JPH03215603A - Manufacture of high density titanium alloy powder sintered product - Google Patents

Manufacture of high density titanium alloy powder sintered product

Info

Publication number
JPH03215603A
JPH03215603A JP2010593A JP1059390A JPH03215603A JP H03215603 A JPH03215603 A JP H03215603A JP 2010593 A JP2010593 A JP 2010593A JP 1059390 A JP1059390 A JP 1059390A JP H03215603 A JPH03215603 A JP H03215603A
Authority
JP
Japan
Prior art keywords
powder
sintered body
sintered
alloy
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010593A
Other languages
Japanese (ja)
Inventor
Hiroshi Hayakawa
浩 早川
Isamu Takayama
勇 高山
Saburo Kitaguchi
北口 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010593A priority Critical patent/JPH03215603A/en
Publication of JPH03215603A publication Critical patent/JPH03215603A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a high density Ti alloy powder sintered crystal having excellent fatigue strength by executing reduced pressure plasma thermal spraying of the specific metal to surface after compacting and sintering mixed powder of Ti powder and the other metal powder and further executing hot isostatic pressing. CONSTITUTION:The Ti powder and e.g., powder of Al-V alloy are mixed, and after packing into an elastic rubber mold having the specific shape, cold isostatic press-compacting is executed. After sintering the green compact, the sintered body is inserted into the reduced pressure plasma thermal spraying apparatus and one kind of metal among Cu, Ni, Co, Fe, Mn, etc., is thermally sprayed in the reduced pressure atmosphere of Ar, He, etc., to form the thermal spraying film on the surface of sintered body. Successively, the hot isostatic pressing treatment is executed to this to manufacture the sintered parts with the high density Ti alloy powder having excellent fatigue characteristic without developing opened holes on the surface as effect of the sintered body.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車用品、海洋ないし船舶用部品および一
般構造用等の粉末焼結部品などを高密度チタン合金部品
で製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing powder sintered parts for automobile parts, marine or ship parts, general structural use, etc. using high-density titanium alloy parts. be.

(従来の技術) エンジン部品のコンロッドをはじめとする複雑形状の自
動車用部品は従来鉄鋼材料を鍛造し切削加工されて使用
されてきた。近年、燃費向上、軽量化の目的に鉄鋼材料
に代わってチタン合金材での各種部品の開発が進んでい
る。同様な開発は、海洋ないし船舶用部品および一般構
造用等の粉末焼結部品においても活発である。
(Prior Art) Automotive parts with complex shapes, such as connecting rods for engine parts, have traditionally been forged and machined from steel materials. In recent years, various parts have been developed using titanium alloy materials instead of steel materials to improve fuel efficiency and reduce weight. Similar developments are also active in powder sintered parts for marine or ship parts and general structural use.

しかしながら、従来のチタン合金部品は、真空アーク溶
解法による鋳塊の製造、鍛造、熱間圧延、熱処理等の工
程を経た後薄板や厚板等に製造され、それから上記の所
望の部品に鍛造し切削加工することにより製造されるが
、このように製造、加工工程が多く、従って製品価値も
高くなり、上記部品としての汎用が難しい。またチタン
合金は切削性が鉄鋼材料に比して悪いなどの難点がある
However, conventional titanium alloy parts are manufactured into thin plates or thick plates after going through processes such as manufacturing ingots using vacuum arc melting, forging, hot rolling, and heat treatment, and then are forged into the desired parts mentioned above. Although it is manufactured by cutting, there are many manufacturing and processing steps, and therefore the product value is high, making it difficult to use it as a general-purpose part. Furthermore, titanium alloys have disadvantages such as poor machinability compared to steel materials.

上記の諸点を改良するために、従来の溶解工程法に代わ
って、粉末冶金法のニアネットシェイプ(Near N
et Shape)技術て成形し、低コスト化の努力を
している。しかしながらこの粉末冶金法にも最終工程の
熱間静水圧プレス(HIP)処理後に製品表面に貫通孔
が多数残存し、高い疲労強度を必要とする自動車用部品
等としての使用に耐えられない場合かある。
In order to improve the above points, a powder metallurgy method near net shape (Near N
Efforts are being made to reduce costs by molding using et shape technology. However, even with this powder metallurgy method, many through holes remain on the product surface after the final process of hot isostatic pressing (HIP), making it difficult to withstand use as automotive parts that require high fatigue strength. be.

