JP2006326630A - Method for manufacturing aluminum composite material - Google Patents

Method for manufacturing aluminum composite material Download PDF

Info

Publication number
JP2006326630A
JP2006326630A JP2005152934A JP2005152934A JP2006326630A JP 2006326630 A JP2006326630 A JP 2006326630A JP 2005152934 A JP2005152934 A JP 2005152934A JP 2005152934 A JP2005152934 A JP 2005152934A JP 2006326630 A JP2006326630 A JP 2006326630A
Authority
JP
Japan
Prior art keywords
composite material
iron
preform
aluminum
gas atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005152934A
Other languages
Japanese (ja)
Inventor
Keita Yamana
啓太 山名
Kyoichi Kinoshita
恭一 木下
Motoharu Tanizawa
元治 谷澤
Manabu Sugiura
学 杉浦
Fuminobu Enoshima
史修 榎島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2005152934A priority Critical patent/JP2006326630A/en
Priority to EP06732189A priority patent/EP1886747A4/en
Priority to US11/920,865 priority patent/US20090136377A1/en
Priority to PCT/JP2006/308381 priority patent/WO2006126351A1/en
Publication of JP2006326630A publication Critical patent/JP2006326630A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0242Making ferrous alloys by powder metallurgy using the impregnating technique
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an aluminum composite material which is formed by casting a ferrous sintered body having high adhesiveness with aluminum. <P>SOLUTION: The method for manufacturing the aluminum composite material comprises a preforming step of forming and sintering ferrous powder so as to obtain a preformed body of a porous ferrous sintered material having 50% to 70% of the ferrous powder by an occupied volume percentage, and a composite material forming step of placing the preformed body, which is preheated at a preheating temperature of 300°C to 400°C in a vacuum, an inert gas atmosphere, a reducing gas atmosphere, or a mixed gas atmosphere of the inert gas and the reducing gas, in a casting mold held at a temperature of 200°C to 400°C, and then press-impregnating the preformed body with a molten aluminum or aluminum alloy to cast it by a two step pressing method comprising a first pressing step and a second pressing step. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鉄焼結体をアルミで鋳包んだアルミ複合材の製造方法に関するものである。   The present invention relates to a method for producing an aluminum composite material obtained by casting an iron sintered body with aluminum.

アルミニウム等の金属を母材として、多孔質焼結材からなるプリフォームを複合した複合材の製造方法は、種々提案されている。このような複合材の製造方法として、例えば鉄などの多孔質焼結体であらかじめ成形されたプリフォームを金型内にセットし、この金型内に高圧の金属溶湯を注入し加圧して、金属溶湯をプリフォームに浸透させて複合材を製造する鋳造による複合材の製造方法が知られている。   Various methods for manufacturing composite materials in which a preform made of a porous sintered material is combined using a metal such as aluminum as a base material have been proposed. As a method for producing such a composite material, for example, a preform preformed with a porous sintered body such as iron is set in a mold, and a high-pressure molten metal is injected into the mold and pressurized, A method for producing a composite material by casting in which a molten metal is infiltrated into a preform to produce a composite material is known.

上記の鋳造による複合材の製造方法では、例えば予熱炉において、鉄多孔質焼結体から形成されたプリフォームを250℃〜350℃の所定の温度に予熱する。   In the above-described method for producing a composite material by casting, for example, in a preheating furnace, a preform formed from an iron porous sintered body is preheated to a predetermined temperature of 250 ° C. to 350 ° C.

ただしプリフォームの予熱温度が母材金属の溶融温度に近ければ近いほど母材金属のプリフォームへの浸透性は向上するため、更なる予熱温度の高温化が望まれている。   However, the closer the preheating temperature of the preform is to the melting temperature of the base metal, the better the permeability of the base metal into the preform. Therefore, a further increase in the preheating temperature is desired.

プリフォームが鉄焼結体からなる場合は、400℃以上とすると鉄焼結体表面が酸化され表面に酸化物等の異物が析出してくるため、それを避けるように予熱温度を上記所定温度以下としている。   When the preform is made of an iron sintered body, if the temperature is 400 ° C. or higher, the surface of the iron sintered body is oxidized and foreign substances such as oxides are deposited on the surface. It is as follows.

上記複合材の製造方法は、異種材料を組み合わせて形成するものであるから、その材料同士の密着性は複合材料の特性を決める重要な条件の一つである。特に高圧がかかる部品、製造品等に使用される場合、材料同士の密着性が悪いと圧漏れや密着性不良箇所に圧力がかかることによる亀裂の発生や伸展等の不具合が発生する可能性がある。   Since the composite material manufacturing method is formed by combining different materials, the adhesion between the materials is one of the important conditions for determining the characteristics of the composite material. Especially when used in parts and manufactured products that are subject to high pressure, if the adhesion between the materials is poor, there is a possibility that problems such as cracking and extension occur due to pressure leaks or pressure applied to areas with poor adhesion. is there.

また材料同士の密着性が悪いと、境界に異物や空気を含んだ空隙が存在するおそれがある。上記複合材料を熱伝導性が要求される材料に使用する場合は、境界に異物や空隙があると熱伝導性が低下することが考えられる。   Moreover, when the adhesiveness between materials is bad, there exists a possibility that the space | gap containing a foreign material and air may exist in a boundary. In the case where the composite material is used as a material that requires thermal conductivity, it is considered that the thermal conductivity is reduced if there are foreign objects or voids at the boundary.

本発明は、このような事情に鑑みて為されたものであり、より密着性の高い鉄焼結体をアルミで鋳包んだアルミ複合材の製造方法を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the manufacturing method of the aluminum composite material which casted the iron sintered compact with higher adhesiveness with aluminum.

そこで本発明者等はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、鉄焼結体の占有体積率50%以上70%以下とすること、鉄焼結体プリフォームを真空中、不活性ガス雰囲気中、還元ガス雰囲気中、或いは不活性ガスと還元ガスとの混合ガス雰囲気中で予熱することにより予熱温度を高め300℃以上400℃以下とすること、鋳造金型温度を200℃以上400℃以下とすること、アルミニウム又はアルミニウム合金溶湯の加圧方法を低圧力と高圧力との2段階加圧を行うこと、を組み合わせることにより密着性の良いアルミ複合材を得られることを発見し本発明を完成するに至った。   Therefore, the present inventors have intensively studied to solve this problem, and as a result of repeated trial and error, the occupied volume ratio of the iron sintered body is set to 50% or more and 70% or less, and the iron sintered body preform is placed in a vacuum. The preheating temperature is increased to 300 ° C. or more and 400 ° C. or less by preheating in an inert gas atmosphere, a reducing gas atmosphere, or a mixed gas atmosphere of an inert gas and a reducing gas. It is possible to obtain an aluminum composite material having good adhesion by combining a temperature of not lower than 400 ° C. and not higher than 400 ° C. and performing a two-step pressurization of low pressure and high pressure on a method of pressurizing molten aluminum or aluminum alloy. It discovered and came to complete this invention.

