JPS62256903A - Production of sintered member - Google Patents

Production of sintered member

Info

Publication number
JPS62256903A
JPS62256903A JP9858586A JP9858586A JPS62256903A JP S62256903 A JPS62256903 A JP S62256903A JP 9858586 A JP9858586 A JP 9858586A JP 9858586 A JP9858586 A JP 9858586A JP S62256903 A JPS62256903 A JP S62256903A
Authority
JP
Japan
Prior art keywords
sintered
compression molded
compression
molded body
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9858586A
Other languages
Japanese (ja)
Inventor
Yoshitaka Takahashi
義孝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP9858586A priority Critical patent/JPS62256903A/en
Publication of JPS62256903A publication Critical patent/JPS62256903A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a sintered member having improved tensile strength and resistance to fatigue by subjecting ferrous metallic powder to two stages of compression molding under specific conditions to increase the density thereof and sintering the molding in a nonoxidizing atmosphere. CONSTITUTION:The ferrous metallic powder is compressively molded to form the primary compression molding having 80-90% density ratio. After the primary molding is heated to 800-1,000 deg.C, the molding is again subjected to compression molding to form the secondary compression molding having >=95% density ratio. The secondary stage is preferably executed in the nonoxidizing atmosphere. The compacted compression molding is sintered by heating to 1,100-1,300 deg.C in the nonoxidizing atmosphere and the sintered body is cooled down to an ordinary temp. the sintered member having no defects in the surface part and having the high resistance to fatigue is obtd. by the above-mentioned method.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、省エネルギーを図りつつ緻密で引張り強度や
疲労強度に優れた焼結部材を製造する製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a manufacturing method for manufacturing a sintered member that is dense and has excellent tensile strength and fatigue strength while saving energy.

[従来技術] 従来の焼結部材の製造方法は、鉄系金属粉末を圧縮成形
して圧縮成形体を得る圧縮工程と、(qられた圧縮成形
体を加熱焼結炉において1100〜1300℃で加熱し
て焼結し焼結体を形成する焼結工程と、焼結体を冷却す
る工程と、冷却された焼結体を800〜1100℃に再
加熱して再加熱状態で、椴造型を使用して焼結体を再圧
縮して緻密化する再圧縮工程と、焼結体を常温に冷却す
る冷却工程と、を順に実施することにしている(後述の
比較例1)。
[Prior Art] A conventional method for manufacturing a sintered member includes a compression step in which a ferrous metal powder is compression-molded to obtain a compression-molded body, and a compression-molded body is heated at 1100 to 1300°C in a heating sintering furnace. A sintering process of heating and sintering to form a sintered body, a process of cooling the sintered body, and a process of reheating the cooled sintered body to 800 to 1,100°C and forming a bowl mold in the reheated state. A recompression process in which the sintered body is recompressed and densified using the sintered body, and a cooling process in which the sintered body is cooled to room temperature are sequentially carried out (Comparative Example 1, which will be described later).

この従来の焼結部材の製造方法において¥J造した焼結
体は、引張り強度は溶製材の引張り強度に近いが、しか
し疲労強度は溶製材に比べて著しく低い。その理由は以
下のごとく推測される。
The tensile strength of the sintered body manufactured using this conventional sintered member manufacturing method is close to that of ingot material, but its fatigue strength is significantly lower than that of ingot material. The reason is assumed to be as follows.

即ら、1りられる焼結体はポーラスである。このため、
非酸化性の加熱焼結炉から大気中に焼結体を取り出し再
圧縮工程を実施する時に、焼結体の気孔を通じて、表面
からかなりの内部にまで空気が進入し、そのために表面
部が酸化される。また、焼結体の表面部は再圧縮工程で
使用する鍛造型に直接接触するため、加熱焼結で高温に
加熱されている焼結体の表面部は鍛造型で冷却される。
That is, the sintered body is porous. For this reason,
When the sintered body is taken out of the non-oxidizing heating sintering furnace into the atmosphere and subjected to the recompression process, air enters from the surface to a considerable part of the interior through the pores of the sintered body, which causes the surface area to become oxidized. be done. Furthermore, since the surface portion of the sintered body is in direct contact with the forging die used in the recompression step, the surface portion of the sintered body, which has been heated to a high temperature during thermal sintering, is cooled by the forging die.

この冷却された表面部は冷却されない内部に比較し、再
圧縮の時に圧密化されにくく、このため表面部に残留空
孔が残存しやすい。これらの理由により、従来の焼結部
材の製造方法においては、得られた焼結部材の表面部に
欠陥、主に線状欠陥が発生しやすい。このため得られた
焼結部材は疲労強度が低い等の問題があった。
This cooled surface portion is less likely to be consolidated during recompression than the uncooled interior, and therefore residual pores are likely to remain in the surface portion. For these reasons, in the conventional method for manufacturing a sintered member, defects, mainly linear defects, are likely to occur on the surface of the obtained sintered member. Therefore, the obtained sintered member had problems such as low fatigue strength.

