルム法線方向となる状態にて紫外線を照射する。このような液晶ポリマー層は、第7位相差板RF7として機能する。このようにして得られた第7位相差板RF7の法線位相差は、−220nmとなっている。
こうして第3位相差板RF3及び第4位相差板RF4を備えた第1位相差板RF1を、第1位相差板RF1が液晶層7側に対向するように糊などの接着層を介して貼り付けた。また、第4位相差板RF4の直上には、第1偏光板PL1として住友化学工業社製の偏光板SRW062Aを糊などの接着層を介して貼り付けた。なお、この第1偏光板PL1は、その吸収軸が第4位相差板RF4の遅相軸と直交するように配置される。
一方、第5位相差板RF5、第6位相差板RF6及び第7位相差板RF7を備えた第2位相差板RF2を、第7位相差板RF7が液晶層7側に対向するように糊などの接着層を介して貼り付けた。また、第6位相差板RF6の直上には、第2偏光板PL2として住友化学工業社製の偏光板SRW062Aを糊などの接着層を介して貼り付けた。なお、この第2偏光板PL2は、その吸収軸が第6位相差板RF6の遅相軸と直交するように配置される。
第1偏光板PL1及び第2偏光板PL2の各々の透過軸と第1位相差板RF1及び第2位相差板RF2の遅相軸とのなす角度はπ/4(rad)としてあり、液晶層7に電圧を印加した際の液晶分子配列方位は各々の第1偏光板PL1及び第2偏光板PL2の透過軸と平行若しくは直交するように突起12やスリット11を配置してある。また、第2偏光板PL2の吸収軸と第1偏光板PL1の吸収軸は、互いに直交するよう配置してある。さらに、第1位相差板RF1の遅相軸と第2位相差板RF2の遅相軸とは、互いに直交するように配置してある。
このように構成された液晶表示素子において、液晶層7に印加する電圧を4.2V(白表示時)及び1.0V(黒表示時;液晶材料のスレショルド電圧未満の電圧であり、液晶分子は垂直配向のままの状態となる電圧である)となるようにして駆動させ、コントラスト比の視角特性を評価した。
結果を図8に示す。ほぼ全方位でコントラスト比50:1以上の視野が±80°以上となり、優れた視野角特性を得られることが確認できた。また、4.2Vにおける透過率を測定したところ、5.0%と極めて高い透過率を得ていることが確認できた。
以上説明したように、この発明によれば、垂直配向モードや配向分割方垂直配向モードなどの液晶層にて入射光の位相を略2分の1波長変調させる表示モードにおいて、液晶分子の配列方位がシュリーレン配向や意図する方位以外の方位に配列することなどによる透過率の低下を防ぐために、液晶層に入射する偏光を円偏光とした円偏光主導型の表示モード、特に円偏光主導型MVAモードにおいて、視野角特性が狭いといった問題、及び、用いる部材の製造コストが高いといった問題を解決するために、新規な液晶表示素子の構造を提供するものである。
これによれば、新規な構造により、従来の円偏光主導型MVAモードと同様に、高い透過率特性を得るばかりでなく、優れたコントラスト視角特性を実現することができ、しかも、従来の視角補償構造を伴った円偏光主導型MVAモードよりも安価に提供することができる。
なお、この発明は、上記実施形態そのままに限定されるものではなく、その実施の段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
上述した実施の形態においては、液晶セルCが画素PXの少なくとも一部の領域または表示領域DPの少なくとも一部に透過部を備えた液晶表示素子について説明したが、この例に限定されるものではない。例えば、液晶セルCが画素PXの少なくとも一部の領域または表示領域DPの少なくとも一部に反射層を備えた液晶表示素子についても、同様の構成を採用することが可能である。