すなわち本発明のアルミ複合材の製造方法は、鉄基粉末を占有体積率50%以上70%以下となるように成形し、真空中、不活性ガス雰囲気中、還元ガス雰囲気中、或いは不活性ガスと還元ガスとの混合ガス雰囲気中で、焼結温度1100℃以上1300℃以下で焼結させて多孔質鉄系焼結材プリフォームを成形するプリフォーム成形工程と、
真空中、不活性ガス雰囲気中、還元ガス雰囲気中、或いは不活性ガスと還元ガスとの混合ガス雰囲気中で300℃以上400℃以下の予熱温度で予熱された前記プリフォームを、金型温度が200℃以上400℃以下である鋳造金型に設置し、溶融したアルミニウム又はアルミニウム合金を低圧力で加圧する第1加圧段階と第1加圧段階に続いて第1加圧段階の圧力よりも高圧力で加圧する第2加圧段階とからなる2段階の加圧方法で加圧含浸させて鋳造する複合材形成工程とを有することを特徴とする。
That is, in the method for producing an aluminum composite material of the present invention, an iron-based powder is formed so as to have an occupied volume ratio of 50% or more and 70% or less, and in a vacuum, an inert gas atmosphere, a reducing gas atmosphere, or an inert gas. A preform molding step in which a porous iron-based sintered material preform is molded by sintering at a sintering temperature of 1100 ° C. or more and 1300 ° C. or less in a mixed gas atmosphere of a reducing gas and
The preform that has been preheated in a vacuum, in an inert gas atmosphere, in a reducing gas atmosphere, or in a mixed gas atmosphere of an inert gas and a reducing gas at a preheating temperature of 300 ° C. or more and 400 ° C. or less, has a mold temperature of Installed in a casting mold having a temperature of 200 ° C. or more and 400 ° C. or less, and pressurizing molten aluminum or aluminum alloy at a low pressure, and the pressure of the first pressurization step following the first pressurization step And a composite material forming step of casting by impregnating with a two-stage pressurizing method comprising a second pressurizing stage for pressurizing at a high pressure.

また本発明の他のアルミ複合材の製造方法は、真空中、不活性ガス雰囲気中、還元ガス雰囲気中、或いは不活性ガスと還元ガスとの混合ガス雰囲気中で300℃以上400℃以下の予熱温度で予熱された鉄基粉末の占有体積率が50%以上70%以下の多孔質鉄系焼結材プリフォームを、金型温度が200℃以上400℃以下である鋳造金型に設置し、溶融したアルミニウム又はアルミニウム合金を低圧力で加圧する第1加圧段階と第1加圧段階に続いて第1加圧段階の圧力よりも高圧力で加圧する第2加圧段階とからなる2段階の加圧方法で加圧含浸させて鋳造する複合材形成工程を有することを特徴とする。   In addition, another method for producing an aluminum composite material of the present invention includes preheating at 300 ° C. to 400 ° C. in vacuum, in an inert gas atmosphere, in a reducing gas atmosphere, or in a mixed gas atmosphere of an inert gas and a reducing gas. A porous iron-based sintered material preform having an iron-based powder preheated at a temperature of 50% to 70% is placed in a casting mold having a mold temperature of 200 ° C. to 400 ° C., Two stages comprising a first pressurizing stage for pressurizing molten aluminum or aluminum alloy at a low pressure and a second pressurizing stage for pressurizing at a pressure higher than the pressure of the first pressurizing stage following the first pressurizing stage. It has the composite material formation process which carries out pressure impregnation by the pressurization method of this, and casts.

本製造方法で製造されたアルミ複合材は、アルミニウム又はアルミニウム合金と鉄焼結体との境界の密着性が向上する。   The aluminum composite manufactured by this manufacturing method has improved adhesion at the boundary between aluminum or an aluminum alloy and an iron sintered body.

前記予熱温度は、350℃以上400℃以下であることがより好ましい。   The preheating temperature is more preferably 350 ° C. or higher and 400 ° C. or lower.

また前記金型温度が200℃以上250℃以下であることがより好ましい。   The mold temperature is more preferably 200 ° C. or higher and 250 ° C. or lower.

プリフォームの予熱を真空中、不活性ガス雰囲気中、還元ガス雰囲気中、或いは不活性ガスと還元ガスとの混合ガス雰囲気中で行うことにより、高熱によって生じる鉄の酸化物や他物質の酸化物等の異物が境界に析出することなく、300℃を越える高温にすることが出来る。   Preforms are preheated in vacuum, in an inert gas atmosphere, in a reducing gas atmosphere, or in a mixed gas atmosphere of an inert gas and a reducing gas. It is possible to raise the temperature to over 300 ° C. without depositing foreign matters such as the like on the boundary.

プリフォームの予熱温度がアルミニウム又はアルミニウム合金の溶湯温度に近いほど、アルミニウム又はアルミニウム合金の鉄焼結体への含浸が向上し、2材料の密着性が向上する。   As the preheating temperature of the preform is closer to the molten metal temperature of aluminum or aluminum alloy, the impregnation of the iron sintered body with aluminum or aluminum alloy is improved, and the adhesion between the two materials is improved.

またプリフォーム予熱温度の上限は、400℃以下である。予熱温度は上記のようになるべくアルミニウム又はアルミニウム合金の溶湯温度に近づけたいが、高温になるにつれて、金属間化合物及び酸化物が生成するため、鉄焼結体とアルミニウム又はアルミニウム合金間の密着性不良が生じる。   The upper limit of the preform preheating temperature is 400 ° C. or less. The preheating temperature should be as close as possible to the molten metal temperature of aluminum or aluminum alloy as described above, but as the temperature rises, intermetallic compounds and oxides are generated, so poor adhesion between the iron sintered body and aluminum or aluminum alloy. Occurs.

