JPH0610284B2 - Sintered member manufacturing method - Google Patents

Sintered member manufacturing method

Info

Publication number
JPH0610284B2
JPH0610284B2 JP18739886A JP18739886A JPH0610284B2 JP H0610284 B2 JPH0610284 B2 JP H0610284B2 JP 18739886 A JP18739886 A JP 18739886A JP 18739886 A JP18739886 A JP 18739886A JP H0610284 B2 JPH0610284 B2 JP H0610284B2
Authority
JP
Japan
Prior art keywords
powder
density ratio
sintering
sintered
sintered member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18739886A
Other languages
Japanese (ja)
Other versions
JPS6345306A (en
Inventor
義孝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP18739886A priority Critical patent/JPH0610284B2/en
Publication of JPS6345306A publication Critical patent/JPS6345306A/en
Publication of JPH0610284B2 publication Critical patent/JPH0610284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は焼結部材の製造方法に関し、疲労強度に優れ、
機械材料として好適な鉄系焼結部材の製造方法に関する
ものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing a sintered member, which has excellent fatigue strength,
The present invention relates to a method for manufacturing an iron-based sintered member suitable as a mechanical material.

(従来の技術) 鉄系金属粉末を圧縮成形した後、1000℃前後に加熱する
ことにより粉末粒子間接合を行なわしめて得られる焼結
体は多孔性であるため、非酸化性の加熱焼結炉から大気
中に取り出した場合に成形体の気孔を通じて表面からか
なりの内部まで空気が浸入し、そのために表面部が酸化
されたり脱炭される。なお、続けて鍛造を行なう場合
は、焼結体の表面部が鍛造型で冷却されて、表面部は圧
密化し難くなり、空孔を残留させ易い。即ち上記従来の
一般的な焼結体の製造方法を経て得られた焼結部材は、
その表面がポーラス層となっており、鍛造されても空孔
が多い等の欠陥が発生し易い。このため焼結部材は疲労
強度、引張強度等の機械的特性が低い等の欠点がある。
(Prior Art) A non-oxidizing heating / sintering furnace is used because the sintered body obtained by compression-molding iron-based metal powder and heating it to around 1000 ° C. to join the powder particles is porous. When it is taken out into the atmosphere, the air penetrates from the surface to a considerable inside through the pores of the molded body, so that the surface portion is oxidized or decarburized. When the forging is continuously performed, the surface portion of the sintered body is cooled by the forging die, the surface portion is less likely to be consolidated, and the holes are likely to remain. That is, the sintered member obtained through the conventional method for manufacturing a general sintered body,
The surface is a porous layer, and defects such as many voids are likely to occur even after forging. Therefore, the sintered member has drawbacks such as low mechanical properties such as fatigue strength and tensile strength.

そのため、特に疲労強度が要求される焼結部材にあって
は従来、焼結体を再圧縮・再焼結し、場合により更に鍛
造を行なって組織を緻密化し、材質強化を計るのが一般
的であった。
Therefore, in the case of sintered members that require particularly fatigue strength, it has been common practice to re-compress and re-sinter the sintered body, and if necessary, further forge to densify the structure and strengthen the material. Met.

(発明が解決しようとする問題点) しかしながら、上記従来の再圧縮・再焼結法において
は、途中、最表面部が雰囲気によって酸化されたり、或
は再圧縮金型との接触により急冷されるため、粉末粒子
間の接合が不十分となったり、粒界の一部に微細クラッ
クが残る等の欠陥が生じ、そのような、応力の集中しや
すい表面部の欠陥は焼結部材の疲れ強さに悪影響を与え
るという問題があった。
(Problems to be Solved by the Invention) However, in the above-mentioned conventional recompression / resintering method, the outermost surface is oxidized by the atmosphere or is rapidly cooled by contact with the recompression die during the process. As a result, defects such as insufficient bonding between powder particles and leaving fine cracks at part of the grain boundaries occur. There was a problem that it adversely affected.

