JPS6140301B2 - - Google Patents

Info

Publication number
JPS6140301B2
JPS6140301B2 JP56213535A JP21353581A JPS6140301B2 JP S6140301 B2 JPS6140301 B2 JP S6140301B2 JP 56213535 A JP56213535 A JP 56213535A JP 21353581 A JP21353581 A JP 21353581A JP S6140301 B2 JPS6140301 B2 JP S6140301B2
Authority
JP
Japan
Prior art keywords
less
powder
density
steel powder
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56213535A
Other languages
Japanese (ja)
Other versions
JPS58113350A (en
Inventor
Takeyoshi Kajinaga
Takeo Oomura
Kunio Kurita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21353581A priority Critical patent/JPS58113350A/en
Publication of JPS58113350A publication Critical patent/JPS58113350A/en
Publication of JPS6140301B2 publication Critical patent/JPS6140301B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は焼結製品の製造方法に関し、とくに
粉末冶金技術によつて鋳物部品に代替し得る真密
度をもつ鋼粉圧密材を製造する方法であつて、原
料粉末を完全に溶融させるまでに導くことなく部
分的な溶融に止めて、成形―焼結という一般的な
粉末冶金法によつて小型鋳物部品と同効のものを
製造するのに好適な技術についての提案である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing sintered products, and in particular to a method for manufacturing a steel powder compacted material having a true density that can be substituted for cast parts using powder metallurgy technology. A proposal for a suitable technology for manufacturing small cast parts using the general powder metallurgy method of forming and sintering, which involves only partial melting without leading to complete melting. It is.

通常、小型鋳物部品の製造は、ダイキヤスト法
もしくは、多数準備した同一形状の鋳型(砂型が
多い。)に溶融金属を流し込む;いわゆる鋳造法
によつているが、いずれにしても溶融金属の凝固
法であつて、本発明法とは本質的に異なつてい
る。
Normally, small cast parts are produced by die casting or by pouring molten metal into a large number of molds of the same shape (often sand molds); the so-called casting method is used, but either method is used to solidify molten metal. However, it is essentially different from the method of the present invention.

ダイキヤスト法の場合は、一つの金型により多
数の同一形状品が鋳造されるが、専らアルミニウ
ムや亜鉛の如き低融点金属に限られ、鉄のような
高融点金属への適用は不可能である。従つて、鉄
系鋳物部品の場合、溶湯を多数個準備した鋳型へ
流し込んで同一形状品を量産しているが、生産性
は決して良好とは言えない。しかも、凝固に伴な
い種々の鋳造欠陥を生じたり、鋳造後の離型、砂
落し、湯道部の切離し、部分的な仕上加工等も必
要であり、その割には決して寸法精度が良好とは
言えず、その上、作業環境も劣悪であるなど問題
点が多い。
In the case of die casting, many products of the same shape are cast using a single mold, but it is limited to low melting point metals such as aluminum and zinc, and cannot be applied to high melting point metals such as iron. . Therefore, in the case of iron-based cast parts, products of the same shape are mass-produced by pouring molten metal into a large number of prepared molds, but productivity cannot be said to be good. Moreover, various casting defects occur due to solidification, and it is necessary to perform mold release, sand removal, runner separation, partial finishing work, etc. after casting, and the dimensional accuracy is never good. Moreover, there are many problems such as poor working environment.

また、鉄鋼粉を原料として真密度部品を製造す
る技術に粉末鍛造法および熱間等方圧縮法がある
が、これらはいずれも熱間において高圧力を負荷
して高密度化する方法であり、本発明法の如き成
形―焼結法で熱的に高密度化する方法とは異なつ
ている。
In addition, there are powder forging methods and hot isostatic compression methods to manufacture true-density parts using steel powder as a raw material, but both of these methods increase density by applying high pressure in hot conditions. This is different from a method of thermally increasing the density by a molding-sintering method such as the method of the present invention.

以上要するに本発明は、従来の鋳造法等真密度
部品の製造技術がもつ欠点を克服することを目的
とする技術である。すなわち本発明法は、通常の
粉末冶金的手法、すなわち黒鉛粉や潤滑剤の混
合、金型による圧縮成形、焼結炉による焼結の一
連の工程をそのまま採用しているので、製造部品
に欠陥を生じ難く、取扱いが簡単な上、工程の自
動化が可能であり、作業環境も良好で部品の寸法
精度にも優れ、かつ高生産性であるなどの特徴を
有する。以下にその構成の詳細を説明する。
In summary, the present invention is a technique aimed at overcoming the drawbacks of conventional true density component manufacturing techniques such as casting methods. In other words, the method of the present invention employs the usual powder metallurgy method, that is, a series of steps such as mixing graphite powder and lubricant, compression molding in a mold, and sintering in a sintering furnace, so there is no possibility of defects in manufactured parts. It has the characteristics of being difficult to produce, easy to handle, process automation possible, good working environment, excellent dimensional accuracy of parts, and high productivity. The details of the configuration will be explained below.