また鋳造金型の金型温度は、前記プリフォーム予熱温度以下が好ましい。この理由は明確ではないがアルミニウムの熱膨張率が鉄の熱膨張率よりも大きいため、鋳造金型温度をプリフォーム予熱温度より下げることによって、アルミニウム又はアルミニウム合金の鉄系焼結材への含浸が良くなると考えられる。   The mold temperature of the casting mold is preferably equal to or lower than the preform preheating temperature. The reason for this is not clear, but since the thermal expansion coefficient of aluminum is larger than that of iron, the iron-based sintered material of aluminum or aluminum alloy is impregnated by lowering the casting mold temperature below the preform preheating temperature. Is thought to improve.

前記2段階の加圧方法は、20MPa以上30MPa以下の低圧力で5秒以上15秒以下加圧する第1加圧段階と、該第1加圧方法に続いて70MPa以上100MPa以下の高圧力で3分以上5分以下加圧する第2加圧段階であることが好ましい。   The two-stage pressurizing method includes a first pressurizing step of pressurizing at a low pressure of 20 MPa or more and 30 MPa or less for 5 seconds or more and 15 seconds or less, and a high pressure of 70 MPa or more and 100 MPa or less following the first pressurizing method. It is preferable that it is the 2nd pressurization step which pressurizes from 5 minutes or more to 5 minutes or less.

鉄焼結体のプリフォームの空隙は、加圧することによりつぶれてしまう。そのため、最初に低圧力でプリフォームの空隙をつぶすことなく、アルミニウム又はアルミニウム合金の溶湯を鉄焼結体の空隙に含浸させ、その後必要とする圧力でアルミニウム又はアルミニウム合金の溶湯を含浸させる。上記2段階の加圧方法を用いることによって、鉄焼結体の空隙をつぶさずアルミニウム又はアルミニウム合金の溶湯を含浸させることが出来るので、物理的なアンカー効果から2材料の境界の密着性が向上する。   The voids in the preform of the iron sintered body are crushed by pressurization. Therefore, first, the molten aluminum or aluminum alloy is impregnated into the voids of the iron sintered body without crushing the voids of the preform at a low pressure, and then the molten aluminum or aluminum alloy is impregnated at the required pressure. By using the above two-stage pressurization method, it is possible to impregnate the molten iron or aluminum alloy without crushing the voids in the sintered iron body, so the adhesion at the boundary between the two materials is improved due to the physical anchor effect. To do.

鉄基粉末の占有体積率は55%以上65%以下であることがより好ましい。   The occupied volume ratio of the iron-based powder is more preferably 55% or more and 65% or less.

多孔質プリフォーム焼結体における鉄基粉末の占有体積率が前記範囲であれば、アルミニウム又はアルミニウム合金の鉄焼結体への含浸が良い。   When the occupation volume ratio of the iron-based powder in the porous preform sintered body is within the above range, the iron sintered body is preferably impregnated with aluminum or an aluminum alloy.

また前記鉄基粉末は粒径が45μm以上200μm以下であることが好ましい。   The iron-based powder preferably has a particle size of 45 μm or more and 200 μm or less.

鉄基粉末の粒径が上記範囲であることにより、鉄基粉末の占有体積率を鉄基粉末の粒径によって調整することが出来る。   When the particle size of the iron-based powder is within the above range, the occupied volume ratio of the iron-based powder can be adjusted by the particle size of the iron-based powder.

また粒径が前記範囲であることにより、所望の優れた鋳包み性を確保出来、また所望の強度を確保することが出来る。   Moreover, when the particle size is in the above range, desired excellent castability can be ensured and desired strength can be ensured.

本発明の鉄焼結体をアルミで鋳包んだアルミ複合材の製造方法は、上記製造工程を有することにより、アルミニウム又はアルミニウム合金と鉄焼結体との境界の密着性を向上させることが出来る。従来境界の密着不良で起こっていた、例えば圧漏れ、亀裂の発生、亀裂の伸展、伝導率の低下等の不具合を防ぐことが出来る。   The method for producing an aluminum composite material in which the iron sintered body of the present invention is cast with aluminum can improve the adhesion at the boundary between the aluminum or aluminum alloy and the iron sintered body by having the above-described production steps. . For example, it is possible to prevent problems such as pressure leakage, crack generation, crack extension, and decrease in conductivity, which have conventionally occurred due to poor adhesion at the boundary.

特に高圧下使用の材料として用いる場合は、密着性向上の効果がより顕著となる。   In particular, when used as a material used under high pressure, the effect of improving adhesion becomes more remarkable.

以下に本発明の複合材料の製造方法を実施するための最良の形態を説明する。   The best mode for carrying out the method for producing a composite material of the present invention will be described below.

本発明のアルミ複合材の製造方法は、多孔質鉄系焼結材プリフォームを成形するプリフォーム成形工程と前記プリフォームに溶融したアルミニウム又はアルミニウム合金を加圧含浸させて鋳造する複合材形成工程とからなる。   The method for producing an aluminum composite material of the present invention includes a preform molding step for molding a porous iron-based sintered material preform, and a composite material forming step for casting the molten aluminum or aluminum alloy by pressure impregnation. It consists of.

プリフォーム成形工程は、鉄基粉末を占有体積率50%以上70%以下となるように成形し、真空中、不活性ガス雰囲気中、還元ガス雰囲気中、或いは不活性ガスと還元ガスとの混合ガス雰囲気中で、焼結温度1100℃以上1300℃以下で焼結させて多孔質鉄系焼結材プリフォームを成形する工程であることを特徴とする。   In the preform molding process, the iron-based powder is molded so as to have an occupied volume ratio of 50% or more and 70% or less and mixed in a vacuum, in an inert gas atmosphere, in a reducing gas atmosphere, or in an inert gas and a reducing gas. It is a step of forming a porous iron-based sintered material preform by sintering at a sintering temperature of 1100 ° C. or higher and 1300 ° C. or lower in a gas atmosphere.

多孔質鉄系焼結材プリフォームの形状は、目的とする形状であれば、特に形状に限定はない。目的とする形状を持つ成形型に鉄基粉末を入れ加圧加熱して焼結することによって所望のプリフォームを成形できる。   The shape of the porous iron-based sintered material preform is not particularly limited as long as it is a target shape. A desired preform can be molded by putting an iron-based powder in a mold having a desired shape and sintering it by heating under pressure.

その際、鉄の占有体積率は50%以上70%以下であることが望ましい。ここで占有体積率はVF(Volume Fractionの略)と表し、%で表記する。   At that time, the occupied volume ratio of iron is desirably 50% or more and 70% or less. Here, the occupied volume ratio is expressed as VF (abbreviation of Volume Fraction) and expressed in%.

VFは、プリフォーム成形時に、鉄基粉末の粒径、量及び圧力を制御することによって、制御出来る。   VF can be controlled by controlling the particle size, amount and pressure of the iron-based powder during preform molding.

