JP2006319052A - 半導体装置の製造方法および研磨装置 - Google Patents

半導体装置の製造方法および研磨装置 Download PDF

Info

Publication number
JP2006319052A
JP2006319052A JP2005138705A JP2005138705A JP2006319052A JP 2006319052 A JP2006319052 A JP 2006319052A JP 2005138705 A JP2005138705 A JP 2005138705A JP 2005138705 A JP2005138705 A JP 2005138705A JP 2006319052 A JP2006319052 A JP 2006319052A
Authority
JP
Japan
Prior art keywords
polishing
polishing pad
substrate
conditioning
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005138705A
Other languages
English (en)
Inventor
Tetsuya Shirasu
哲哉 白数
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2005138705A priority Critical patent/JP2006319052A/ja
Priority to US11/186,808 priority patent/US7348276B2/en
Priority to TW094125128A priority patent/TWI259529B/zh
Publication of JP2006319052A publication Critical patent/JP2006319052A/ja
Priority to US12/010,029 priority patent/US7597606B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

【課題】 化学機械研磨工程による平坦化工程を含む半導体装置の製造方法において、化学機械研磨により、高度に平坦化された研磨面を実現する。
【解決手段】 基板の研磨工程を含む半導体装置の製造方法において、前記基板の研磨工程を、前記基板表面の凹凸を、前記基板を研磨パッド上で、研磨剤を使って化学機械研磨することにより平坦化し、その際、研磨パッドとして、無発泡型研磨パッドを使い、研磨剤として、凹部の研磨を抑制できる研磨剤を使う。
【選択図】 図10