疲労強度が低い等の問題を改善するためには、鉄系金属
粉末を圧縮成形して圧縮成形体を得る圧縮工程と、得ら
れた圧縮成形体を加熱焼結炉にa3いて1100〜13
00℃で加熱して焼結し焼結体を形成する焼結工程と、
焼結体を冷却する工程と、冷却された焼結体を800〜
1100℃に再加熱して再加熱状態で、鍛造型を使用し
て焼結体を再圧縮して緻密化する再圧縮工程と、焼結体
を常温に冷却する冷却工程とその後に、焼結体を100
0〜1200℃に三たび加熱して線状欠陥を解消する加
熱工程を行なえばよいが(後述する比較例2に相当する
)、これでは疲労強度を向上させうるちのの、加熱のく
りかえしにより多大のエネルギの無駄になり、コストが
アップする。また、疲労強度を向上させる方法として、
圧縮成形体にショツトブラスト処理などにより固体粒子
を衝突させる方法(特開昭60−162701号公報)
も開発されている。
In order to improve problems such as low fatigue strength, it is necessary to carry out a compression process in which iron-based metal powder is compression-molded to obtain a compression-molded body, and the resulting compression-molded body is placed in a heating sintering furnace to a temperature of 1100 to 13
a sintering step of heating and sintering at 00°C to form a sintered body;
The step of cooling the sintered body and the cooling of the cooled sintered body from 800 to
A recompression process in which the sintered body is reheated to 1100°C and in the reheated state is recompressed and densified using a forging die, a cooling process in which the sintered body is cooled to room temperature, and then sintering 100 body
It is possible to perform a heating process to eliminate linear defects by heating to 0 to 1200°C three times (corresponding to Comparative Example 2 described later), but this will improve the fatigue strength, but the repeated heating will cause a large amount of damage. energy is wasted and costs increase. In addition, as a method to improve fatigue strength,
A method of bombarding a compression molded body with solid particles by shot blasting or the like (Japanese Unexamined Patent Publication No. 162701/1983)
has also been developed.

[発明が解決しようとする問題点] 本発明は上記実情によりなされたものであり、その目的
は、省エネルギを図りつつ疲労強度を向上させた緻密な
焼結部材の製造方法を提供するにある。
[Problems to be Solved by the Invention] The present invention has been made in view of the above circumstances, and its purpose is to provide a method for manufacturing a dense sintered member that improves fatigue strength while saving energy. .

[問題点を解決するための手段] 本発明の焼結部材の製造方法は、鉄系金属粉末を圧縮成
形して圧縮成形体を得る圧縮工程と、得られた圧縮成形
体を非酸化性雰囲気において1100〜1300℃で加
熱して焼結し焼結体を形成する焼結工程と、加熱焼結さ
れた焼結体を常温に冷却する冷却工程と、を含む焼結部
材の製造方法において、 上記圧縮工程は、鉄系金属粉末を圧縮成形して密度比8
0〜90%の1次圧縮成形体を得る第1工程と、1次圧
縮成形体を800〜1000℃に加熱模再圧縮成形して
密度比95%以上の2次圧縮成形体を形成する第2工程
と、からなることを特徴とする。
[Means for Solving the Problems] The method for producing a sintered member of the present invention includes a compression step of compression molding iron-based metal powder to obtain a compression molded body, and a compression molding step of compressing the obtained compression molded body in a non-oxidizing atmosphere. In a method for manufacturing a sintered member, the method includes a sintering step of heating and sintering at 1100 to 1300° C. to form a sintered body, and a cooling step of cooling the heated and sintered sintered body to room temperature, In the above compression process, iron-based metal powder is compression-molded and the density ratio is 8.
A first step of obtaining a primary compression molded product having a density ratio of 0 to 90%, and a second step of heating and recompression molding the primary compression molded product at 800 to 1000°C to form a secondary compression molded product having a density ratio of 95% or more. It is characterized by consisting of two steps.

本発明の焼結部材の製造方法においては、焼結工程前の
圧縮成形体は、密度比95%以上であり、その表面が圧
密化され、表面部の気孔が塞がれている。ここで、密度
比とは真密度に対する比率をいう。したがって、焼結工
程の際に、空気が圧縮成形体の内部にまで浸透する可能
性が少なくなる。
In the method for manufacturing a sintered member of the present invention, the compression molded body before the sintering step has a density ratio of 95% or more, the surface thereof is compacted, and the pores in the surface portion are closed. Here, the density ratio refers to the ratio to true density. Therefore, during the sintering process, there is less possibility that air will penetrate into the compression molded body.