VFが70%以下であれば、多孔質鉄系焼結材プリフォームの空隙率が30%以上となり、アルミニウム又はアルミニウム合金の鉄系焼結材への含浸がよい。   If VF is 70% or less, the porosity of the porous iron-based sintered material preform becomes 30% or more, and the iron-based sintered material is preferably impregnated with aluminum or an aluminum alloy.

特に鉄基粉末のVFは、55%以上65%以下が望ましい。この範囲のVFを有する鉄系焼結材プリフォームを使用することにより、強度と密着性に優れたアルミ複合材が得られる。   In particular, the VF of the iron-based powder is desirably 55% or more and 65% or less. By using an iron-based sintered material preform having a VF in this range, an aluminum composite material having excellent strength and adhesion can be obtained.

鉄基粉末は、鉄を含む粉末であれば特に限定されない。例えば純鉄、銅を含んだ鉄、銅と炭素を含んだ鉄、銅、炭素及びニッケルを含んだ鉄、又はクロム及び/又はモリブデンを含んだ鉄等の粉末が使用できる。   The iron-based powder is not particularly limited as long as it is a powder containing iron. For example, powders such as pure iron, iron containing copper, iron containing copper and carbon, iron containing copper, carbon and nickel, or iron containing chromium and / or molybdenum can be used.

鉄基粉末の粒径は、45μm以上200μm以下であることが好ましい。この範囲の粒径の鉄基粉末を用いることにより、所望の優れた鋳包み性を確保出来、所望の強度を確保することが出来る。   The particle size of the iron-based powder is preferably 45 μm or more and 200 μm or less. By using the iron-based powder having a particle size in this range, desired excellent castability can be ensured and desired strength can be ensured.

焼結は、真空中、不活性ガス雰囲気中、還元ガス雰囲気中、或いは不活性ガスと還元ガスとの混合ガス雰囲気中で使用原料の溶融点以下の高温に保持することにより行うことが出来る。   Sintering can be carried out by maintaining at a high temperature below the melting point of the raw materials used in a vacuum, in an inert gas atmosphere, in a reducing gas atmosphere, or in a mixed gas atmosphere of an inert gas and a reducing gas.

例えば焼結温度1100℃以上1200℃以下で45分焼結を行う。焼結後の冷却速度は30℃〜40℃/min以下が望ましい。   For example, sintering is performed at a sintering temperature of 1100 ° C. or more and 1200 ° C. or less for 45 minutes. The cooling rate after sintering is desirably 30 ° C. to 40 ° C./min or less.

また焼結後に浸炭、窒化、焼き入れ、焼戻し、焼ならし、焼きなまし、水蒸気処理等の後処理を行っても良い。   Further, after sintering, post-treatment such as carburizing, nitriding, quenching, tempering, normalizing, annealing, and steam treatment may be performed.

多孔質鉄系焼結材プリフォーム原料として、鉄基粉末以外に潤滑材等を加えてもかまわない。   In addition to the iron-based powder, a lubricant or the like may be added as a porous iron-based sintered material preform raw material.

複合材形成工程は、真空中、不活性ガス雰囲気中、還元ガス雰囲気中、或いは不活性ガスと還元ガスとの混合ガス雰囲気中で300℃以上400℃以下の予熱温度で予熱された前記プリフォームを、金型温度が200℃以上400℃以下である鋳造金型に設置し、溶融したアルミニウム又はアルミニウム合金を2段階の加圧方法で加圧含浸させて鋳造する工程である。   The preform is preheated at a preheating temperature of 300 ° C. to 400 ° C. in a vacuum, in an inert gas atmosphere, in a reducing gas atmosphere, or in a mixed gas atmosphere of an inert gas and a reducing gas. Is placed in a casting mold having a mold temperature of 200 ° C. or more and 400 ° C. or less, and molten aluminum or aluminum alloy is press-impregnated by a two-stage pressurizing method for casting.

不活性ガスは、窒素、アルゴン等が使用できる。   As the inert gas, nitrogen, argon or the like can be used.

還元ガスとしては、水素、一酸化炭素、アンモニア等が使用できる。 予熱は、プリフォームを加熱炉に入れて加熱しても良いし、高周波加熱を行っても良い。プリフォームの表面の酸化を防ぐため、予熱は短時間で行うことが好ましい。   As the reducing gas, hydrogen, carbon monoxide, ammonia or the like can be used. Preheating may be performed by putting the preform in a heating furnace or by high frequency heating. In order to prevent oxidation of the surface of the preform, preheating is preferably performed in a short time.

例えば、不活性ガス雰囲気下で高周波加熱を用いることが出来る。   For example, high-frequency heating can be used in an inert gas atmosphere.

鋳造金型の金型温度は、前記プリフォーム予熱温度以下が好ましい。予熱は、鋳造金型を加熱炉に設置して加熱炉内で行っても良いし、高周波加熱を行っても良い。   The mold temperature of the casting mold is preferably equal to or lower than the preform preheating temperature. Preheating may be performed in a heating furnace by placing a casting mold in a heating furnace, or high-frequency heating may be performed.

プリフォームの予熱及び鋳造金型の予熱は、同場所で同時に行っても良いし、別々の場所で別々の時間に行っても良い。例えば高周波加熱の場合、鋳造金型内でプリフォームに対する予熱と鋳造金型に対する予熱が別の温度設定で同時に行える。   The preheating of the preform and the casting mold may be performed simultaneously at the same place or at different times at different times. For example, in the case of high-frequency heating, preheating for the preform and preheating for the casting mold can be performed simultaneously at different temperature settings in the casting mold.

アルミニウム合金は、アルミニウムを含む合金であれば、その種類に特に限定はない。例えばMg、Cu、Zn、Si、Mn、Fe、Cr、Ti等を含むアルミニウム合金等が挙げられる。   The aluminum alloy is not particularly limited as long as it is an alloy containing aluminum. For example, an aluminum alloy containing Mg, Cu, Zn, Si, Mn, Fe, Cr, Ti, or the like can be given.

2段階の加圧方法は、低圧力で加圧する第1加圧段階と第1加圧段階に続いて第1加圧段階の圧力よりも高圧力で加圧する第2加圧段階とからなる。   The two-stage pressurization method includes a first pressurization stage in which pressurization is performed at a low pressure and a second pressurization stage in which pressurization is performed at a pressure higher than the pressure in the first pressurization stage following the first pressurization stage.