Description

本発明は一般にCMP(化学的機械研磨)法に係り、特にCMP法による研磨工程を含む半導体装置の製造方法に関する。
半導体装置の製造では、基板を平坦化し、あるいは絶縁膜や導電膜を除去するのに、CMP(Chemical Mechanical Polishing)法が使われる。CMP技術は、特にCuなどの低抵抗金属を配線層として使った多層配線構造において重要である。またCMP法はシリコンウェハの表面処理や、磁気ディスクの表面処理、さらにはレンズなど、光学要素の研磨においても重要である。
特開2001−127017号公報 特開2000−248263号公報 特開2000−252242号公報 特開2000−252243号公報 特開2001−28437号公報
図1は、典型的なCMP装置10の構成を示す。
図1を参照するに、CMP装置10は、図示しない駆動源により回動されるプラテン11を有し、前記プラテン11上には研磨パッド12が固定されている。一方、半導体基板14は別の駆動源により回動されるキャリア13上に保持され、前記プラテン11と共に回動する研磨パッド12に、所定の研磨圧力で押圧される。その際、前記研磨パッド12上には研磨剤16が滴下され、前記研磨パッド12上に保持された研磨剤の作用により、前記半導体基板表面が化学機械研磨される。このような化学機械研磨により、基板上の絶縁膜や導電膜が、個別に、あるいは同時に研磨される。
このようなCMP装置10では、一様で効率的な研磨がなされるように、研磨パッド12の表面は、ダイヤモンドやセラミックス等の硬質砥粒が固定され図示しない別の駆動源により回動されるコンディショニングディスク15により、研削すなわちコンディショニングされる。一般に、このような研磨パッド12のコンディショニングは、半導体ウェハの研磨中、あるいは研磨が終了した段階で行われ、ドレッシング、あるいは目立てとも称される。このようなコンディショニングにより、研磨パッドの表面が削除され、新しいパッド面が露出される。
図2は、CMP法で一般的に使われている独立発泡型研磨パッドの断面図を示す。
図2を参照するに、独立発泡型研磨パッドは、パッド表面および内部に、径が数μmから数十μmの微細な発泡部(ポアと呼ぶ)12Pが、互いに独立して形成されており、研磨剤は、このような発泡部がパッド表面に形成した凹部12Uに保持される。その際、発泡部が互いに独立しているため、研磨剤は研磨パッド内部に浸透することがなく、このため、研磨剤が研磨パッド内部に浸透する連続発泡型の研磨パッドと比較して、研磨剤の消費量を減少させることが可能である。
また前記研磨剤としては、純水にpH調整剤が添加され、さらに研磨速度を増大させるため、砥粒を配合したものが一般的に使われている。
ところで最近の半導体装置では、低抵抗配線材料としてCuが使われており、CMP法は、このようなCu配線パターンをダマシンプロセスで形成するのに不可欠な工程となっている。
図3(A)〜(E)は、Cuダマシンプロセスを含む、従来の半導体装置の製造工程を示す。
図3(A)を参照するに、半導体基板(図示せず)上にSiO2,SiOC,SiC,SiON,SiN,BPSGなどよりなる絶縁膜21が、前記半導体基板上形成されたトランジスタなどの活性素子(図示せず)を覆うように形成される。前記絶縁膜21は、また前記半導体基板上に直接に形成される場合もあれば、半導体基板上に形成されている絶縁膜を覆うように形成される場合もある。
次に図3(B)の工程において、前記絶縁膜21中に、所望の配線パターンに対応した配線溝21Gを、エッチングにより形成する。なお、デュアルダマシン法の場合には、前記絶縁膜21下層の導電層を露出するように、前記配線溝21G中にビアホールが形成される。
さらに図3(C)の工程において、前記絶縁膜21の表面を、前記配線溝21Gの側壁面および底面を含むように、タンタル(Ta)、チタン(Ti)あるいはこれらの窒化膜(TaN、TiN)よりなるバリアメタル膜22により覆う。
次に、図3(D)の工程において、前記バリアメタル膜23上にCu膜23を、前記Cu膜23が前記配線溝21Gを充填するように形成する。このようなCu膜23の形成は、スパッタリング法やめっき法、あるいはこれらを組み合わせることにより実行される。
さらに図3(E)の工程において、前記Cu膜23を図1のCMP装置10を使って前記絶縁膜21の表面から、前記バリアメタル膜23ともども研磨・除去し、Cuパターン23Gが配線溝21Gに、バリアメタル膜22を介して埋め込まれた配線構造が得られる。
図3(E)などのCuの研磨工程では、一般に、研磨剤に含まれている酸化剤によりCu層表面に酸化銅が形成され、形成された酸化銅が、研磨剤に添加された砥粒および研磨パッドにより研削されることで、研磨がなされると理解されている。Cuと錯体を形成する有機酸を研磨剤に添加し、Cuと有機酸で形成された錯体を研磨剤水溶液中に溶解させることで、Cuの研磨レートを更に増大させる技術も、知られている。CMP技術では、研磨は、主に研磨パッドや砥粒が接触する半導体基板表面の凸部で進行し、一方、研磨パッドや砥粒が接触しない凹部は研磨は進行しないのが理想と考えられ、従って、CMP法によれば、凹凸がある表面でも研磨終了後には平坦化でき、半導体装置製造に好適な形状が得られるものと期待されている。
しかしながら、研磨剤にこのような錯体形成効果を有する有機酸を添加した場合、砥粒と研磨パッドが接触しない凹部においてもCuあるいは酸化銅が溶解され、エッチングが生じる場合がある。この場合、研磨面の凹部においても侵食が進行することになり、研磨面は完全には平坦化されず、リセスやディッシングなどの凹みが発生してしまう。
従来、このような有機酸の効果を抑制するために、研磨剤中に防食剤を添加することも行われているが、十分な効果を上げていない。これは、研磨パッドが、発泡構造を有するウレタン材により形成されていて、研磨される構造の凹凸に応じて柔軟に変形してしまい、凹部においても研磨パッドとの接触により研磨が生じてしまい、このことが、従来のCMP技術で充分な平坦化を実現できない理由である可能性がある。