その解決策として、例えば焼結鍛造後にもう一度加熱を
加えることにより、表面層の酸化を還元し改質する等、
種々の方法が提案されているが、多量のエネルギーを必
要としたり、生産性を悪化させたり、或はさほどの強度
向上が得られない等の問題があり、今だ満足すべき方法
は見い出されていない。
As a solution, for example, by heating again after sintering forging, the oxidation of the surface layer is reduced and modified,
Various methods have been proposed, but there are problems that a large amount of energy is required, productivity is deteriorated, or strength is not improved so much, and a satisfactory method is still found. Not not.

本発明は上記問題点に鑑み為されたもので、その目的と
するところは、製造コストの上昇を招くことのない、高
い疲れ強さを示す焼結部材の製造方法を提供することで
ある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a sintered member that exhibits high fatigue strength without causing an increase in manufacturing cost.

(問題点を解決するための手段) そのため本発明の焼結部材の製造方法は、 鉄系金属粉末を圧縮成形して密度比80〜90%の圧
粉体を得る工程、 圧粉体を非酸化性800〜1000℃雰囲気に置いて得られ
た加熱圧粉体を圧縮して密度比95%以上のリプレス体
を得る工程、 リプレス体を焼結して焼結体を得る工程、 焼結体の表面層1mm以内のみを密度比98%以上とす
る表面改質工程、 を順に含むことを特徴とする。
(Means for Solving Problems) Therefore, in the method for manufacturing a sintered member of the present invention, a step of compressing iron-based metal powder to obtain a green compact having a density ratio of 80 to 90%, A process of compressing a heated green compact obtained in an oxidizing atmosphere of 800 to 1000 ° C to obtain a repressed body having a density ratio of 95% or more, a step of sintering the repressed body to obtain a sintered body, a sintered body And a surface modification step in which only the surface layer within 1 mm is made to have a density ratio of 98% or more.

本発明方法に含まれる上記工程は、→→→の順
に行う必要があるが、それらの工程の間、或は前後に別
の工程、例えば焼結後のコイニング、サイジング、焼入
れ、溶浸等の通常焼結部材を製造するときに採用される
工程を含んでいてよい。特にはとの工程の間に熱処
理工程を含むのが好ましい。
The above steps included in the method of the present invention need to be performed in the order of →→→, but during or before or after those steps, other steps such as coining after sintering, sizing, quenching, infiltration, etc. It may include steps normally employed when manufacturing a sintered member. It is particularly preferable to include a heat treatment step between the steps (1) and (2).

本発明の焼結部材の製造方法においては、焼結工程前の
リプレス体は、密度比95%以上であり、その表面が圧
密化され、表面部の気孔が塞がれている。ここで、密度
比とは真密度に対する比率をいう。したがって、焼結工
程の際に、空気が圧縮成形体の内部にまで浸透する可能
性が少なくなる。このために焼結体表面部に酸化物ある
いは脱炭層ができにくくなる。このために疲労強度特
性、引張り強度特性の優れた焼結部材が製造できる。
In the method for manufacturing a sintered member of the present invention, the repressed body before the sintering step has a density ratio of 95% or more, the surface thereof is compacted, and the pores of the surface portion are closed. Here, the density ratio means the ratio to the true density. Therefore, it is less likely that air will penetrate into the compression molded body during the sintering process. Therefore, it becomes difficult to form an oxide or decarburized layer on the surface of the sintered body. Therefore, it is possible to manufacture a sintered member having excellent fatigue strength characteristics and tensile strength characteristics.