このような問題を解決するために特開昭6220520
号公報には、加圧成形体をショソトピーニングすること
により封孔処理したのち、HIP処理を行うことが開示
されている。しかしこの方法では複雑形状の焼結体表面
、特に内壁部表面について封孔処理することか難しい。
In order to solve such problems, Japanese Patent Application Laid-Open No. 6220520
The publication discloses that a pressure-molded body is subjected to a pore-sealing process by shosotopeening and then subjected to a HIP process. However, with this method, it is difficult to seal the complex-shaped sintered body surface, especially the inner wall surface.

−X、特開平1−159358号公報にはチタン部材の
表面に無電解メッキを施し、焼鈍後ショットピニングを
施すことにより焼結体表面の欠陥の改善を計ることが開
示されているが、同様な問題点が残存していた。
-X, JP-A-1-159358 discloses that defects on the surface of a sintered body are improved by applying electroless plating to the surface of a titanium member and subjecting it to shot pinning after annealing. Some problems remained.

(発明か解決すべき課題) そこでこれらの問題点を解決するために、本発明名らは
粉末冶金法の中でも素粉末混合法について1f究した。
(Problems to be Solved by the Invention) In order to solve these problems, the inventors of the present invention investigated the elementary powder mixing method among the powder metallurgy methods.

素粉末混合法方法は、原料粉末として所定の合金成分の
粉末を機械的に混合し、あらかじめ所望の型に作られた
ゴム等の型にその混合粉末を充填し、冷間静水圧プレス
で所定の形状に成形し、続いてその圧粉塊を真空焼結炉
に挿入し加熱して、合金化した焼結チタン合金部材を熱
間静水圧プレス(以下HIPと記載する。)で成形する
工程が代表的なものである。また粉末を出発材料とすれ
ば、小ロット多品種の製品が容易に最終製品形状(Ne
t Shape)ないしは最終製品に近い形状(Nea
r Net Shape)に成形できる利点がある。
The raw powder mixing method involves mechanically mixing powders of a specified alloy component as raw material powders, filling the mixed powder into a mold made of rubber or the like made in advance into a desired mold, and pressing it into the specified shape using a cold isostatic press. The process of forming the powder into the shape of , then inserting the powder lump into a vacuum sintering furnace, heating it, and forming the alloyed sintered titanium alloy member using hot isostatic pressing (hereinafter referred to as HIP). is a typical example. In addition, if powder is used as a starting material, small lots and a wide variety of products can be easily produced in the final product shape (Ne
t Shape) or a shape close to the final product (Near
It has the advantage that it can be molded into a net shape.

また鋳塊中に形成される偏折などの内部欠陥かなく、所
望の合金成分を容易に得られることか粉末冶金法の大き
な特徴である。本発明者らはHIP処理後の製品の表面
欠陥の解消のため、HIP処理後ショットピーニングに
より疲労特性改善を成し遂げてこれを特願平1−514
48号に特許出願している。そして素粉末混合法で製造
したチタン合金は、鋳塊溶解圧延法で製造したものとほ
ほ同等の引張特性、疲労特性を示すことを明らかにして
きた。
Another major feature of the powder metallurgy method is that there are no internal defects such as polarization formed in the ingot, and desired alloy components can be easily obtained. In order to eliminate surface defects of products after HIP treatment, the present inventors achieved improvement in fatigue properties by shot peening after HIP treatment and disclosed this in Japanese Patent Application No. 1-514.
A patent application has been filed for No. 48. It has been revealed that titanium alloys manufactured by the raw powder mixing method exhibit tensile and fatigue properties that are almost equivalent to those manufactured by the ingot melting and rolling method.

さらに本発明者らはその前工程での高密度化方策の検討
をすすめてきており、HIP処理前の焼結体にプラズマ
処理することが極めて有効であることがわかった。
Furthermore, the present inventors have been studying methods for increasing density in the previous process, and have found that it is extremely effective to subject the sintered body to plasma treatment before HIP treatment.