また、従来、CMPプロセスにおいて、研磨剤中にシリカなどの砥粒を導入すれば、研磨速度を増大させることが可能であり、実際に砥粒を導入することが一般的に行われているが、研磨剤中に添加された砥粒は、凝集すると粗大粒子となり、加工対象表面にこのような粗大粒子により、スクラッチが形成されやすい問題が生じる。特にCuは軟らかいため、ダマシン法により形成されたCu配線パターンには、スクラッチが形成されやすい。このようなスクラッチは、微細化された半導体装置において大きな問題となり、製造歩留まりを低下させるため、設計ルールの厳しい超微細化・超高速半導体装置の製造においては、CMP法を実施する場合、砥粒の凝集が生じないように、細心の注意を払ってCMPプロセスを管理する必要が生じる。しかし、このようなプロセス管理は、半導体装置の製造費用を増加させてしまう。
本発明は、上記の課題を、研磨パッドに無発泡型の研磨パッドを使い、さらに凹部の研磨を抑制できる研磨剤を使うことにより、解決する。
すなわち本発明は、一の側面において、基板の研磨工程を含む半導体装置の製造方法であって、前記基板の研磨工程は、前記基板表面の凹凸を、前記基板を研磨パッド上で、研磨剤を使って化学機械研磨することにより、平坦化する工程を含み、前記研磨パッドとして、無発泡型研磨パッドを使い、前記研磨剤として、凹部の研磨を抑制できる研磨剤を使うことを特徴とする半導体装置の製造方法を提供する。
本発明は、他の側面において、各々回動され、研磨パッドを担持する一または複数の研磨プラテンと、各々の研磨プラテンに対応して設けられ、被処理基板を保持し、これを回動させながら前記研磨パッドに押圧する基板キャリアと、前記各々の研磨パッドに研磨剤を供給する研磨剤供給機構と、を備えた研磨装置であって、前記各々の研磨パッドには、前記研磨パッドをコンディショニングするコンディショニングディスクを保持する少なくとも第1および第2のコンディショナが協働し、前記各々のコンディショナは、前記コンディショニングディスクを、前記研磨パッドに、回動させながら押圧することを特徴とする研磨装置を提供する。
本発明によれば、基板を研磨する際に、無発泡型研磨パッドを使うことにより、研磨パッドの弾性率ないし剛性が向上し、基板面上の構造に応じて研磨パッド表面が撓むことがなく、基板面の効率的な平坦化を実現することができる。
特に研磨剤中の砥粒濃度を3wt%以下に抑制することにより、基板面の凹部と研磨パッドとの間の隙間に侵入した砥粒により凹部が研磨され、基板面の平坦化が妨げられる問題が解決される。
無発泡型研磨パッドは、その表面が平滑であるため、研磨剤を保持するのが困難である。このため、本発明では、無発泡型研磨パッドの表面に対して、表面状態の異なる少なくとも二種類のコンディショニングを行い、被処理基板の研磨の際には、第1のコンディショニングディスクを使って研磨パッド表面に浅い溝を形成し、所定時間ごとに第2のコンディショニングディスクを使って深い溝を形成する。これにより、研磨パッドの寿命を延ばすと同時に、無発泡型研磨パッドの表面に研磨剤を安定して保持することが可能となり、化学機械研磨を安定に、効率よく実行することが可能となる。
本発明では、この目的のため、一つの研磨プラテンに対して、少なくとも二つのコンディショナを備えた研磨装置を提供する。かかる研磨装置を使うことにより、コンディショニングディスクを手作業で交換する必要がなくなり、無発泡型研磨パッドに対して上記の第1および第2のコンディショニングを、効率よく実行することが可能となる。
[第1実施例]
以下、本発明の第1実施例を説明する。本発明の第1実施例では、先に説明した図1のCMP装置10を使う。
図4は、本発明の第1実施例において、前記CMP装置10の研磨パッド12として使われる無発泡型研磨パッド12の概略的構成を示す。
図4を参照するに、無発泡型研磨パッド12は、従来の、図2に示すような発泡型研磨パッドと同様にポリウレタンなどの材料により形成されるが、ポアが含まれておらず、より大きな弾性率を有している。
本実施例においては、図1のCMP装置10において、図4の無発泡型研磨パッドを使い、ダマシン法によりCuパターンを形成する実験を行った。この実験は、先の図3(A)〜(E)の工程と同様な工程により実行され、その際、前記シリコン基板上の酸化膜21を、図3(A)に対応する工程において500nmの厚さに形成し、図3(B)に対応する工程において、配線溝21Gを0.9μmの幅および0.15μmのピッチで形成した後、図3(C)に対応する工程でバリアメタル膜22を10nmの厚さに形成し、さらに図3(D)に対応する工程において、Cu層23を1000nmの厚さに堆積している。
さらに、前記図3(E)に対応する、前記工程において、前記Cu層23を、前記無発泡型研磨パッドを使って研磨した。その際、前記Cu層23の研磨時間は、シリコン基板上に酸化膜を100nmの厚さに形成し、その上に、前記酸化膜をパターニングすることなくバリアメタル膜を10nmの厚さに形成し、さらにその上にCu膜を10000nmの厚さに形成した研磨速度測定用試料を作製し、この基板を650nmおよび950nm研磨するのに要する時間を求め、このようにして求められた時間に等しくなるように設定した。
また、本願発明の効果を確認するため、前記図1のCMP装置10において、発泡型研磨パッド(ニッタ・ハース社製IC−1000)を研磨パッド12として使って同様な研磨を行い、比較対照となる試料を作製した。
以下の表1は、研磨に使われた研磨剤の組成を示し、表2は研磨条件を示す。
Figure 2006319052
Figure 2006319052
表1を参照するに、使用した研磨剤は、金属膜の研磨のために調製されたものであり、純水の他に、酸化剤として過酸化水素水を、防食剤としてBTA(ベンゾトリアゾール)を、金属および金属酸化物の溶解作用を持つ化学物質として、リンゴ酸を、界面活性効果がある化学物質として水溶性ポリマを含んでおり、さらに少量のコロイダルシリカよりなる砥粒を含んでいる。
なお、このような無発泡型研磨パッドを使った場合には、研磨パッド上において研磨剤を安定に保持するのが困難なため、本実施例では、図1のCMP装置10において表面粗さの異なる二種類のコンディショナディスクを前記コンディショナディスク15に使い、最初に粗いコンディショナディスクを使うことで、図5(B)に示すように深い溝を研磨パッド表面に形成し、その後は目の細かいコンディショナディスクを使うことで、図5(A)に示すように、研磨パッド表面に浅い溝を形成しながら研磨を行う。