すなわち、図17に示すように、円偏光主導型の垂直配向モードの液晶表示素子は、円偏光子兼円検光子構成体APと、可変リターダー構成体VRと、を備え、これらの順に積層して構成されている。可変リターダー構成体VRは、2枚の電極付基板間に液晶層を挟持したドットマトリクス型の液晶セルCを備えている。すなわち、この液晶セルCは、MVAモードの液晶セルであって、アクティブマトリクス基板14と対向基板13との間に液晶層7を挟持した構造を有している。また、これらアクティブマトリクス基板14と対向基板13との間隔は、図示しないスペーサによって一定に維持されている。このような液晶セルCは、画像を表示する表示領域DPを備えている。表示領域DPは、マトリクス状に配置された画素PXによって構成されている。
画素PX毎に配置された画素電極10は、少なくともその一部にアルミニウムのような光反射性を有する反射層を備えている。このような反射層を備えた反射部においては、液晶層7の厚みdは、上述した実施の形態における液晶表示素子の透過部での厚みの約半分に設定されている。
円偏光子兼円検光子構成体APは、第2偏光板PL2、及び、第2偏光板PL2と液晶セルCとの間に配置された一軸の第2位相差板RF2を含んでいる。第2偏光板PL2は、その面内において、互いにほぼ直交する透過軸及び吸収軸を有している。第2位相差板RF2は、その面内において、互いにほぼ直交する進相軸及び遅相軸を有しており、進相軸及び遅相軸をそれぞれ透過する所定波長(例えば550nm)の光の間に1/4波長の位相差を与える一軸の4分の1波長板である。第2位相差板RF2は、その遅相軸が第2偏光板PL1の吸収軸とほぼ45°の角度をなすように配置されている。
ところで、このように構成された液晶表示素子は、円偏光子兼円検光子構成体AP(第2偏向板PL2のベースフィルムを含む)の光学補償用に第2偏光板PL2と第2位相差板RF2との間に配置された第2光学補償層OC2、及び、可変リターダー構成体VRの光学補償用に液晶セルCと第2位相差板RF2との間に配置された第3光学補償層OC3を備えている。
すなわち、第2光学補償層OC2は、円偏光子兼検光子構成体APを出射した出射光の偏光状態が出射方位によらず略円偏光となるように円偏光子兼検光子構成体APの視角特性を補償する。第3光学補償層OC3は、可変リターダー構成体VRにおける液晶セルCの位相差(液晶分子8が基板主面にほぼ垂直に配列した状態、すなわち黒表示状態において液晶層7における光学的に正の法線位相差)の視角特性を補償する。
第2光学補償層OC2は、少なくとも、屈折率異方性がnx≒ny<nzとなる光学的に1軸の第5位相差板(ポジティブCプレート)RF5、及び、屈折率異方性がnx>ny≒nzとなる光学的に1軸の第6位相差板(ポジティブAプレート)RF6を含んでいる。第6位相差板RF6は、その遅相軸が第2偏光板PL2の吸収軸とほぼ直交するように配置されている。
第2位相差板RF2及び、第6位相差板RF6としては、図2に示すような構造の屈折率楕円体(nx>ny≒nz)を有するものが適用可能である。第5位相差板RF5としては、図3に示すような構造の屈折率楕円体(nx≒ny<nz)を有するものが適用可能である。第7位相差板RF7としては、図4に示すような構造の屈折率楕円体(nx≒ny>nz)を有するものが適用可能である。
このような反射部を備えた液晶表示素子においても、視野角特性を改善するとともに、2軸の位相差板を用いる場合よりもコストの低減が可能となる。
また、1つの液晶セルCが上述したような透過部と反射部とを併せ持って構成されても良いことは言うまでもない。
さらに、各実施形態で説明したように、第2光学補償層OC2は、上述した単一の光学フィルム200によって構成しても良い。また、第2位相差板RF2及び第5位相差板RF5も同様に、上述した単一の光学フィルム200によって構成しても良い。さらに、第2位相差板RF2及び第7位相差板RF7は、上述した単一の2軸の位相差板BR2によって構成しても良い。これらを適用した場合であっても、図17に示した構成の液晶表示素子と同等の機能を実現することができる。