すなわち本発明は自動車用品、海洋ないし船舶用部品お
よび一般構造用等の粉末焼結部品、特にチタン合金焼結
部品表面の貫通孔の欠陥を、HIP処理前の処理によっ
て無くし高密度化し、疲労強度の優れた部品の製造方法
を提供することを目的とするものである。
That is, the present invention eliminates through-hole defects on the surface of powder sintered parts, especially titanium alloy sintered parts, for automobile parts, marine or ship parts, and general structural use, etc., by treatment before HIP treatment, increases the density, and improves fatigue strength. The purpose of this invention is to provide a method for manufacturing excellent parts.

(5題を解決するための手段) 上記目的を達成するために本発明は、チタン粉末と1種
以上の金属粉末とを所定の合金組成になるように混合し
た混合粉末を型に充填し、冷間静水圧プレス成形し、当
該粉末成形体を焼結することによりなるチタン合金焼結
体の表面にCu,Ni  Co  Fe,Mnの1元素
を減圧プラズマ溶射て付着させ、更に熱間静水圧プレス
することを特徴とする高密度チタン合金粉末焼結製品の
製造方法を要旨とする。
(Means for Solving the Five Problems) In order to achieve the above object, the present invention fills a mold with a mixed powder obtained by mixing titanium powder and one or more metal powders so as to have a predetermined alloy composition, One element of Cu, Ni Co Fe, and Mn is deposited on the surface of the titanium alloy sintered body by cold isostatic press molding and sintering of the powder compact, and then hot isostatic press is applied. The summary is a method for manufacturing a high-density titanium alloy powder sintered product, which is characterized by pressing.

以下本発明を詳細に説明する。The present invention will be explained in detail below.

本発明において、チタン合金としてはTjに例えばA,
Q,V,Mo,Cr,Zr,Sn,Feなどの1種また
は2種以上を含有せしめてなるチタン合金に適用できる
In the present invention, as the titanium alloy, Tj is, for example, A,
It can be applied to titanium alloys containing one or more of Q, V, Mo, Cr, Zr, Sn, Fe, etc.

本発明で金属粉末とはAΩ粉末などの単体粉末およびV
4oAΩ6oなどの合金粉末を指す。
In the present invention, metal powders include simple powders such as AΩ powders and VΩ powders.
Refers to alloy powder such as 4oAΩ6o.

また本発明で金属Cu,Ni ,Co,FeMnに限定
したのは、付着させる金属がTIと固溶体を作り易いこ
と、すなわちこれらの金属で、TIとの共晶温度がそれ
ぞれ875, 942, 1020.1085.  1
180℃と低いからである。また、上記の金属は、減圧
プラズマ溶射て付着させ、共晶温度以上てTl母材と反
応させてやると、表面欠陥である貫通孔群を溶かして真
空に密閉し、また溶融皮膜を形成してこれを解消し易く
するためである。
Further, in the present invention, the metals Cu, Ni, Co, and FeMn are limited because the metals to be deposited easily form a solid solution with TI, that is, these metals have eutectic temperatures with TI of 875, 942, and 1020, respectively. 1085. 1
This is because the temperature is as low as 180°C. In addition, when the above metals are deposited by low-pressure plasma spraying and reacted with the Tl base material at a temperature above the eutectic temperature, the through-holes that are surface defects are melted and sealed in a vacuum, and a molten film is formed. This is to make it easier to solve this problem.

更に、実操作上からみて、溶射電流、1200Amp、
以上プラズマガス、Ar 80R /IIlin , 
He 10,Q /win以上、減圧雰囲気10Tor
r以下の条件下で容易に表面欠陥を溶融でき、補修しや
すい金属であることから、上記元素を特定した。
Furthermore, from the point of view of actual operation, the spraying current is 1200Amp,
Above plasma gas, Ar 80R/IIlin,
He 10, Q /win or more, reduced pressure atmosphere 10 Tor
The above element was identified because it is a metal that can easily melt surface defects and is easy to repair under conditions of r or less.

