JP2006305954A - 濃度測定方法、印刷方法、補正値算出方法及び印刷装置製造方法 - Google Patents

濃度測定方法、印刷方法、補正値算出方法及び印刷装置製造方法 Download PDF

Info

Publication number
JP2006305954A
JP2006305954A JP2005133699A JP2005133699A JP2006305954A JP 2006305954 A JP2006305954 A JP 2006305954A JP 2005133699 A JP2005133699 A JP 2005133699A JP 2005133699 A JP2005133699 A JP 2005133699A JP 2006305954 A JP2006305954 A JP 2006305954A
Authority
JP
Japan
Prior art keywords
row
density
region
correction value
dot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005133699A
Other languages
English (en)
Other versions
JP4735027B2 (ja
Inventor
Tatsuya Nakano
龍也 中野
Masahiko Yoshida
昌彦 吉田
Keigo Yamazaki
啓吾 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005133699A priority Critical patent/JP4735027B2/ja
Priority to US11/412,936 priority patent/US7715069B2/en
Publication of JP2006305954A publication Critical patent/JP2006305954A/ja
Priority to US12/716,339 priority patent/US20100157342A1/en
Application granted granted Critical
Publication of JP4735027B2 publication Critical patent/JP4735027B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ink Jet (AREA)
  • Fax Reproducing Arrangements (AREA)

Abstract

【課題】パターンを構成する各列領域の濃度を正しく測定する。
【解決手段】本発明は、移動方向に移動する複数のノズルからインクを吐出して移動方向に沿う列領域にドット列を形成することにより、前記移動方向と交差する方向に並ぶ複数の前記列領域に形成された複数の前記ドット列から構成されるパターンを媒体に形成し、前記パターンをスキャナで読み取り、読み取られた前記パターンの各前記列領域の濃度をそれぞれ測定し、複数の前記列領域の濃度の測定結果の少なくとも一部に基づいて、各前記列領域に応じた修正値をそれぞれ算出し、各前記列領域の濃度の測定値を前記修正値に基づいてそれぞれ修正することを特徴とする。
【選択図】 図30

Description

本発明は、濃度測定方法、印刷方法、補正値算出方法及び印刷装置製造方法に関する。
移動方向に移動するヘッドからインクを吐出して媒体(紙・布・OHP用紙など)にドットを形成するドット形成動作と、媒体を搬送する搬送動作とを交互に繰り返し、媒体に印刷画像を印刷する印刷装置が知られている。このような印刷装置で印刷される印刷画像は、ドット列から構成される画像片が搬送方向に無数に並ぶことによって、構成されている。
各画像片を構成するドット列は、ヘッドのノズルから吐出されたインク滴が媒体に着弾することにより形成される。理想的な大きさのインク滴が理想的な位置に着弾すれば、ドット列は所定の領域(列領域)に形成され、その領域に理想的な濃度の画像片が形成される。しかし、実際には、加工精度のばらつき等の影響のため、その領域に形成される画像片に濃淡が生じる。その結果、印刷画像に縞状の濃度ムラが生じる。
