JP2006332152A - Method of packaging semiconductor device - Google Patents

Method of packaging semiconductor device Download PDF

Info

Publication number
JP2006332152A
JP2006332152A JP2005150468A JP2005150468A JP2006332152A JP 2006332152 A JP2006332152 A JP 2006332152A JP 2005150468 A JP2005150468 A JP 2005150468A JP 2005150468 A JP2005150468 A JP 2005150468A JP 2006332152 A JP2006332152 A JP 2006332152A
Authority
JP
Japan
Prior art keywords
metal ball
electrode
semiconductor element
wire
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005150468A
Other languages
Japanese (ja)
Inventor
Takeshi Nakasuji
威 中筋
Michihiko Ueda
充彦 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005150468A priority Critical patent/JP2006332152A/en
Publication of JP2006332152A publication Critical patent/JP2006332152A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8501Cleaning, e.g. oxide removal step, desmearing
    • H01L2224/85013Plasma cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8503Reshaping, e.g. forming the ball or the wedge of the wire connector
    • H01L2224/85035Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball"
    • H01L2224/85045Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball" using a corona discharge, e.g. electronic flame off [EFO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/8509Vacuum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20751Diameter ranges larger or equal to 10 microns less than 20 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20753Diameter ranges larger or equal to 30 microns less than 40 microns

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce stress to a semiconductor device in a method for sticking a metal ball onto an electrode when forming a stud bump or performing junction by wire bonding. <P>SOLUTION: Plasma is applied onto the surface of the electrode 4 for cleaning the surface to expose a new surface further by activation (a), and a spark voltage and a spark current are adjusted to increase the diameter of a crystal grain for softening when allowing the tip section of a wire 6 to spark for forming the metal ball 5 (b), and then the metal ball 5 is pressed onto the surface of the electrode 4 for junction (c). After that, the wire 6 is pullcut for forming the stud bump 2 (d), or a wire is bonded to a substrate 8 (e). As a result, an oxide film on the surface of the metal ball 5 formed instantly from the spark, and a shell by deposit are broken, the new surface of the metal ball 5 is exposed for integrating with the new surface of the electrode 4, no heat and ultrasonic waves should be applied to junction, and the stress to the semiconductor device can be reduced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体素子の実装方法に関し、特に半導体素子の実装にあたってのスタッドバンプの形成やワイヤボンディングによる接合方法に関する。   The present invention relates to a method for mounting a semiconductor element, and more particularly to a method for forming a stud bump and mounting by wire bonding when mounting a semiconductor element.

従来では、上記スタッドバンプの形成やワイヤボンディングによる接合を行う際には、たとえば特許文献1で示されるように、ワイヤをスパークして形成したスパークボールを、200℃程度に加熱した半導体素子に、超音波を加えながら押圧することで接合が行われている。これは、通常、金バンプと半導体素子のアルミ電極との接合は、150℃以下では良好に行えないためである。
特公平4−41519号公報
Conventionally, when the formation of the stud bump or bonding by wire bonding is performed, for example, as shown in Patent Document 1, a spark ball formed by sparking a wire is applied to a semiconductor element heated to about 200 ° C. Joining is performed by pressing while applying ultrasonic waves. This is because the bonding between the gold bump and the aluminum electrode of the semiconductor element cannot normally be performed well at 150 ° C. or lower.
Japanese Examined Patent Publication No. 4-41519

しかしながら、上述の従来技術では、半導体素子に加わる熱や超音波がストレスとなり、半導体素子の特性を損なう可能性がある。具体的には、たとえばMEMS(Micro Electro Mechanical Systems)チップに超音波を掛けると、微細な三次元構造の部分が破損してしまう。また、高温を掛けると、特性が変化してしまう。   However, in the above-described prior art, heat and ultrasonic waves applied to the semiconductor element may be stressed and may impair the characteristics of the semiconductor element. Specifically, for example, when an ultrasonic wave is applied to a MEMS (Micro Electro Mechanical Systems) chip, a fine three-dimensional structure portion is damaged. In addition, the characteristics change when a high temperature is applied.