図1Aは、この発明の第1実施形態に係る液晶表示素子の断面構造の一例を概略的に示す図である。 図1Bは、この発明の第1実施形態の変形例に係る液晶表示素子の断面構造の一例を概略的に示す図である。 図2は、この発明の実施の形態に係る液晶表示素子に適用可能な第1位相差板、第2位相差板、第4位相差板、及び、第6位相差板の屈折率楕円体の形状を説明するための図である。 図3は、この発明の実施の形態に係る液晶表示素子に適用可能な第3位相差板及び第5位相差板の屈折率楕円体の形状を説明するための図である。 図4は、この発明の実施の形態に係る液晶表示素子に適用可能な第7位相差板の屈折率楕円体の形状を説明するための図である。 図5は、この発明の実施の形態に係る液晶表示素子のコントラスト視角特性の補償原理を説明するための図である。 図6Aは、この発明の第2実施形態に係る液晶表示素子の断面構造の一例を概略的に示す図である。 図6Bは、この発明の第2実施形態の変形例1に係る液晶表示素子の断面構造の一例を概略的に示す図である。 図6Cは、この発明の第2実施形態の変形例2に係る液晶表示素子の断面構造の一例を概略的に示す図である。 図7Aは、この発明の第3実施形態に係る液晶表示素子の断面構造の一例を概略的に示す図である。 図7Bは、この発明の第3実施形態の変形例に係る液晶表示素子の断面構造の一例を概略的に示す図である。 図8は、実施例に係る液晶表示素子の等コントラスト曲線の測定結果を示す図である。 図9は、従来の液晶表示素子の断面構造の一例を説明するための図である。 図10は、図9に示した液晶表示素子の等コントラスト曲線の一例を示す図である。 図11は、従来の液晶表示素子の断面構造の一例を説明するための図である。 図12は、図11に示した液晶表示素子に用いる2軸の4分の1波長板の屈折率楕円体の形状を説明するための図である。 図13は、図11に示した液晶表示素子の等コントラスト曲線の一例を示す図である。 図14は、従来の液晶表示素子の断面構造の一例を説明するための図である。 図15は、図14に示した液晶表示素子に用いる2軸の4分の1波長板の屈折率楕円体の形状を説明するための図である。 図16は、図14に示した液晶表示素子の等コントラスト曲線の一例を示す図である。 図17は、この発明の他の実施の形態に係る液晶表示素子の断面構造の一例を概略的に示す図である。
符号の説明
RF1…第1位相差板、RF2…第2位相差板、RF3…第3位相差板、RF4…第4位相差板、RF5…第5位相差板、RF6…第6位相差板、RF7…第7位相差板、RF7A…第1セグメント層、RF7B…第2セグメント層、PL1…第1偏光板、PL2…第2偏光板、7…液晶層、8…液晶分子、9…共通電極、10…画素電極、11…スリット、12…突起、13…対向基板、14…アクティブマトリクス基板、BL…バックライトユニット(光源)、P…円偏光子構成体、VR…可変リターダー構成体、A…円検光子構成体、C…液晶セル、AP…円偏光子兼円検光子構成体、OC1…第1光学補償層、OC2…第2光学補償層、OC3…第3光学補償層、100…光学フィルム、200…光学フィルム、BR1…2軸位相差板、BR2…2軸位相差板

Claims (35)

  1. 2枚の電極付基板間に液晶を挟持したドットマトリクス型の液晶セルを、光源側に位置する第1偏光板と観察者側に位置する第2偏光板との間に配置し、前記第1偏光板と前記液晶セルとの間にその遅相軸が前記第1偏光板の吸収軸とほぼ45°の角度をなすように一軸の第1位相差板を配置し、前記第2偏光板と前記液晶セルとの間にその遅相軸が前記第2偏光板の吸収軸とほぼ45°の角度をなすように一軸の第2位相差板を配置した表示素子であり、
    前記第1偏光板及び前記第1位相差板を含む円偏光子構成体と、
    前記液晶セルを含む可変リターダー構成体と、
    前記第2偏光板及び前記第2位相差板を含む円検光子構成体と、を、
    光源側から、前記円偏光子構成体、前記可変リターダー構成体、前記円検光子構成体の順に配置し、前記可変リターダー構成体が黒表示状態において法線位相差が光学的に正である液晶表示素子であって、
    前記第1位相差板及び前記第2位相差板は、進相軸及び遅相軸を透過する所定波長の光の間に1/4波長の位相差を与える一軸の4分の1波長板であり、