本発明の要旨構成についてこれを整理すると、
次の3点に要約することができる。その第1点は
P及び炭化物生成元素を共存合金化せしめた鋼粉
を原料粉末として用いることである。その際、P
合金量を0.05〜0.30%とすること、および、
Mn、Cr、Mo、V、Nb、Wの炭化物生成元素
を、1種または2種以上合金し、かつその合計量
を0.4〜6.5%にすることが肝要である。
The gist of the present invention can be summarized as follows:
It can be summarized in the following three points. The first point is to use steel powder in which P and carbide-forming elements are co-alloyed as the raw material powder. At that time, P
The alloy content is 0.05 to 0.30%, and
It is important to alloy one or more of the carbide-forming elements Mn, Cr, Mo, V, Nb, and W, and to adjust the total amount to 0.4 to 6.5%.

第2点は、原料鋼粉に2.0〜5.5%の黒鉛粉を混
合して液相化焼結を進めることであり、 第3点は、上記黒鉛粉を混合した鋼粉を粉末冶
金的手法により成形し、焼結して自己収縮を起さ
せることにより真密度(密度比100%)の製品に
することである。
The second point is to proceed with liquid phase sintering by mixing 2.0 to 5.5% graphite powder with the raw steel powder, and the third point is to process the steel powder mixed with the graphite powder using a powder metallurgy method. It is made into a product with true density (density ratio 100%) by molding and sintering to cause self-shrinkage.

はじめに、原料粉末としてPおよび炭化物生成
元素を共存下で合金した鋼粉を用いるのは、焼結
時において、圧粉体中に混合介在せしめた黒鉛粉
のスムーズな合金化を促進すること、および生成
する液相を均一に分散せしめて急激な密度増加を
防止し、徐々に収縮させるために必要である。例
えばこのPの添加を燐化鉄Fe3Pの粉砕粉や、Fe
―P合金粉(フエロリン粉)との混合で使用した
場合には、Pは個々の鋼粉粒子表面に付着して存
在するので、その付着箇所にのみ液相を生成し、
鋼粉粒子表面の全体に均一に液相を生成すること
がない。また、炭化物生成元素を合金していない
鋼粉を使用した場合には、混合した黒鉛粉のスム
ーズな合金化が進まず、遊離黒鉛状態で存在する
量が多くなつてそのため液相を生成し難く、均一
な収縮が起り難くなる。その結果、焼結終了時に
気孔が残存して真密度材が得られなくなる。従つ
て、焼結により真密度材を得るには、Pは予め鋼
粉粒子中に合金化されていなければならず、同時
に炭化物生成元素の共存合金化も必要になるので
ある。
First, the purpose of using steel powder alloyed in the coexistence of P and carbide-forming elements as raw material powder is to promote smooth alloying of graphite powder mixed in the compact during sintering, and This is necessary to uniformly disperse the liquid phase that is produced, to prevent a rapid increase in density, and to gradually shrink the liquid phase. For example, this addition of P can be carried out using pulverized powder of iron phosphide Fe 3 P or Fe
- When used in combination with P alloy powder (ferroline powder), since P exists attached to the surface of each steel powder particle, a liquid phase is generated only at the attached location,
A liquid phase is not uniformly generated over the entire surface of the steel powder particles. Furthermore, when using steel powder that is not alloyed with carbide-forming elements, smooth alloying of the mixed graphite powder does not proceed, and a large amount of free graphite exists, making it difficult to form a liquid phase. , uniform contraction becomes difficult to occur. As a result, pores remain at the end of sintering, making it impossible to obtain a true density material. Therefore, in order to obtain a true density material by sintering, P must be alloyed in the steel powder particles in advance, and at the same time, it is also necessary to co-alloy the carbide-forming elements.

上記のP合金量の上限は0.30%であり、これは
収縮真密度化した部品における表面肌あれの生じ
ない限界量である。これを超えてPを合金化した
場合には、焼結中に液相生成量が一段と多くなつ
て急激な収縮を生じ、部品表面の肌あれがひどく
なる。また、金型による成形時の圧縮性、成形性
も劣つてきて目的とする部品の圧粉体成形が困難
となる。従つて、P合金量の上限は0.30%でなけ
ればならない。一方、P合金量の下限値0.05%
は、焼結時の収縮による真密度化の生じる最低限
の量であり、これ未満のP量では、如何なる黒鉛
粉混合量、焼結条件においても真密度化は不能で
ある。従つてP合金量は最低限0.05%以上が必要
である。
The upper limit of the amount of P alloy mentioned above is 0.30%, which is the limit amount that does not cause surface roughness in shrinkage-densified parts. If P is alloyed in excess of this amount, the amount of liquid phase produced during sintering will further increase, resulting in rapid shrinkage and severe roughness on the surface of the component. In addition, the compressibility and moldability during molding with a mold also deteriorate, making it difficult to mold the desired part into a green compact. Therefore, the upper limit of the amount of P alloy must be 0.30%. On the other hand, the lower limit of P alloy content is 0.05%
is the minimum amount at which true densification occurs due to shrinkage during sintering, and if the amount of P is less than this, true densification is impossible under any graphite powder mixing amount and sintering conditions. Therefore, the amount of P alloy needs to be at least 0.05%.