加圧は、押湯圧を用いて行っても良いし他の方法で行っても良い。加圧は、特に鋳型内ガスの除去、冷却や凝固に伴って生じる鋳物の収縮や空隙の発生を防止する点で押湯圧を用いて行うことが好ましい。   The pressurization may be performed using a feeder pressure or by another method. The pressurization is particularly preferably performed using a feeder pressure from the viewpoint of preventing the shrinkage of the casting and the generation of voids caused by the removal of gas in the mold, cooling and solidification.

押湯圧の場合、ダイカスト成形と同程度の圧力(例えば、数十MPa〜百MPa)が加えられればよい。   In the case of the feeder pressure, a pressure comparable to that of die casting (for example, several tens of MPa to one hundred MPa) may be applied.

鋳造後のアルミ複合材は、圧力を解放後鋳造金型に入れたまま空冷されても良いし、鋳造金型から取り出し空冷されても良い。   The aluminum composite material after casting may be air-cooled while being put in the casting mold after releasing the pressure, or may be taken out from the casting mold and air-cooled.

また本発明の他のアルミ複合材の製造方法は、多孔質鉄系焼結材プリフォームに溶融したアルミニウム又はアルミニウム合金を加圧含浸させて鋳造する複合材形成工程からなる。   Another method for producing an aluminum composite material of the present invention comprises a composite material forming step in which a porous iron-based sintered material preform is impregnated with molten aluminum or an aluminum alloy and cast.

この製造方法は、特に限定されない何らかの方法で成形された鉄基粉末の占有体積率が50%以上70%以下の多孔質鉄系焼結材プリフォームを用いること以外は、上記した方法と同様であるので、説明を省略する。   This manufacturing method is the same as the above-described method except that a porous iron-based sintered material preform having an occupied volume ratio of iron-based powder formed by any method that is not particularly limited is 50% to 70%. Since there is, description is abbreviate | omitted.

以下に、図1、図2を用いて本発明のアルミ複合材の製造方法の一実施形態を説明する。   Below, one Embodiment of the manufacturing method of the aluminum composite material of this invention is described using FIG. 1, FIG.

図1に、プリフォーム成形工程の説明図を示す。(a)は、成形型に鉄基粉末等が充填され加圧されている状態の模式図であり、(b)は、成形されたプリフォームが焼結炉内で焼結されている状態の模式図である。   FIG. 1 is an explanatory diagram of the preform molding process. (A) is a schematic diagram of a state in which a molding die is filled with iron-based powder or the like and pressed, and (b) is a state in which the molded preform is sintered in a sintering furnace. It is a schematic diagram.

図1を用いて、プリフォーム成形工程を説明する。成形型としての金型1は、筒状で、複数の成形型構成片に分解可能に構成される。金型1の材質には、例えばS25C等の高炭素鋼(炭素濃度0.1%〜0.6%)が使用されている。   The preform molding process will be described with reference to FIG. The mold 1 as a molding die is cylindrical and is configured to be disassembled into a plurality of molding die constituent pieces. As the material of the mold 1, for example, high carbon steel (carbon concentration: 0.1% to 0.6%) such as S25C is used.

金型1内に、鉄基粉末等の原料を入れ、押し型2、3で、金型1内の鉄基粉末のVFが50%以上70%以下になるように加圧する。加圧は、鉄基粉末の粒径、量などによって適切な圧力を用いる。   A raw material such as iron-based powder is put into the mold 1 and is pressed by the pressing dies 2 and 3 so that the VF of the iron-based powder in the mold 1 is 50% or more and 70% or less. For the pressurization, an appropriate pressure is used depending on the particle size and amount of the iron-based powder.

成形された鉄基粉末4を、焼結炉5に入れ、真空中、不活性ガス雰囲気中、還元ガス雰囲気中、或いは不活性ガスと還元ガスとの混合ガス雰囲気中で焼結を行う。焼結は、鉄基粉末等の融点以下の高温で保持することによって行われる。   The formed iron-based powder 4 is put into a sintering furnace 5 and sintered in a vacuum, in an inert gas atmosphere, in a reducing gas atmosphere, or in a mixed gas atmosphere of an inert gas and a reducing gas. Sintering is performed by holding at a high temperature below the melting point of the iron-based powder or the like.

次に焼結後のプリフォーム焼結体を、焼結炉の温度を冷却することによって冷却する。   Next, the preform sintered body after sintering is cooled by cooling the temperature of the sintering furnace.

また他により高い寸法精度を必要とする場合は、焼結体を再度加圧して寸法矯正を行っても良い。またその他の目的で例えば、高周波焼入れ、浸炭焼入れ、スチーム処理等の処理を行っても良い。   In addition, when higher dimensional accuracy is required, the sintered body may be pressed again to perform dimensional correction. For other purposes, for example, induction hardening, carburizing quenching, steam treatment, or the like may be performed.

なお図1では、鉄焼結体の形状を円筒形状としたが、目的とする複合材料の形状に合わせた形状の金型1を使用することにより、所望の形状の鉄焼結体が形成される。   In FIG. 1, the shape of the iron sintered body is a cylindrical shape, but by using the mold 1 having a shape that matches the shape of the target composite material, an iron sintered body having a desired shape is formed. The

次に図2を用いて、複合材形成工程を説明する。   Next, the composite material forming process will be described with reference to FIG.

図2に、複合材形成工程の説明図を示す。(a)は、鉄焼結体プリフォームの模式図であり、(b)は、鉄焼結体プリフォームを鋳造金型に設置した状態の模式図であり、(c)は、鋳造後のアルミ複合材の模式図である。   FIG. 2 is an explanatory diagram of the composite material forming step. (A) is a schematic diagram of an iron sintered compact preform, (b) is a schematic diagram of the state which installed the iron sintered compact preform in the casting metal mold | die, (c) is after casting. It is a schematic diagram of an aluminum composite material.

まず多孔質鉄焼結体プリフォーム6を、真空中、不活性ガス雰囲気中、還元ガス雰囲気中、或いは不活性ガスと還元ガスとの混合ガス雰囲気中で300℃を越える予熱温度で予熱する。予熱は加熱炉に入れて行っても良いし、高周波加熱を行っても良い。またプリフォーム固定用鋳造金型7に設置した状態で高周波加熱を行っても良い。   First, the porous iron sintered body preform 6 is preheated at a preheating temperature exceeding 300 ° C. in a vacuum, in an inert gas atmosphere, in a reducing gas atmosphere, or in a mixed gas atmosphere of an inert gas and a reducing gas. Preheating may be performed in a heating furnace, or high-frequency heating may be performed. Further, high-frequency heating may be performed in a state where the preform is set in the casting mold 7 for fixing the preform.