本発明の目的は、実装にあたっての半導体素子へのストレスを軽減することができる半導体素子の実装方法を提供することである。   An object of the present invention is to provide a method of mounting a semiconductor element that can reduce stress on the semiconductor element during mounting.

本発明の半導体素子の実装方法は、半導体素子の実装にあたって、電極上に金属ボールを固着するための方法において、前記電極の表面を活性化させる工程と、前記金属ボールの結晶粒を大径化させる工程と、前記金属ボールを前記電極の表面に押圧して接合する工程とを含むことを特徴とする。   The method for mounting a semiconductor device according to the present invention includes a step of activating the surface of the electrode and a method for enlarging the crystal grains of the metal ball in a method for fixing a metal ball on the electrode when mounting the semiconductor device. And a step of pressing and joining the metal balls to the surface of the electrode.

上記の構成によれば、半導体素子の実装のためのスタッドバンプの形成やワイヤボンディングによる接合を行うにあたって、電極上に金属ボールを固着するための方法において、前記電極の表面にプラズマを照射するなどして該表面を活性化させる工程、およびワイヤ先端部をスパークして前記金属ボールを形成する際に、スパーク電圧やスパーク電流を調整するなどして前記の結晶粒を大径化して軟らかくする工程を、いずれかを先にして順次に、または平行して行い、その後、前記金属ボールを前記電極の表面に押圧して接合することで、スパークから瞬時に形成されてしまう前記金属ボール表面の酸化膜や付着物による殻を破り、該金属ボールの新生面を露出させ、電極の新生面と一体化させる。   According to the above configuration, when forming a stud bump for mounting a semiconductor element or bonding by wire bonding, in a method for fixing a metal ball on an electrode, the surface of the electrode is irradiated with plasma, etc. And the step of activating the surface, and the step of making the crystal grains larger and softening by adjusting the spark voltage and the spark current when the metal ball is formed by sparking the wire tip. Are performed either sequentially or in parallel, and then the metal ball is pressed against the surface of the electrode and joined to form an oxidation of the surface of the metal ball instantaneously formed from the spark. A shell formed of a film or a deposit is broken, and the new surface of the metal ball is exposed and integrated with the new surface of the electrode.

したがって、スタッドバンプを形成したり、ワイヤボンディングを行うにあたって、金属ボールの電極への接合に、熱や超音波を加える必要はなく、実装にあたっての半導体素子へのストレスを軽減することができる。これによって、半導体素子およびそれを実装して成る半導体モジュールなどの半導体装置の信頼性を向上することができる。   Therefore, when forming stud bumps or performing wire bonding, it is not necessary to apply heat or ultrasonic waves to the bonding of the metal balls to the electrodes, and the stress on the semiconductor element during mounting can be reduced. Thereby, the reliability of the semiconductor device such as the semiconductor element and the semiconductor module formed by mounting the semiconductor element can be improved.

また、本発明の半導体素子の実装方法では、前記半導体素子は、MEMSチップであることを特徴とする。   In the semiconductor element mounting method of the present invention, the semiconductor element is a MEMS chip.

上記の構成によれば、超音波や熱に弱い上記MEMSチップには、本発明が特に効果的である。   According to the above configuration, the present invention is particularly effective for the MEMS chip that is sensitive to ultrasonic waves and heat.

さらにまた、本発明の半導体素子の実装方法は、前記電極の表面および金属ボールを金で形成することを特徴とする。   Furthermore, the semiconductor element mounting method of the present invention is characterized in that the surface of the electrode and the metal ball are formed of gold.

上記の構成によれば、接合強度をより高めることができる。   According to said structure, joint strength can be raised more.

また、本発明の半導体素子の実装方法は、前記接合の工程を、還元ガス雰囲気中で行うことを特徴とする。   The semiconductor element mounting method of the present invention is characterized in that the bonding step is performed in a reducing gas atmosphere.

上記の構成によれば、金属ボールの材料に、銅や半田等の酸化する材料を使用することができる。   According to said structure, the material which oxidizes, such as copper and solder, can be used for the material of a metal ball.