このために焼結体表面部に酸化物あるいは脱炭層ができ
にくくなる。このために疲労張度特性、引張り強度特性
の優れた焼結部材が製造できる。
This makes it difficult to form oxides or a decarburized layer on the surface of the sintered body. Therefore, a sintered member with excellent fatigue tensile properties and tensile strength properties can be manufactured.

圧縮工程は、鉄系金属粉末を圧縮成形用の成形型内で加
圧し、加圧力により圧密化して一定の形状を有する圧縮
成形体を得る工程である。鉄系金属粉末としては、特に
限定されるものでなく、通常の焼結部材に使用される従
来の鉄系焼結台ffI粉末原料を使用することができる
。より具体的には鉄粉、銅粉、黒鉛粉末よりなる混合粉
末が鉄系金属粉末原料として多く使用されている。この
他、合金化あるいは予合金化又は予混合化した低合金鋼
粉末を原料として用いる事が出来る。たとえば市販のA
l5I4100相当やAl5I4600相当粉などがあ
る。この場合、N i、Mo、Cr、Mn、Co1C等
の合金元素は強度の向上に有効に作用する。銅粉の配合
割合は、重量%(以下%はff!M%を意味する。)で
0.5〜10%、黒鉛粉の配合量は同じく0.3〜10
%、残部鉄粉とするのが一般的である。これに潤滑剤で
あるステアリン醗亜鉛が0.5〜1.0%添加、混粉さ
れる。
The compression step is a step in which iron-based metal powder is pressurized in a compression mold, and is compacted by pressure to obtain a compression molded body having a certain shape. The iron-based metal powder is not particularly limited, and conventional iron-based sintering table ffI powder raw materials used for ordinary sintered members can be used. More specifically, a mixed powder consisting of iron powder, copper powder, and graphite powder is often used as a raw material for iron-based metal powder. In addition, alloyed, prealloyed, or premixed low alloy steel powder can be used as a raw material. For example, commercially available A
There are powders equivalent to l5I4100 and powders equivalent to Al5I4600. In this case, alloying elements such as Ni, Mo, Cr, Mn, and Co1C effectively act to improve the strength. The blending ratio of copper powder is 0.5 to 10% by weight (hereinafter % means ff!M%), and the blending ratio of graphite powder is 0.3 to 10%.
%, the balance being iron powder. To this, 0.5 to 1.0% of zinc stearin, which is a lubricant, is added and mixed.

ここで、銅粉、黒鉛粉は、通常、焼結工程において鉄粉
中に固溶し、得られる焼結体の剛性、強度等を向上プる
役nlを果たづ。
Here, copper powder and graphite powder are usually dissolved in iron powder during the sintering process, and play the role of improving the rigidity, strength, etc. of the obtained sintered body.

圧縮工程の第1工程では、1次圧縮成形体の密度比を8
0〜90%に圧密化プる。第1工程は通常、常温にて行
なう。1次圧縮成形体の密度比が80%未満の場合には
、1次圧縮成形体の強度が十分でないために表面部が剥
離したり、角、隅部が欠けたりする問題が生じやすい。
In the first step of the compression process, the density ratio of the primary compression molded body is set to 8.
Consolidate from 0 to 90%. The first step is usually performed at room temperature. When the density ratio of the primary compression molded product is less than 80%, the strength of the primary compression molded product is insufficient, and problems such as peeling of the surface portion and chipping of corners and corners are likely to occur.

また、逆に1次圧縮成形体の密度比を90%を越えるよ
うなものとする場合には、圧縮成形時の圧縮力が極めて
大きくなる。このために成形型の寿命の点で不利となる
On the other hand, if the density ratio of the primary compression molded product exceeds 90%, the compression force during compression molding becomes extremely large. This is disadvantageous in terms of the life of the mold.

圧縮工程の第2工程では、上記した1次圧縮成形体を8
00〜1000℃に加熱した後に、再圧縮成形し、密度
比95%以上の2次圧縮成形体を形成する。この場合8
00℃未満であると密度比95%以上の2次圧縮成形体
を得る際の加圧力が過大となる。又、1000℃を越え
ると、2次圧縮成形体が酸化しやづくなるし、省エネル
ギ化の面で不利である。
In the second step of the compression process, the above-mentioned primary compression molded product is
After heating to 00 to 1000°C, recompression molding is performed to form a secondary compression molded product having a density ratio of 95% or more. In this case 8
If the temperature is less than 00°C, the pressure applied when obtaining a secondary compression molded body having a density ratio of 95% or more becomes excessive. Moreover, if the temperature exceeds 1000°C, the secondary compression molded product will be easily oxidized, which is disadvantageous in terms of energy saving.