上述のPに対して前記炭化物生成元素を共存状
態において合金化させることが肝要であるが、同
時にその合金量を適性に選ぶことが必要である。
すなわち、上記炭化物生成元素としてのMn、
Cr、Mo、V、Nb、Wのうちの少なくとも1種も
しくはそれ以上を合金化させる必要がある。これ
らの合計量の下限値0.4%は、圧粉体中に混合介
在せしめた黒鉛粉の、基質中への拡散合金化を促
進するのに必要な最低量であり、また合計量の上
限値6.5%は、鋼粉の圧縮性、成形性を良好に維
持するための限界量である。以上の理由から合計
量の範囲を0.4〜6.5%と決定した、さらに、個々
の元素の上限量、すなわちMnにあつては2.3%、
Crにあつては6.5%、Moでは4.8%、Vでは2.9
%、Nbでは2.1%、Wでは4.2%、などの数値は、
収縮緻密化された部品の強度を著しく損なわない
ために必要な限界量であり、この意味からそれぞ
れの上限量を決定した。
It is important to alloy the above-mentioned P with the carbide-forming element in a coexisting state, but at the same time, it is necessary to appropriately select the amount of the alloy.
That is, Mn as the carbide forming element,
It is necessary to alloy at least one or more of Cr, Mo, V, Nb, and W. The lower limit of these total amounts, 0.4%, is the minimum amount necessary to promote the diffusion and alloying of the graphite powder mixed into the compact into the matrix, and the upper limit of the total amounts, 6.5%. % is the limit amount for maintaining good compressibility and formability of the steel powder. For the above reasons, the range of the total amount was determined to be 0.4 to 6.5%, and the upper limit of the amount of each individual element, that is, 2.3% for Mn.
6.5% for Cr, 4.8% for Mo, 2.9% for V
%, 2.1% for Nb, 4.2% for W, etc.
This is the limit amount necessary in order not to significantly impair the strength of the shrunk and densified part, and from this meaning, the upper limit amount of each was determined.

本発明法では、以上の如きPと炭化物生成元素
を合金した鋼粉を用いることが肝じんであるが、
このほかに、さらにNi0.1〜5.0%、Cu0.1〜3.0
%、Sn0.1〜4.5%の範囲でこれらの1種または2
種以上を合金した鋼粉を用いることにより、圧粉
体焼結時の収縮、緻密化がより生じ易くなる。こ
れは、PによるCの反撥作用をNi、Cu、Snが一
層助長するからで、その結果、炭化物生成元素の
近傍にCが集まり易くなり、混合した黒鉛粉のス
ムーズな合金化が進行するものと考えられる。こ
れらNi、Cu、Snの下限量は、上記効果の確認さ
れる最低量であり、逆に上限量は、鋼粉の圧縮
性、成形性を損なわない限界量という意味から定
めたものである。
In the method of the present invention, it is essential to use steel powder alloyed with P and carbide-forming elements as described above.
In addition to this, Ni0.1~5.0%, Cu0.1~3.0
%, one or two of these in the range of Sn0.1 to 4.5%
By using steel powder alloyed with more than 100% of the steel powder, shrinkage and densification are more likely to occur during sintering of the green compact. This is because Ni, Cu, and Sn further promote the repulsion of C by P, and as a result, C tends to gather near carbide-forming elements, and smooth alloying of the mixed graphite powder progresses. it is conceivable that. These lower limit amounts of Ni, Cu, and Sn are the minimum amounts in which the above effects are confirmed, and conversely, the upper limit amounts are determined from the viewpoint of the limit amount that does not impair the compressibility and formability of the steel powder.

以上のほかに、本発明法用の原料鋼粉として、
C、O、Siの3元素量を、可能な限り低値に抑制
せねばならない。すなわち、Cは0.15%以下に、
Oは0.70%以下、またSiは0.10%以下に抑制する
ことが肝要である。鋼粉中のC量が0.15%を超え
て多くなると、合金Pと合金Cの双方の影響を受
けて、鋼粉の圧縮性、成形性は著しく劣化し、圧
粉体の強度が低くなつて壊れ易くなる。従つて、
本発明法のように、予めPを合金した鋼粉を用い
る場合、Pによる圧縮性、成形性の劣化分を考慮
して、鋼粉中のC量を可能な限り低値に抑制して
おくことが大切であり、この意味からC量の上限
値を0.15%とした。次に鋼粉中のOは、その量が
余り多くなると、焼結時に焼結性が阻害され、焼
結体の強度が低下するのみならず、混合した黒鉛
粉との反応性も悪くなり、焼結体中へのCの合金
化が進まなくなるため液相も生成し難くなり、収
縮真密度化が進行しなくなる。従つてこの理由か
らO量もまた0.70%以下に抑制せねばならない。
最後にSiは鋳鉄の黒鉛化促進元素としてよく知ら
れた元素であり、このSiが原料鋼粉中に多量に合
金化されていると、圧粉体中に混合介在せしめた
黒鉛粉が基質中に拡散合金化せず、そのため焼結
時の収縮緻密化が起り難くなる。従つて、収縮、
緻密化を促進するためには、鋼粉中のSi量を0.10
%以下に抑制せねばならない。
In addition to the above, as raw material steel powder for the method of the present invention,
The amounts of the three elements C, O, and Si must be suppressed to the lowest possible values. In other words, C is 0.15% or less,
It is important to suppress O to 0.70% or less and Si to 0.10% or less. When the amount of C in the steel powder increases beyond 0.15%, the compressibility and formability of the steel powder deteriorate significantly due to the influence of both alloy P and alloy C, and the strength of the green compact decreases. Becomes easily broken. Therefore,
When using steel powder alloyed with P in advance as in the method of the present invention, the amount of C in the steel powder should be suppressed to the lowest possible value, taking into account the deterioration of compressibility and formability due to P. This is important, and for this reason, the upper limit of the amount of C was set at 0.15%. Next, if the amount of O in the steel powder is too large, it will not only inhibit the sinterability during sintering and reduce the strength of the sintered body, but also deteriorate the reactivity with the mixed graphite powder. Since the alloying of C in the sintered body does not proceed, it becomes difficult to generate a liquid phase, and shrinkage true densification does not proceed. Therefore, for this reason, the amount of O must also be suppressed to 0.70% or less.
Finally, Si is an element well known as an element that promotes graphitization in cast iron, and if a large amount of Si is alloyed in the raw steel powder, the graphite powder mixed in the green compact will be mixed into the matrix. Therefore, shrinkage and densification during sintering are less likely to occur. Therefore, contraction,
In order to promote densification, the amount of Si in the steel powder should be set to 0.10.
% or less.