さらにまた、本発明の半導体素子の実装方法は、全工程を、真空雰囲気または不活性ガス雰囲気中で行うことを特徴とする。   Furthermore, the semiconductor element mounting method of the present invention is characterized in that all steps are performed in a vacuum atmosphere or an inert gas atmosphere.

上記の構成によれば、接合面の酸化や汚染を抑え、安定的な接合を実現することができる。   According to said structure, the oxidation and contamination of a joining surface can be suppressed and stable joining can be implement | achieved.

本発明の半導体素子の実装方法は、以上のように、半導体素子の実装のためのスタッドバンプの形成やワイヤボンディングによる接合を行うにあたって、電極上に金属ボールを固着するための方法において、前記電極の表面にプラズマを照射するなどして、該表面を活性化させる工程、およびワイヤ先端部をスパークして前記金属ボールを形成する際に、スパーク電圧やスパーク電流を調整するなどして前記の結晶粒を大径化して軟らかくする工程を、いずれかを先にして順次に、または平行して行い、その後、前記金属ボールを前記電極の表面に押圧して接合することで、スパークから瞬時に形成されてしまう前記金属ボール表面の酸化膜や付着物による殻を破り、該金属ボールの新生面を露出させ、電極の新生面と一体化させる。   As described above, the method for mounting a semiconductor element according to the present invention includes a method for fixing a metal ball on an electrode when forming a stud bump for mounting a semiconductor element or bonding by wire bonding. The crystal is formed by adjusting a spark voltage or a spark current when the metal ball is formed by irradiating the surface of the surface with plasma and activating the surface, and forming the metal ball by sparking the tip of the wire. The process of increasing the diameter of the grains to make them softer is performed either sequentially or in parallel, and then the metal balls are pressed against the surface of the electrodes and bonded to form instantly from the spark. The shell formed by the oxide film or the deposit on the surface of the metal ball is broken, and the new surface of the metal ball is exposed and integrated with the new surface of the electrode.

それゆえ、スタッドバンプを形成したり、ワイヤボンディングを行うにあたって、金属ボールの電極への接合に、熱や超音波を加える必要はなく、実装にあたっての半導体素子へのストレスを軽減することができる。これによって、半導体素子およびそれを実装して成る半導体モジュールなどの半導体装置の信頼性を向上することができる。   Therefore, when forming stud bumps or performing wire bonding, it is not necessary to apply heat or ultrasonic waves to the bonding of the metal balls to the electrodes, and the stress on the semiconductor element during mounting can be reduced. Thereby, the reliability of the semiconductor device such as the semiconductor element and the semiconductor module formed by mounting the semiconductor element can be improved.

[実施の形態1]
図1は、本発明の実施の一形態に係る半導体素子の実装方法を説明するための図である。本実装工程は、シリコンチップなどの半導体素子1に対して、図示しない回路基板などへの実装のためのスタッドバンプ2を形成したり、ボンディングワイヤ3による接合を行うものであり、共に、半導体素子1の電極4に対して、金属ボール5を固着する工程を有する。
[Embodiment 1]
FIG. 1 is a diagram for explaining a semiconductor element mounting method according to an embodiment of the present invention. In this mounting process, a stud bump 2 for mounting on a circuit board (not shown) or the like is formed on a semiconductor element 1 such as a silicon chip, or bonding with a bonding wire 3 is performed. A step of fixing the metal ball 5 to one electrode 4.

前記金属ボール5の電極4への固着の工程には、先ず図1(a)で示す前記電極4の表面にアルゴン等のプラズマを照射するなどして、該表面を活性化することで該表面を浄化し、さらに新生面を露出させる工程と、図1(b)で示すワイヤ6の先端部をスパークして前記金属ボール5を形成する際に、スパーク電圧やスパーク電流を調整して結晶粒を大径化して軟らかくする工程とが、いずれかを先にして順次に、または平行して行われる。その後、常温で、図1(c)で示すように、前記金属ボール5が前記電極4の表面に押圧されて接合される。   In the step of fixing the metal ball 5 to the electrode 4, first, the surface of the electrode 4 shown in FIG. 1A is activated by irradiating the surface of the electrode 4 with plasma such as argon. When the metal ball 5 is formed by sparking the tip of the wire 6 shown in FIG. 1B, and adjusting the spark voltage and the spark current, the crystal grains are adjusted. The process of increasing the diameter and softening is performed sequentially or in parallel with one of them first. Thereafter, as shown in FIG. 1C, the metal ball 5 is pressed and joined to the surface of the electrode 4 at room temperature.