そこで、このような濃度ムラを抑制し、印刷画像の画質を向上させる技術が提案されている(例えば特許文献1及び特許文献2参照)。
特許文献1の画像処理装置では、CCDセンサにより画像をサンプリングして、デジタル化したデータをインクジェットプリンタで出力する。そして、濃度むらを補正するため、特許文献1の画像処理装置では、CCDセンサの利得ムラの特性を係数として保存し、かつ、ヘッドの濃度むらの特性を係数として保存し、これらの係数を考慮して2値化処理を行っている。
また、特許文献2の記録濃度むら補正方法では、濃度むら検出用パターンを印刷し、濃度むら検出用パターンの濃度データに基づいて濃度むら補正が行なわれる。
特開平2−54676号公報 特開平6−166247号公報
特許文献1では、CCDセンサの利得ムラの特性を示す係数を、どのように求めるのかについて、開示がない。このため、この係数の求め方によっては、CCDセンサの特性を正しく反映できていないかもしれない。そして、この係数がCCDセンサの特性を正しく反映していない場合、印刷画像に濃淡のむらが発生する。
特許文献2では、濃度むら検出用パターンを印刷した後、濃度むら検出用パターンをイメージセンサで読み取って濃度データを作成している。しかし、イメージセンサが正しく濃度むら検出用パターンを読み取れない場合、正しく濃度むら補正ができず、印刷画像に濃淡のむらが発生する。
そこで、本発明の濃度測定方法は、濃度の測定値を正しく修正することを目的とする。
なお、特許文献2の濃度むら補正の技術では、各ノズルに対応付けられた補正値に基づいて画像データが補正されている。
しかし、同じノズルにより形成された画像片であっても、濃度が異なる場合がある。例えば、同じノズルにより形成されたドット列であっても、隣り合うドット列が異なる特性を持つ場合、そのドット列から構成される画像片の濃度が異なることある。このような場合、単にノズルに対応付けた補正値では、濃度ムラを抑制することができない。
そこで、本発明では、ドット列の形成される列領域に対応付けて補正値を記憶し、この補正値に応じて各画像片の濃度を補正することで濃度ムラを抑制している。
上記課題を解決するための主たる発明は、移動方向に移動する複数のノズルからインクを吐出して移動方向に沿う列領域にドット列を形成することにより、前記移動方向と交差する方向に並ぶ複数の前記列領域に形成された複数の前記ドット列から構成されるパターンを媒体に形成し、前記パターンをスキャナで読み取り、読み取られた前記パターンの各前記列領域の濃度をそれぞれ測定し、複数の前記列領域の濃度の測定結果の少なくとも一部に基づいて、各前記列領域に応じた修正値をそれぞれ算出し、各前記列領域の濃度の測定値を前記修正値に基づいてそれぞれ修正することを特徴とする。
本発明の他の特徴については、本明細書及び添付図面の記載により明らかにする。
===開示の概要===
本明細書及び添付図面の記載により、少なくとも、以下の事項が明らかとなる。
移動方向に移動する複数のノズルからインクを吐出して移動方向に沿う列領域にドット列を形成することにより、前記移動方向と交差する方向に並ぶ複数の前記列領域に形成された複数の前記ドット列から構成されるパターンを媒体に形成し、
前記パターンをスキャナで読み取り、
読み取られた前記パターンの各前記列領域の濃度をそれぞれ測定し、
複数の前記列領域の濃度の測定結果の少なくとも一部に基づいて、各前記列領域に応じた修正値をそれぞれ算出し、
各前記列領域の濃度の測定値を前記修正値に基づいてそれぞれ修正する
ことを特徴とする濃度測定方法。
このような濃度測定方法によれば、正しく測定値を修正することができる。
かかる濃度測定方法において、前記測定結果のうち、前記パターンの端部の前記列領域の測定結果を除いたものに基づいて、各前記列領域に応じた修正値をそれぞれ算出することが望ましい。これにより、正しく測定値を修正することができる。