    さらに、前記円偏光子構成体は、その光学補償用に前記第1偏光板と前記第1位相差板との間に、屈折率異方性がnx≒ny<nzとなる1軸の第3位相差板及び屈折率異方性がnx>ny≒nzとなる1軸の第4位相差板を含む第1光学補償層を備え、かつ、前記第4位相差板は、その遅相軸が前記第1偏光板の吸収軸とほぼ直交するように配置され、
    前記円検光子構成体は、その光学補償用に前記第2偏光板と前記第2位相差板との間に、屈折率異方性がnx≒ny<nzとなる1軸の第5位相差板及び屈折率異方性がnx>ny≒nzとなる1軸の第6位相差板を含む第2光学補償層を備え、かつ、前記第6位相差板は、その遅相軸が前記第2偏光板の吸収軸とほぼ直交するとともに前記第4位相差板の遅相軸とほぼ直交するように配置され、
    前記可変リターダー構成体は、その光学補償用に前記第1位相差板と前記第2位相差板との間に配置されるとともに屈折率異方性がnx≒ny>nzとなる第7位相差板を含む第3光学補償層を備えたことを特徴とする液晶表示素子。
  2. 前記第1光学補償層は、主平面内において正の一軸性を示す液晶性高分子が法線方向に沿ってネマティックハイブリッド配向した2つの液晶フィルムを積層した単一の光学フィルムによって構成され、
    前記光学フィルムは、前記第3位相差板と前記第4位相差板とのトータルの屈折率異方性と同等の光学機能を有することを特徴とする請求項1に記載の液晶表示素子。
  3. 前記第2光学補償層は、主平面内において正の一軸性を示す液晶性高分子が法線方向に沿ってネマティックハイブリッド配向した2つの液晶フィルムを積層した単一の光学フィルムによって構成され、
    前記光学フィルムは、前記第5位相差板と前記第6位相差板とのトータルの屈折率異方性と同等の光学機能を有することを特徴とする請求項1に記載の液晶表示素子。
  4. 前記第1位相差板及び前記第3位相差板は、主平面内において正の一軸性を示す液晶性高分子が法線方向に沿ってネマティックハイブリッド配向した2つの液晶フィルムを積層した単一の光学フィルムによって構成され、
    前記光学フィルムは、前記第1位相差板と前記第3位相差板とのトータルの屈折率異方性と同等の光学機能を有することを特徴とする請求項1に記載の液晶表示素子。
  5. 前記第2位相差板及び前記第5位相差板は、主平面内において正の一軸性を示す液晶性高分子が法線方向に沿ってネマティックハイブリッド配向した2つの液晶フィルムを積層した単一の光学フィルムによって構成され、
    前記光学フィルムは、前記第2位相差板と前記第5位相差板とのトータルの屈折率異方性と同等の光学機能を有することを特徴とする請求項1に記載の液晶表示素子。
  6. 前記光学フィルムを構成する2つの液晶フィルムにおけるそれぞれの液晶性高分子のダイレクタは、主平面内において平行であるとともに、法線方向に沿った断面内で直交することを特徴とする請求項2乃至5のいずれか1項に記載の液晶表示素子。
  7. 前記光学フィルムを構成する2つの液晶フィルムにおけるそれぞれの液晶性高分子のダイレクタは、2つの液晶フィルムの接合面近傍で接合面に対してほぼ垂直に配向するとともに、各液晶フィルムの外面近傍でほぼ平行に配向したことを特徴とする請求項6に記載の液晶表示素子。
  8. 前記第7位相差板は、前記第1位相差板と前記液晶セルとの間に配置された第1セグメント層と、前記第2位相差板と前記液晶セルとの間に配置された第2セグメント層と、からなることを特徴とする請求項1に記載の液晶表示素子。
  9. 前記第1セグメント層及び前記第1位相差板は、トータルの光学機能が進相軸及び遅相軸を透過する所定波長の光の間に1/4波長の位相差を与え、且つ、nx>ny>nzの2軸の屈折率異方性と同等である単一の2軸の位相差板によって構成されたことを特徴とする請求項8に記載の液晶表示素子。
  10. 前記第2セグメント層及び前記第2位相差板は、トータルの光学機能が進相軸及び遅相軸を透過する所定波長の光の間に1/4波長の位相差を与え、且つ、nx>ny>nzの2軸の屈折率異方性と同等である単一の2軸の位相差板によって構成されたことを特徴とする請求項8に記載の液晶表示素子。