予熱された多孔質鉄焼結体プリフォーム6を、プリフォーム固定用鋳造金型7に設置する。鋳造金型7、8は、プリフォーム6の予熱温度より低い温度に予熱される。次にアルミニウム又はアルミニウム合金の溶湯をプリフォーム6が設置された鋳造金型8内に注入する。   The preheated porous iron sintered body preform 6 is placed in a casting mold 7 for fixing the preform. The casting molds 7 and 8 are preheated to a temperature lower than the preheating temperature of the preform 6. Next, a molten aluminum or aluminum alloy is poured into a casting mold 8 in which the preform 6 is installed.

次に2段階に加圧する。2段階加圧は、低圧力で数秒行った後、高圧力で数分行う。   Then pressurize in two stages. Two-stage pressurization is performed for several seconds at a low pressure and then for several minutes at a high pressure.

圧力を解放した後、空冷で鋳造金型ごと冷却する。鋳造金型から出来上がったアルミ複合材9を取り出す。   After releasing the pressure, the entire casting mold is cooled by air cooling. The finished aluminum composite material 9 is taken out from the casting mold.

以下に、本発明のアルミ複合材の製造方法の実施例を説明する。   Below, the Example of the manufacturing method of the aluminum composite material of this invention is described.

粒径45μm以下をふるいにかけて取り除いた鉄粉と潤滑材であるステアリン酸リチウムと、炭素粉とを混合器を用いて混合した。混合割合は、全体を100重量%として、鉄粉98.3重量%、炭素粉0.7重量%、ステアリン酸リチウム1重量%とした。   The iron powder removed by sieving the particle size of 45 μm or less, lithium stearate as a lubricant, and carbon powder were mixed using a mixer. The mixing ratio was 100% by weight as a whole, 98.3% by weight of iron powder, 0.7% by weight of carbon powder, and 1% by weight of lithium stearate.

次に鉄製のプリフォーム金型を準備した。プリフォーム金型に前記混合した原料粉末をいれ、VFが、60%或いは70%となるように加圧した。VF60%にするのには、約150MPa程度で加圧し成形した。プリフォームの形状は円筒状の形状を用いた。   Next, an iron preform mold was prepared. The mixed raw material powder was put into a preform mold and pressurized so that VF would be 60% or 70%. In order to make VF 60%, it was pressed and molded at about 150 MPa. The shape of the preform was a cylindrical shape.

加圧後の鉄粉を焼結炉に入れ、AXガス(N2−75%H2)下、1150℃で45分焼結した。焼結後の焼結炉の冷却速度は、30〜40℃/minで行った。 The pressed iron powder was put into a sintering furnace and sintered at 1150 ° C. for 45 minutes under AX gas (N 2 -75% H 2 ). The cooling rate of the sintering furnace after sintering was 30 to 40 ° C./min.

高さ150mm、外径120mmφ、内径100mmφの円筒状の多孔質鉄焼結材プリフォームが得られた。   A cylindrical porous iron sintered material preform having a height of 150 mm, an outer diameter of 120 mmφ, and an inner diameter of 100 mmφ was obtained.

室温付近まで冷却した多孔質鉄焼結材プリフォームを、加熱炉に入れ、アルゴン雰囲気下で、予熱した。予熱温度は、300℃或いは400℃とした。   The porous iron sintered material preform cooled to near room temperature was put in a heating furnace and preheated in an argon atmosphere. The preheating temperature was 300 ° C. or 400 ° C.

加熱炉より予熱された多孔質鉄焼結材プリフォームを取り出し、あらかじめ別の加熱炉で200℃或いは250℃に予熱された鋳造金型内に設置した。   The porous iron sintered material preform preheated from the heating furnace was taken out and placed in a casting mold preheated to 200 ° C. or 250 ° C. in another heating furnace.

鋳造金型の開口部からアルミニウム合金ADC12の750〜800℃の溶湯を注入した。鋳造金型内をほぼ満たす程度まで溶湯を注入し、溶湯圧をかけた。   A molten metal of 750 to 800 ° C. of aluminum alloy ADC12 was poured from the opening of the casting mold. The molten metal was poured to almost fill the casting mold and melt pressure was applied.

溶湯圧は、最初から80MPaを4分かけたもの(加圧方法1)と、20MPaで10秒かけた後100MPaで4分かけたもの(加圧方法2)とを行った。   The molten metal pressure was 80 MPa for 4 minutes from the beginning (pressurization method 1), and 20 MPa for 10 seconds and then 100 MPa for 4 minutes (pressurization method 2).

最後に圧力を解放し、鋳造金型を空冷した。   Finally, the pressure was released and the casting mold was air-cooled.

その後鋳造金型から取り出し、円筒の内周面を切削加工した。   Then, it was taken out from the casting mold and the inner peripheral surface of the cylinder was cut.

高さ150mm、外径200mmφ、内径90〜100mmφの円筒状のアルミ複合材を得た。   A cylindrical aluminum composite material having a height of 150 mm, an outer diameter of 200 mmφ, and an inner diameter of 90 to 100 mmφ was obtained.

各実施例の製造条件を表1に記載する。   The production conditions for each example are listed in Table 1.

Figure 2006326630
Figure 2006326630

得られた実施例1、2のアルミ複合材を上部端面にフライスをかけ、断面加工した。   The obtained aluminum composite materials of Examples 1 and 2 were milled on the upper end face and processed in cross section.

図3に断面加工したアルミ複合材の断面模式図を表す。   FIG. 3 shows a schematic cross-sectional view of the aluminum composite material subjected to cross-section processing.

多孔質鉄焼結材プリフォーム10の周りにアルミニウム合金11が鋳包まれているアルミ複合材9を示す。プリフォーム10とアルミニウム合金の境界を境界12で表した。   An aluminum composite material 9 in which an aluminum alloy 11 is cast around a porous iron sintered material preform 10 is shown. The boundary between the preform 10 and the aluminum alloy is represented by a boundary 12.

実施例1、2の加工した断面を用い、溶液浸透探傷試験を行った。   Using the processed cross sections of Examples 1 and 2, a solution penetration test was conducted.

溶液浸透探傷試験は、前記断面に脂肪酸エステル、高沸点炭化水素、赤色染料を含む赤色浸透液をスプレーにより噴霧し、5分後に洗浄液で洗浄後、現像剤エアゾールを同じくスプレーを用いて塗布し、断面を目視で観察するものである。   In the solution penetrant test, a red penetrant containing a fatty acid ester, a high boiling point hydrocarbon, and a red dye is sprayed on the cross section by spray, and after 5 minutes, the developer aerosol is applied using the spray. The cross section is observed visually.