さらに前記目の細かいコンディショニングディスクでのコンディショニングの累積時間が所定時間に達すると、再び目の粗いコンディショニングディスクによりコンディショニングを行い、これに引き続いて、目の細かいコンディショニングディスクによるコンディショニングを行う。また、その際、目の粗いコンディショニングディスクによるコンディショニングを行っている間にも、前記Cu層23の研磨は継続されている。
かかる方法によれば、目の粗いコンディショニングディスクによりコンディショニングを行うことにより、無発泡型研磨パッドの表面に、研磨剤を安定に保持する深い溝が形成され、一方、Cu層23の研磨により生じる研磨屑などは、研磨の最中に、目の細かいコンディショニングディスクによるコンディショニングにより除去される。また目の粗いコンディショニングディスクのみを使った場合には、研磨パッドは短時間に磨耗してしまうが、このように目の粗いコンディショニングディスクを間歇的に使うことにより、研磨パッドの寿命を確保することができる。
図6は、このようにして得られたダマシン構造の概略を示す。
図6を参照するに、このような試料では、一般的にCuパターン23Gが形成されていない絶縁膜領域では研磨は生じておらず、Cu23Gが形成されている領域においてディッシングなどの沈み込みが生じるが、本実施例においては、このようにして生じた沈み込み段差の高さを測定し、研磨パッドとして図2の発泡型研磨パッドを使った場合と比較した。
前記比較の結果を、図7に示す。
実験に使った試料の場合、図6で定義した段差の大きさは、研磨の前においては130〜140nmであったが、これを、先に説明したように、ダマシン構造の配線パターンを形成していない研磨速度測定用基板において650nmの深さだけ研磨するに相当する時間だけ、研磨を行った場合には、研磨パッドが発泡型の場合でも無発泡型の場合でも、基板中心部においては、差異は見られない。ただ、発泡型研磨パッドを使った場合、基板の外周部では、−5nm程度の段差が生じており、侵食の結果、多少配線領域に沈み込みが生じているのがわかる。
これに対し、研磨時間を、前記研磨速度測定用基板において950nmの深さだけ研磨した場合には、発泡型研磨パッドを使った場合、基板の周辺部のみならず中心部においても15nmに達する沈み込みが生じており、平坦な研磨面は得られないことがわかる。これに対し、無発泡型研磨パッドを使った場合には、基板中心部、外周部とも、沈み込み量が大きく減少するのがわかる。
このように、本実施例によれば、金属膜の化学機械研磨の際に、エロージョンによる研磨面の沈み込みを効果的に抑制でき、例えば多層配線構造の形成の際に、化学機械研磨される配線層の平坦化を実現することができる。
図8は、このようにして無発泡型研磨パッドおよび発泡型研磨パッドを使って得られた図3(E)に対応するダマシン配線構造について、生じたスクラッチの数を調査した結果を示す。ただし、この実験では、図3(E)の工程で、Cu層23を2分間化学機械研磨している。
図8を参照するに、無発泡型研磨パッドを使った場合、基板表面に見られるスクラッチ、すなわち欠陥の数は、発泡型研磨パッドを使った場合の1/7まで減少するのがわかる。
ところで、図8の結果は、研磨剤中に含まれる砥粒の割合を、先に表1に示したように1.0wt%に設定した場合のものであることに注意すべきである。
一方、研磨剤中の砥粒の割合が増大すると、凹凸構造を有する基板面を研磨している場合、研磨パッドは凸構造と接触するため、特に無発泡型研磨パッドを使った場合、凹構造と研磨パッドとの間に隙間が生じてしまい、この隙間に入り込んだ砥粒により、凸構造の研磨と同時に、凹構造の研磨も生じてしまい、全体として、研磨面の沈み込みが生じてしまうおそれがある。この問題は、特に研磨剤中の砥粒の割合が3wt%を超えた場合に顕在し、特に砥粒濃度が5〜6wt%になると、研磨後の研磨面の沈み込みは、無発泡型の研磨パッドを使った場合、従来の発泡型研磨パッドと同程度の沈み込みが発生することが見出された。
このことから、無発泡型研磨パッドを使って化学機械研磨を行う場合、研磨剤中の砥粒の割合は、3wt%以下、特に1wt%以下とするのが好ましいことが結論される。なお、研磨剤中の砥粒濃度が0%であっても、すなわち研磨剤に砥粒が添加されない場合であっても、研磨パッドの表面状態によっては、本発明の化学機械研磨は進行する。
先の本実施例における化学機械研磨工程では、研磨パッドの表面温度も制御している。
一般に、図1に示したようなCMP装置では、研磨プラテン11中に温度制御装置が組み込まれており、このような温度制御装置を使うことにより、先の実験では、研磨パッドの表面温度を、5℃以上40℃以下の範囲に設定している。このうち、無発泡型研磨パッドを使った金属膜の研磨では、特に10℃から30℃の範囲が好ましいことが判明している。
この研磨パッドの表面温度が低すぎて、例えば0℃以下になると、研磨剤に使われている純水が凍結する恐れがあり、この場合、氷の粒子が研磨パッド上に落下するとスクラッチを発生させる恐れがある。また研磨剤中に含まれる化学物質には、温度に敏感な物質もあり、例えば温度が高すぎると反応速度が上がりすぎ、エッチング作用が強くなりすぎて、研磨面の平坦性が劣化してしまう問題が生じる。
以上の説明は、Cuなどの金属膜を化学機械研磨する場合について行ったが、無発泡型研磨パッドを用いて行う本発明の化学機械研磨方法は、絶縁膜の平坦化においても、同様に有効である。
例えば、STI(シャロートレンチアイソレーション)構造の形成では、素子分離溝を埋め込んだ酸化膜を研磨することが行われるが、このような酸化膜の化学機械研磨では、セリアを砥粒とした研磨剤を使う場合に、無発泡型研磨パッドを使う本発明は特に有効である。
このようなセリアを砥粒として含む研磨剤は、前記Cuに対して適用される研磨剤と同様に、界面活性効果を有する保護膜形成剤が一般的に含まれているが、このような保護膜形成剤は、Cuの研磨の場合と異なり、前記酸化膜の下に形成されている窒化膜表面に付着して、さらなる研磨の進行を阻止する作用効果を奏する。
このような、STI構造の化学機械研磨など、絶縁膜の平坦化工程においても、本願発明は有効である。

