JPH03197603A - Manufacture of high density titanium alloy sintered parts - Google Patents

Manufacture of high density titanium alloy sintered parts

Info

Publication number
JPH03197603A
JPH03197603A JP33783489A JP33783489A JPH03197603A JP H03197603 A JPH03197603 A JP H03197603A JP 33783489 A JP33783489 A JP 33783489A JP 33783489 A JP33783489 A JP 33783489A JP H03197603 A JPH03197603 A JP H03197603A
Authority
JP
Japan
Prior art keywords
powder
plating
parts
executing
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33783489A
Other languages
Japanese (ja)
Inventor
Makoto Takeuchi
誠 竹内
Shinichi Arai
信一 新井
Kazuo Fujisawa
藤澤 和郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33783489A priority Critical patent/JPH03197603A/en
Publication of JPH03197603A publication Critical patent/JPH03197603A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the parts having excellent fatigue strength without ruggedness of surface and defect of penetrating hole-state by executing hole sealing treatment for pressurized green compact with metal plating of Ni, etc., at the time of manufacturing the Ti alloy parts with raw powder method. CONSTITUTION:Mixed powder mixing Ti powder and one or more kinds of metal powder so as to be the prescribed alloy components, is packed into a flexible mold of rubber, etc., and cold isostatic pressing is executed to obtain the powder green compact. After executing be hole sealing treatment by executing Ni, Cu, Co or Cr plating on surface of this green compact at 10-500mum plating thickness, hot isostatic pressing is executed to obtain the high density Ti alloy sintered parts. As the other way, after executing be above plating to the sintered body obtd. by sintering the powder green compact, the hot isostatic pressing may be executed. By mis method, the parts having complicate shape are easily obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本説明は自動車用部品、海洋ないし船舶用部品、および
−殻構造用等の焼結部品に関わり、特に高密度チタン合
金焼結部品の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) This description relates to sintered parts for automobile parts, marine or ship parts, shell structures, etc., and in particular to the production of high-density titanium alloy sintered parts. Regarding the method.

(従来の技術) コネクティングロッドをはじめとする複雑形状の自動車
用エンジン部品は、従来鉄鋼材料を切削加工して用いら
れてきた。最近の燃費向上、軽量化、高効率化等の目的
に沿って、鉄鋼材料に代わってチタン合金材での各種部
品の開発が進んでいる。同様な開発は、海洋ないし船舶
用部品、および−殻構造用部品においても進んでいる。
(Prior Art) Automotive engine parts with complex shapes, such as connecting rods, have conventionally been manufactured by cutting steel materials. In line with recent objectives such as improving fuel efficiency, reducing weight, and increasing efficiency, various parts are being developed using titanium alloy materials instead of steel materials. Similar developments are also underway in marine and ship components and shell structural components.

しかしながら、従来のチタン合金部品は真空アーク溶解
炉(VAR)による溶解に始まって、鍛造、熱間圧延、
熱処理等の各工程を経た後、機械加工を施して製造して
おり、高価な工程を用いること、工程が複雑なことなど
から、必然的に製品価格も高く、自動車部品等としての
汎用が難しかった。
However, conventional titanium alloy parts are first melted in a vacuum arc melting furnace (VAR), then forged, hot rolled,
After going through various processes such as heat treatment, it is manufactured by mechanical processing, and because the process is expensive and complicated, the product price is inevitably high, and it is difficult to use it as a general-purpose automobile part. Ta.

現在、上記の問題点を解決するために、従来の溶解に代
わって、粉末冶金法などのニアネットシエイブ成形が行
われている。粉末冶金法のうち、所定の合金成分となる
よう予め機械的に混合して成る混合粉末を、所定の形状
に成形できるようにゴムなどの柔軟性のある型に充填し
、冷間静水圧プレス(CI P)で所定の形状に圧粉成
形し、次いで高温下で熱処理により焼結し、さらに、熱
間静水圧プレス(HI P)を行う、いわゆる素粉末法
によるチタン合金部品の製造法が開発されつつある。
Currently, in order to solve the above-mentioned problems, near-net-shave molding such as powder metallurgy is being used instead of conventional melting. Among the powder metallurgy methods, a mixed powder that is mechanically mixed in advance to form a predetermined alloy component is filled into a flexible mold made of rubber or other material so that it can be molded into a predetermined shape, and cold isostatic pressing is performed. There is a method for manufacturing titanium alloy parts using the so-called raw powder method, which is compacted into a predetermined shape using (CI P), then sintered by heat treatment at high temperatures, and then hot isostatically pressed (HI P). It is being developed.