上記した圧縮工程の第2工程は、保護雰囲気、つまり不
活性ガス雰囲気や還元性雰囲気、窒素雰囲気等の非醇化
性雰囲気が好ましいが、場合によっては大気中で行なっ
てもよい。焼結工程を還元性雰囲気で行なえば、圧縮工
程の際に2次圧縮成形体が多少酸化しても還元可能だか
らである。
The second step of the compression step described above is preferably carried out in a protective atmosphere, that is, a non-melting atmosphere such as an inert gas atmosphere, a reducing atmosphere, or a nitrogen atmosphere, but may be carried out in the air depending on the case. This is because if the sintering step is performed in a reducing atmosphere, even if the secondary compression molded body is slightly oxidized during the compression step, it can be reduced.

焼結工程は、2次圧縮成形体を非酸化性雰囲気下で加熱
し、鉄系粉末粒子どうしを焼結して一体化する工程であ
る。焼結温度、焼結雰囲気等の条件については使用され
る鉄系金属粉末の種類により任意に選択することができ
る。雰囲気ガスとしては一般に通称RXガスとして知ら
れている吸熱型のガスや通称Axガスとして知られてい
る分解アンモニアガス等が好ましい。焼結温度は110
0〜1300℃である。ここで1100℃未満では焼結
不足となる。具体的には、1150度程度がよく、但し
鋼種により異なり、F13−CIJ−C系で1120〜
1150℃、4600系で1150〜1200℃、41
00系で1200〜1250℃程度がよい。焼結時間は
20分程度がよい。
The sintering process is a process in which the secondary compression molded body is heated in a non-oxidizing atmosphere to sinter and integrate the iron-based powder particles. Conditions such as sintering temperature and sintering atmosphere can be arbitrarily selected depending on the type of iron-based metal powder used. The atmospheric gas is preferably an endothermic gas generally known as RX gas, decomposed ammonia gas commonly known as Ax gas, or the like. Sintering temperature is 110
The temperature is 0 to 1300°C. Here, if it is below 1100°C, sintering will be insufficient. Specifically, about 1150 degrees is good, but it varies depending on the steel type, and for F13-CIJ-C series it is about 1120 degrees
1150℃, 4600 series 1150-1200℃, 41
00 series is preferably about 1200 to 1250°C. The sintering time is preferably about 20 minutes.

冷却工程は、従来と同様な条件で行なうことができる。The cooling process can be performed under the same conditions as conventional ones.

〔実施例1〕 まず、圧縮工程の第1工程では、−80メツシユ、市販
の噴霧鉄粉100重最小型対し、市販の0.6 粉末冶金用黒鉛粉末(日本黒鉛製ACPi量部、市販(
描出金属製GE−25)の電解銅粉3重量部、さらに潤
滑剤であるステアリン酸亜鉛粉末0゜7重量部を配合し
、Fe−3%Cu−0,6%Gr−0.7%Zn−5t
の組成となるようにし、型混合機で20分間混合した。
[Example 1] First, in the first step of the compression process, commercially available 0.6 graphite powder for powder metallurgy (ACPi made by Nippon Graphite Co., Ltd., commercially available
3 parts by weight of electrolytic copper powder (GE-25) manufactured by Kashi Metals Co., Ltd. and 0.7 parts by weight of zinc stearate powder as a lubricant were blended to form a mixture of Fe-3%Cu-0.6%Gr-0.7%Zn. -5t
The mixture was mixed for 20 minutes using a mold mixer.

次に第1成形型により、第2図にしめすような板厚t7
〜8■、平行部の巾D1が9.5I@Ill、平行部の
円弧R1が1811℃全体の長さD2が98III11
1巾D3が221の試験片用の1次圧縮成形体を製作し
た。なお、第1工程における1次圧縮成形体の密度比は
約81.5%であった。
Next, the first mold is used to create a plate with a thickness t7 as shown in Figure 2.
~8■, the width D1 of the parallel part is 9.5I@Ill, the arc R1 of the parallel part is 1811℃, the entire length D2 is 98III11
A primary compression molded body for a test piece having a width D3 of 221 was manufactured. Note that the density ratio of the primary compression molded body in the first step was about 81.5%.

次に圧縮工程の第2工程では、1次圧縮成形体をRXガ
ス雰囲気の加熱炉に挿入し、900℃で20分間加熱侵
、加熱炉からとりだした1次圧縮成形体を第2成形型に
より再圧縮成形して密度比97.5%の2次圧縮成形体
を形成した。なお、2次圧縮成形体は第3図にしめすよ
うであり、板厚7711、平行部の巾L1が101、平
行部の円弧R2が1711、全体の長さL2が1100
IllI、巾13が231111の試験片用の2次圧縮
成形体を製作した。第2成形型のキャビティには潤滑剤
として、コロイダル黒鉛を水にて稀釈したものを塗布し
た。
Next, in the second step of the compression process, the primary compression molded body is inserted into a heating furnace with an RX gas atmosphere, heated at 900°C for 20 minutes, and the primary compression molded body taken out from the heating furnace is placed in a second mold. Recompression molding was performed to form a secondary compression molded body having a density ratio of 97.5%. The secondary compression molded body is shown in Fig. 3, and has a plate thickness of 7711, a width L1 of the parallel part of 101, an arc R2 of the parallel part of 1711, and an overall length L2 of 1100.
A secondary compression molded body for a test piece with a width of 13 and a width of 231111 was manufactured. Colloidal graphite diluted with water was applied as a lubricant to the cavity of the second mold.