本発明において、粉体は、4000kg f / c一
以上望ましくは5000kgf/dで151Ilin以
上で冷間静水圧プレスして成形し、当該粉末成形体を焼
結したチタン合金焼結体の表面は貫通孔で覆われている
がその封孔処理に金属付着の効果は工業的に大である。
In the present invention, the powder is molded by cold isostatic pressing at 4,000 kg f/c or more, preferably 5,000 kg f/d, and 151 Ilin or more, and the surface of the titanium alloy sintered body obtained by sintering the powder compact is penetrated. Although it is covered with pores, the effect of metal adhesion on sealing the pores is industrially significant.

すなわち、熱間静水圧プレスは混合合金成分のαとβの
二相温度領域でl000kgf/c一以上15min以
上で行うと、表面層の貫通孔は少なくなり、部品内部の
ボア(孔)の残留が解消し、高密度チタン合金の粉末焼
結製品ができる。
In other words, if hot isostatic pressing is performed in the two-phase temperature range of α and β of the mixed alloy component at 1000 kgf/c or more and 15 min or more, the number of through holes in the surface layer will decrease, and the remaining bores inside the part will be reduced. This eliminates the problem and produces high-density titanium alloy powder sintered products.

このようにチタン合金焼結体の表面にCu,Ni ,C
o,Fe,Mnの1元素を減圧プラズマ溶射で付着させ
ることにより、複雑形状の焼結体表面についても封孔処
理を容易にし、焼結体の表面および内部の孔を封孔した
結果、高密度化して、金属組織を微細化し、疲労特性の
優れた高信頼性の製品の開発を可能にした。
In this way, Cu, Ni, and C are deposited on the surface of the titanium alloy sintered body.
By depositing one of the elements O, Fe, and Mn by low-pressure plasma spraying, it is easy to seal the surface of a sintered body with a complex shape, and as a result of sealing the pores on the surface and inside of the sintered body, By increasing the density and refining the metal structure, we have made it possible to develop highly reliable products with excellent fatigue properties.

以下に本発明の実施例を説明する。Examples of the present invention will be described below.

(実施例1) 2種類の粉末、チタン99,6%、酸素0.09%、塩
素0.0005%以下よりなるチタン粉末と組成がアル
ミニウム60%、バナジウム40%の母合金粉末を用意
した。
(Example 1) Two types of powder were prepared: a titanium powder consisting of 99.6% titanium, 0.09% oxygen, and 0.0005% or less of chlorine, and a master alloy powder having a composition of 60% aluminum and 40% vanadium.

以下の工程に従ってTi−6%Aρ−4%Vのチタン合
金試験片形状の棒10++++e’X 200mm’ 
(長さ)を製造し、特性を調査した。
Ti-6%Aρ-4%V titanium alloy specimen shape bar 10+++e'X 200mm' according to the following process
(length) was manufactured and its characteristics were investigated.

第1工程:チタンと母合金の粉末を重量比9:1の混合
比で機械的に混合した。
First step: Titanium and master alloy powders were mechanically mixed at a weight ratio of 9:1.

第2工程:第1工程で得られた混合粉末を所定形状の弾
力のあるゴム型に充填した。
Second step: The mixed powder obtained in the first step was filled into an elastic rubber mold having a predetermined shape.

HIP後において製品で10+am’の疲労試験片とな
るようにCIPの試験片用 ゴム型を用意した。
A rubber mold for a CIP test piece was prepared so that the product would be a fatigue test piece of 10+am' after HIP.

第3工程:ゴム型に充填された粉末を4000kg f
 /C一で15min冷間静水圧プレスした。
3rd step: 4000 kg of powder filled into a rubber mold
/C1 cold isostatic pressing for 15 minutes.

第4工程:圧粉体を真空度10−4Torr, 125
0℃で2hr焼結処理した。
4th step: The green compact is vacuumed at 10-4 Torr, 125
Sintering treatment was performed at 0°C for 2 hours.