前記図1(a)で示す工程では、前記半導体素子1として、たとえばSi基板上に、SiO膜を400nm、Ti/W膜を200nm順に形成した上に、さらに200nm程度のAu層を形成して電極4の表面が形成されたものが用いられ、アルゴンプラズマを、φ4インチのウエハ換算で25〜150W程度、プラズマ照射時間を30〜180sec程度、アルゴンガス内圧を1〜10Pa程度の条件下で表面活性化処理が行われる。 In the step shown in FIG. 1A, as the semiconductor element 1, for example, an SiO 2 film is formed in a thickness of 400 nm and a Ti / W film is formed in an order of 200 nm on a Si substrate, and an Au layer of about 200 nm is further formed. The surface of the electrode 4 is used, and argon plasma is used under conditions of about 25 to 150 W in terms of a φ4 inch wafer, a plasma irradiation time of about 30 to 180 seconds, and an argon gas internal pressure of about 1 to 10 Pa. A surface activation treatment is performed.

また、前記図1(b)で示す工程では、φ15〜35μmのAuワイヤを使用し、キャピラリ7の先端に位置するワイヤ6と、トーチと呼ばれる電極との間を1.3mmの間隔を空けて、ワイヤ6をスパークさせることでワイヤ先端部を溶融し、スパークボールと呼ばれる金属ボール5を形成している。φ15のAuワイヤで、たとえばスパーク電流は30mA、100μsecであり、この工程のスパークによって溶融された前記金属ボール5は、スパーク前のワイヤ6よりも結晶粒が大径化する。前記スパーク電圧やスパーク電流を調整することで、従来のスタッドバンプ2の形成時やワイヤボンディング時に比べても、結晶粒を大径化することができる。   In the step shown in FIG. 1B, an Au wire having a diameter of 15 to 35 μm is used, and a gap of 1.3 mm is provided between the wire 6 located at the tip of the capillary 7 and an electrode called a torch. The tip of the wire is melted by sparking the wire 6 to form a metal ball 5 called a spark ball. A φ15 Au wire, for example, has a spark current of 30 mA and 100 μsec, and the metal balls 5 melted by the spark in this process have larger crystal grains than the wire 6 before the spark. By adjusting the spark voltage and spark current, the crystal grains can be enlarged even when compared to the conventional stud bump 2 formation or wire bonding.

さらにまた、前記図1(c)で示す接合工程では、金属ボール5が、荷重150gで超音波アシスト無しで電極4に押圧される。その後、図1(d)で示すスタッドバンプ形成工程では、ワイヤ6をプルカットすることで、φ40〜100μmのスタッドバンプ2が形成される。また、押圧後、図1(e)で示すワイヤボンディング工程では、ボンディングワイヤ3をプルカットせず、基板8側にボンディングされる。   Furthermore, in the joining step shown in FIG. 1C, the metal ball 5 is pressed against the electrode 4 with a load of 150 g without ultrasonic assistance. Thereafter, in the stud bump forming step shown in FIG. 1D, the wire 6 is pulled to form a stud bump 2 having a diameter of 40 to 100 μm. Further, after the pressing, in the wire bonding step shown in FIG. 1E, the bonding wire 3 is bonded to the substrate 8 side without pull-cutting.

このように作成することで、図1(b)で示す工程において、スパークから瞬時に形成されてしまう前記金属ボール5の表面の酸化膜や付着物(C,H,O)による殻を、前記図1(c)で示す接合工程で破り、該金属ボール5の新生面を露出させ、前記図1(a)で示すプラズマ照射工程で現れた電極4の新生面と一体化することができる。   By creating in this way, in the step shown in FIG. 1B, the shell of the surface of the metal ball 5 that is instantaneously formed from sparks and the deposit (C, H, O) due to the deposit (C, H, O), It can be broken in the bonding step shown in FIG. 1C to expose the new surface of the metal ball 5 and be integrated with the new surface of the electrode 4 that appears in the plasma irradiation step shown in FIG.