上記した圧縮工程を完了したのち直ちに、RXガス雰囲
気の加熱炉中に、密度比97.5%の2次圧縮成形体を
挿入し、1120℃で20分間焼結し焼結工程をおこな
い、その模加熱炉より取出し大気下におき、焼結体を常
温にまで一り0℃/minの速度で冷却し冷却工程をお
こなった。
Immediately after completing the compression process described above, the secondary compression molded body with a density ratio of 97.5% is inserted into a heating furnace with an RX gas atmosphere, and the sintering process is performed by sintering it at 1120°C for 20 minutes. The sintered body was taken out of the simulated heating furnace and placed in the atmosphere, and the sintered body was cooled down to room temperature at a rate of 0° C./min for a cooling process.

し実施例2] 実施例1の場合と同一の組成とし、同一の条件で圧縮工
程の第1工程および第2工程を行ない、密度比97.5
%の2次圧縮成形体を形成し、更に、焼結工程を実施し
た。冷fJI工程では、実施例1の場合よりも遅い冷部
速度つまり一り0℃/minの速度にて冷却した。冷却
工程優、真空中で900℃で30分間加熱保持後、焼結
体を油中に投入して焼入れし、そののら、窒素雰囲気中
で550℃で60分間加熱保持し、これにより焼入れ焼
戻し処理をおこなった。
Example 2] The composition was the same as in Example 1, the first and second steps of the compression process were performed under the same conditions, and the density ratio was 97.5.
% of the secondary compression molded body was formed, and a sintering process was further performed. In the cold fJI step, cooling was performed at a lower cooling section speed than in Example 1, that is, at a rate of 0° C./min. Cooling process: After heating and holding in vacuum at 900°C for 30 minutes, the sintered body is placed in oil and quenched, and then heated and held at 550°C in a nitrogen atmosphere for 60 minutes, thereby quenching and tempering. Processed.

[実施例31 まず、圧縮工程の第1工程では、市販のAIS々 14600相当噴霧合金粉(Fe−1,8Vi −0,
5Mo)に対し、市販黒鉛粉0.6%と潤滑剤0.7%
を配合しFe−1,8N i−0,5Mo−0,7%G
r−0.7%Zn−5tの組成トなるようにした粉末を
、■型混合機で20分間混合した。次に第1成形型によ
り、1次圧縮成形体を製作した。得られた1次圧縮成形
体の密度比は約84%であった(実施例1よりも高い)
[Example 31] First, in the first step of the compression step, commercially available spray alloy powder equivalent to AIS 14600 (Fe-1,8Vi-0,
5Mo), commercially available graphite powder 0.6% and lubricant 0.7%
Fe-1,8N i-0,5Mo-0,7%G
Powders having the composition of r-0.7% Zn-5t were mixed for 20 minutes using a type mixer. Next, a primary compression molded body was manufactured using the first mold. The density ratio of the obtained primary compression molded product was about 84% (higher than Example 1)
.

次に圧縮工程の第2工程では、1次圧縮成形体をRXガ
ス雰囲気の加熱炉に挿入し、950℃で20分間加熱後
、第2成形型により再圧縮成形して密度比9765%の
2次圧縮成形体を形成した。
Next, in the second step of the compression process, the primary compression molded body is inserted into a heating furnace with an RX gas atmosphere, heated at 950°C for 20 minutes, and then recompression molded using a second mold to achieve a density ratio of 9765%. Next, a compression molded body was formed.

上記圧縮工程を完了したのら直ちに、IIXガス雰囲気
の加熱炉中に2次圧縮成形体を挿入し、1150℃で2
0分間焼結し焼結工程を行ない焼結体を形成した。次に
、焼結体を900℃から300℃まで一り0℃/min
の速度で冷却し冷却工程をおこなった。
Immediately after completing the above compression process, the secondary compression molded body was inserted into a heating furnace with an IIX gas atmosphere, and heated to 1150°C for 2 hours.
The sintering process was performed by sintering for 0 minutes to form a sintered body. Next, the sintered body was heated from 900°C to 300°C at 0°C/min.
The cooling process was performed by cooling at a rate of .