第5工程:焼結体を減圧プラズマ溶射装置内に挿入し、
溶射電流は1400Amp.、プラズマガスはA r 
120N /min , He 20g/min s減
圧雰囲気20Torrの条件下で、第1表に示す金属元
素を減圧プラズマ 溶射て5分間溶射付着させ、約10−の溶融皮膜を形成
させた。比較のために 従来法として本工程の無いものを入れ た。
Fifth step: Insert the sintered body into a reduced pressure plasma spraying device,
The spraying current was 1400Amp. , the plasma gas is Ar
Under the conditions of 120 N/min, He 20 g/min s and a reduced pressure atmosphere of 20 Torr, the metal elements shown in Table 1 were deposited by vacuum plasma spraying for 5 minutes to form a molten film of about 10-. For comparison, a conventional method without this step was included.

第6工程:減圧プラズマ溶射された焼結体を熱間静水圧
プレス炉に挿入し、900℃,3時間, l000kg
 f /c−で熱間静水圧プレスした。
6th step: Insert the sintered body subjected to low pressure plasma spraying into a hot isostatic press furnace and press at 900°C for 3 hours, 1000 kg
Hot isostatically pressed at f/c-.

第1表に金属元素と減圧プラズマ溶射試験結果と従来法
の比較を示す。
Table 1 shows a comparison of metal elements, low pressure plasma spraying test results, and conventional methods.

それぞれの金属の表面封孔状態は試料断面の金属組織の
観察と併せて観察した。密度はアルキメデス法により求
め、予め表面貫通孔あるいは内部にボアの残存のない標
準試料として相対密度を計算し第1表に示した。表中の
疲労強度試験条件は軸力、応力比R一−1、周波数f 
− 2011z,大気中、室温である。
The surface sealing state of each metal was observed together with the observation of the metal structure of the cross section of the sample. The density was determined by the Archimedes method, and the relative density was calculated in advance using a standard sample with no surface through-holes or internal bores remaining and is shown in Table 1. The fatigue strength test conditions in the table are axial force, stress ratio R-1, frequency f
- 2011z, in the atmosphere, at room temperature.

第1表から明らかなようにCu, Ni, Co,Fe
,Mnのいずれの場合にも完全に封孔処理がされた結果
、従来法と比較して部品内部のボア(孔)の残留が解消
し、高密度チタン合金の粉末焼結製品ができ、疲労強度
(107サイクル数)も向上することが分かる。
As is clear from Table 1, Cu, Ni, Co, Fe
, Mn, as a result of complete pore sealing treatment, there are no remaining bores inside the parts compared to conventional methods, and a powder sintered product of high-density titanium alloy is produced, reducing fatigue. It can be seen that the strength (number of 107 cycles) is also improved.

第    1    表 (実施例2) 4種類の粉末、チタン99.6%、酸素0.09%、塩
素0.0005%以下よりなるチタン粉末と組成がアル
ミニウム60%とバナジウム40%の母合金粉末、バナ
ジウム85%とアルミニウム15%の母合金粉末および
鉄100%の粉末を用意した。
Table 1 (Example 2) Four types of powder: titanium powder consisting of 99.6% titanium, 0.09% oxygen, and 0.0005% or less of chlorine; mother alloy powder having a composition of 60% aluminum and 40% vanadium; A master alloy powder of 85% vanadium and 15% aluminum and a powder of 100% iron were prepared.

以下の工程に従ってT I − 10%V−2%Fe−
3%,lのチタン合金試験片形状の捧10mm’ X2
 0 0 mm ’を製造し、特性を調査した。
T I-10%V-2%Fe- according to the following steps
3%, l titanium alloy specimen shape 10mm'X2
00 mm' was manufactured and its characteristics were investigated.

第1王程:チタン、母合金八Ω60V40+ V85A
N 15、鉄の粉末を重量比85 : 2.5 : 1
0.5 : 2の混合比で機械的に混合した。
1st King: Titanium, mother alloy 8Ω60V40+V85A
N15, iron powder weight ratio 85:2.5:1
Mechanical mixing was performed at a mixing ratio of 0.5:2.

第2工程:第1工程で得られた混合粉末を所定形状の弾
力のあるゴム型に充填した。
Second step: The mixed powder obtained in the first step was filled into an elastic rubber mold having a predetermined shape.

HIP後において製品で10mm’の疲労試験片となる
ようにCIPの試験片用 ゴム型を用意した。
A rubber mold for a CIP test piece was prepared so that the product would be a 10 mm' fatigue test piece after HIP.