以上、原料鋼粉の組成限定理由は詳細に説明し
たが、次にこの原料鋼粉に混合して使用する黒鉛
粉について、混合理由および混合量の限定理由を
述べる。本発明法は、焼結中にFe―P―C3元系
の液相を少量、かつ均一に分散させて生成せし
め、これを介して混合黒鉛粉を基質中に拡散合金
化せしめると同時に、この液相を利用して、圧粉
体の形状を維持したまま、徐々に収縮、焼結化を
進めて真密度部品を得ることを内容としたもので
あつて、この時に、黒鉛粉が重要な役割を果すの
である。
The reason for limiting the composition of the raw material steel powder has been explained above in detail.Next, the reason for mixing and the reason for limiting the mixing amount of the graphite powder to be mixed with the raw material steel powder will be described. The method of the present invention generates a small amount of Fe-P-C ternary liquid phase by uniformly dispersing it during sintering, and through this, mixed graphite powder is diffused and alloyed into the matrix. The purpose is to use the liquid phase to gradually shrink and sinter the green compact while maintaining its shape to obtain true-density parts. It fulfills its role.

要するに、上記のFe―P―C3元系の液相状態
を伴なう焼結を行うのに、該混合黒鉛粉がPとの
共同作用によつて機能するのであり、これが凝固
時に高硬度をもたらすステダイト相をつくる。し
かし、かかる混合黒鉛の代わりに、予め原料鋼粉
中に合金したCを利用することも考えられるが、
前述した通り鋼粉の圧縮性、成形性が著しく阻害
されるので好ましくなく、従つて、本発明法では
黒鉛粉を混合使用する。この黒鉛粉の混合量は、
焼結中に液相を生成せしめるために、最低限2.0
%が必要である。しかしその量が5.5%を超えて
多くなると液相生成量が異常に多くなり、焼結中
に圧粉体の形状が崩れたり、部品表面の肌荒れが
ひどくなるなどマイナス面が現われるので、黒鉛
粉の混合量は最大限5.5%で止める必要がある。
なお、混合した黒鉛粉の一部は、鋼粉中のOと反
応して、焼結中に失なわれることがある。
In short, the mixed graphite powder functions in cooperation with P to perform the sintering that involves the liquid phase state of the Fe-P-C ternary system described above, and this causes high hardness during solidification. to create a steadite phase. However, instead of such mixed graphite, it is also possible to use carbon alloyed in raw material steel powder in advance.
As mentioned above, the compressibility and formability of the steel powder are undesirably impaired, and therefore graphite powder is mixed and used in the method of the present invention. The amount of graphite powder mixed is
Minimum 2.0 to generate liquid phase during sintering
%is necessary. However, if the amount exceeds 5.5%, the amount of liquid phase generated will be abnormally large, which will cause negative aspects such as the shape of the green compact to collapse during sintering and the surface roughness of the parts to become severe. It is necessary to limit the mixing amount to a maximum of 5.5%.
Note that some of the mixed graphite powder may react with O in the steel powder and be lost during sintering.

次に本発明では、黒鉛粉を混合した原料粉末
を、金型中で加圧成形して目的とする部品の圧粉
体となし、これを非酸化性雰囲気中で加熱、焼結
し、その時前述の如き液相生成を利用して収縮さ
せ、密度比100%の焼結体、すなわち粉末製鋳物
部品と成すのである。
Next, in the present invention, raw material powder mixed with graphite powder is pressure-molded in a mold to form a green compact of the desired part, which is then heated and sintered in a non-oxidizing atmosphere. The material is shrunk by utilizing the liquid phase formation described above to form a sintered body with a density ratio of 100%, that is, a powder casting part.

上記の成形に当つては、ステアリン酸亜鉛の如
き固体潤滑剤を原料粉末中に混合しても、あるい
は金型潤滑によつてもよく、このこと自体は本発
明法の本質的事項ではない。しかし、成形時の圧
粉密度は極めて重要であり、この値を最低限5.5
g/cm3にしないと焼結後に気孔が残存してしま
い、真密度が得られなくなる。
In the above molding, a solid lubricant such as zinc stearate may be mixed into the raw material powder, or mold lubrication may be used, but this itself is not essential to the method of the present invention. However, the green density during molding is extremely important, and this value should be set to at least 5.5.
g/cm 3 otherwise, pores will remain after sintering, making it impossible to obtain true density.