赤色浸透液は、多孔質鉄焼結材とアルミニウム合金の境界の隙間に入り込み、境界が目視で観察できる。   The red penetrant enters the gap between the porous iron sintered material and the aluminum alloy, and the boundary can be visually observed.

実施例1及び実施例2のアルミ複合材を用いた断面観察結果では、多孔質焼結材とアルミニウム合金との境界に赤色変色部は目視では観察されなかった。   In the cross-sectional observation results using the aluminum composite materials of Example 1 and Example 2, no red color change portion was visually observed at the boundary between the porous sintered material and the aluminum alloy.

本発明の実施形態におけるプリフォーム成形工程を示し、(a)は成形型に鉄基粉末等が充填され加圧されている状態の模式図であり、(b)は成形されたプリフォームが焼結炉内で焼結されている状態の模式図である。FIG. 2 shows a preform molding process in an embodiment of the present invention, wherein (a) is a schematic view showing a state where a molding die is filled with iron-based powder or the like and pressed, and (b) is a diagram illustrating a process in which the molded preform is baked. It is a schematic diagram of the state sintered in the sintering furnace. 本発明の実施形態における複合材形成工程を示し、(a)は鉄焼結体プリフォームの模式図であり、(b)は鉄焼結体プリフォームを鋳造金型に設置した状態の模式図であり、(c)は、鋳造後のアルミ複合材の模式図である。The composite material formation process in embodiment of this invention is shown, (a) is a schematic diagram of an iron sintered compact preform, (b) is a schematic diagram of the state which installed the iron sintered compact preform in the casting metal mold | die. (C) is a schematic diagram of an aluminum composite material after casting. 本発明の実施例における断面加工したアルミ複合材の断面模式図を表す。The cross-sectional schematic diagram of the aluminum composite material by which the cross-section process in the Example of this invention was represented.

符号の説明Explanation of symbols

1、金型、2、3、押し型、4、鉄基粉末、5、焼結炉、6、多孔質鉄焼結材プリフォーム、7、プリフォーム固定用鋳造金型、8、鋳造金型、9、アルミ複合材、10、多孔質鉄焼結材プリフォーム、11、アルミニウム合金、12、境界 DESCRIPTION OF SYMBOLS 1, Mold 2, 3, Push mold 4, Iron-based powder 5, Sintering furnace 6, Porous iron sintered material preform, 7, Casting mold for preform fixation, 8, Casting mold , 9, aluminum composite material, 10, porous iron sintered material preform, 11, aluminum alloy, 12, boundary

Claims (8)

鉄基粉末を占有体積率50%以上70%以下となるように成形し、真空中、不活性ガス雰囲気中、還元ガス雰囲気中、或いは不活性ガスと還元ガスとの混合ガス雰囲気中で、焼結温度1100℃以上1300℃以下で焼結させて多孔質鉄系焼結材プリフォームを成形するプリフォーム成形工程と、
真空中、不活性ガス雰囲気中、還元ガス雰囲気中、或いは不活性ガスと還元ガスとの混合ガス雰囲気中で300℃以上400℃以下の予熱温度で予熱された前記プリフォームを、金型温度が200℃以上400℃以下である鋳造金型に設置し、溶融したアルミニウム又はアルミニウム合金を低圧力で加圧する第1加圧段階と第1加圧段階に続いて第1加圧段階の圧力よりも高圧力で加圧する第2加圧段階とからなる2段階の加圧方法で加圧含浸させて鋳造する複合材形成工程と、
を有することを特徴とするアルミ複合材の製造方法。
The iron-based powder is molded to have an occupied volume ratio of 50% or more and 70% or less, and is baked in a vacuum, in an inert gas atmosphere, in a reducing gas atmosphere, or in a mixed gas atmosphere of an inert gas and a reducing gas. A preform forming step of forming a porous iron-based sintered material preform by sintering at a sintering temperature of 1100 ° C. or higher and 1300 ° C. or lower;
The preform that has been preheated in a vacuum, in an inert gas atmosphere, in a reducing gas atmosphere, or in a mixed gas atmosphere of an inert gas and a reducing gas at a preheating temperature of 300 ° C. or more and 400 ° C. or less, has a mold temperature of Installed in a casting mold having a temperature of 200 ° C. or more and 400 ° C. or less, and pressurizing molten aluminum or aluminum alloy at a low pressure, and the pressure of the first pressurization step following the first pressurization step A composite material forming step of casting by impregnating with a two-stage pressurizing method comprising a second pressurizing stage for pressurizing at a high pressure; and
The manufacturing method of the aluminum composite material characterized by having.
前記占有体積率が55%以上65%以下である請求項1記載のアルミ複合材の製造方法。   The method for producing an aluminum composite material according to claim 1, wherein the occupied volume ratio is 55% or more and 65% or less. 前記予熱温度が350℃以上400℃以下である請求項1又は2に記載のアルミ複合材の製造方法。   The method for producing an aluminum composite material according to claim 1, wherein the preheating temperature is 350 ° C. or higher and 400 ° C. or lower. 前記金型温度が200℃以上250℃以下である請求項1〜3のいずれかに記載のアルミ複合材の製造方法。   The method for producing an aluminum composite material according to any one of claims 1 to 3, wherein the mold temperature is 200 ° C or higher and 250 ° C or lower. 前記2段階の加圧方法は、20MPa以上30MPa以下の低圧力で5秒以上15秒以下加圧する第1加圧段階と、該第1加圧方法に続いて70MPa以上100MPa以下の高圧力で3分以上5分以下加圧する第2加圧段階とからなる請求項1〜4のいずれかに記載のアルミ複合材の製造方法。   The two-stage pressurization method includes a first pressurization stage in which pressurization is performed at a low pressure of 20 MPa or more and 30 MPa or less for 5 seconds or more and 15 seconds or less, and a high pressure of 70 MPa or more and 100 MPa or less following the first pressurization method. The manufacturing method of the aluminum composite material in any one of Claims 1-4 which consists of a 2nd pressurization step pressurized from 5 minutes or more for 5 minutes or more. 前記鉄基粉末は粒径が45μm以上200μm以下である請求項1〜5のいずれかに記載のアルミ複合材の製造方法。   The method for producing an aluminum composite material according to claim 1, wherein the iron-based powder has a particle size of 45 μm or more and 200 μm or less. 前記鋳造金型の金型温度は、前記プリフォーム予熱温度以下である請求項1〜6のいずれかに記載のアルミ複合材の製造方法。   The method for producing an aluminum composite material according to any one of claims 1 to 6, wherein a mold temperature of the casting mold is equal to or lower than the preform preheating temperature. 真空中、不活性ガス雰囲気中、還元ガス雰囲気中、或いは不活性ガスと還元ガスとの混合ガス雰囲気中で300℃以上400℃以下の予熱温度で予熱された鉄基粉末の占有体積率が50%以上70%以下の多孔質鉄系焼結材プリフォームを、金型温度が200℃以上400℃以下である鋳造金型に設置し、溶融したアルミニウム又はアルミニウム合金を低圧力で加圧する第1加圧段階と第1加圧段階に続いて第1加圧段階の圧力よりも高圧力で加圧する第2加圧段階とからなる2段階の加圧方法で加圧含浸させて鋳造する複合材形成工程を有することを特徴とするアルミ複合材の製造方法。   50% occupied volume ratio of iron-based powder preheated at a preheating temperature of 300 ° C. or more and 400 ° C. or less in a vacuum, an inert gas atmosphere, a reducing gas atmosphere, or a mixed gas atmosphere of an inert gas and a reducing gas. A porous iron-based sintered material preform having a mold temperature of not less than 70% and not more than 70% is placed in a casting mold having a mold temperature of not less than 200 ° C. and not more than 400 ° C., and the molten aluminum or aluminum alloy is pressurized at a low pressure. A composite material that is cast by being impregnated by a two-stage pressurization method comprising a pressurization stage and a second pressurization stage that is pressurized at a pressure higher than the pressure of the first pressurization stage following the first pressurization stage. The manufacturing method of the aluminum composite material characterized by having a formation process.
JP2005152934A 2005-05-25 2005-05-25 Method for manufacturing aluminum composite material Pending JP2006326630A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005152934A JP2006326630A (en) 2005-05-25 2005-05-25 Method for manufacturing aluminum composite material
EP06732189A EP1886747A4 (en) 2005-05-25 2006-04-14 Process for production of aluminum composite material
US11/920,865 US20090136377A1 (en) 2005-05-25 2006-04-14 Process for producing aluminum composite material
PCT/JP2006/308381 WO2006126351A1 (en) 2005-05-25 2006-04-14 Process for production of aluminum composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005152934A JP2006326630A (en) 2005-05-25 2005-05-25 Method for manufacturing aluminum composite material