第3工程.ゴム型に充填された粉末を4500kg f
 /C一で15n+in冷間静水圧プレスした。
Third step. 4,500 kg of powder filled into a rubber mold
Cold isostatic pressing was carried out at 15n+in at /C1.

第4工程:圧粉体を真空度10−’Torr, 130
0℃、4hrで焼結処理した。
4th step: The green compact is vacuumed at 10-'Torr, 130
Sintering treatment was performed at 0°C for 4 hours.

第5工程:焼結体を減圧プラズマ溶射装置内に挿入し、
溶射電流は+400Amp.、プラズマガスはAr 1
20 i) /win , He 20jil /mi
n、減圧雰囲気20Torrの条件下で、第2表に示す
金属元素を減圧プラズマ 溶射て5分間溶射付着させ、約ICJttfnの溶融皮
膜を形成させた。比較のために 従来法として本工程の無いものを入れ た。
Fifth step: Insert the sintered body into a reduced pressure plasma spraying device,
The spraying current was +400Amp. , plasma gas is Ar 1
20 i) /win, He 20jil /mi
In a vacuum atmosphere of 20 Torr, the metal elements shown in Table 2 were deposited by vacuum plasma spraying for 5 minutes to form a molten film of approximately ICJttfn. For comparison, a conventional method without this step was included.

第6工程:減圧プラズマ溶射された焼結体を熱間静水圧
プレス炉に挿入し、760℃,3時間, 1000kg
 f /cシで熱間静水圧プレスした。
6th step: Insert the sintered body subjected to low pressure plasma spraying into a hot isostatic press furnace, press at 760°C for 3 hours, and press 1000 kg.
Hot isostatic pressing was carried out at f/c.

第2表に金属元素と減圧プラズマ溶射試験結果と従来法
の比較を示す。
Table 2 shows a comparison of metal elements, low pressure plasma spraying test results, and conventional methods.

それぞれの金属の表面封孔状態は試料断面の金属組織の
観察と併せて観察した。密度はアルキメデス法により求
め、予め表面貫通孔あるいは内部にボアの残存のない標
準試料として相対密度を計算し第2表に示した。疲労試
験条件は軸力、応力比R一−1、周波数f−2011z
、大気中、室温である。
The surface sealing state of each metal was observed together with the observation of the metal structure of the cross section of the sample. The density was determined by the Archimedes method, and the relative density was calculated in advance using a standard sample with no surface through-holes or internal bores, and is shown in Table 2. Fatigue test conditions are axial force, stress ratio R-1, frequency f-2011z
, in air and at room temperature.

第2表から明らかなようにCu,Niのいずれの場合に
も完全に封孔処理がされた結果、従来法と比較して部品
内部のボア(孔)の残留が解消し、高密度チタン合金の
粉末焼結製品ができ、疲労強度(107サイクル数)も
向上することが分かる。
As is clear from Table 2, as a result of complete pore sealing in both Cu and Ni cases, the remaining bores inside the parts were eliminated compared to the conventional method, and high-density titanium alloys were It can be seen that a powder sintered product of 100% was produced and the fatigue strength (107 cycles) was also improved.

郎 2 表 (実施例3) 2種類の粉末、チタン99.6%、酸素0,09%、塩
素0.OO059o以下よりなるチタン粉末と組成がア
ルミニウム60%、バナジウム40%の母合金粉末を用
意した。
Table 2 (Example 3) Two types of powder, 99.6% titanium, 0.09% oxygen, 0.09% chlorine. A titanium powder consisting of OO059o or less and a mother alloy powder having a composition of 60% aluminum and 40% vanadium were prepared.

以Fの工程に従ってTi−6%AΩ−4%Vのチタン合
金自動車用コンロソド25mm’ X 80m+*”X
2 0 0 mm ’を製造し、特性を調査した。
Ti-6%AΩ-4%V titanium alloy automotive stove 25mm'
200 mm' was manufactured and its characteristics were investigated.

第1工程:チタンと母合金の粉末を重量比9:1の混合
比で機械的に混合した。
First step: Titanium and master alloy powders were mechanically mixed at a weight ratio of 9:1.