  11. 前記液晶セルは、電圧を印加しない状態にて画素内の液晶分子配列が基板主面に対して略垂直な垂直配向モードであることを特徴とする請求項1に記載の液晶表示素子。
  12. 前記液晶セルは、電圧を印加した状態にて画素内の液晶分子配列が少なくとも2方位を向くように制御された配向分割型の垂直配向モードであることを特徴とする請求項11に記載の液晶表示素子。
  13. 各画素における開口領域のうち、少なくとも半分の領域において、前記電圧を印加した状態における画素内の液晶分子配列方位が前記第1偏光板の吸収軸若しくは透過軸と略平行となるように制御されたことを特徴とする請求項11に記載の液晶表示素子。
  14. 画素内に配向分割制御用の突起を備えたことを特徴とする請求項12に記載の液晶表示素子。
  15. 前記電極に配向分割制御用のスリットを設けたことを特徴とする請求項12に記載の液晶表示素子。
  16. 2枚の前記基板における前記液晶層を挟持する面に配向分割制御用の配向処理を施した配向膜を設けたことを特徴とする請求項12に記載の液晶表示素子。
  17. 前記第1位相差板、前記第2位相差板、第4位相差板、及び、第6位相差板は、アートン樹脂、ポリビニルアルコール樹脂、ゼオノア樹脂、トリアセチルセルロース樹脂、変性ポリカーボネート樹脂のいずれかの樹脂によって形成されたことを特徴とする請求項1に記載の液晶表示素子。
  18. 前記第3位相差板及び前記第5位相差板は、光軸が法線方位のネマティック液晶ポリマーからなることを特徴とする請求項1に記載の液晶表示素子。
  19. 前記第7位相差板は、カイラルネマティック液晶ポリマー若しくはコレステリック液晶ポリマー若しくはディスコティック液晶ポリマーのいずれかの液晶ポリマーによって形成されたことを特徴とする請求項1に記載の液晶表示素子。
  20. 前記液晶セルは、画素の少なくとも一部の領域、または、表示領域の少なくとも一部に反射層を備えたことを特徴とする請求項1に記載の液晶表示素子。
  21. 2枚の電極付基板間に液晶を挟持し各画素に反射層を備えたドットマトリクス型の液晶セルと、第2偏光板との間にその遅相軸が前記第2偏光板の吸収軸とほぼ45°の角度をなすように一軸の第2位相差板を配置した表示素子であり、
    前記第2偏光板及び前記第2位相差板を含む円偏光子兼円検光子構成体と、
    前記液晶セルを含む可変リターダー構成体と、備え、
    前記可変リターダー構成体が黒表示状態において法線位相差が光学的に正である液晶表示素子であって、
    前記第2位相差板は、進相軸及び遅相軸を透過する所定波長の光の間に1/4波長の位相差を与える一軸の4分の1波長板であり、
    さらに、前記円偏光子兼円検光子構成体は、その光学補償用に前記第2偏光板と前記第2位相差板との間に、屈折率異方性がnx≒ny<nzとなる第5位相差板及び屈折率異方性がnx>ny≒nzとなる1軸の第6位相差板を含む第2光学補償層を備え、かつ、前記第6位相差板は、その遅相軸が前記第2偏光板の吸収軸とほぼ直交するように配置され、
    前記可変リターダー構成体は、その光学補償用に前記第2位相差板と前記液晶セルとの間に配置されるとともに屈折率異方性がnx≒ny>nzとなる第7位相差板を含む第3光学補償層を備えたことを特徴とする液晶表示素子。
  22. 前記第2光学補償層は、主平面内において正の一軸性を示す液晶性高分子が法線方向に沿ってネマティックハイブリッド配向した2つの液晶フィルムを積層した単一の光学フィルムによって構成され、
    前記光学フィルムは、前記第5位相差板と前記第6位相差板とのトータルの屈折率異方性と同等の光学機能を有することを特徴とする請求項21に記載の液晶表示素子。
  23. 前記第2位相差板及び前記第5位相差板は、主平面内において正の一軸性を示す液晶性高分子が法線方向に沿ってネマティックハイブリッド配向した2つの液晶フィルムを積層した単一の光学フィルムによって構成され、