の工程は、鉄系金属粉末を圧縮成形用の成形型内で加
圧し、加圧力により圧密化して一定の形状を有する圧縮
形成形体を得る工程である。鉄系金属粉末としては、特
に限定されるものでなく、通常の焼結部材に使用される
従来の鉄系焼結金属粉末原料を使用することができる。
より具体的には鉄粉、銅粉、黒鉛粉末よりなる混合粉末
が鉄系金属粉末原料として多く使用されている。この
他、合金化あるいは予合金化又は予混合化して低合金鋼
粉末を原料として用いる事が出来る。たとえば市販のAI
SI4100相当やAISI4600相当粉などがある。この場合、N
i,Mo,Cr,Mn,Co,C等の合金元素は強度の向上に有
効に作用する。銅粉の配合割合は、重量%(以下%は重
量%を意味する。)で0.5〜10%、黒鉛粉の配合量は同
じく0.3〜10%、残部鉄粉とするのが一般的である。こ
れに潤滑剤であるステアリン酸亜鉛が0.5〜1.0%添加、
混粉される。
The step (2) is a step of pressurizing the iron-based metal powder in a molding die for compression molding and consolidating the powder with a pressing force to obtain a compression-molded shaped body having a constant shape. The iron-based metal powder is not particularly limited, and a conventional iron-based sintered metal powder raw material used for ordinary sintered members can be used.
More specifically, a mixed powder of iron powder, copper powder, and graphite powder is often used as the iron-based metal powder raw material. In addition, low alloy steel powder can be used as a raw material after alloying, prealloying or premixing. For example, commercially available AI
SI4100 equivalent and AISI4600 equivalent powder are available. In this case, N
Alloying elements such as i, Mo, Cr, Mn, Co and C act effectively to improve strength. The proportion of copper powder is 0.5 to 10% by weight (hereinafter% means% by weight), the proportion of graphite powder is 0.3 to 10%, and the balance is generally iron powder. 0.5 to 1.0% of zinc stearate, which is a lubricant, is added to this.
It is mixed.

ここで、銅粉、黒鉛粉は、通常、焼結工程において鉄粉
中に固溶し、得られる焼結体の剛性、強度等を向上する
役割を果たす。
Here, the copper powder and the graphite powder usually serve as a solid solution in the iron powder in the sintering step, and play a role of improving the rigidity, strength and the like of the obtained sintered body.

この圧粉体を得る工程は通常、常温にて行なう。圧粉体
の密度比が80%未満の場合には、該成形体の強度が十
分でないために表面部が剥離したり、角、隅部が欠けた
りする問題が生じやすい。また、逆に圧粉体の密度比を
90%を越えるようなものとする場合には、圧縮成形時
の圧縮力が極めて大きくなる。このために成形型の寿命
の点で不利となる。
The step of obtaining the green compact is usually performed at room temperature. When the density ratio of the green compact is less than 80%, the strength of the molded body is not sufficient, so that problems such as peeling of the surface portion and chipping of corners and corners are likely to occur. On the other hand, when the density ratio of the green compact exceeds 90%, the compression force during compression molding becomes extremely large. This is disadvantageous in terms of mold life.

の工程では、上記のようにして得られた圧粉体を800
〜1000℃に加熱した後に、再圧縮成形し、密度比95%
以上のリプレス体を形成する。この場合800℃未満であ
ると密度比95%以上のリプレス体を得る際の加圧力が
過大となる。又、1000℃を越えると、2次圧縮成形体が
酸化しやすくなるし、省エネルギ化の面で不利である。
該工程は、保護雰囲気、つまり不活性ガス雰囲気や還元
性雰囲気、窒素雰囲気等の非酸化性雰囲気が好ましい
が、場合によっては大気中で行なってもよい。焼結工程
を還元性雰囲気で行なえば、リプレス体が多少酸化して
も還元可能だからである。
In the process of, the green compact obtained as described above is
After heating to ~ 1000 ℃, re-compression molding, density ratio 95%
The above repressed body is formed. In this case, if the temperature is less than 800 ° C., the pressure applied when obtaining a repressed body having a density ratio of 95% or more becomes excessive. On the other hand, if the temperature exceeds 1000 ° C., the secondary compression molded body is easily oxidized, which is disadvantageous in terms of energy saving.
The process is preferably performed in a protective atmosphere, that is, a non-oxidizing atmosphere such as an inert gas atmosphere, a reducing atmosphere, or a nitrogen atmosphere, but may be performed in the air in some cases. This is because if the sintering process is performed in a reducing atmosphere, the repressed body can be reduced even if it is slightly oxidized.