第2工程:第1工程で得られた混合粉末を所定形状のコ
ンロッドの弾力のあるゴム型に 充填した。
Second step: The mixed powder obtained in the first step was filled into an elastic rubber mold of a connecting rod having a predetermined shape.

第3工程:ゴム型に充填された粉末を4oookg f
 /c4で15min冷間静水圧プレスした。
3rd step: 4oookg of powder filled into a rubber mold
Cold isostatic pressing was carried out at /c4 for 15 minutes.

第4工程;圧粉体を真空度10−’Torr, 125
[1℃,  3hrで焼結処理した。
4th step: The green compact is vacuumed at 10-'Torr, 125
[Sintering treatment was performed at 1°C for 3 hours.

第5工程:焼結体を減圧プラズマ溶射装置内に挿入し、
溶射電流は1400Amp.、プラズマガスはAr 1
20 (1 /win , He 2(11? /ak
in ,減圧雰囲気20Torrの条件下でNiを減圧
プラズマ溶射て15分間溶射付着させ、約10庫の溶融
皮膜を形成させた。比較のために従来法として本工 程の無いものを入れた。
Fifth step: Insert the sintered body into a reduced pressure plasma spraying device,
The spraying current was 1400Amp. , plasma gas is Ar 1
20 (1/win, He 2(11?/ak)
In a vacuum atmosphere of 20 Torr, Ni was deposited by vacuum plasma spraying for 15 minutes to form a molten film of about 10 layers. For comparison, a conventional method without this step was included.

第6工程:減圧プラズマ溶射された焼結体を熱間静水圧
プレス炉に挿入し、900℃,3時間, IO00kg
 f /cdて熱間静水圧プレスした。
6th step: Insert the sintered body subjected to low pressure plasma spraying into a hot isostatic press furnace and press at 900°C for 3 hours at IO00kg
Hot isostatic pressing was carried out at f/cd.

自動車用コンロッドの実体疲労試験を行ったところ、本
発明法は従来法と比して約25%の疲労強度の向上が認
められた。
When a physical fatigue test was conducted on a connecting rod for an automobile, the method of the present invention was found to have an approximately 25% improvement in fatigue strength compared to the conventional method.

(発明の効果) 以上の説明から明らかなように、本発明では粉末冶金法
によるチタン合金焼結部品の製造において問題となって
いる表面の貫通孔の欠陥を研削加工することなく解消し
、疲労特性のすぐれた高密度チタン合金の粉末焼結製品
をうることができる。
(Effects of the Invention) As is clear from the above description, the present invention eliminates defects in surface through-holes, which are a problem in the manufacture of titanium alloy sintered parts using powder metallurgy, without grinding. A high-density titanium alloy powder sintered product with excellent properties can be obtained.

金属は粉末スラリーで付着してもその効果は変わらない
The effect remains the same even if the metal is attached as a powder slurry.

Claims (1)

【特許請求の範囲】[Claims]  チタン粉末と、1種または2種以上の金属粉末とを、
所定の合金組成になるように混合した混合粉末を、型に
充填し、冷間静水圧プレス成形し、当該粉末成形体を焼
結することによりなるチタン合金焼結体の表面に、Cu
、Ni、Co、Fe、Mnの1元素を減圧プラズマ溶射
で付着させ、更に熱間静水圧プレスすることを特徴とす
る高密度チタン合金粉末焼結製品の製造方法。
titanium powder and one or more metal powders,
A mold is filled with mixed powder mixed to have a predetermined alloy composition, cold isostatic press molding is performed, and the powder compact is sintered.Cu is applied to the surface of the titanium alloy sintered body.
, Ni, Co, Fe, and Mn are deposited by low-pressure plasma spraying, followed by hot isostatic pressing.
JP2010593A 1990-01-22 1990-01-22 Manufacture of high density titanium alloy powder sintered product Pending JPH03215603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010593A JPH03215603A (en) 1990-01-22 1990-01-22 Manufacture of high density titanium alloy powder sintered product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010593A JPH03215603A (en) 1990-01-22 1990-01-22 Manufacture of high density titanium alloy powder sintered product

Publications (1)

Publication Number Publication Date
JPH03215603A true JPH03215603A (en) 1991-09-20