かかる濃度測定方法であって、前記測定結果の少なくとも一部から近似直線と平均値とを求め、各前記列領域における近似直線の値と平均値との差に応じて、各前記列領域に応じた前記修正値を算出することが望ましい。これにより、測定値の全体的な傾きを修正することができる。また、前記近似直線を最小二乗法に基づいて算出することが好ましい。これにより、測定値の傾きの傾向を算出できる。
かかる濃度測定方法であって、前記パターンが、第1印刷により形成される第1ドット列と、前記第1印刷とは異なる第2印刷により形成される第2ドット列とを有する場合、前記測定結果の少なくとも一部には、前記第1ドット列の形成されるべき前記列領域の濃度の測定値、及び前記第2ドット列の形成されるべき前記列領域の濃度の測定値が含まれることが望ましい。これにより、第1印刷及び第2印刷の両方を反映して、近似直線が算出される。
移動方向に移動する複数のノズルからインクを吐出して移動方向に沿う列領域にドット列を形成することにより、前記移動方向と交差する方向に並ぶ複数の前記列領域に形成された複数の前記ドット列から構成されるパターンを媒体に形成し、
前記パターンをスキャナで読み取り、
読み取られた前記パターンの各前記列領域の濃度をそれぞれ測定し、
複数の前記列領域の濃度の測定結果の少なくとも一部に基づいて、各前記列領域に応じた修正値をそれぞれ算出し、
各前記列領域の濃度の測定値を前記修正値に基づいてそれぞれ修正し、
修正された各前記測定値に基づいて、前記列領域に対応する補正値を算出し、
印刷画像を媒体に形成する際に、前記印刷画像を構成するドット列を、そのドット列の形成されるべき前記列領域に対応する前記補正値に基づいて形成する
ことを特徴とする印刷方法。
このような印刷方法によれば、濃度ムラのない印刷画像を形成することができる。
かかる印刷方法であって、所定数の前記列領域に対応する前記補正値をそれぞれ算出し、前記印刷画像を前記媒体に形成する際に、前記印刷画像を構成する前記所定数の列領域毎に前記補正値を繰り返し用いて、前記ドット列を形成することが望ましい。このような場合でも、印刷画像での縞模様の発生を抑制することができる。
かかる印刷方法であって、前記印刷画像を前記媒体に形成する際に、前記ドット列を形成するドット形成処理と、所定の搬送量の搬送処理とが繰り返され、ある列領域に対応する前記補正値が、その列領域の濃度の測定値と、その列領域から前記搬送量の整数倍だけ離れた別の列領域の濃度の測定値とに基づいて、算出されることが望ましい。このような場合でも、印刷画像での濃淡差の発生を抑制することができる。
かかる印刷方法であって、前記印刷画像を前記媒体に形成する際に、ある列領域に対応する補正値が、その列領域に形成されるべきドット列の形成と、前記その列領域から前記搬送量の整数倍だけ離れた別の列領域に形成されるべきドット列の形成とに用いられることが望ましい。これにより、記憶すべき補正値の数を減らすことができる。これは、特に前記列領域が通常印刷領域に位置するときに有効である。
かかる印刷方法であって、前記パターンの前記通常印刷領域は、前記印刷画像の前記通常印刷領域よりも少ないことが望ましい。これにより、パターンの長さを短くできる。
移動方向に移動する複数のノズルからインクを吐出して移動方向に沿う列領域にドット列を形成することにより、前記移動方向と交差する方向に並ぶ複数の前記列領域に形成された複数の前記ドット列から構成されるパターンを媒体に形成し、
前記パターンをスキャナで読み取り、
読み取られた前記パターンの各前記列領域の濃度をそれぞれ測定し、
複数の前記列領域の濃度の測定結果の少なくとも一部に基づいて、各前記列領域に応じた修正値をそれぞれ算出し、
各前記列領域の濃度の測定値を前記修正値に基づいてそれぞれ修正し、
修正された各前記測定値に基づいて、前記列領域に対応する補正値を算出する
ことを特徴とする補正値算出方法。
このような補正値算出方法によれば、正しい補正値を算出できる。
メモリを備える印刷装置を準備し、
前記印刷装置を用いて、移動方向に移動する複数のノズルからインクを吐出して移動方向に沿う列領域にドット列を形成することにより、前記移動方向と交差する方向に並ぶ複数の前記列領域に形成された複数の前記ドット列から構成されるパターンを媒体に形成し、
前記パターンをスキャナで読み取り、
読み取られた前記パターンの各前記列領域の濃度をそれぞれ測定し、