の焼結工程は、リプレス体を非酸化性雰囲気下で加熱
し、鉄系粉末粒子どうしを焼結して一体化する工程であ
る。焼結温度、焼結雰囲気等の条件については使用され
る鉄系金属粉末の種類により任意に選択することができ
る。雰囲気ガスとしては一般に通称RXガスとして知ら
れている吸熱型のガスや通称AXガスとして知られてい
る分解アンモニアガス等が好ましい。焼結温度は1100〜
1300℃である。ここで1100℃未満では焼結不足となる。
具体的には、1150℃程度がよく、但し鋼種により異な
り、Fe−Cu−C系で1120〜1150℃、4600系で1150〜1200
℃、4100系で1200〜1250℃程度がよい。焼結時間は20
分程度がよい。
The sintering step is a step of heating the repressed body in a non-oxidizing atmosphere to sinter the iron-based powder particles to integrate them. The conditions such as the sintering temperature and the sintering atmosphere can be arbitrarily selected depending on the type of iron-based metal powder used. As the atmospheric gas, an endothermic gas generally known as RX gas, decomposed ammonia gas commonly known as AX gas, and the like are preferable. Sintering temperature is 1100 ~
It is 1300 ° C. If the temperature is less than 1100 ° C, sintering will be insufficient.
Specifically, about 1150 ℃ is good, but it depends on the steel type, 1120 to 1150 ℃ for Fe-Cu-C system, 1150 to 1200 for 4600 system.
℃, 4100 series 1200 ~ 1250 ℃ is good. Sintering time is 20
Minutes are good.

冷却工程は、従来と同様な条件で行なうことができる。The cooling step can be performed under the same conditions as conventional ones.

その後のの工程における、表面に密度比98%以上の
高密度層を形成するための手段としては、ショットピー
ニング(ショットブラスト)が良く、その際、高密度層
の厚さを所望の厚さにする為にはショット粒の硬さ、粒
径、材質、ショットの噴射速度、噴射角度等を適当に調
整すればよい。しかし高密度層を1mm以上の厚さに形成
すると、非常に大きなエネルギーを付加することにな
り、その残留応力に起因して、高密度表層と基地との境
に微小クラックが発生し、そこへの応力集中により疲労
強度が逆に低下するため、高密度層の厚さは1mm以内に
することが必要である。
Shot peening (shot blasting) is a good means for forming a high density layer having a density ratio of 98% or more on the surface in the subsequent steps, and at that time, the thickness of the high density layer is set to a desired value. In order to do so, the hardness, particle size, material of shot particles, shot injection speed, injection angle and the like may be adjusted appropriately. However, if the high-density layer is formed to a thickness of 1 mm or more, a very large amount of energy will be added, and due to the residual stress, minute cracks will occur at the boundary between the high-density surface layer and the base, and On the contrary, the fatigue strength decreases due to the stress concentration, so the thickness of the high-density layer must be within 1 mm.

(実施例) 以下に本発明をより良く理解できるように実施例ととも
に、比較例、性能試験も掲げて説明する。
(Examples) In order to better understand the present invention, comparative examples and performance tests will be described together with examples.

実施例1 鉄粉(ベース粉)に対し、2.5wt%の銅粉と、0.65wt%
の黒鉛粉末と、0.8wt%のステアリン酸亜鉛粉とを配合
し、これをV型混合機で均一に混合した。尚これら原料
粉はいずれも市販品のもので、鉄粉は還元鉄粉、銅粉は
電解銅粉、黒鉛は天然黒鉛粉である。
Example 1 Based on iron powder (base powder), 2.5 wt% copper powder and 0.65 wt%
Graphite powder of 0.8 wt% and zinc stearate powder of 0.8 wt% were mixed, and this was uniformly mixed by a V-type mixer. All of these raw material powders are commercial products, iron powder is reduced iron powder, copper powder is electrolytic copper powder, and graphite is natural graphite powder.