したがって、スタッドバンプ2を形成したり、ワイヤボンディングを行うにあたって、金属ボール5の電極4への接合に、熱や超音波を加える必要はなく、実装にあたっての半導体素子1へのストレスを軽減することができる。これによって、半導体素子1およびそれを実装して成る半導体モジュールなどの半導体装置の信頼性を向上することができる。   Therefore, when forming the stud bump 2 or performing wire bonding, it is not necessary to apply heat or ultrasonic waves to the bonding of the metal ball 5 to the electrode 4, and the stress on the semiconductor element 1 during mounting is reduced. Can do. As a result, the reliability of the semiconductor device 1 and a semiconductor device such as a semiconductor module mounted thereon can be improved.

なお、前記前記図1(c)で示す接合工程において、若干の超音波をアシストすることで、押圧荷重を70gに低下して、荷重によるストレスを低下するとともに、より強度の高い接合が可能である。   In the joining step shown in FIG. 1 (c), by assisting some ultrasonic waves, the pressing load is reduced to 70 g, the stress due to the load is reduced, and higher strength joining is possible. is there.

また、前記半導体素子1がMEMSチップである場合、該MEMSチップは超音波や熱に弱いので、本発明が特に効果的である。さらにまた、上述のように電極4の表面および金属ボール5を金で形成すると、接合強度をより高めることができる。   In addition, when the semiconductor element 1 is a MEMS chip, the MEMS chip is particularly effective because the MEMS chip is vulnerable to ultrasonic waves and heat. Furthermore, when the surface of the electrode 4 and the metal ball 5 are formed of gold as described above, the bonding strength can be further increased.

[実施の形態2]
図2は、本発明の実施の他の形態に係る半導体素子の実装方法を説明するための図である。図2(a)〜図2(e)で示す本実装工程は、前述の図1(a)〜図1(e)で示す実装工程にそれぞれ類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、本実装工程では、図2(b)で示す金属ボール5’の形成工程および図2(c)で金属ボール5’の電極4’への接合工程が、還元ガス雰囲気中で行われることである。
[Embodiment 2]
FIG. 2 is a diagram for explaining a semiconductor device mounting method according to another embodiment of the present invention. The mounting process shown in FIGS. 2 (a) to 2 (e) is similar to the mounting process shown in FIGS. 1 (a) to 1 (e), and the same reference numerals are used for the corresponding parts. A description thereof will be omitted. It should be noted that in this mounting process, the formation process of the metal ball 5 ′ shown in FIG. 2B and the bonding process of the metal ball 5 ′ to the electrode 4 ′ in FIG. Is to be done.

これに対応して、半導体素子1’は、たとえばSi基板上に、SiO膜を400nm形成した上に、1μm程度のCu膜を形成して電極4’の表面が形成されている。図2(a)で示すプラズマ照射工程では、アルゴンプラズマ密度およびプラズマ照射時間ならびにアルゴンガス内圧は前述とそれぞれ同一の条件である。 Correspondingly, in the semiconductor element 1 ′, for example, a surface of the electrode 4 ′ is formed by forming a 400 nm SiO 2 film on a Si substrate and forming a Cu film of about 1 μm. In the plasma irradiation step shown in FIG. 2A, the argon plasma density, the plasma irradiation time, and the argon gas internal pressure are the same as those described above.

一方、図2(b)で示す金属ボール5’の形成工程では、φ15〜35μmのCuワイヤを使用し、キャピラリ7の先端に位置するワイヤ6’をスパークさせることでワイヤ先端部を溶融し、前記金属ボール5’が形成される。この工程のスパークによって溶融された前記金属ボール5’は、スパーク前のワイヤ6’よりも結晶粒が大径化する。本実施の形態では、この工程において、ノズル9から、前記還元ガスとして、たとえばAr−10%Hガスが、1.75(l/min)でブローされる。 On the other hand, in the formation process of the metal ball 5 ′ shown in FIG. 2 (b), a Cu wire having a diameter of 15 to 35 μm is used, and the wire tip is melted by sparking the wire 6 ′ located at the tip of the capillary 7. The metal ball 5 ′ is formed. In the metal ball 5 ′ melted by the spark in this step, the crystal grains have a larger diameter than the wire 6 ′ before the spark. In the present embodiment, in this step, for example, Ar-10% H 2 gas is blown from the nozzle 9 as the reducing gas at 1.75 (l / min).