また、成形時の焼結の温度としては、1000℃以
上が必要であり、これ未満の温度では、液相の生
成量が極めて僅か、あるいは全く生成せず、従つ
て収縮、真密度化は不能となる。なお、1000℃以
上の温度域における実際の焼結温度は、混合黒鉛
粉の量、合金P量、鋼粉の組成、圧粉密度などに
より異なつてくるので、これらの諸値に合わせて
適宜実験により最適温度を決定しなければならな
い。
In addition, the sintering temperature during molding must be 1000℃ or higher; at temperatures below this, very little or no liquid phase will be generated, and shrinkage and true densification will be impossible. becomes. Note that the actual sintering temperature in the temperature range of 1000℃ or higher will vary depending on the amount of mixed graphite powder, amount of alloy P, composition of steel powder, green powder density, etc., so conduct experiments as appropriate according to these values. The optimum temperature must be determined by

なお、本発明法において使用する焼結雰囲気
は、大量の脱炭や酸化を生じる酸化性雰囲気(空
気や酸素ガス)を除いて、不活性ガス(窒素やア
ルゴンなど)や還元性ガス(一酸化炭素、水素、
分解アンモニアガス〔AX〕、プロパン、ブタン等
と空気による変成ガス〔RX〕など)であれば十
分である。
The sintering atmosphere used in the method of the present invention does not contain inert gases (nitrogen, argon, etc.) or reducing gases (monoxide carbon, hydrogen,
A decomposed ammonia gas [AX], a metamorphosed gas consisting of propane, butane, etc. and air [RX], etc.) are sufficient.

以上で本発明法の構成内容とその理由および各
構成要素の限定理由の説明を終るが、次に実施例
によつて本発明法をより具体的に説明する。
This completes the explanation of the contents and reasons for the constitution of the method of the present invention and the reasons for limiting each component.Next, the method of the present invention will be explained in more detail with reference to Examples.

実施例 1 原料粉末として、0.85Mn―1Cr―0.25Mo―
0.08P鋼粉(重量パーセント、以下同様)を用い
た。この粉末の化学組成および粉体特性は次の通
りである。なお、粒度分布も総て重量百分率表示
である。
Example 1 0.85Mn―1Cr―0.25Mo― as raw material powder
0.08P steel powder (weight percentage, same as below) was used. The chemical composition and powder properties of this powder are as follows. In addition, all particle size distributions are also expressed as weight percentages.

化学組成 C 0.091% Si 0.056 Mn 0.89 P 0.078 S 0.020 Cr 1.06 Mo 0.25 O 0.088 見掛密度 3.11g/cm2 流動度 20.2sec/50g 粒度分布 60〜80メツシユ 4.1% 80〜100 9.2 100〜150 13.7 150〜200 32.5 200〜250 18.4 250〜325 10.7 −325 11.4 この鋼粉に黒鉛粉4.5%とステアリン酸亜鉛1
%とを混合し、寸法10□×55L(mm)、圧粉密度
6.8g/cm3に成形後、水素ガス中で1150℃に1時
間保持焼結した。その結果、密度比100%(白鋳
鉄の密度を7.68g/cm3として求めた。なお顕微鏡
観察の結果でも気孔は認められなかつた。)、硬さ
512Hv(荷重5Kg)の真密度焼結製品が得られ
た。この試験片の長手方向の寸法収縮率は、4.6
%であつた。
Chemical composition C 0.091% Si 0.056 Mn 0.89 P 0.078 S 0.020 Cr 1.06 Mo 0.25 O 0.088 Apparent density 3.11g/ cm2 Fluidity 20.2sec/50g Particle size distribution 60~80 mesh 4.1% 80~100 9.2 100~ 150 13.7 150 〜200 32.5 200〜250 18.4 250〜325 10.7 −325 11.4 4.5% graphite powder and 1 zinc stearate are added to this steel powder.
%, size 10□×55 L (mm), green density
After molding to 6.8 g/cm 3 , it was held and sintered at 1150° C. for 1 hour in hydrogen gas. As a result, the density ratio was 100% (calculated assuming the density of white cast iron to be 7.68 g/cm 3 . No pores were observed even in the results of microscopic observation), hardness
A true density sintered product of 512Hv (load: 5Kg) was obtained. The longitudinal dimensional shrinkage rate of this specimen is 4.6
It was %.

実施例 2 P合金量が約0.3%であることを除いて、他の
合金組成は実施例1とほぼ同じ鋼粉を用い、本発
明法を実施した。粉末の化学組成および粉体特性
は以下の通りである。
Example 2 The method of the present invention was carried out using steel powder having almost the same alloy composition as in Example 1 except that the amount of P alloy was about 0.3%. The chemical composition and powder properties of the powder are as follows.

化学組成 C 0.039% Si 0.085 Mn 0.82 P 0.27 S 0.031 Cr 1.01 Mo 0.24 O 0.095 見掛密度 3.26g/cm3 流動度 19.3sec/50g 粒度分布 60〜80メツシユ 5.5% 80〜100 9.7 100〜150 12.6 150〜200 34.3 200〜250 15.0 250〜325 9.1 −325 13.8 この鋼粉に黒鉛粉4.5%とステアリン酸亜鉛1
%を混合し、寸法10□×55L(mm)、圧粉密度6.4
g/cm3に成形後、窒素ガス中で1080℃に1時間保
持焼結した。その結果、密度比100%、硬さ
583Hv(荷重5Kg)の真密度焼結製品が得られ
た。この試験片の長手方向の寸法収縮率は6.6%
であつた。
Chemical composition C 0.039% Si 0.085 Mn 0.82 P 0.27 S 0.031 Cr 1.01 Mo 0.24 O 0.095 Apparent density 3.26 g/cm 3 Fluidity 19.3 sec/50 g Particle size distribution 60-80 mesh 5.5% 80-100 9.7 100-1 50 12.6 150 〜200 34.3 200〜250 15.0 250〜325 9.1 −325 13.8 This steel powder contains 4.5% graphite powder and 1 zinc stearate.
% mixed, dimensions 10□×55 L (mm), powder density 6.4
After molding to a size of g/cm 3 , it was held at 1080° C. for 1 hour and sintered in nitrogen gas. As a result, density ratio 100%, hardness
A true density sintered product with a true density of 583Hv (load: 5Kg) was obtained. The longitudinal dimensional shrinkage rate of this specimen is 6.6%
It was hot.