[第2実施例]
図9は、前記本発明の第1実施例を実行するのに適合された、本発明の第2実施例によるCMP装置10Aの構成を示す。
本発明の第1実施例においては、無発泡型研磨パッドを使う際に、研磨剤を研磨パッド表面に安定に保持するため、表面状態の異なる少なくとも二種類のコンディショニングディスクによるコンディショニングを行っていた。
このような二種類のコンディショニングを、図1のCMP装置10で実行しようとすると、手作業によりコンディショニングディスク15を交換する必要があるが、これは半導体装置の生産ラインでは非現実的である。
これに対し、図9の装置10Aは生産ラインに適合されたCMP装置であり、CMP装置本体100上に異なった研磨剤による研磨が可能なように、三つの研磨プラテン11A〜11Cが設けられており、さらに被処理基板を前記三つの研磨プラテン11A〜11Cの間で交換できるように、スピンドル11Sが回動自在に設けられている。
そこで、前記スピンドル11Sは、ロードカップ11Lから一つの被処理基板をピックアップし、これを、回転させながら、前記無発泡型研磨パッドを装着した前記研磨プラテン11A〜11Cのいずれかに押圧する。すなわち、前記スピンドル11Sは、図1のCMP装置における基板キャリア13に相当する。
さらに、前記CMP装置10Aは、前記研磨プラテン11A〜11Cにそれぞれ対応して、可動アームの先端にコンディショニングディスク151〜153を担持したコンディショナが設けられており、前記コンディショニングディスクを、対応する研磨プラテン上に押圧することにより、研磨パッドのコンディショニングがなされる。このようなコンディショニングは、前記CMP装置10Aでは、前記コンディショナのアームを旋回させるだけで、容易に行うことができる。
その際、2種類のコンディショニングディスクにより、先に図5(A),(B)で示した2種類の、異なったコンディショニングがなされるように、前記CMP装置10Aでは、前記研磨パッド11A〜11Cにそれぞれ対応して、可動アームの先端にコンディショニングディスク451〜453を担持した、別のコンディショナが設けられている。前記別のコンディショニングディスク451〜453によるコンディショニングも、それぞれのアームを旋回させることにより、容易に行うことができる。
さらに図9のCMP装置10Aでは、前記研磨プラテン11A〜11C,スピンドル11S、コンディショニングディスク15A〜15Cおよび追加コンディショニングディスク45A〜45Cを制御する制御装置101が設けられている。
図10は、図9の制御装置101の制御による、CMP装置10Aの制御シーケンスを示す図である。
図10を参照するに、研磨はプラテン11Aにおいてなされており、ステップ11において、研磨プラテン11A上の新品の無発泡型研磨パッドが、目の粗いコンディショニングディスク451によりコンディショニング(ブレイクイン)される。
さらにステップ12において、目の細かいコンディショニングディスク151により前記無発泡型研磨パッドの表面をコンディショニングしながら、被処理基板の研磨が所定時間まで、繰り返し行われ、コンディショニングの蓄積時間が所定時間に達すると、ステップ13における判定に基づいて、ステップ11のブレイクインが再び実行される。
その際、前記コンディショニングディスク151と451の切り替えは、前記制御装置101により制御される。
なお、前記ステップ12において、前記コンディショニングディスク15Aによる無発泡型研磨パッドのコンディショニングは、被処理基板の研磨と平行して行っても、別々に、例えば被処理基板の研磨に先立って行うようにしてもよい。
図11は、前記図9のCMP装置10Aの一変形例によるCMP装置10Bの構成を示す。ただし図11中、先に図9で説明した部分に対応する部分には同一の参照符号を付し、説明を省略する。
図11を参照するに、図9の構成では、コンディショニングディスク151を担持するコンディショナおよびコンディショニングディスク451を担持するコンディショナは、研磨プラテン11Aに専用され、コンディショニングディスク152を担持するコンディショナおよびコンディショニングディスク452を担持するコンディショナは、研磨プラテン11Bに専用され、さらにコンディショニングディスク153を担持するコンディショナおよびコンディショニングディスク453を担持するコンディショナは、研磨プラテン11Cに専用されているのに対し、本実施例においては、図9のコンディショニングディスク453を担持する追加コンディショナが省略され、その代わり、コンディショニングディスク453を担持するコンディショナのアームが、研磨プラテン11Aおよび11Bの間で旋回可能に構成され、同様にコンディショニングディスク45Bを担持するコンディショナのアームが、研磨プラテン11Bおよび11Cの間で旋回可能に構成されている。
すなわち、図11の構成では、前記コンディショニングディスク451は研磨プラテン11Aと11Bとで共用され、コンディショニングディスク452は研磨プラテン11Bと11Cとで共用される。
かかる構成によれば、CMP装置10Bの構成を簡略化することが可能である。
図12は、前記図9のCMP装置10Aの更なる変形例によるCMP装置10Cの構成を示す。ただし図12中、先に図9で説明した部分に対応する部分には同一の参照符号を付し、説明を省略する。
図12を参照するに、本実施例において、図9の構成におけるコンディショニングディスク452および453を担持するコンディショナが撤去され、前記コンディショニングディスク451を担持するコンディショナが、前記スピンドル11Sと同軸で旋回可能に形成されている。
これにより、単一のコンディショニングディスク451を研磨プラテン11A〜11Cで共用でき、CMP装置の構成を大幅に簡素化することができる。