同様に、図2(c)で示す接合工程でも、金属ボール5’を荷重100gで超音波アシスト無しで電極4’の表面のCu膜に押圧する際に、前記ノズル9からAr−10%Hガスが、1.75(l/min)でブローされる。 Similarly, in the joining step shown in FIG. 2C, when the metal ball 5 ′ is pressed against the Cu film on the surface of the electrode 4 ′ with a load of 100 g and without ultrasonic assistance, Ar-10% H is generated from the nozzle 9. Two gases are blown at 1.75 (l / min).

その後、図2(d)で示すスタッドバンプ2’の形成工程では、ワイヤ6’がプルカットされ、図2(e)で示すワイヤボンディング工程では、ボンディングワイヤ3’をプルカットせず、基板8側にボンディングされる。   Thereafter, in the step of forming the stud bump 2 ′ shown in FIG. 2 (d), the wire 6 ′ is pulled-cut, and in the wire bonding step shown in FIG. 2 (e), the bonding wire 3 ′ is not pulled-cut and moved to the substrate 8 side. Bonded.

本実施の形態においても、図2(c)で示す接合工程において、若干の超音波をアシストすることで、押圧荷重を低下し、荷重によるストレスを減少するようにしてもよい。   Also in the present embodiment, in the joining step shown in FIG. 2C, the pressure load may be reduced and the stress due to the load may be reduced by assisting some ultrasonic waves.

このように接合の工程を還元ガス雰囲気中で行うことで、金属ボール5’の材料に、前記銅や半田等の酸化する材料を使用することができる。   By performing the joining step in a reducing gas atmosphere in this manner, the material for the metal ball 5 ′ can be made of an oxidizing material such as copper or solder.

[実施の形態3]
本発明の実施のさらに他の形態の実装工程では、基本的に前述の図1(a)〜図1(e)で示す工程と同様の作業が行われる。注目すべきは、本実施の形態では、それら総ての作業が、一貫して真空雰囲気またはArやNなどの不活性ガス雰囲気中で行われることである。この場合、前記半導体素子1としては、たとえばSi基板上に、SiO膜を400nm形成した上に、1μm程度のCu膜を形成して前記電極4とされ、ワイヤ6としてCuワイヤが使用される。残余の条件は、図1と同様である。
[Embodiment 3]
In a mounting process according to still another embodiment of the present invention, basically the same operations as those shown in FIGS. 1A to 1E are performed. It should be noted that in the present embodiment, all of these operations are consistently performed in a vacuum atmosphere or an inert gas atmosphere such as Ar or N 2 . In this case, as the semiconductor element 1, for example, an SiO 2 film having a thickness of 400 nm is formed on a Si substrate, a Cu film of about 1 μm is formed as the electrode 4, and a Cu wire is used as the wire 6. . The remaining conditions are the same as in FIG.

このように全工程を真空雰囲気または不活性ガス雰囲気中で行うことで、接合面の酸化や汚染を抑え、安定的な接合を実現することができる。   By performing all the steps in a vacuum atmosphere or an inert gas atmosphere in this way, it is possible to suppress oxidation and contamination of the bonding surface and realize stable bonding.

上述の第1〜第3の各実施の形態において示した各条件は、一実施形態における条件であって、電極4,4’および金属ボール5,5’の大きさや材料ならびにそれらの間に求められる接合強度になどに応じて適宜変更され、設定されるものである。このような各条件の設定は、当業者であれば適宜成し得る事項である。したがって、当業者が実施する変更は、特許請求の範囲に記載された請求項の権利範囲を逸脱するものでない限り、当該請求項の権利範囲に包括されると解釈される。   Each condition shown in each of the first to third embodiments described above is a condition in the embodiment, and the size and material of the electrodes 4 and 4 ′ and the metal balls 5 and 5 ′ and the distance between them are obtained. It is appropriately changed and set according to the bonding strength to be obtained. Such setting of each condition is a matter that can be appropriately performed by those skilled in the art. Accordingly, changes made by a person skilled in the art should be construed as being encompassed within the scope of the claims, unless they depart from the scope of the claims set forth in the claims.