得られた均一混合粉末を金型により圧縮成形を行なっ
て、第2図(正面図、図中の数値はmm寸法を示す)に示
すような板状(厚さ7mm)の密度比83%の圧粉体を得
た。これをRXガス(ブタン変成ガス)中、920゜C×2
0分の加熱保持後、リプレス用金型にすばやく移して圧
縮し、密度比97.1%のリプレス体とした後、加熱炉にす
ばやく移し、RXガス中1130℃×30分の加熱保持(焼
結)を行い、冷却は900℃から300℃までを−40℃/分の
速度で冷却し、第3図に示す形状の焼結体を得た。次い
で該焼結体にショットピーニングを施し、そのアークハ
イト量を調整することによって表面層0.3mm以内(表面
から0.3mm深さまでの層)の密度比を99%に高めた試
験片(実施例品I)を得た。
The obtained homogeneous mixed powder was compression-molded with a mold to obtain a plate-like (thickness 7 mm) density ratio 83% as shown in FIG. 2 (front view, numerical values in the figure indicate mm dimensions). A green compact was obtained. This is 920 ° C × 2 in RX gas (butane metamorphic gas)
After heating and holding for 0 minutes, it is quickly transferred to a repressing die and compressed to form a repressed body with a density ratio of 97.1%, then quickly transferred to a heating furnace and heated and held in RX gas for 1130 ° C x 30 minutes (sintering) The cooling was performed from 900 ° C to 300 ° C at a rate of -40 ° C / min to obtain a sintered body having the shape shown in Fig. 3. Next, shot peening was applied to the sintered body, and the arc height amount was adjusted to increase the density ratio of the surface layer within 0.3 mm (layer from the surface to the depth of 0.3 mm) to 99%. I) was obtained.

実施例2 ショットピーニングによって、表面層0.6mm以内の密度
比を99%にした以外は実施例1と同様な方法により実
施例品IIを得た。
Example 2 Example product II was obtained by the same method as in Example 1 except that the density ratio within 0.6 mm of the surface layer was changed to 99% by shot peening.

実施例3 ショットピーニングによって、表面層0.9mm以内の密度
比を99%にした以外は実施例1と同様にして、実施例
品IIIを得た。
Example 3 Example product III was obtained in the same manner as in Example 1 except that the density ratio within 0.9 mm of the surface layer was changed to 99% by shot peening.

実施例4 実施例2の焼結工程とショットピーニング固定の間に熱
処理、すなわち真空(減圧)下にて900℃×30分の加
熱保持後、油焼入れを施し、次いで非酸化性雰囲気中55
0℃×30分の焼戻しを行う操作を加える他は実施例2
と同様にして、表面層6mm以内の密度比が99%である
実施例品IVを得た。
Example 4 Heat treatment was performed between the sintering step and shot peening fixing in Example 2, that is, after heating and holding at 900 ° C. for 30 minutes under vacuum (reduced pressure), oil quenching was performed, and then in a non-oxidizing atmosphere.
Example 2 except that an operation of tempering at 0 ° C. for 30 minutes was added.
In the same manner as described above, an example product IV having a density ratio within the surface layer of 6 mm of 99% was obtained.

比較例1 ショットピーニングによって、表面層1.2mm以内の密度
比を99%にした以外は実施例1と同様にして比較例品
Iを得た。
Comparative Example 1 Comparative Example Product I was obtained in the same manner as in Example 1 except that the density ratio within the surface layer of 1.2 mm was set to 99% by shot peening.