複数の前記列領域の濃度の測定結果の少なくとも一部に基づいて、各前記列領域に応じた修正値をそれぞれ算出し、
各前記列領域の濃度の測定値を前記修正値に基づいてそれぞれ修正し、
修正された各前記測定値に基づいて、前記列領域に対応する補正値を算出し、
前記補正値を前記メモリに記憶する
ことを特徴とする印刷装置の製造方法。
このような印刷装置の製造方法によれば、濃度ムラを抑制できる印刷装置を製造できる。
===印刷システムの構成===
<印刷システム>
図1は、印刷システム100の構成を説明する図である。印刷システムとは、印刷装置と、この印刷装置の動作を制御する印刷制御装置とを少なくとも含むシステムのことである。本実施形態の印刷システム100は、プリンタ1と、コンピュータ110と、表示装置120と、入力装置130と、記録再生装置140と、スキャナ150とを有している。
プリンタ1は、紙、布、フィルム、OHP用紙等の媒体に画像を印刷する。コンピュータ110は、プリンタ1と通信可能に接続されている。そして、プリンタ1に画像を印刷させるため、コンピュータ110は、その画像に応じた印刷データをプリンタ1に出力する。このコンピュータ110には、アプリケーションプログラムやプリンタドライバ等のコンピュータプログラムがインストールされている。また、コンピュータ110には、スキャナ150を制御し、スキャナ150により読み取られた原稿の画像データを受け取るためのスキャナドライバがインストールされている。
<プリンタ>
図2は、プリンタ1の全体構成のブロック図である。また、図3Aは、プリンタ1の全体構成の概略図である。また、図3Bは、プリンタ1の全体構成の横断面図である。以下、本実施形態のプリンタの基本的な構成について説明する。
プリンタ1は、搬送ユニット20、キャリッジユニット30、ヘッドユニット40、検出器群50、及びコントローラ60を有する。外部装置であるコンピュータ110から印刷データを受信したプリンタ1は、コントローラ60によって各ユニット(搬送ユニット20、キャリッジユニット30、ヘッドユニット40)を制御する。コントローラ60は、コンピュータ110から受信した印刷データに基づいて、各ユニットを制御し、紙に画像を印刷する。プリンタ1内の状況は検出器群50によって監視されており、検出器群50は、検出結果をコントローラ60に出力する。コントローラ60は、検出器群50から出力された検出結果に基づいて、各ユニットを制御する。
搬送ユニット20は、紙等の媒体を所定方向(以下、搬送方向という)に搬送するものである。この搬送ユニット20は、給紙ローラ21と、搬送モータ22(PFモータとも言う)と、搬送ローラ23と、プラテン24と、排紙ローラ25とを有する。給紙ローラ21は、紙挿入口に挿入された紙をプリンタ内に給紙するためのローラである。搬送ローラ23は、給紙ローラ21によって給紙された紙Sを印刷可能な領域まで搬送するローラであり、搬送モータ22によって駆動される。プラテン24は、印刷中の紙Sを支持する。排紙ローラ25は、紙Sをプリンタの外部に排出するローラであり、印刷可能な領域に対して搬送方向下流側に設けられている。この排紙ローラ25は、搬送ローラ23と同期して回転する。
キャリッジユニット30は、ヘッドを所定の方向(以下、移動方向という)に移動(「走査」とも呼ばれる)させるためのものである。キャリッジユニット30は、キャリッジ31と、キャリッジモータ32(CRモータとも言う)とを有する。キャリッジ31は、移動方向に往復移動可能である。また、キャリッジ31は、インクを収容するインクカートリッジを着脱可能に保持している。キャリッジモータ32は、キャリッジ31を移動方向に移動させるためのモータである。
ヘッドユニット40は、紙にインクを吐出するためのものである。ヘッドユニット40は、ヘッド41を有する。ヘッド41は、複数のノズルを有し、各ノズルから断続的にインクを吐出する。このヘッド41は、キャリッジ31に設けられている。そのため、キャリッジ31が移動方向に移動すると、ヘッド41も移動方向に移動する。そして、ヘッド41が移動方向に移動中にインクを断続的に吐出することによって、移動方向に沿ったドット列(ラスタライン)が紙に形成される。