以上の実施例1および2と比較するため、同一
組成(0.85Mn―1Cr―0.25Mo)の鋼粉にPを
0.021%合金したものと、0.37%合金したものと
を用いて、これらに黒鉛粉4.5%およびステアリ
ン酸亜鉛1%を混合し、前者は密度6.8g/cm3
に、後者は6.4g/cm3に成形後、水素ガス中で前
者は1150℃で1時間、後者は1050℃で1時間の焼
結を施した。成形体寸法は、実施例1および2と
同一にした。その結果、前者は密度6.94g/cm3
焼結体となり、黒鉛の大半が遊離状態で残存した
ほか、気孔も多数観察され、真密度化は不能であ
つた。これに対して、後者は半溶融状態となり、
形状が崩れかかつていたほか、表面の凹凸が激し
く鋳物部品と同等の焼結製品の製造には不適当な
ことがわかつた。これらの比較例および実施例
1、2から、原料鋼粉中のP量に最適範囲のある
ことがわかる。
For comparison with Examples 1 and 2 above, P was added to steel powder with the same composition (0.85Mn-1Cr-0.25Mo).
Using 0.021% alloy and 0.37% alloy, 4.5% graphite powder and 1% zinc stearate were mixed with them, and the former had a density of 6.8 g/cm 3
After molding the latter to 6.4 g/cm 3 , the former was sintered at 1150°C for 1 hour and the latter at 1050°C for 1 hour in hydrogen gas. The dimensions of the molded body were the same as in Examples 1 and 2. As a result, the former became a sintered body with a density of 6.94 g/cm 3 , in which most of the graphite remained in a free state, and many pores were observed, making true densification impossible. On the other hand, the latter is in a semi-molten state,
It was found that the shape was about to collapse and the surface was extremely uneven, making it unsuitable for manufacturing sintered products equivalent to cast parts. From these comparative examples and Examples 1 and 2, it can be seen that there is an optimum range for the amount of P in the raw steel powder.

実施例 3 原料粉末に1.3Mn―0.5Ni―0.5Cr―0.5Mo―
0.1P組成の鋼粉を用いた。この鋼粉の化学組成お
よび粉体特性は次の通りである。
Example 3 1.3Mn―0.5Ni―0.5Cr―0.5Mo― in raw material powder
Steel powder with a composition of 0.1P was used. The chemical composition and powder properties of this steel powder are as follows.

化学組成 C 0.043% Si 0.029 Mn 1.32 P 0.12 S 0.008 Ni 0.54 Cr 0.47 Mo 0.51 O 0.213 見掛密度 3.02g/cm3 流動度 21.6sec/50g 粒度分布 60〜80メツシユ 13.2% 80〜100 13.9 100〜150 23.0 150〜200 22.2 200〜250 9.7 250〜325 11.3 −325 6.7 この鋼粉に黒鉛粉3.5%とステアリン酸亜鉛11
%とを混合し、寸法10□×55L(mm)、圧粉密度
6.4g/cm3に成形後、水素ガス中で1070℃に40分
保持焼結した、その結果、密度比100%、硬さ
542Hv(荷重5Kg)の真密度焼結製品が得られ
た。この試験片の長手方向の寸法収縮率は6.3%
であつた。
Chemical composition C 0.043% Si 0.029 Mn 1.32 P 0.12 S 0.008 Ni 0.54 Cr 0.47 Mo 0.51 O 0.213 Apparent density 3.02g/cm 3 Fluidity 21.6sec/50g Particle size distribution 60-80 mesh 13.2% 80-100 13 .9 100-150 23.0 150~200 22.2 200~250 9.7 250~325 11.3 −325 6.7 3.5% graphite powder and zinc stearate 11 in this steel powder
%, size 10□×55 L (mm), green density
After molding to 6.4g/ cm3 , it was sintered at 1070℃ in hydrogen gas for 40 minutes, resulting in a density ratio of 100% and hardness.
A true density sintered product of 542Hv (load: 5Kg) was obtained. The longitudinal dimensional shrinkage rate of this specimen is 6.3%
It was hot.