以上の方法によれば、溶解、鍛造ないし熱間圧延といっ
た高砺な工程を経ることなく、自動車用部品等の製造が
可能となる。また、チタン合金の添加成分元素を任意の
重量比に容易に配合することができ、かつ、溶解法およ
び合金粉末法では凝固偏析のために、添加することがで
きないが、添加量に制限のある元素も添加が可能となる
利点も生ずる。
According to the above method, it is possible to manufacture automobile parts and the like without going through elaborate processes such as melting, forging, or hot rolling. In addition, the additional component elements of titanium alloy can be easily blended in any weight ratio, and although they cannot be added due to solidification segregation in the melting method and alloy powder method, there is a limit to the amount of addition. There is also the advantage that elements can also be added.

しかしながら、この素粉末法には以下のような問題点が
あることが明らかになりつつある。第1に、CIP時に
ゴム型等の柔軟性のある型を使用するため、粉末成形体
の表面に粉末形状に起因する凹凸が残り、焼結後及びH
IP後の表面に同様な凹凸が残ること。第2に、粉末を
型に充填する際の不均質充填、ないし複雑形状品のCI
P時に生ずる局所的な不均一加圧により、焼結後の粉末
成形体の表面に部分的に貫通孔が生じ、この貫通孔にH
IP処理処理圧媒ガスが流入するため貫通孔内に圧力が
作用し、貫通孔の封孔が不十分となり、HIP処理後に
貫通孔が欠陥としC残ることである。そのため、高い疲
労強度を必要とする自動車用部品等としての使用に耐え
られない場合がある。
However, it is becoming clear that this raw powder method has the following problems. First, since a flexible mold such as a rubber mold is used during CIP, unevenness due to the powder shape remains on the surface of the powder compact, and after sintering and H
Similar unevenness remains on the surface after IP. Second, CI of non-homogeneous filling or complex-shaped products when filling powder into molds.
Due to the local uneven pressure that occurs during P, through holes are partially formed on the surface of the powder compact after sintering, and H
As pressure medium gas flows into the IP treatment process, pressure acts on the through hole, resulting in insufficient sealing of the through hole, and the through hole remains as a defect after the HIP treatment. Therefore, it may not be able to withstand use as automobile parts that require high fatigue strength.

従来、HIP処理後研削等の対策が施されているが、複
雑な形状の部材を機械加工等で研削することは困難であ
るばかりか、素粉末法の特徴を減殺し、またコスト面で
も不利となり、この問題の合理的な解決法が望まれてき
ている。
Conventionally, countermeasures such as grinding after HIP treatment have been taken, but it is not only difficult to grind components with complex shapes by machining, etc., but it also reduces the characteristics of the base powder method, and is also disadvantageous in terms of cost. Therefore, a rational solution to this problem is desired.

以上の問題点を解決する方法として、特開昭62−20
520号公報では、加圧成形体をショツトブラストする
ことにより封孔処理したのち、HIP処理を行っている
。しかしこの方法では複雑形状の焼結体表面、特に内壁
部表面について封孔処理することは難しい。
As a method to solve the above problems, JP-A-62-20
In Japanese Patent No. 520, a pressure-molded body is subjected to a pore-sealing process by shot blasting, and then a HIP process is performed. However, with this method, it is difficult to seal the complex-shaped sintered body surface, especially the inner wall surface.