図4は、ヘッド41の下面におけるノズルの配列を示す説明図である。ヘッド41の下面には、ブラックインクノズル群Kと、シアンインクノズル群Cと、マゼンタインクノズル群Mと、イエローインクノズル群Yが形成されている。各ノズル群は、各色のインクを吐出するための吐出口であるノズルを複数個備えている。各ノズル群の複数のノズルは、搬送方向に沿って、一定の間隔(ノズルピッチ:k・D)でそれぞれ整列している。ここで、Dは、搬送方向における最小のドットピッチ(つまり、紙Sに形成されるドットの最高解像度での間隔)である。また、kは、1以上の整数である。例えば、ノズルピッチが180dpi(1/180インチ)であって、搬送方向のドットピッチが720dpi(1/720インチ)である場合、k=4である。各ノズル群のノズルは、下流側のノズルほど小さい数の番号が付されている(♯1〜♯180)。各ノズルには、それぞれインクチャンバー(不図示)とピエゾ素子(不図示)が設けられており、ピエゾ素子の駆動によってインクチャンバーが伸縮・膨張されて、ノズルからインク滴が吐出される。
検出器群50には、リニア式エンコーダ51、ロータリー式エンコーダ52、紙検出センサ53、および光学センサ54等が含まれる。リニア式エンコーダ51は、キャリッジ31の移動方向の位置を検出するためのものである。ロータリー式エンコーダ52は、搬送ローラ23の回転量を検出するためのものである。紙検出センサ53は、印刷される紙の先端の位置を検出するためのものである。光学センサ54は、キャリッジ31に取付けられている。光学センサ54は、発光部から紙に照射された光の反射光を受光部が検出することにより、紙の有無を検出する。
コントローラ60は、プリンタの制御を行うための制御部である。コントローラ60は、インターフェース部61と、CPU62と、メモリ63と、ユニット制御回路64とを有する。インターフェース部61は、外部装置であるコンピュータ110とプリンタ1との間でデータの送受信を行うためのものである。CPU62は、プリンタ全体の制御を行うための演算処理装置である。メモリ63は、CPU62のプログラムを格納する領域や作業領域等を確保するためのものであり、RAM、EEPROM等の記憶素子を有する。CPU62は、メモリ63に格納されているプログラムに従って、ユニット制御回路64を介して各ユニットを制御する。
<スキャナ>
図5Aは、スキャナ150の縦断面図である。図5Bは、上蓋151を外した状態のスキャナ150の上面図である。
スキャナ150は、上蓋151と、原稿5が置かれる原稿台ガラス152と、この原稿台ガラス152を介して原稿5と対面しつつ副走査方向に移動する読取キャリッジ153と、読取キャリッジ153を副走査方向に案内する案内部材154と、読取キャリッジ153を移動させるための移動機構155と、スキャナ150内の各部を制御するスキャナコントローラ(不図示)とを備えている。読取キャリッジ153には、原稿5に光を照射する露光ランプ157と、主走査方向(図5Aにおいて紙面に垂直な方向)のラインの像を検出するラインセンサ158と、原稿5からの反射光をラインセンサ158へ導くための光学系159とが設けられている。図中の読取キャリッジ153の内部の破線は、光の軌跡を示している。
原稿5の画像を読み取るとき、操作者は、上蓋151を開いて原稿5を原稿台ガラス152に置き、上蓋151を閉じる。そして、スキャナコントローラが、露光ランプ157を発光させた状態で読取キャリッジ153を副走査方向に沿って移動させ、ラインセンサ158により原稿5の表面の画像を読み取る。スキャナコントローラは、読み取った画像データをコンピュータ110のスキャナドライバへ送信し、これにより、コンピュータ110は、原稿5の画像データを取得する。
===印刷方法===
<印刷動作について>
図6は、印刷時の処理のフロー図である。以下に説明される各処理は、コントローラ60が、メモリ63内に格納されたプログラムに従って、各ユニットを制御することにより実行される。このプログラムは、各処理を実行するためのコードを有する。