本発明の実施の一形態に係る半導体素子の実装方法を説明するための図である。It is a figure for demonstrating the mounting method of the semiconductor element which concerns on one Embodiment of this invention. 本発明の実施の他の形態に係る半導体素子の実装方法を説明するための図である。It is a figure for demonstrating the mounting method of the semiconductor element which concerns on other forms of implementation of this invention.

符号の説明Explanation of symbols

1,1’ 半導体素子
2,2’ スタッドバンプ
3,3’ ボンディングワイヤ
4,4’ 電極
5,5’ 金属ボール
6,6’ ワイヤ
7 キャピラリ
8 基板
9 ノズル
1, 1 'Semiconductor element 2, 2' Stud bump 3, 3 'Bonding wire 4, 4' Electrode 5, 5 'Metal ball 6, 6' Wire 7 Capillary 8 Substrate 9 Nozzle

Claims (7)

半導体素子の実装にあたって、電極上に金属ボールを固着するための方法において、
前記電極の表面を活性化させる工程と、
前記金属ボールの結晶粒を大径化させる工程と、
前記金属ボールを前記電極の表面に押圧して接合する工程とを含むことを特徴とする半導体素子の実装方法。
In mounting a semiconductor element, in a method for fixing a metal ball on an electrode,
Activating the surface of the electrode;
Increasing the diameter of the crystal grains of the metal balls;
And a step of pressing the metal ball against the surface of the electrode and bonding the metal ball.
前記電極の表面を活性化させる工程は、プラズマ照射であることを特徴とする請求項1記載の半導体素子の実装方法。   2. The method of mounting a semiconductor device according to claim 1, wherein the step of activating the surface of the electrode is plasma irradiation. 前記金属ボールの結晶粒を大径化させる工程は、ワイヤ先端部をスパークして前記金属ボールを形成する際に、スパーク電圧やスパーク電流を調整することで実現することを特徴とする請求項1または2記載の半導体素子の実装方法。   The step of enlarging the diameter of the crystal grains of the metal ball is realized by adjusting a spark voltage or a spark current when sparking a wire tip to form the metal ball. Or the mounting method of the semiconductor element of 2. 前記半導体素子は、MEMSチップであることを特徴とする請求項1〜3のいずれか1項に記載の半導体素子の実装方法。   The method for mounting a semiconductor element according to claim 1, wherein the semiconductor element is a MEMS chip. 前記電極の表面および金属ボールを金で形成することを特徴とする請求項1〜4のいずれか1項に記載の半導体素子の実装方法。   The method for mounting a semiconductor element according to claim 1, wherein the surface of the electrode and the metal ball are made of gold. 前記接合の工程を、還元ガス雰囲気中で行うことを特徴とする請求項1〜5のいずれか1項に記載の半導体素子の実装方法。   The semiconductor element mounting method according to claim 1, wherein the bonding step is performed in a reducing gas atmosphere. 全工程を、真空雰囲気または不活性ガス雰囲気中で行うことを特徴とする請求項1〜5のいずれか1項に記載の半導体素子の実装方法。   The semiconductor element mounting method according to claim 1, wherein all steps are performed in a vacuum atmosphere or an inert gas atmosphere.
JP2005150468A 2005-05-24 2005-05-24 Method of packaging semiconductor device Pending JP2006332152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005150468A JP2006332152A (en) 2005-05-24 2005-05-24 Method of packaging semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005150468A JP2006332152A (en) 2005-05-24 2005-05-24 Method of packaging semiconductor device

Publications (1)

Publication Number Publication Date
JP2006332152A true JP2006332152A (en) 2006-12-07

Family

ID=37553563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005150468A Pending JP2006332152A (en) 2005-05-24 2005-05-24 Method of packaging semiconductor device