以上の実施例からも明らかな通り、本発明法の
適用により真密度で高硬度の焼結製品が製造で
き、しかも予め寸法収縮率を実測し、その分を見
込んで金型設計を行なつておけば、寸法精度の良
好な鋳物と同等の焼結部品を得ることが可能であ
る。このようにして得た高硬度焼結製品は耐摩耗
性に優れるので、例えばカムなどに適用でき、さ
らにシリンダーライナーなどへの応用も可能であ
る。本発明法の適用により高硬度が容易に得られ
るのは、主としてステダイト相の形成によるもの
であるが、このステダイト相は、Fe―P―C3元
系の液相部分が凝固する際に形成されるものであ
り、合金Pと混合黒鉛粉の寄与するところであ
る。従つて、本発明の範囲を外れてP合金量の少
ない鋼粉を使用した場合には、液相を殆んど生成
しないので、焼結中に大きな収縮を生じることも
なく、従つて密度や硬さの大幅な増加も殆んど起
らない。
As is clear from the above examples, by applying the method of the present invention, sintered products with true density and high hardness can be manufactured, and the dimensional shrinkage rate is actually measured in advance and the mold is designed taking this into account. By doing so, it is possible to obtain sintered parts equivalent to castings with good dimensional accuracy. The high-hardness sintered product obtained in this way has excellent wear resistance, so it can be applied to, for example, cams, and furthermore, it can be applied to cylinder liners. The reason why high hardness can be easily obtained by applying the method of the present invention is mainly due to the formation of a steadite phase, which is formed when the liquid phase of the Fe-P-C ternary system solidifies. This is the contribution of alloy P and mixed graphite powder. Therefore, if a steel powder with a small amount of P alloy is used outside the scope of the present invention, it will hardly generate a liquid phase, so there will be no large shrinkage during sintering, and the density and Significant increases in hardness also rarely occur.

例えば前記比較例(0.85Mn―1Cr―0.25Mo鋼
粉にPを0.021%合金したものに黒鉛粉を4.5%混
合して圧粉密度6.8g/cm3で成形し、1150℃で焼
結したもの)の場合、焼結による寸法収縮率は
0.42%であり、焼結体の硬さは152Hv(荷重5
Kg)であつた。なお、P量が逆に本発明の範囲を
外れて多い場合には、前述した通り焼結により半
溶融状態となつて部品形状が崩れてしまう以外
に、部材の脆弱化も著しくなつてしまう。
For example, the above-mentioned comparative example (0.85Mn-1Cr-0.25Mo steel powder alloyed with 0.021% P and 4.5% graphite powder mixed, molded at a powder density of 6.8 g/cm 3 and sintered at 1150°C) ), the dimensional shrinkage rate due to sintering is
0.42%, and the hardness of the sintered body is 152Hv (load 5
Kg). On the other hand, if the amount of P is too large to exceed the range of the present invention, not only will the shape of the part collapse due to sintering resulting in a semi-molten state as described above, but the member will also become extremely brittle.

以上説明したように本発明方法は、通常の粉末
冶金技術の適用によつて真密度(密度比100%)
の鋳物部品と同等の焼結製品を製造することがで
きるので、同一形状の機械部品を多数生産する場
合には、甚だ好都合である。つまり、一つの金型
があれば十分であり、従来鋳造法の如く多数の鋳
型を準備する必要がない。しかも成形は冷間で行
なえ、その自動化が容易な上、焼結も連続して行
なえるなど、従来の鋳造法に較べれば生産性、作
業性、コスト面で極めて有利である。また本発明
法では、従来鋳造法の如き溶湯を使用しないので
高熱作業がなく、作業環境や安全性の面からも有
利となる。
As explained above, the method of the present invention achieves true density (density ratio 100%) by applying ordinary powder metallurgy technology.
Since it is possible to produce sintered products equivalent to cast parts, it is extremely convenient when producing a large number of machine parts of the same shape. In other words, one mold is sufficient, and there is no need to prepare a large number of molds as in the conventional casting method. Furthermore, molding can be performed cold, automation is easy, and sintering can be performed continuously, making it extremely advantageous in terms of productivity, workability, and cost compared to conventional casting methods. Furthermore, the method of the present invention does not use molten metal as in the conventional casting method, so there is no high-temperature work, which is advantageous in terms of working environment and safety.

Claims (1)