一方、特開平1−159358号公報では、チタン部材
の表面に無電解メッキを施し、焼鈍した後ショットピー
ニングを施すことにより、チタン部材の耐摩耗性と疲労
強度の向上を図っているが、これはあくまで表面の平滑
なチタン部材についての処理であり、本発明のように粉
末で成形した部品体表面の欠陥についての封孔処理には
適用できず、本発明とは本質的に異なるものである。
On the other hand, in JP-A-1-159358, the wear resistance and fatigue strength of the titanium member are improved by applying electroless plating to the surface of the titanium member, annealing it, and then subjecting it to shot peening. This is a treatment for titanium members with smooth surfaces, and cannot be applied to sealing defects on the surface of parts molded with powder as in the present invention, and is essentially different from the present invention. .

(発明が解決しようとする課題) 本発明はHIP処理前に封孔処理を適用し、これより自
動車用部品、海洋ないし船舶用部品、および一般構造用
等の焼結部品、特に高密度チタン合金焼結部品表面の凹
凸や貫通孔状の欠陥がなく、疲労強度の優れた部品を得
る製造方法を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention applies sealing treatment before HIP treatment, and from this, sintered parts for automobile parts, marine or ship parts, and general structural use, especially high-density titanium alloy. It is an object of the present invention to provide a manufacturing method for obtaining a part having excellent fatigue strength and having no irregularities or defects such as through holes on the surface of a sintered part.

(課題を解決するための手段) 前記目的を達成するために本発明は、チタン粉末と1種
または2種以上の金属粉末とを所定の合金成分になるよ
うに混合した混合粉末を所定の合金成分になるように混
合した混合粉末を、型に充填し、冷間静水圧プレス成形
した粉末成形体の表面、もしくは当該粉末成形体を焼結
してチタン合金焼結体の表面に、Ni、Cu、Co、も
しくはCrメッキを施して封孔処理をし、更に熱間静水
圧プレスすることを特徴とする高密度チタン合金焼結部
品の製造方法を要旨とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a predetermined alloy using a mixed powder obtained by mixing titanium powder and one or more metal powders so as to have a predetermined alloy component. A mold is filled with a mixed powder mixed to match the components, and Ni, Ni, The gist of the present invention is a method for manufacturing a high-density titanium alloy sintered part, which is characterized by applying Cu, Co, or Cr plating to perform a sealing treatment, and then hot isostatic pressing.

(作  用) 本発明の方法においては、所定の合金成分となるよう予
め機械的に混合して成る混合粉末を、ゴム等の柔軟性の
ある型に充填し、冷間静水圧プレスで所定の形状に成形
した表面が凸凹で全面に貫通孔の生じている粉末成形体
、もしくは当該粉末成形体を高温下で熱処理することに
より焼結してできた、表面が凸凹で且つ局所的に貫通孔
の生じている焼結体、このいずれかについて、表面にメ
ッキすることにより、粉末成形体ないし焼結体表層部を
平滑化し、貫通孔を閉鎖する。これにより、表面の凹凸
を緩和することができ、且つ、HIP処理時に貫通孔へ
の圧媒ガスの流入を防ぎ、HIP処理により貫通孔を消
滅させることができる。これにより従来問題となってい
たHIP処理後の焼結体の凹凸および局所的な貫通孔状
の欠陥の著しい改善を可能とした。
(Function) In the method of the present invention, a mixed powder prepared by mechanically mixing in advance to form a predetermined alloy component is filled into a flexible mold made of rubber or the like, and a predetermined amount is formed using a cold isostatic press. A powder compact that has been molded into a shape and has an uneven surface and through-holes on the entire surface, or a powder compact that has been sintered by heat-treating the powder compact at a high temperature, and has an uneven surface and localized through-holes. By plating the surface of any of the sintered bodies in which this has occurred, the powder compact or the surface layer of the sintered body is smoothed and the through holes are closed. This makes it possible to reduce surface irregularities, prevent pressure medium gas from flowing into the through holes during the HIP process, and eliminate the through holes during the HIP process. This has made it possible to significantly improve the unevenness and local defects in the form of through-holes in the sintered body after HIP treatment, which were conventional problems.

本発明において、金属粉末とはアルミニウム粉末やバナ
ジウム粉末などの単体粉末およびV 40Aρ6oなど
の合金粉末をさす。
In the present invention, metal powder refers to single powder such as aluminum powder and vanadium powder, and alloy powder such as V40Aρ6o.