Country Status (1)

Country Link
JP (1) JP2006332152A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141211A (en) * 2007-12-07 2009-06-25 Shinkawa Ltd Bonding device and bonding method
US7975901B2 (en) 2007-12-07 2011-07-12 Shinkawa Ltd. Bonding apparatus and wire bonding method
JP2014150258A (en) * 2013-01-31 2014-08-21 Seagate Technology Llc Ambient temperature ball bond
US20190285915A1 (en) * 2018-03-15 2019-09-19 Sumitomo Osaka Cement Co., Ltd. Optical modulator and optical transmission apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435923A (en) * 1987-07-30 1989-02-07 Dainippon Printing Co Ltd Connection of semiconductor device
JPH04196333A (en) * 1990-11-28 1992-07-16 Hitachi Ltd Method and device for solid-phase welding
JPH11288965A (en) * 1998-04-03 1999-10-19 Nec Corp Semiconductor device and its manufacture
JP2001326240A (en) * 2000-05-18 2001-11-22 Sony Corp Wire-bonding method and device
JP2002203870A (en) * 2000-12-28 2002-07-19 Mori Engineering:Kk Wire bonding pretreating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435923A (en) * 1987-07-30 1989-02-07 Dainippon Printing Co Ltd Connection of semiconductor device
JPH04196333A (en) * 1990-11-28 1992-07-16 Hitachi Ltd Method and device for solid-phase welding
JPH11288965A (en) * 1998-04-03 1999-10-19 Nec Corp Semiconductor device and its manufacture
JP2001326240A (en) * 2000-05-18 2001-11-22 Sony Corp Wire-bonding method and device
JP2002203870A (en) * 2000-12-28 2002-07-19 Mori Engineering:Kk Wire bonding pretreating method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141211A (en) * 2007-12-07 2009-06-25 Shinkawa Ltd Bonding device and bonding method
US7975901B2 (en) 2007-12-07 2011-07-12 Shinkawa Ltd. Bonding apparatus and wire bonding method
JP2014150258A (en) * 2013-01-31 2014-08-21 Seagate Technology Llc Ambient temperature ball bond
US20190285915A1 (en) * 2018-03-15 2019-09-19 Sumitomo Osaka Cement Co., Ltd. Optical modulator and optical transmission apparatus
US10816831B2 (en) * 2018-03-15 2020-10-27 Sumitomo Osaka Cement Co., Ltd. Optical modulator and optical transmission apparatus

Similar Documents

Publication Publication Date Title
JP4663165B2 (en) Semiconductor device and manufacturing method thereof
JP2000133670A (en) Bump, its forming method, and its manufacturing equipment
JP2003197669A (en) Bonding method and bonding apparatus
JP2007035918A (en) Packaging method of semiconductor device
JPWO2006025210A1 (en) Micromachine device
JP2014056917A (en) Power semiconductor device and power semiconductor device manufacturing method
JP2006332152A (en) Method of packaging semiconductor device
JP2001060602A (en) Flip-chip mounting structure and manufacture thereof
JPH10275826A (en) Semiconductor device and manufacture thereof
JP2006202974A (en) Electronic device and manufacturing method thereof
JP3727615B2 (en) Wire bonding wire initial ball forming method and wire bonding apparatus
JP2005109171A (en) Semiconductor device and manufacturing method thereof
JP2010123817A (en) Wire bonding method, electronic apparatus, and method of manufacturing the same
JP2006332151A (en) Method of packaging semiconductor device
JP2002280415A (en) Semiconductor device
JPH05190601A (en) Flip chip bonding method
JP4434106B2 (en) Manufacturing method of semiconductor device
JP2007266381A (en) Method of manufacturing semiconductor device
JP2010205974A (en) Semiconductor device
JP2006278454A (en) Method of forming stud bump
JPH02312240A (en) Formation of bump
JP2009194357A (en) Semiconductor device and method of manufacturing the same
JP2006120893A (en) Semiconductor device and its manufacturing method
JP2001053097A (en) Method for forming stud bump
JP2004174594A (en) Component joining method and structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019