比較例2 実施例1の途中までの操作を繰り返し、同一圧粉体を得
た。これを予加熱することなく但ちに焼結させた。焼結
はRXガス中1130℃×30分間加熱保持としたのち、これ
を920℃に降温し、直ちにリプレス型に移して再圧縮を
行ない、密度比を97%とした。冷却は900℃から300℃
までを−40℃/分の冷却速度により冷却した。引き続い
てショットピーニングを施し表面層0.6mm以内が99%
の密度比の比較例品IIを得た。
Comparative Example 2 The same operation as in Example 1 was repeated to obtain the same green compact. It was, however, sintered without preheating. Sintering was carried out by heating and holding in RX gas at 1130 ° C. for 30 minutes, then the temperature was lowered to 920 ° C., immediately transferred to a repress mold and recompressed to a density ratio of 97%. Cooling from 900 ℃ to 300 ℃
Were cooled at a cooling rate of −40 ° C./min. Then shot peening is applied and 99% is within 0.6mm of the surface layer.
A comparative example product II having a density ratio of

性能試験 上述の如くして得られた実施例品I〜IV及び比較例品
I,IIについて、引張強度と疲れ強さ(疲労強度)を測
定した。引張試験は万能試験機を用い、クロスヘッドス
ピード2mm/分にて行なった。疲労試験はシェンク式板
曲げ疲労試験機により行い、S−N線図を作成し、疲れ
限度(疲れ強さ)を求めた。結果を第1図に示す。該図
から判るように引張強度については各例品ともきわだっ
た差は見られないが、一方、疲労強度については、実施
例品が比較例品に比べ格段に優れている。
Performance Test The tensile strength and fatigue strength (fatigue strength) of the example products I to IV and the comparative example products I and II obtained as described above were measured. The tensile test was carried out using a universal testing machine at a crosshead speed of 2 mm / min. The fatigue test was performed by a Schenk type plate bending fatigue tester, an SN diagram was prepared, and a fatigue limit (fatigue strength) was obtained. The results are shown in Fig. 1. As can be seen from the figure, there is no remarkable difference in tensile strength between each of the example products, while the fatigue strength of the example product is far superior to that of the comparative example product.

実施例品I〜IIIと比較例品Iはショットピーニングに
より高密度(密度比99%)表面層の厚さを0.3〜1.2mm
の間で変化されたものであり、0.3〜0.9mmの範囲では、
その層厚とともに疲れ限度が効果的に上昇するが、高密
度層が1.2mm(比較例品I)になると疲れ限度は逆に低
くなっており、この値はショットピーニング加工を施さ
なかった別の試験片の疲れ限度26Kgf/mm2をも下まわ
っており、高密度層の付与にも適性範囲のあることが判
る。
Example products I to III and comparative product I have a high density (99% density ratio) surface layer thickness of 0.3 to 1.2 mm by shot peening.
Between 0.3 and 0.9 mm,
The fatigue limit effectively increases with the layer thickness, but when the high-density layer reaches 1.2 mm (comparative example product I), the fatigue limit decreases conversely. This value is different from that of shot peening. The fatigue limit of the test piece was less than 26 Kgf / mm 2, and it can be seen that there is a suitable range for providing a high-density layer.

比較例品IIは、従来一般に多用されている方法で得られ
た焼結体にショットピーニングを施したものに相当する
が、該品の表面層には酸化や焼結不良部が発生している
ため、ショットを加える前の疲れ限度19Kgf/mm2から
比べて僅か2Kgf/mm2しか向上効果が計れていない。一
方、この比較例品IIと同一厚さの高密度層(0.6mm)を
有する実施例品IIの疲れ限度は34Kgf/mm2であり、そ
れのショット前の疲れ限度26Kgf/mm2に比べ、8Kgf
/mm2も向上している。
The comparative example product II is equivalent to a product obtained by shot peening of a sintered body obtained by a method generally used conventionally, but the surface layer of the product has oxidation and a defective sintering portion. Therefore, compared to the fatigue limit of 19 Kgf / mm 2 before adding shots, only an improvement effect of 2 Kgf / mm 2 can be measured. On the other hand, the fatigue limit of the example product II having the high-density layer (0.6 mm) having the same thickness as that of the comparative example product II is 34 Kgf / mm 2 , which is lower than the fatigue limit of 26 Kgf / mm 2 before the shot. 8 kgf
/ Mm 2 has also improved.