[第3実施例]
図13は、図1のCMP装置10において、2種類のコンディショニングを可能とするコンディショナの構成を示す。
図12を参照するに、本実施例においては、コンディショニングディスク15を担持するアーム15aの先端に、追加のコンディショニングディスク45が担持されており、前記コンディショニングディスク15とコンディショニングディスク45とは、前記アーム15aの先端に回動自在に取り付けられた別のアーム15b上に保持されている。
そこで、前記アーム15aの先端において、前記アーム15bを回動させることにより、研磨パッド12をコンディショニングするコンディショニングディスクを、ディスク15とディスク45の間で切り替えることが可能になる。
かかる構成によれば、従来のCMP装置10の基本構成を変更することなく、前記2種類のコンディショニングを使い分けることが可能になる。
以上、本発明を好ましい実施例について説明したが、本発明は上記の構成に限定されるものではなく、特許請求の範囲に記載した要旨内において、様々な変形・変更が可能である。
(付記1) 基板の研磨工程を含む半導体装置の製造方法であって、
前記基板の研磨工程は、
前記基板表面の凹凸を、前記基板を研磨パッド上で、研磨剤を使って化学機械研磨することにより、平坦化する工程を含み、
前記研磨パッドとして、無発泡型研磨パッドを使い、
前記研磨剤として、凹部の研磨を抑制できる研磨剤を使うことを特徴とする半導体装置の製造方法。
(付記2) 前記研磨工程は、さらに前記研磨パッドの表面をコンディショニングする工程を含み、
前記コンディショニング工程は、前記研磨パッドの表面を、表面状態の異なる少なくとも第1および第2のコンディショニングディスクにより研削する工程を含むことを特徴とする付記1記載の半導体装置の製造方法。
(付記3) 前記基板表面には導電膜が露出しており、前記化学機械研磨工程は、前記導電膜を研磨することを特徴とする付記1または2記載の半導体装置の製造方法。
(付記4) 前記導電膜は、Cu,W,Ti,Al,Ta,Ag,Au,Pt,Ru,ポリシリコン、アモルファスシリコン、およびZrのいずれかよりなることを特徴とする付記3記載の半導体装置の製造方法。
(付記5) 前記研磨剤は、金属の酸化剤と、防食剤と、金属および金属酸化物に対して溶解作用を有する化学物質と、純水とからなることを特徴とする付記3または4記載の半導体装置の製造方法。
(付記6) 前記研磨剤は、さらに砥粒を含むことを特徴とする付記3または4記載の半導体装置の製造方法。
(付記7) 前記砥粒は、セリア、シリカ、二酸化マンガン、アルミナおよびジルコニアのいずれかよりなることを特徴とする付記6記載の半導体装置の製造方法。
(付記8) 前記酸化剤は、前記砥粒を、3wt%以下の濃度で含むことを特徴とする付記6または7記載の半導体装置の製造方法。
(付記9) 前記研磨剤は、さらに界面活性効果を有する化学物質を含むことを特徴とする付記3または4記載の半導体装置の製造方法。
(付記10) 前記酸化剤は、前記研磨剤中に0.5wt%以上の濃度で含まれることを特徴とする付記3〜8のうち、いずれか一項記載の半導体装置の製造方法。
(付記11) 前記化学機械研磨工程は、研磨パッド表面において、5〜50℃の温度で実行されることを特徴とする付記1〜10のうち、いずれか一項記載の半導体装置の製造方法。
(付記12) 前記基板表面には絶縁膜が露出しており、前記化学機械研磨工程は、前記絶縁膜を研磨することを特徴とする付記1または2記載の半導体装置の製造方法。
(付記13) 各々回動され、研磨パッドを担持する一または複数の研磨プラテンと、
各々の研磨プラテンに対応して設けられ、被処理基板を保持し、これを回動させながら前記研磨パッドに押圧する基板キャリアと、
前記各々の研磨パッドに研磨剤を供給する研磨剤供給機構と、
を備えた研磨装置であって、
前記各々の研磨パッドには、前記研磨パッドをコンディショニングするコンディショニングディスクを保持する少なくとも第1および第2のコンディショナが協働し、
前記各々のコンディショナは、前記コンディショニングディスクを、前記研磨パッドに、回動させながら押圧することを特徴とする研磨装置。
(付記14) 前記少なくとも第1および第2のコンディショナは、前記協働する研磨プラテンに専用されることを特徴とする付記13記載の研磨装置。
(付記15) 前記各々のコンディショナは、複数の研磨プラテンと協働することを特徴とする付記13記載の研磨装置。
(付記16) 前記各々の研磨プラテンにおいて、前記第1のコンディショナは、前記研磨プラテンに専用され、前記第2のコンディショナは、複数の研磨プラテンと協働することを特徴とする付記13記載の研磨装置。
(付記17) 前記研磨装置は、さらに制御装置を含み、
前記制御装置は、各々の研磨プラテンにおいて前記第1および第2のコンディショナを、前記研磨プラテン上に装着された研磨パッドが、第1のコンディショナにより、繰り返しコンディショニングされるように、また所定の積算コンディショニング時間に達すると、第2のコンディショナによりコンディショニングされるように制御することを特徴とする請求項13〜16のうち、いずれか一項記載の研磨装置。
(付記18) 前記研磨パッドが前記第2のコンディショナによりコンディショニングされる際に、前記制御装置は前記第1のコンディショナによるコンディショニングを継続することを特徴とする付記17記載の研磨装置。
(付記19) 前記研磨装置は、前記第1のコンディショナによりコンディショニング中に、前記基板キャリアにより、前記被処理基板の研磨を継続することを特徴とする付記17または18記載の研磨装置。
(付記20)
前記各々のコンディショナは、複数のコンディショニングディスクを保持することを特徴とする付記17〜19のうち、いずれか一項記載の研磨装置。
本発明で使われるCMP装置の構成を示す図である。 従来の無発泡型研磨パッドの断面構造を示す図である。 (A)〜(E)は、ダマシン法による半導体装置の製造工程の例を示す図である。 本発明で使われる無発泡方研磨パッドの断面構造を示す図である。 (A),(B)は、本発明の第1実施例において使われる表面状態の異なるコンディショニングディスクで研削された研磨パッドの表面状態を示す図である。 本発明第1実施例における研磨の評価方法を説明する図である。 本発明により得られる平坦化処理の効果を、従来の場合と比較して示す図である。 本発明により得られる平坦化面における欠陥数を、従来の場合と比較して示す図である。 本発明の第2実施例によるCMP装置の構成を示す図である。 図9のCMP装置を使って行われる研磨工程の例を示すフローチャートである。 図9のCMP装置の一変形例を示す図である。 図9のCMP装置の別の変形例を示す図である。 本発明の第3実施例によるコンディショナの構成を示す図である。
符号の説明
10,10A〜10C CMP装置
11,11A〜11C プラテン
12 研磨パッド
13 基板キャリア
14 基板
15,151〜153,45,451〜453コンディショニングディスク
15A 座金
15B 合金層
15C 砥粒
16 研磨剤
21 絶縁膜
21G 配線溝
22 バリアメタル
23 Cu膜
23G Cuパターン