また本発明でメッキ厚さをl〇−以上50〇−以下に限
定したのは、l〇−以下のメッキ処理では封孔処理が不
十分であり、また500un以上のメッキ処理は封孔お
よび表面凹凸の緩和に寄与しないばかりか、焼結体の密
度をいたずらに上昇させる欠点が生じるからである。
In addition, in the present invention, the plating thickness is limited to 10-500 or more because plating less than 10-100 is insufficient for sealing, and plating 500 or more is not sufficient to seal the pores and the surface. This is because not only does it not contribute to alleviating unevenness, but it also has the disadvantage of unnecessarily increasing the density of the sintered body.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

実施例 1 2N類の粉末、すなわち、その組成がチタン99.6%
、酸素0.09%、塩素0.0005%以下よりなるチ
タン粉末と、その組成がアルミニウム60%、バナジウ
ム40%の添加用母合金粉末とを用意した。
Example 1 2N type powder, i.e. its composition is 99.6% titanium
, titanium powder containing 0.09% oxygen and 0.0005% or less chlorine, and a master alloy powder for addition whose composition was 60% aluminum and 40% vanadium were prepared.

ついで以下の工程にしたがってTl−6AfI−4v系
の組成よりなる成品を製造した。第一工程:チタン粉末
と添加用母合金粉末を重量比9:1の混合比で機械的に
混合した。第二工程:第一工程で得られた混合粉末を所
定の形状の弾力性のあるゴム型に装入、充填した。第三
工程:充填された粉末を冷間静水圧プレスにより圧粉成
形した。第四工程:圧粉体を、真空度10−’〜lO−
’torrx約1100℃で焼結処理した。得られた焼
結体の相対密度は92%であった。第五工程:焼結体を
公知の電気メッキ法により焼結体表面にメッキを施した
Next, a product having a Tl-6AfI-4v composition was manufactured according to the following steps. First step: Titanium powder and additive master alloy powder were mechanically mixed at a weight ratio of 9:1. Second step: The mixed powder obtained in the first step was charged and filled into an elastic rubber mold having a predetermined shape. Third step: The filled powder was compacted by cold isostatic pressing. Fourth step: The green compact is heated to a vacuum degree of 10-' to 1O-
The sintering process was carried out at a temperature of about 1100°C. The relative density of the obtained sintered body was 92%. Fifth step: The surface of the sintered body was plated by a known electroplating method.

第六工程:メッキされた焼結体を、約900℃の温度で
熱間静水圧プレス処理をした。
Sixth step: The plated sintered body was subjected to hot isostatic pressing at a temperature of about 900°C.

第1表にメッキの種類、主な浴組成、平均メッキ厚、メ
ッキ後の封孔状況、HIP後の相対密度、および成品の
疲労強度を示した。表中の疲労試験条件は、軸力、応力
比R−−1、周波数f −20Hz、大気中、室温であ
る。
Table 1 shows the type of plating, the main bath composition, the average plating thickness, the sealing condition after plating, the relative density after HIP, and the fatigue strength of the finished product. The fatigue test conditions in the table are axial force, stress ratio R--1, frequency f-20Hz, atmosphere, and room temperature.

1 第1表から明らかなようにN 1. Cu、 Co、 
Crいずれの場合にも完全に封孔処理がされた結果、従
来の製法と比較して、高密度の成品が得られ、表面の凹
凸も少なく、且つ疲労強度も向上することがわかる。
1 As is clear from Table 1, N 1. Cu, Co,
It can be seen that as a result of complete pore sealing treatment in both cases of Cr, a product with higher density is obtained, the surface has fewer irregularities, and the fatigue strength is improved compared to the conventional manufacturing method.

実施例 2 2a類の粉末、すなわち、その組成がチタン99.6%
、酸素0.09%、塩素0.0005%以下よりなるス
ポンジチタン粉末と、その組成がアルミニウム60%、
バナジウム40%の添加用母合金粉末とを用意した。
Example 2 Class 2a powder, i.e. its composition is 99.6% titanium
, sponge titanium powder consisting of 0.09% oxygen and 0.0005% or less chlorine, and its composition is 60% aluminum,
A master alloy powder for addition containing 40% vanadium was prepared.