即ち本発明方法は従来法に比べ、焼結後のショットピー
ニングの効果を大幅に向上させえたものであり、換言す
れば従来より極めて少ないショット量で従来と同等の疲
れ限度向上を計ることができる。
That is, the method of the present invention can significantly improve the effect of shot peening after sintering as compared with the conventional method. In other words, it is possible to improve the fatigue limit equivalent to the conventional one with a shot amount which is extremely smaller than the conventional one. .

また実施例品IIと実施例品IVとの比較から、焼結工程と
ショットピーニング工程の間に焼入れ、焼戻しを行なえ
ば良い結果が得られることが判る。
Further, comparison of Example product II and Example product IV reveals that good results can be obtained by performing quenching and tempering between the sintering process and the shot peening process.

(発明の効果) 以上、詳細に述べたことからも判るように、本発明の焼
結部材の製造方法によれば、機械的強度、特に疲労強度
が格段に向上した焼結部材を提供することができる。
(Effects of the Invention) As can be seen from the details described above, according to the method for manufacturing a sintered member of the present invention, it is possible to provide a sintered member having significantly improved mechanical strength, particularly fatigue strength. You can

そのような部材を、例えば自動車のエンジン、動力伝達
部、懸架装置等に使用することにより、その使用寿命を
大幅に伸ばすことができる。
By using such a member in, for example, an automobile engine, a power transmission unit, a suspension device, or the like, the service life thereof can be significantly extended.

本発明方法は、従来用いられていた焼結設備をそのまま
使用でき、従来よりも省エネルギー、省力的に焼結部材
の強度向上を計ることができ、また疲れ限度が増したこ
とで焼結部材を、より生産性の劣る方法で作られた鍛造
品や鋳造品に替えて使用できることになるため、コスト
低減効果も奏する。
INDUSTRIAL APPLICABILITY The method of the present invention can use the conventionally used sintering equipment as it is, can save the energy and the strength of the sintered member more than before, and can improve the strength of the sintered member. Since it can be used in place of a forged product or a cast product manufactured by a method with lower productivity, it also has a cost reduction effect.

【図面の簡単な説明】 第1図は本発明方法の実施例、並びに比較例によって得
られた各焼結部材の引張強度と疲労強度の測定試験結果
を示すグラフ、 第2図及び第3図はそれぞれ一実施例の途中において得
られた圧粉体及び焼結体を示す正面図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing tensile strength and fatigue strength measurement test results of each sintered member obtained by an example of the method of the present invention and a comparative example, FIG. 2 and FIG. FIG. 3 is a front view showing a green compact and a sintered body obtained in the course of one example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鉄系金属粉末を圧縮成形して密度比80〜
90%の圧粉体を得る工程、圧粉体を非酸化性800〜100
0℃雰囲気中に置いて得られた加熱圧粉体を圧縮して密
度比95%以上のリプレス体を得る工程、リプレス体を
焼結して焼結体を得る工程、焼結体の表面層1mm以内の
みを密度比98%以上とする表面改質工程を順に含むこ
とを特徴とする焼結部材の製造方法。
1. A density ratio of 80-
Process to obtain 90% green compact, non-oxidizing green compact 800-100
A step of compressing the heated compact obtained by placing it in an atmosphere of 0 ° C. to obtain a repressed body having a density ratio of 95% or more, a step of sintering the repressed body to obtain a sintered body, a surface layer of the sintered body A method for producing a sintered member, which comprises sequentially including a surface modification step of making a density ratio of 98% or more only within 1 mm.
【請求項2】焼結体を得る工程と、表面改質工程との間
に熱処理工程を含むことを特徴とする特許請求の範囲第
1項記載の方法。
2. The method according to claim 1, further comprising a heat treatment step between the step of obtaining the sintered body and the surface modification step.
JP18739886A 1986-08-09 1986-08-09 Sintered member manufacturing method Expired - Lifetime JPH0610284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18739886A JPH0610284B2 (en) 1986-08-09 1986-08-09 Sintered member manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18739886A JPH0610284B2 (en) 1986-08-09 1986-08-09 Sintered member manufacturing method