Family

ID=11754544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010593A Pending JPH03215603A (en) 1990-01-22 1990-01-22 Manufacture of high density titanium alloy powder sintered product

Country Status (1)

Country Link
JP (1) JPH03215603A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015516299A (en) * 2012-02-24 2015-06-11 チャールズ マルコム ワード‐クローズ Processing metal or alloy objects
CN106119651A (en) * 2016-07-26 2016-11-16 西北有色金属研究院 A kind of Nb Hf Zr TiO2alloy bar material and preparation method thereof
CN106853530A (en) * 2017-01-13 2017-06-16 哈尔滨工业大学 A kind of method that powdering hot pressed sintering prepares stratiform titanium matrix composite
CN109590458A (en) * 2018-11-22 2019-04-09 中国航发沈阳黎明航空发动机有限责任公司 A kind of increased quality method of the thin branch wrench class complex component of titanium alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200941A (en) * 1987-02-13 1988-08-19 Kyoritsu Seiki Kk Automatic work and tool exchanger in nc compound machine tool
JPS63200941U (en) * 1987-06-17 1988-12-23

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200941A (en) * 1987-02-13 1988-08-19 Kyoritsu Seiki Kk Automatic work and tool exchanger in nc compound machine tool
JPS63200941U (en) * 1987-06-17 1988-12-23

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015516299A (en) * 2012-02-24 2015-06-11 チャールズ マルコム ワード‐クローズ Processing metal or alloy objects
CN106119651A (en) * 2016-07-26 2016-11-16 西北有色金属研究院 A kind of Nb Hf Zr TiO2alloy bar material and preparation method thereof
CN106853530A (en) * 2017-01-13 2017-06-16 哈尔滨工业大学 A kind of method that powdering hot pressed sintering prepares stratiform titanium matrix composite
CN106853530B (en) * 2017-01-13 2019-04-16 哈尔滨工业大学 A kind of method of powdering-hot pressed sintering preparation stratiform titanium composite material
CN109590458A (en) * 2018-11-22 2019-04-09 中国航发沈阳黎明航空发动机有限责任公司 A kind of increased quality method of the thin branch wrench class complex component of titanium alloy

Similar Documents

Publication Publication Date Title
US5561829A (en) Method of producing structural metal matrix composite products from a blend of powders
US6117204A (en) Sintered titanium alloy material and process for producing the same
JP2012515258A (en) Manufacturing method of metal parts
FR2502043A1 (en) METHOD FOR MANUFACTURING DIFFUSER AND GAS TURBINE BLADES BY LOW PRESSURE ARC ARC PLASMA SPRAY
EP2799165A1 (en) Method for molding aluminum alloy powder, and aluminum alloy member
JPH0130898B2 (en)
JPH03215603A (en) Manufacture of high density titanium alloy powder sintered product
US4410488A (en) Powder metallurgical process for producing a copper-based shape-memory alloy
JPH0617550B2 (en) Method for producing aluminum alloy materials with improved fatigue strength, especially bar stock
JPH093503A (en) Method for reactive sintering of intermetallic material molding
JPH02247348A (en) Heat-resistant aluminum alloy having excellent tensile strength, ductility and fatigue resistance
JPS62224602A (en) Production of sintered aluminum alloy forging
JPS61201706A (en) Seamless sintered steel pipe and its production
JPH03226504A (en) Manufacture of high density titanium alloy powder sintered product
JP2596205B2 (en) Manufacturing method of Al alloy powder compact
JPS6360265A (en) Production of aluminum alloy member
JPH04202736A (en) Hyper-eutectic al-si base alloy powder showing excellent deformability by hot powder metal forging
JPS62185857A (en) Heat resistant and high strength aluminum alloy
JP3691399B2 (en) Method for producing hot-worked aluminum alloy powder
JPS61238947A (en) Manufacture of al-si alloy blank
JPS61223106A (en) Production of high alloy clad product
JPH02122004A (en) Manufacture of aluminum powder forged material
JPS62278240A (en) Compacting method for ti-al intermetallic compound member
JPS62199703A (en) Hot hydrostatic compression molding method for al-si powder alloy
JPH0368724A (en) Manufacture of aluminide-base composite material