印刷命令受信(S001):まず、コントローラ60は、コンピュータ110からインターフェース部61を介して、印刷命令を受信する。この印刷命令は、コンピュータ110から送信される印刷データのヘッダに含まれている。そして、コントローラ60は、受信した印刷データに含まれる各種コマンドの内容を解析し、各ユニットを用いて、以下の給紙処理・搬送処理・ドット形成処理等を行う。
給紙処理(S002):給紙処理とは、印刷すべき紙をプリンタ内に供給し、印刷開始位置(頭出し位置とも言う)に紙を位置決めする処理である。コントローラ60は、給紙ローラ21や搬送ローラ23を回転させ、紙を印刷開始位置に位置決めする。
ドット形成処理(S003):ドット形成処理とは、移動方向に沿って移動するヘッド41からインクを断続的に吐出させ、紙上にドットを形成する処理である。コントローラ60は、キャリッジモータ32を駆動し、キャリッジ31を移動方向に移動させ、キャリッジ31の移動中に、印刷データに含まれる画素データに基づいてヘッド41からインクを吐出させる。ヘッド41から吐出されたインク滴が紙上に着弾すれば、紙上にドットが形成される。移動するヘッド41からインクが断続的に吐出されるので、紙上には移動方向に沿った複数のドットからなるドット列(ラスタライン)が形成される。
搬送処理(S004):搬送処理とは、紙をヘッドに対して搬送方向に沿って相対的に移動させる処理である。コントローラ60は、搬送ローラ23を回転させて紙を搬送方向に搬送する。この搬送処理により、ヘッド41は、先ほどのドット形成処理によって形成されたドットの位置とは異なる位置に、次のドット形成処理時にドットを形成することが可能になる。
排紙判断(S005):コントローラ60は、印刷中の紙の排紙の判断を行う。印刷中の紙に印刷すべきデータが残っていれば、排紙は行われない。そして、コントローラ60は、印刷すべきデータがなくなるまで、ドット形成処理と搬送処理とを交互に繰り返し、ドットから構成される画像を徐々に紙に印刷する。
排紙処理(S006):印刷中の紙に印刷すべきデータがなくなれば、コントローラ60は、排紙ローラを回転させることにより、その紙を排紙する。なお、排紙を行うか否かの判断は、印刷データに含まれる排紙コマンドに基づいても良い。
印刷終了判断(S007):次に、コントローラ60は、印刷を続行するか否かの判断を行う。次の紙に印刷を行うのであれば、印刷を続行し、次の紙の給紙処理を開始する。次の紙に印刷を行わないのであれば、印刷動作を終了する。
<ラスタラインの形成について>
まず、通常印刷について説明する。本実施形態の通常印刷は、インターレース印刷と呼ばれる印刷方法により行われる。ここで、『インターレース印刷』とは、1回のパスで記録されるラスタライン間に、記録されないラスタラインが挟まれるような印刷を意味する。また、『パス』とはドット形成処理を指し、『パスn』とはn回目のドット形成処理を意味する。『ラスタライン』とは、移動方向に並ぶドットの列であり、ドットラインともいう。
図7A及び図7Bは、通常印刷の説明図である。図7Aは、パスn〜パスn+3におけるヘッドの位置とドットの形成の様子を示し、図7Bは、パスn〜パスn+4におけるヘッドの位置とドットの形成の様子を示している。
説明の便宜上、複数あるノズル群のうちの一つのノズル群のみを示し、ノズル群のノズル数も少なくしている。また、ヘッド41(又はノズル群)が紙に対して移動しているように描かれているが、同図はヘッド41と紙との相対的な位置を示すものであって、実際には紙が搬送方向に移動される。また、説明の都合上、各ノズルは数ドット(図中の丸印)しか形成していないように示されているが、実際には、移動方向に移動するノズルから間欠的にインク滴が吐出されるので、移動方向に多数のドットが並ぶことになる(このドットの列がラスタラインである)。もちろん、画素データに応じて、ドットが非形成のこともある。
同図において、黒丸で示されたノズルはインクを吐出可能なノズルであり、白丸で示されたノズルはインクを吐出不可なノズルである。また、同図において、黒丸で示されたドットは、最後のパスで形成されるドットであり、白丸で示されたドットは、それ以前のパスで形成されたドットである。