【特許請求の範囲】 1 重量%で、主成分としてC:0.15%以下、
O:0.70%以下、Si:0.10%以下、P:0.05〜
0.30%を含み、選択成分としてMn:2.3%以下、
Cr:6.5%以下、Mo:4.8%以下、V:2.9%以
下、Nb:2.1%以下、およびW:4.2%以下のうち
から選ばれる1種または2種以上を含み、かつそ
の選択成分の合計量が0.4〜6.5%の範囲内にあつ
て、残部が不可避的な不純物とFeよりなる鋼粉
を原料粉末とし、その鋼粉に黒鉛粉を2.0〜5.5%
混合し、金型を使つて密度5.5g/cm3以上に圧縮
成形した後、その成形圧粉体を非酸化性雰囲気中
で1000℃以上に加熱して焼結、収縮させることに
より、真密度を有する焼結体とすることを特徴と
する焼結製品の製造方法。 2 重量%で、主成分としてC:0.15%以下、
O:0.70%以下、Si:0.10%以下、P:0.05〜
0.30%を含み、選択成分としてMn:2.3%以下、
Cr:6.5%以下、Mo:4.8%以下、V:2.9%以
下、Nb:2.1%以下およびW:4.2%以下のうちか
ら選ばれる1種または2種以上を含み、かつその
選択成分の合計量が0.4〜6.5%であつて、それに
加えてNi:0.1〜5.0%、Cu:0.1〜3.0%および
Sn:0.1〜4.5%のうちから選ばれる1種または2
種以上を含み、残部が不可避的に混入する不純物
とFeよりなる鋼粉を原料粉末とし、その鋼粉に
黒鉛粉を2.0〜5.5%混合し、金型を使つて密度5.5
g/cm3以上に圧縮成形した後、その成形圧粉体を
非酸化性雰囲気中で1000℃以上に加熱して焼結、
収縮させることにより、真密度を有する焼結体と
することを特徴とする焼結製品の製造方法。
[Claims] 1% by weight, C as a main component: 0.15% or less,
O: 0.70% or less, Si: 0.10% or less, P: 0.05~
Contains 0.30%, Mn as a selected component: 2.3% or less,
Contains one or more selected from Cr: 6.5% or less, Mo: 4.8% or less, V: 2.9% or less, Nb: 2.1% or less, and W: 4.2% or less, and the sum of the selected components The raw material powder is steel powder with an amount in the range of 0.4 to 6.5%, the balance being unavoidable impurities and Fe, and 2.0 to 5.5% of graphite powder to the steel powder.
After mixing and compression molding using a mold to a density of 5.5 g/cm 3 or higher, the compacted powder is heated to 1000°C or higher in a non-oxidizing atmosphere to sinter and shrink, thereby increasing the true density. A method for producing a sintered product, the method comprising: producing a sintered body having the following properties: 2. C: 0.15% or less as the main component in weight%,
O: 0.70% or less, Si: 0.10% or less, P: 0.05~
Contains 0.30%, Mn as a selected component: 2.3% or less,
Contains one or more selected from Cr: 6.5% or less, Mo: 4.8% or less, V: 2.9% or less, Nb: 2.1% or less, and W: 4.2% or less, and the total amount of the selected components. is 0.4 to 6.5%, and in addition, Ni: 0.1 to 5.0%, Cu: 0.1 to 3.0% and
Sn: 1 or 2 selected from 0.1 to 4.5%
The raw material powder is steel powder, which contains more than 100% of carbon dioxide, with the remainder being unavoidably mixed impurities and Fe, and the steel powder is mixed with 2.0 to 5.5% graphite powder, and is molded using a mold to have a density of 5.5.
After compression molding to g/ cm3 or higher, the compacted compact is heated to 1000°C or higher in a non-oxidizing atmosphere and sintered.
1. A method for producing a sintered product, which comprises shrinking the product to produce a sintered product having true density.
JP21353581A 1981-12-28 1981-12-28 Manufacture of sintered product Granted JPS58113350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21353581A JPS58113350A (en) 1981-12-28 1981-12-28 Manufacture of sintered product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21353581A JPS58113350A (en) 1981-12-28 1981-12-28 Manufacture of sintered product

Publications (2)

Publication Number Publication Date
JPS58113350A JPS58113350A (en) 1983-07-06
JPS6140301B2 true JPS6140301B2 (en) 1986-09-08

Family

ID=16640790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21353581A Granted JPS58113350A (en) 1981-12-28 1981-12-28 Manufacture of sintered product

Country Status (1)

Country Link
JP (1) JPS58113350A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649917B2 (en) * 1986-06-25 1994-06-29 日立粉末冶金株式会社 Valve mechanism member of internal combustion engine
KR102073269B1 (en) * 2018-04-26 2020-02-05 (주)지케이에스 Iron based powders for powder metallurgy and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123353A (en) * 1980-03-04 1981-09-28 Toyota Motor Corp Wear resistant sintered alloy and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123353A (en) * 1980-03-04 1981-09-28 Toyota Motor Corp Wear resistant sintered alloy and its manufacture

Also Published As

Publication number Publication date
JPS58113350A (en) 1983-07-06

Similar Documents

Publication Publication Date Title
US3999952A (en) Sintered hard alloy of multiple boride containing iron
CA2462385C (en) Infiltrated aluminum preforms
JP2799235B2 (en) Valve seat insert for internal combustion engine and method of manufacturing the same
US5872322A (en) Liquid phase sintered powder metal articles
CN103060700B (en) Boride particle reinforced Fe-Cr-Al composite material and its preparation method
CN104894483B (en) Powder metallurgy wear resistant tools steel
US5641922A (en) Hi-density sintered alloy and spheroidization method for pre-alloyed powders
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
US6126894A (en) Method of producing high density sintered articles from iron-silicon alloys
US3787205A (en) Forging metal powders
JPH04259351A (en) Manufacture of wear resistant ferrous sintered alloy
US6485540B1 (en) Method for producing powder metal materials
JPS634031A (en) Manufacture of wear-resistant alloy
JPS6140301B2 (en)
KR100570551B1 (en) Method for Manufacturing Alumium Based Alloyed Powder Having Superior Compactability
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JP2572053B2 (en) Manufacturing method of iron alloy moldings
JPH0578708A (en) Production of aluminum-based grain composite alloy
JPS62287041A (en) Production of high-alloy steel sintered material
US4321091A (en) Method for producing hot forged material from powder
CN110129650A (en) A kind of metal/carbon compound nucleocapsid enhancing steel-based composite material and preparation method thereof
CN1185067C (en) Casting with in-situ generated surface cermet layer and its productino process
JPS62270736A (en) Manufacture of valve seat material for internal combustion engine
JPH10317002A (en) Powder with low coefficient of friction, its sintered compact, and production of sintered compact
CN111020395A (en) Iron-based powder metallurgy composite material and preparation method thereof