Publications (2)

Publication Number Publication Date
JPS6345306A JPS6345306A (en) 1988-02-26
JPH0610284B2 true JPH0610284B2 (en) 1994-02-09

Family

ID=16205326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18739886A Expired - Lifetime JPH0610284B2 (en) 1986-08-09 1986-08-09 Sintered member manufacturing method

Country Status (1)

Country Link
JP (1) JPH0610284B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103008665A (en) * 2012-11-25 2013-04-03 安徽普源分离机械制造有限公司 Preparation technology for plug valve clack

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1340037C (en) * 1985-06-17 1998-09-08 Stanley Lustig Puncture resistant, heat-shrinkable films containing very low density polyethylene copolymer
US4976898A (en) * 1985-06-17 1990-12-11 Viskase Corporation Process for making puncture resistant, heat-shrinkable films containing very low density polyethylene
US5059481A (en) * 1985-06-17 1991-10-22 Viskase Corporation Biaxially stretched, heat shrinkable VLDPE film
US5256351A (en) * 1985-06-17 1993-10-26 Viskase Corporation Process for making biaxially stretched, heat shrinkable VLDPE films
CA2003882C (en) * 1988-12-19 1997-01-07 Edwin Rogers Smith Heat shrinkable very low density polyethylene terpolymer film
SE9602376D0 (en) * 1996-06-14 1996-06-14 Hoeganaes Ab Compact body
JP4115826B2 (en) * 2002-12-25 2008-07-09 富士重工業株式会社 Iron-based sintered body excellent in aluminum alloy castability and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103008665A (en) * 2012-11-25 2013-04-03 安徽普源分离机械制造有限公司 Preparation technology for plug valve clack
CN103008665B (en) * 2012-11-25 2014-07-09 安徽普源分离机械制造有限公司 Preparation technology for plug valve clack

Also Published As

Publication number Publication date
JPS6345306A (en) 1988-02-26

Similar Documents

Publication Publication Date Title
US5613180A (en) High density ferrous power metal alloy
JPH04231404A (en) Method for powder metallurgy by means of optimized two-times press-two-times sintering
JP2002146403A (en) Alloy steel powder for powder metallurgy
JP2003253372A (en) Method for manufacturing high density iron-based forged parts
US20240157439A1 (en) Process for manufacturing toroid parts
JP3774625B2 (en) Method for forging sintered parts
JP2004190141A (en) Method for manufacturing powder metal component
JPH0610284B2 (en) Sintered member manufacturing method
US7347884B2 (en) Alloy steel powder for powder metallurgy
US5561832A (en) Method for manufacturing vanadium carbide powder added tool steel powder by milling process, and method for manufacturing parts therewith
EP1282478B1 (en) A method for sintering a carbon steel part using a hydrocolloid binder as carbon source.
JP4615191B2 (en) Method for producing iron-based sintered body
JP4407134B2 (en) Method for producing iron-based sintered body and compression molded body for sintering
JPS62256903A (en) Production of sintered member
JP3492884B2 (en) Method for producing soft magnetic sintered metal
JPS61264101A (en) Production of high-strength sintered member
JPH05263181A (en) Manufacture of fe base sintered alloy member having high strength and high toughness
JP2003096533A (en) Iron-base powder mixture for warm compaction, iron-base powder mixture for warm die lubrication compaction, and method for manufacturing iron-base sintered compact using them
JPS60162701A (en) Production of sintered and forged parts
JPS61253303A (en) Production of high-strength sintered member
JPH03120301A (en) Powder metallurgical method for aluminum alloy
JPS6144103A (en) Production of connecting rod
JPH0225504A (en) High fatigue strength iron series sintering material and production thereof
JPS61270310A (en) Production of high-strength sintered connecting rod
JPS5830924B2 (en) Manufacturing method for powder hot forged parts