    前記光学フィルムは、前記第2位相差板と前記第5位相差板とのトータルの屈折率異方性と同等の光学機能を有することを特徴とする請求項21に記載の液晶表示素子。
  24. 前記光学フィルムを構成する2つの液晶フィルムにおけるそれぞれの液晶性高分子のダイレクタは、主平面内において平行であるとともに、法線方向に沿った断面内で直交することを特徴とする請求項22または23に記載の液晶表示素子。
  25. 前記光学フィルムを構成する2つの液晶フィルムにおけるそれぞれの液晶性高分子のダイレクタは、2つの液晶フィルムの接合面近傍で接合面に対してほぼ垂直に配向するとともに、各液晶フィルムの外面近傍でほぼ平行に配向したことを特徴とする請求項24に記載の液晶表示素子。
  26. 前記第2位相差板及び前記第7位相差板は、トータルの光学機能が進相軸及び遅相軸を透過する所定波長の光の間に1/4波長の位相差を与え、且つ、nx>ny>nzの2軸の屈折率異方性と同等である単一の2軸の位相差板によって構成されたことを特徴とする請求項21に記載の液晶表示素子。
  27. 前記液晶セルは、電圧を印加しない状態にて画素内の液晶分子配列が基板主面に対して略垂直な垂直配向モードであることを特徴とする請求項21に記載の液晶表示素子。
  28. 前記液晶セルは、電圧を印加した状態にて画素内の液晶分子配列が少なくとも2方位を向くように制御された配向分割型の垂直配向モードであることを特徴とする請求項27に記載の液晶表示素子。
  29. 各画素における開口領域のうち、少なくとも半分の領域において、前記電圧を印加した状態における画素内の液晶分子配列方位が前記第2偏光板の吸収軸若しくは透過軸と略平行となるように制御されたことを特徴とする請求項27に記載の液晶表示素子。
  30. 画素内に配向分割制御用の突起を備えたことを特徴とする請求項28に記載の液晶表示素子。
  31. 前記電極に配向分割制御用のスリットを設けたことを特徴とする請求項28に記載の液晶表示素子。
  32. 2枚の前記基板における前記液晶層を挟持する面に配向分割制御用の配向処理を施した配向膜を設けたことを特徴とする請求項28に記載の液晶表示素子。
  33. 前記第2位相差板及び前記第6位相差板は、アートン樹脂、ポリビニルアルコール樹脂、ゼオノア樹脂、トリアセチルセルロース樹脂、変性ポリカーボネート樹脂のいずれかの樹脂によって形成されたことを特徴とする請求項21に記載の液晶表示素子。
  34. 前記第5位相差板は、光軸が法線方位のネマティック液晶ポリマーからなることを特徴とする請求項21に記載の液晶表示素子。
  35. 前記第7位相差板は、カイラルネマティック液晶ポリマー若しくはコレステリック液晶ポリマー若しくはディスコティック液晶ポリマーのいずれかの液晶ポリマーによって形成されたことを特徴とする請求項21に記載の液晶表示素子。
JP2005161622A 2005-06-01 2005-06-01 液晶表示素子 Pending JP2006337675A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005161622A JP2006337675A (ja) 2005-06-01 2005-06-01 液晶表示素子
KR1020060048474A KR100789512B1 (ko) 2005-06-01 2006-05-30 액정 표시 소자
US11/421,305 US20060274229A1 (en) 2005-06-01 2006-05-31 Liquid crystal display device
TW095119316A TW200710482A (en) 2005-06-01 2006-06-01 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161622A JP2006337675A (ja) 2005-06-01 2005-06-01 液晶表示素子

Publications (1)