ついで以下の工程にしたがってTI−6Tl−6A系の
組成よりなる成品を製造した。第一工程:チタン粉末と
添加用母合金粉末を重量比9:1の混合比で機械的に混
合した。第二工程:第一工程で得られた混合粉末を所定
の形状の弾力性のあるゴム型に装入、充填した。第三工
程:充填された粉末を冷間静水圧プレスにより圧粉成形
した。第四工程二圧粉成形体を公知の電気メッキ法によ
り表面にメッキを施した。第五工程ニメッキされた焼結
体を、約900℃の温度で熱間静水圧プレス処理をした
Then, a product having a composition of TI-6Tl-6A was manufactured according to the following steps. First step: Titanium powder and additive master alloy powder were mechanically mixed at a weight ratio of 9:1. Second step: The mixed powder obtained in the first step was charged and filled into an elastic rubber mold having a predetermined shape. Third step: The filled powder was compacted by cold isostatic pressing. Fourth step: The surface of the second compacted powder compact was plated by a known electroplating method. Fifth step: The plated sintered body was subjected to hot isostatic pressing at a temperature of about 900°C.

第2表にメッキの種類、主な浴組成、平均メッキ厚、メ
ッキ後の封孔状況、IIIP後の相対密度、および成品
の疲労強度を示した。表中の疲労試験条件は、軸力、応
力比R−−1、周波数f = 20Hz。
Table 2 shows the type of plating, the main bath composition, the average plating thickness, the sealing condition after plating, the relative density after IIIP, and the fatigue strength of the finished product. The fatigue test conditions in the table are axial force, stress ratio R--1, and frequency f = 20Hz.

大気中、室温である。In the atmosphere, at room temperature.

第2表から明らかなようにNl、 Cu、 Co。As is clear from Table 2, Nl, Cu, and Co.

Crいずれの場合にも完全に封孔処理がされた結果、従
来の製法と比較して、高密度の成品が得られ、表面の凹
凸も少なくなることがわかる。
It can be seen that as a result of complete pore sealing treatment in both cases of Cr, a product with higher density is obtained and the surface unevenness is reduced compared to the conventional manufacturing method.

(発明の効果) 以上の説明から明らかなように、本発明では素粉末法に
よるチタン合金焼結部品の製造において問題となってい
る表面の凸凹および貫通孔状の欠陥を、研削することな
く容易に無くすことができ、素粉末法の特徴を維持しつ
つ、自動車用部品等に耐えつる高密度チタン合金部品を
得ることができる。
(Effects of the Invention) As is clear from the above description, the present invention can easily eliminate surface irregularities and through-hole-like defects, which are problems in the production of titanium alloy sintered parts using the raw powder method, without grinding. It is possible to obtain high-density titanium alloy parts that can withstand automotive parts and the like while maintaining the characteristics of the base powder method.

Claims (2)

【特許請求の範囲】[Claims] (1)チタン粉末と1種または2種以上の金属粉末とを
所定の合金成分になるように混合した混合粉末を、型に
充填し、これを冷間静水圧プレス成形した粉末成形体の
表面に、Ni、Cu、Co、もしくはCrメッキをメッ
キ厚10μm以上500μm以下施すことにより封孔処
理をし、更に熱間静水圧プレスすることを特徴とする高
密度チタン合金焼結部品の製造方法。
(1) The surface of a powder compact obtained by filling a mold with a mixed powder made by mixing titanium powder and one or more metal powders to have a predetermined alloy composition, and then cold isostatically press-forming the mixed powder. A method for producing a high-density titanium alloy sintered part, characterized in that the pores are sealed by applying Ni, Cu, Co, or Cr plating to a plating thickness of 10 μm or more and 500 μm or less, and then hot isostatic pressing.
(2)チタン粉末と1種または2種以上の金属粉末とを
所定の合金成分になるように混合した混合粉末を、型に
充填し、これを冷間静水圧プレスして粉末成形体を形成
し、該粉末成形体を焼結して製造したチタン合金焼結体
の表面に、Ni、Cu、Co、もしくはCrメッキをメ
ッキ厚10μm以上500μm以下施すことにより封孔
処理をし、更に熱間静水圧プレスすることを特徴とする
高密度チタン合金焼結部品の製造方法。
(2) Fill a mold with a mixed powder made by mixing titanium powder and one or more metal powders to have a predetermined alloy composition, and then cold isostatically press the mixture to form a powder compact. Then, the surface of the titanium alloy sintered body produced by sintering the powder compact is sealed by applying Ni, Cu, Co, or Cr plating to a thickness of 10 μm or more and 500 μm or less, and then hot plated. A method for manufacturing high-density titanium alloy sintered parts, characterized by hydrostatic pressing.
JP33783489A 1989-12-26 1989-12-26 Manufacture of high density titanium alloy sintered parts Pending JPH03197603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33783489A JPH03197603A (en) 1989-12-26 1989-12-26 Manufacture of high density titanium alloy sintered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33783489A JPH03197603A (en) 1989-12-26 1989-12-26 Manufacture of high density titanium alloy sintered parts