Publications (1)

Publication Number Publication Date
JP2006326630A true JP2006326630A (en) 2006-12-07

Family

ID=37451780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005152934A Pending JP2006326630A (en) 2005-05-25 2005-05-25 Method for manufacturing aluminum composite material

Country Status (4)

Country Link
US (1) US20090136377A1 (en)
EP (1) EP1886747A4 (en)
JP (1) JP2006326630A (en)
WO (1) WO2006126351A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102350490A (en) * 2011-09-07 2012-02-15 南昌大学 Method for preparing low-cost, environment-friendly and abrasion-resistant bicontinuous phase compound material
CN106392037A (en) * 2016-09-14 2017-02-15 中北电气有限公司 Direct casting technology for pure aluminum metal mold
US10851020B2 (en) 2018-01-23 2020-12-01 Dsc Materials Llc Machinable metal matrix composite and method for making the same
US11001914B2 (en) 2018-01-23 2021-05-11 Dsc Materials Llc Machinable metal matrix composite and method for making the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01193496A (en) * 1988-01-25 1989-08-03 Kubota Ltd Metal-ceramics composite slide member including lubricating oil
JPH05123856A (en) * 1991-10-30 1993-05-21 Yoshida Cast Kogyo Kk Production of noble metal ornaments
JP2000336438A (en) * 1999-03-25 2000-12-05 Kubota Corp Metal-ceramics composite material and its manufacture
DE10009008C1 (en) * 2000-02-25 2001-09-13 Bayern Freistaat Process for producing a composite structure with a metal foam core
JP3605571B2 (en) * 2001-03-27 2004-12-22 トーカロ株式会社 Metal matrix composite material treated with noble metal element and method for producing the same
JP2004050225A (en) * 2002-07-19 2004-02-19 Hitachi Ltd Method for producing metal-made formed material
FR2863186B1 (en) * 2003-12-04 2006-12-15 Toyota Jidoshokki Kk COMPOSITE COMPOSITE ELEMENT, IRON-BASED POROUS SUBSTANCE FOR COMPOSITE CASTING ELEMENTS AND PRESSURE CASING METHODS OF MANUFACTURING THIS CASING UNDER PRESSURE COMPRESSOR COMPONENT ELEMENT

Also Published As

Publication number Publication date
US20090136377A1 (en) 2009-05-28
EP1886747A4 (en) 2009-04-22
EP1886747A1 (en) 2008-02-13
WO2006126351A1 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP4304245B2 (en) Powder metallurgy object with a molded surface
JPS6082602A (en) Manufacture of external cylinder of rocket combustor
JP2015108195A (en) Low alloy steel powder
US20100196188A1 (en) Method of producing a steel moulding
JP2006326630A (en) Method for manufacturing aluminum composite material
JP2001276961A (en) Preformed porous metal product and production process of composite metallic parts using the same
US20090129964A1 (en) Method of forming powder metal components having surface densification
JP6149718B2 (en) Iron-based sintered alloy, method for producing the same, and high-carbon iron-based powder
WO2009030291A1 (en) Method of producing a sinter-hardenable powder metal part
JP2004091815A (en) Porous metal structure
JPH0610284B2 (en) Sintered member manufacturing method
JP2006299364A (en) Fe-BASED SINTERED ALLOY
JPH0525591A (en) Wire for piston ring and its manufacture
JPS6119703A (en) Preparation of copper infiltrated ferrous sintered body
RU1823882C (en) Method of production of damascus steel (its variants)
JP2001073869A (en) Aluminum alloy piston for internal combustion engine with ring groove reinforced with sintered body having grooves in oversurface and undersurface and its manufacture
KR101675317B1 (en) Iron-based diffusion bonded powders and method for manufacturing the same
JPS61264101A (en) Production of high-strength sintered member
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body
US20210121958A1 (en) Method for producing a sintered component
JPH03120301A (en) Powder metallurgical method for aluminum alloy
JPH03211206A (en) Manufacture of high density titanium alloy sintered parts
JPS6140301B2 (en)
JPH03197603A (en) Manufacture of high density titanium alloy sintered parts
JPS6144103A (en) Production of connecting rod