Publication Number Publication Date
JP2006337675A true JP2006337675A (ja) 2006-12-14

Family

ID=37558288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161622A Pending JP2006337675A (ja) 2005-06-01 2005-06-01 液晶表示素子

Country Status (1)

Country Link
JP (1) JP2006337675A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007034308A (ja) * 2005-07-27 2007-02-08 Samsung Electronics Co Ltd 液晶表示装置とその製造方法
CN102902112A (zh) * 2011-07-29 2013-01-30 株式会社日本显示器东 液晶显示装置
JP2018533040A (ja) * 2015-10-05 2018-11-08 エルジー・ケム・リミテッド 光学フィルム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007034308A (ja) * 2005-07-27 2007-02-08 Samsung Electronics Co Ltd 液晶表示装置とその製造方法
US7724331B2 (en) 2005-07-27 2010-05-25 Samsung Electronics Co., Ltd. Display device and method
CN102902112A (zh) * 2011-07-29 2013-01-30 株式会社日本显示器东 液晶显示装置
CN102902112B (zh) * 2011-07-29 2015-12-16 株式会社日本显示器东 液晶显示装置
JP2018533040A (ja) * 2015-10-05 2018-11-08 エルジー・ケム・リミテッド 光学フィルム
US10564337B2 (en) 2015-10-05 2020-02-18 Lg Chem, Ltd. Optical film

Similar Documents

Publication Publication Date Title
JP2006251050A (ja) 液晶表示素子
KR100789512B1 (ko) 액정 표시 소자
JP4909594B2 (ja) 液晶表示装置
JP4080245B2 (ja) 液晶表示装置
JP2007101874A (ja) 液晶表示素子
US7397525B2 (en) Liquid crystal display device
KR100778167B1 (ko) 액정 표시 소자
US20060055845A1 (en) Liquid crystal display device
JP4714187B2 (ja) 液晶表示装置
JP2009031439A (ja) 液晶表示装置
KR100695698B1 (ko) 디스플레이 디바이스, 보상 필름 및 액정 디스플레이
KR100486186B1 (ko) 액정 디스플레이 장치
JP2005037784A (ja) 液晶表示素子
JP2006337676A (ja) 液晶表示素子
JP3776844B2 (ja) 液晶表示装置
JP2006337675A (ja) 液晶表示素子
JP4714188B2 (ja) 液晶表示装置
JP2009003432A (ja) 液晶表示装置
JP2010032787A (ja) 液晶表示装置
JP2007192916A (ja) 液晶表示装置
JP5475963B2 (ja) 液晶表示装置
JP2003029264A (ja) 液晶表示装置
JP2005338504A (ja) 液晶表示素子
JP2007249244A (ja) 液晶表示装置
JP2006011414A (ja) 液晶表示素子