[比較例1] 実施例1の場合と同一組成となるように配合した鉄系金
属粉末から、第2図にしめず圧縮成形体を形成した。1
qられた圧縮成形体の密度比は約81.5%であった(
実施例1の1次圧縮成形体と同一の密度比)。
[Comparative Example 1] From iron-based metal powder blended to have the same composition as in Example 1, a compression molded body was formed as shown in FIG. 1
The density ratio of the compressed compact was approximately 81.5% (
(same density ratio as the primary compression molded product of Example 1).

次に圧縮成形体をRXガス雰囲気の加熱炉に挿入し、1
120℃で20分間焼結し焼結工程をおこない焼結体を
形成した。次に、焼結体を常温まで冷却し冷却工程をお
こなった。その後、焼結体をRXガス雰囲気の加熱炉に
挿入して再加熱し、1000℃で15分間加熱保持後、
R造型で焼結体を再圧縮(鍛造)し、密度比97.5%
とした。
Next, the compression molded body is inserted into a heating furnace with an RX gas atmosphere, and
A sintering process was performed by sintering at 120° C. for 20 minutes to form a sintered body. Next, the sintered body was cooled to room temperature and a cooling process was performed. After that, the sintered body was inserted into a heating furnace with an RX gas atmosphere and reheated, and after being heated and held at 1000°C for 15 minutes,
The sintered body is recompressed (forged) using an R mold to achieve a density ratio of 97.5%.
And so.

その優に焼結体を冷却した。The sintered body was cooled well.

[比較例2〕 比較例1で形成した密度比97.5%の焼結体を使用し
、その焼結体をRXガス雰囲気の加熱炉に更に挿入し、
1120℃で20分間加熱保持後、900〜300℃ま
でを冷却速度−40℃/minにて冷却した。
[Comparative Example 2] Using the sintered body with a density ratio of 97.5% formed in Comparative Example 1, the sintered body was further inserted into a heating furnace in an RX gas atmosphere,
After heating and holding at 1120°C for 20 minutes, it was cooled from 900 to 300°C at a cooling rate of -40°C/min.

[比較例3] 実施例1の場合と同一組成とした麩系金ff粉末から第
2図にしめす圧縮成形体を形成した。得られた圧縮成形
体の密度比は約8165%であった。
[Comparative Example 3] A compression molded body shown in FIG. 2 was formed from a wheat-based gold FF powder having the same composition as in Example 1. The density ratio of the compression molded product obtained was about 8165%.

次に圧縮成形体をRXガス雰囲気の加熱炉に挿入し、1
120℃で20分局焼結し、焼結体を形成した。その後
炉冷により徐冷した。ただし、炉冷の過程に於いて、9
50℃において鍛造型で焼結体を再圧縮し密度比97.
5%とした。その後900〜300℃までを一40℃/
minの冷却速度にて冷却した。
Next, the compression molded body is inserted into a heating furnace with an RX gas atmosphere, and
Local sintering was performed at 120° C. for 20 minutes to form a sintered body. Thereafter, it was gradually cooled by furnace cooling. However, in the process of furnace cooling, 9
The sintered body was recompressed with a forging die at 50°C and the density ratio was 97.
It was set at 5%. After that, heat from 900 to 300℃ at -40℃/
Cooling was performed at a cooling rate of min.

[評価] 第4図は、実施例1、比較例1〜3における加熱回数、
エネルギ消[t、再圧縮時をそれぞれしめす。
[Evaluation] Figure 4 shows the number of heating times in Example 1 and Comparative Examples 1 to 3;
Energy dissipation [t, respectively indicates the time of recompression.

得られた実施例および比較例の焼結部材の試験片の特性
をみるために引張り強度および疲労強度を測定した。な
お、引張り強度は万能試験様を使用し、クロスヘッドス
ピード2111111/minで行なった。疲労強度は
シエンク式板曲げ(平面曲げ)疲労試験機により、S−
13J図を作成しておこなった。試験結果を第1図に示
す。
In order to examine the characteristics of the test pieces of the obtained sintered members of Examples and Comparative Examples, tensile strength and fatigue strength were measured. The tensile strength was measured using a universal tester at a crosshead speed of 2111111/min. Fatigue strength was determined by Sienck type plate bending (plane bending) fatigue testing machine.
This was done by creating Diagram 13J. The test results are shown in Figure 1.