Claims (8)

  1. 基板の研磨工程を含む半導体装置の製造方法であって、
    前記基板の研磨工程は、
    前記基板表面の凹凸を、前記基板を研磨パッド上で、研磨剤を使って化学機械研磨することにより、平坦化する工程を含み、
    前記研磨パッドとして、無発泡型研磨パッドを使い、
    前記研磨剤として、凹部の研磨を抑制できる研磨剤を使うことを特徴とする半導体装置の製造方法。
  2. 前記研磨工程は、さらに前記研磨パッドの表面をコンディショニングする工程を含み、
    前記コンディショニング工程は、前記研磨パッドの表面を、表面状態の異なる少なくとも第1および第2のコンディショニングディスクにより研削する工程を含むことを特徴とする請求項1記載の半導体装置の製造方法。
  3. 前記基板表面には導電膜が露出しており、前記化学機械研磨工程は、前記導電膜を研磨することを特徴とする請求項1または2記載の半導体装置の製造方法。
  4. 前記研磨剤は、金属の酸化剤と、防食剤と、金属および金属酸化物に対して溶解作用を有する化学物質と、純水とからなることを特徴とする請求項3または4記載の半導体装置の製造方法。
  5. 前記酸化剤は、前記砥粒を、3wt%以下の濃度で含むことを特徴とする請求項1〜4のうち、いずれか一項記載の半導体装置の製造方法。
  6. 前記基板表面には絶縁膜が露出しており、前記化学機械研磨工程は、前記絶縁膜を研磨することを特徴とする請求項1または2記載の半導体装置の製造方法。
  7. 各々回動され、研磨パッドを担持する一または複数の研磨プラテンと、
    各々の研磨プラテンに対応して設けられ、被処理基板を保持し、これを回動させながら前記研磨パッドに押圧する基板キャリアと、
    前記各々の研磨パッドに研磨剤を供給する研磨剤供給機構と、
    を備えた研磨装置であって、
    前記各々の研磨パッドには、前記研磨パッドをコンディショニングするコンディショニングディスクを保持する少なくとも第1および第2のコンディショナが協働し、
    前記各々のコンディショナは、前記コンディショニングディスクを、前記研磨パッドに、回動させながら押圧することを特徴とする研磨装置。
  8. 前記研磨装置は、さらに制御装置を含み、
    前記制御装置は、各々の研磨プラテンにおいて前記第1および第2のコンディショナを、前記研磨プラテン上に装着された研磨パッドが、第1のコンディショナにより、繰り返しコンディショニングされるように、また所定の積算コンディショニング時間に達すると、第2のコンディショナによりコンディショニングされるように制御することを特徴とする請求項7記載の研磨装置。
JP2005138705A 2005-03-30 2005-05-11 半導体装置の製造方法および研磨装置 Pending JP2006319052A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005138705A JP2006319052A (ja) 2005-05-11 2005-05-11 半導体装置の製造方法および研磨装置
US11/186,808 US7348276B2 (en) 2005-03-30 2005-07-22 Fabrication process of semiconductor device and polishing method
TW094125128A TWI259529B (en) 2005-03-30 2005-07-25 Fabrication process of semiconductor device and polishing method
US12/010,029 US7597606B2 (en) 2005-03-30 2008-01-18 Fabrication process of semiconductor device and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005138705A JP2006319052A (ja) 2005-05-11 2005-05-11 半導体装置の製造方法および研磨装置