このインターレース印刷では、紙が搬送方向に一定の搬送量Fで搬送される毎に、各ノズルが、その直前のパスで記録されたラスタラインのすぐ上のラスタラインを記録する。このように搬送量を一定にして記録を行うためには、(1)インクを吐出可能なノズル数N(整数)はkと互いに素の関係にあること、(2)搬送量FはN・Dに設定されること、が条件となる。ここでは、N=7、k=4、F=7・Dである(D=1/720インチ)。
但し、この通常印刷のみでは、搬送方向に連続してラスタラインを形成できない箇所がある。そこで、先端印刷及び後端印刷と呼ばれる印刷方法が、通常印刷の前後に行われる。
図8は、先端印刷及び後端印刷の説明図である。最初の5回のパスが先端印刷であり、最後の5回のパスが後端印刷である。
先端印刷では、印刷画像の先端付近を印刷する際に、通常印刷時の搬送量(7・D)よりも少ない搬送量(1・D又は2・D)にて、紙が搬送される。また、先端印刷では、インクを吐出するノズルが一定していない。後端印刷では、先端印刷と同じように、印刷画像の後端付近を印刷する際に、通常印刷時の搬送量(7・D)よりも少ない搬送量(1・D又は2・D)にて、紙が搬送される。また、後端印刷では、先端印刷と同じように、インクを吐出するノズルが一定していない。これにより、先頭ラスタラインから最終ラスタラインまでの間に、搬送方向に連続して並ぶ複数のラスタラインを形成することができる。
通常印刷だけでラスタラインが形成される領域を「通常印刷領域」と呼ぶ。また、通常印刷領域よりも紙の先端側(搬送方向下流側)に位置する領域を「先端印刷領域」と呼ぶ。また、通常印刷領域よりも後端側(搬送方向上流側)に位置する領域を「後端印刷領域」と呼ぶ。先端印刷領域には、30本のラスタラインが形成される。同様に、後端印刷領域にも、30本のラスタラインが形成される。これに対し、通常印刷領域には、紙の大きさにもよるが、およそ数千本のラスタラインが形成される。
通常印刷領域のラスタラインの並び方には、搬送量に相当する個数(ここでは7個)のラスタライン毎に、規則性がある。図8の通常印刷領域の最初から7番目までのラスタラインは、それぞれ、ノズル♯3、ノズル♯5、ノズル♯7、ノズル♯2、ノズル♯4、ノズル♯6、ノズル♯8、により形成され、次の8番目以降の7本のラスタラインも、これと同じ順序の各ノズルで形成されている。一方、先端印刷領域及び後端印刷領域のラスタラインの並びには、通常印刷領域のラスタラインと比べると、規則性を見出し難い。
===濃度ムラの補正(概略)===
<濃度ムラ(バンディング)について>
ここでは、説明の簡略化のため、単色印刷された画像中に生じる濃度ムラの発生原因について説明する。なお、多色印刷の場合、以下に説明する濃度ムラの発生原因が色毎に生じている。
以下の説明において、「単位領域」とは、紙等の媒体上に仮想的に定められた矩形状の領域を指し、印刷解像度に応じて大きさや形が定められる。例えば、印刷解像度が720dpi(移動方向)×720dpi(搬送方向)の場合、単位領域は、約35.28μm×35.28μm(≒1/720インチ×1/720インチ)の大きさの正方形状の領域になる。また、印刷解像度が360dpi×720dpiの場合、単位領域は、約70.56μm×35.28μm(≒1/360インチ×1/720インチ)の大きさの長方形状の領域になる。理想的にインク滴が吐出されると、この単位領域の中心位置にインク滴が着弾し、その後インク滴が媒体上で広がって、単位領域にドットが形成される。なお、一つの単位領域には、画像データを構成する一つの画素が対応している。また、各単位領域に画素が対応付けられるので、各画素の画素データも、各単位領域に対応付けられることになる。
また、以下の説明において、「列領域」とは、移動方向に並ぶ複数の単位領域によって構成される領域をいう。例えば印刷解像度が720dpi×720dpiの場合、列領域は、搬送方向に35.28μm(≒1/720インチ)の幅の帯状の領域になる。移動方向に移動するノズルから理想的にインク滴が断続的に吐出されると、この列領域にラスタラインが形成される。なお、列領域には、移動方向に並ぶ複数の画素が対応付けられることになる。