第1図より明らかな様に、引張強度は比較例1〜3の場
合が73〜75kgf/1lIIzであるのに対して、
実施例1〜3では73〜77kc+f/1Illtであ
り、若干の上昇がみられた。一方、疲労強度は比較例1
では15kOf/mm2程度であり、比較例3では18
kOf/a+m2程度であす、比較例2では25 k 
g f/nv2程度であるのに対して、実施例1〜3で
は24〜26ko f/mm2であり1、比較例1〜3
の焼結部材の組成は、実施例1の焼結部材と同じである
にもかかわらず、大幅な上昇がみられた。上記の試験結
果からあきらかのように実施例1〜3では、疲労強度が
大幅に増加している。実施例1〜3の疲労強度は、比較
例2の場合(圧縮工程−焼結工程−冷却工程−加熱工程
−再圧縮工程−冷却工程−再加熱工程−冷却工程という
加熱を何度も繰り返すためにエネルギを多大に使用し、
コストアップとなる製造方法)と同程度またはそれ以上
の疲労強度をもつ。したがって実施例1〜3では、省エ
ネルギを図りつつ疲労強度、引張り強度を確保できる。
As is clear from Fig. 1, the tensile strength was 73 to 75 kgf/1lIIz in Comparative Examples 1 to 3, whereas
In Examples 1 to 3, it was 73 to 77kc+f/1llt, and a slight increase was observed. On the other hand, the fatigue strength of Comparative Example 1
In Comparative Example 3, it is about 15kOf/mm2, and in Comparative Example 3, it is 18kOf/mm2.
It is about kOf/a+m2, and in comparative example 2 it is 25 k
g f/nv2, whereas in Examples 1 to 3 it was 24 to 26 kof/mm2, 1, and Comparative Examples 1 to 3
Although the composition of the sintered member of Example 1 was the same as that of the sintered member of Example 1, a significant increase was observed. As is clear from the above test results, the fatigue strength of Examples 1 to 3 is significantly increased. The fatigue strength of Examples 1 to 3 is different from that of Comparative Example 2 (because the heating process of compression process - sintering process - cooling process - heating process - recompression process - cooling process - reheating process - cooling process is repeated many times) uses a lot of energy to
It has a fatigue strength comparable to or higher than that of other manufacturing methods (which increase costs). Therefore, in Examples 1 to 3, fatigue strength and tensile strength can be ensured while saving energy.

省エネルギを図りうろことは、第4図の比較からもあき
らかである。
It is clear from the comparison in Figure 4 that the aim is to save energy.

上記試験結束がえられる理由は、上記実施例1〜3では
、2次圧縮成形体は密度比95%以上のため、その表面
部が圧密化され表面の気孔がっぷされている。このため
に焼結工程においても、空気が表面部の気孔を通じて内
部に浸透しにくい。
The reason why the above-mentioned test binding is obtained is that in Examples 1 to 3, the density ratio of the secondary compression molded product is 95% or more, so the surface portion thereof is consolidated and the pores on the surface are closed. For this reason, even during the sintering process, air is difficult to penetrate into the interior through the pores in the surface portion.

したがって、2次圧縮成形体の内部に酸化物層あるいは
脱炭層が生じにくい。また、2次圧縮後、引ぎ続き焼結
工程を保護雰囲気中でhなう事により表面部に線状欠陥
がたとえ発生したとしても、容易に還元されるため、表
面が改質され、疲労強度の低下を防止できるからと考え
られる。このために疲労強度、引張り強度の高い焼結部
材が1gられると推察される。
Therefore, an oxide layer or a decarburized layer is less likely to form inside the secondary compression molded body. In addition, even if linear defects occur on the surface by continuing the sintering process in a protective atmosphere after the secondary compression, they are easily reduced, resulting in surface modification and fatigue. This is thought to be because it can prevent a decrease in strength. For this reason, it is estimated that 1 g of sintered member with high fatigue strength and high tensile strength is required.