Publications (1)

Publication Number Publication Date
JPH03197603A true JPH03197603A (en) 1991-08-29

Family

ID=18312408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33783489A Pending JPH03197603A (en) 1989-12-26 1989-12-26 Manufacture of high density titanium alloy sintered parts

Country Status (1)

Country Link
JP (1) JPH03197603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2499669A (en) * 2012-02-24 2013-08-28 Charles Malcolm Ward-Close A method of densifying a porous metallic body
JP2017514993A (en) * 2014-03-25 2017-06-08 サンドビック インテレクチュアル プロパティー アクティエボラーグ Method for manufacturing picklable metal components

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2499669A (en) * 2012-02-24 2013-08-28 Charles Malcolm Ward-Close A method of densifying a porous metallic body
CN104136148A (en) * 2012-02-24 2014-11-05 C·M·沃德-克洛斯 Processing of metal or alloy objects
GB2499669B (en) * 2012-02-24 2016-08-10 Malcolm Ward-Close Charles Processing of metal or alloy objects
CN104136148B (en) * 2012-02-24 2016-08-24 C·M·沃德-克洛斯 The processing of metal or alloy object
JP2017514993A (en) * 2014-03-25 2017-06-08 サンドビック インテレクチュアル プロパティー アクティエボラーグ Method for manufacturing picklable metal components

Similar Documents

Publication Publication Date Title
US5613180A (en) High density ferrous power metal alloy
AU2013223879B2 (en) Processing of metal or alloy objects
US20040096350A1 (en) Method for manufacturing fully dense metal sheets and layered composites from reactive alloy powders
US4582678A (en) Method of producing rocket combustors
CN105522156B (en) A kind of manufacture method of powder metallurgy silumin compressor piston
JPH0610009A (en) Production of sintered molded iron article having nonporous zone
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
KR20030071540A (en) Production method of high density iron based forged part
JP3774625B2 (en) Method for forging sintered parts
CN111822711A (en) High-density titanium or titanium alloy part and powder metallurgy mold filling manufacturing method thereof
US20090129964A1 (en) Method of forming powder metal components having surface densification
US20100196188A1 (en) Method of producing a steel moulding
US4244738A (en) Method of and apparatus for hot pressing particulates
JPH03197603A (en) Manufacture of high density titanium alloy sintered parts
JP4133078B2 (en) Method for producing fiber reinforced metal
EP1886747A1 (en) Process for producing aluminum composite material
JPH03211206A (en) Manufacture of high density titanium alloy sintered parts
JPS6345306A (en) Production of sintered member
CN109158593B (en) Preparation method of office table connecting bracket
JP4178070B2 (en) Method for canning sintered preform and method for producing sintered material thereby
JP2006342374A (en) Method for manufacturing metal sintered compact and alloy sintered compact
JPH0643628B2 (en) Method for manufacturing aluminum alloy member
JPH03215603A (en) Manufacture of high density titanium alloy powder sintered product
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JPH0525591A (en) Wire for piston ring and its manufacture