Publications (1)

Publication Number Publication Date
JP2006319052A true JP2006319052A (ja) 2006-11-24

Family

ID=37539466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005138705A Pending JP2006319052A (ja) 2005-03-30 2005-05-11 半導体装置の製造方法および研磨装置

Country Status (1)

Country Link
JP (1) JP2006319052A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059914A (ja) * 2007-08-31 2009-03-19 Fujitsu Microelectronics Ltd 半導体装置の製造方法
JP2011071215A (ja) * 2009-09-24 2011-04-07 Toshiba Corp 研磨方法および半導体装置の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10146750A (ja) * 1996-11-13 1998-06-02 Hitachi Ltd 半導体装置の製造方法及び製造装置
JP2002066905A (ja) * 2000-08-28 2002-03-05 Hitachi Ltd 半導体装置の製造方法及びその装置
JP2003179017A (ja) * 2001-12-12 2003-06-27 Tokyo Seimitsu Co Ltd 研磨装置及び研磨装置における研磨パッドのドレッシング方法
JP2004243518A (ja) * 2004-04-08 2004-09-02 Toshiba Corp 研摩装置
JP2004311817A (ja) * 2003-04-09 2004-11-04 Hitachi Chem Co Ltd 研磨パッドとそれを用いた研磨方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10146750A (ja) * 1996-11-13 1998-06-02 Hitachi Ltd 半導体装置の製造方法及び製造装置
JP2002066905A (ja) * 2000-08-28 2002-03-05 Hitachi Ltd 半導体装置の製造方法及びその装置
JP2003179017A (ja) * 2001-12-12 2003-06-27 Tokyo Seimitsu Co Ltd 研磨装置及び研磨装置における研磨パッドのドレッシング方法
JP2004311817A (ja) * 2003-04-09 2004-11-04 Hitachi Chem Co Ltd 研磨パッドとそれを用いた研磨方法
JP2004243518A (ja) * 2004-04-08 2004-09-02 Toshiba Corp 研摩装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059914A (ja) * 2007-08-31 2009-03-19 Fujitsu Microelectronics Ltd 半導体装置の製造方法
JP2011071215A (ja) * 2009-09-24 2011-04-07 Toshiba Corp 研磨方法および半導体装置の製造方法

Similar Documents

Publication Publication Date Title
JP4095731B2 (ja) 半導体装置の製造方法及び半導体装置
US7597606B2 (en) Fabrication process of semiconductor device and polishing method
US6423640B1 (en) Headless CMP process for oxide planarization
US7104869B2 (en) Barrier removal at low polish pressure
KR20030078002A (ko) 반도체 장치의 제조 방법
JP2000301454A5 (ja)
KR20000058021A (ko) 화학적 기계적 연마 처리 및 부품
JP2003514061A (ja) 誘電性CMPスラリーにおけるCsOHの使用
US20060194518A1 (en) Methods for planarization of Group VIII metal-containing surfaces using a fixed abrasive article
KR20010093086A (ko) 금속 반도체 구조물에서의 화학-기계적 편평화 공정 동안디슁율을 감소시키는 방법
US20020197935A1 (en) Method of polishing a substrate
JP2006278977A (ja) 半導体装置の製造方法および研磨方法
JP3668046B2 (ja) 研磨布及びこの研磨布を用いた半導体装置の製造方法
CN112405335A (zh) 化学机械平坦化工具
JP2006203188A (ja) 研磨組成物及び研磨方法
US20080220585A1 (en) Method of manufacturing a semiconductor device
JP5444596B2 (ja) 半導体装置の製造方法
US6899612B2 (en) Polishing pad apparatus and methods
JP4698144B2 (ja) 半導体装置の製造方法
JP2006319052A (ja) 半導体装置の製造方法および研磨装置
JP2006332322A (ja) 研磨パッドのドレッシング方法及び研磨装置
JP2004128112A (ja) 半導体装置の製造方法
JP2004296596A (ja) 半導体装置の製造方法
JP2005260185A (ja) 研磨パッド
JP2008153571A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090915