〔発明の効果〕〔Effect of the invention〕

本発明にかかる焼結部材の製造方法においては、疲労強
度の高い焼結部材が得られる。その理由tま以下のごと
くと推察される。即ち、2次圧縮成形体の密度比は95
%以上であるため、その表面部が圧密化され表面の気孔
がつぶされている。このために焼結工程においても、空
気が表面部の気孔を通じて内部に浸透しにくい。したが
って、2次圧縮成形体の内部に酸化物層あるいは脱炭層
が生じにくいため、表面部に欠陥が生じにくいためと推
察される。
In the method for manufacturing a sintered member according to the present invention, a sintered member with high fatigue strength can be obtained. The reason for this is presumed to be as follows. That is, the density ratio of the secondary compression molded product is 95
% or more, the surface is consolidated and the pores on the surface are crushed. For this reason, even during the sintering process, air is difficult to penetrate into the interior through the pores in the surface portion. Therefore, it is presumed that this is because an oxide layer or a decarburized layer is less likely to form inside the secondary compression molded body, and thus defects are less likely to occur on the surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例と比較例の引張り強度と疲労強度の試験
結果をしめずグラフである。第2図は1次圧縮成形体の
平面図、第3図は2次圧縮成形体の平面図、第4図は実
施例と比較例とにおける加熱回数およびエネルギ消費量
をしめずグラフである。 特許出願人  トヨタ自助中株式会社 代理人   弁理士  大川 宏 同    弁理士  丸山明夫 第1図 (kgt/mrn” )       (kc]f/ 
mm2)第4図
FIG. 1 is a graph showing the test results of tensile strength and fatigue strength of Examples and Comparative Examples. FIG. 2 is a plan view of the primary compression molded product, FIG. 3 is a plan view of the secondary compression molded product, and FIG. 4 is a graph showing the number of times of heating and energy consumption in Examples and Comparative Examples. Patent Applicant: Toyota Self-Help Co., Ltd. Agent: Patent Attorney: Hirodo Okawa Patent Attorney: Akio Maruyama Figure 1 (kgt/mrn”) (kc]f/
mm2) Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)鉄系金属粉末を圧縮成形して圧縮成形体を得る圧
縮工程と、 得られた該圧縮成形体を非酸化性雰囲気において110
0〜1300℃で加熱して焼結し焼結体を形成する焼結
工程と、 加熱焼結された該焼結体を常温に冷却する冷却工程と、
を含む焼結部材の製造方法において、上記圧縮工程は、
鉄系金属粉末を圧縮成形して密度比80〜90%の1次
圧縮成形体を得る第1工程と、 該1次圧縮成形体を800〜1000℃に加熱後再圧縮
成形して密度比95%以上の2次圧縮成形体を形成する
第2工程と、からなることを特徴とする焼結部材の製造
方法。
(1) A compression step of compressing iron-based metal powder to obtain a compression molded body, and placing the obtained compression molded body in a non-oxidizing atmosphere at 110°C.
a sintering process of heating and sintering at 0 to 1300°C to form a sintered body; a cooling process of cooling the heated and sintered sintered body to room temperature;
In the method for manufacturing a sintered member, the compression step includes:
A first step of compression molding iron-based metal powder to obtain a primary compression molded body with a density ratio of 80 to 90%, and heating the primary compression molded body to 800 to 1000°C and then recompression molding to obtain a density ratio of 95. % or more of a secondary compression molded body.
(2)第2工程では密度比97.5%以上の第2次圧縮
成形体を形成することを特徴とする特許請求の範囲第1
項記載の製造方法。
(2) In the second step, a second compression molded body having a density ratio of 97.5% or more is formed.
Manufacturing method described in section.
(3)第2工程は、非酸化性雰囲気において行なう特許
請求の範囲第1項記載の製造方法。
(3) The manufacturing method according to claim 1, wherein the second step is performed in a non-oxidizing atmosphere.
JP9858586A 1986-04-28 1986-04-28 Production of sintered member Pending JPS62256903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9858586A JPS62256903A (en) 1986-04-28 1986-04-28 Production of sintered member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9858586A JPS62256903A (en) 1986-04-28 1986-04-28 Production of sintered member

Publications (1)

Publication Number Publication Date
JPS62256903A true JPS62256903A (en) 1987-11-09

Family

ID=14223725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9858586A Pending JPS62256903A (en) 1986-04-28 1986-04-28 Production of sintered member

Country Status (1)

Country Link
JP (1) JPS62256903A (en)

Similar Documents

Publication Publication Date Title
JP3651420B2 (en) Alloy steel powder for powder metallurgy
US5754937A (en) Hi-density forming process
CN100475389C (en) Sintered metal parts and method for the manufacturing thereof
JP3741654B2 (en) Manufacturing method of high density iron-based forged parts
JPH04231404A (en) Method for powder metallurgy by means of optimized two-times press-two-times sintering
EP1513640A1 (en) Prealloyed iron-based powder, a method of producing sintered components and a component
EP1027467B1 (en) Method for manufacturing high carbon sintered powder metal steel parts of high density
JP3504786B2 (en) Method for producing iron-based sintered alloy exhibiting quenched structure
US20090129964A1 (en) Method of forming powder metal components having surface densification
JP4923801B2 (en) Method for producing high-density iron-based molded body and high-strength high-density iron-based sintered body
JP2002137039A (en) Forging method of sintered material
US7347884B2 (en) Alloy steel powder for powder metallurgy
JPH0610284B2 (en) Sintered member manufacturing method
JPS62256903A (en) Production of sintered member
US20070048169A1 (en) Method of making powder metal parts by surface densification
JP4615191B2 (en) Method for producing iron-based sintered body
JPH0518894B2 (en)
KR102533137B1 (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
JPS61117203A (en) Production of sinter forged parts
JPS61264105A (en) Production of high-strength sintered member
JPH04337001A (en) Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding
US20030047032A1 (en) Method of producing powder metal parts from metallurgical powders including sponge iron
EP0334968A1 (en) Composite alloy steel powder and sintered alloy steel
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body
JPH0225504A (en) High fatigue strength iron series sintering material and production thereof