図9Aは、理想的にドットが形成されたときの様子の説明図である。同図では、理想的にドットが形成されているので、各ドットは単位領域に正確に形成され、ラスタラインは列領域に正確に形成される。図中、列領域は、点線に挟まれる領域として示されており、ここでは720dpiの幅の領域である。各列領域には、その領域の着色に応じた濃度の画像片が形成されている。ここでは、説明の簡略化のため、ドット生成率が50%となるような一定濃度の画像を印刷するものとする。
図9Bは、ノズルの加工精度のばらつきの影響の説明図である。ここでは、ノズルから吐出されたインク滴の飛行方向のばらつきにより、2番目の列領域に形成されたラスタラインが、3番目の列領域側(搬送方向上流側)に寄って形成されている。また、5番目の列領域に向かって吐出されたインク滴のインク量が少なく、5番目の列領域に形成されるドットが小さくなっている。
本来であれば同じ濃度の画像片が各列領域に形成されるべきであるにもかかわらず、加工精度のばらつきのため、列領域に応じて画像片に濃淡が発生する。例えば、2番目の列領域の画像片は比較的淡くなり、3番目の列領域の画像片は比較的濃くなる。また、5番目の列領域の画像片は、比較的淡くなる。
そして、このようなラスタラインからなる印刷画像を巨視的に見ると、キャリッジの移動方向に沿う縞状の濃度ムラが視認される。この濃度ムラは、印刷画像の画質を低下させる原因となる。
図9Cは、本実施形態の印刷方法によりドットが形成されたときの様子の説明図である。本実施形態では、濃く視認されやすい列領域に対しては、淡く画像片が形成されるように、その列領域に対応する画素の画素データ(CMYK画素データ)の階調値を補正する。また、淡く視認されやすい列領域に対しては、濃く画像片が形成されるように、その列領域に対応する画素の画素データの階調値を補正する。例えば、図中の2番目の列領域のドットの生成率が高くなり、3番目の列領域のドットの生成率が低くなり、5番目の列領域のドットの生成率が高くなるように、各列領域に対応する画素の画素データの階調値が補正される。これにより、各列領域のラスタラインのドット生成率が変更され、列領域の画像片の濃度が補正されて、印刷画像全体の濃度ムラが抑制される。
ところで、図9Bにおいて、3番目の列領域に形成される画像片の濃度が濃くなる理由は、3番目の列領域にラスタラインを形成するノズルの影響によるものではなく、隣接する2番目の列領域にラスタラインを形成するノズルの影響によるものである。このため、3番目の列領域にラスタラインを形成するノズルが別の列領域にラスタラインを形成する場合、その列領域に形成される画像片が濃くなるとは限らない。つまり、同じノズルにより形成された画像片であっても、隣接する画像片を形成するノズルが異なれば、濃度が異なる場合がある。このような場合、単にノズルに対応付けた補正値では、濃度ムラを抑制することができない。そこで、本実施形態では、列領域毎に設定される補正値に基づいて、画素データの階調値を補正している。
このために、本実施形態では、プリンタ製造工場の検査工程において、プリンタに補正用パターンを印刷させ、補正用パターンをスキャナで読み取り、補正用パターンにおける各列領域の濃度に基づいて、各列領域に対応する補正値をプリンタのメモリに記憶する。プリンタに記憶される補正値は、個々のプリンタにおける濃度ムラの特性を反映したものになる。
そして、プリンタを購入したユーザーの下において、プリンタドライバが、プリンタから補正値を読み取り、画素データの階調値を補正値に基づいて補正し、補正された階調値に基づいて印刷データを生成し、プリンタが印刷データに基づいて印刷を行う。
<プリンタ製造工場での処理について>
図10は、プリンタの製造後の検査工程で行われる補正値取得処理のフロー図である。
まず、検査者は、検査対象となるプリンタ1を工場内のコンピュータ110に接続する(S101)。工場内のコンピュータ110には、スキャナ150にも接続されており、予め、テストパターンをプリンタ1に印刷させるためのプリンタドライバと、スキャナ150を制御するためのスキャナドライバと、スキャナから読み取った補正用パターンの画像データに対して画像処理や解析等を行うための補正値取得プログラムがインストールされている。
次に、コンピュータ110のプリンタドライバは、プリンタ1にテストパターンを印刷させる(S102)。
図11は、テストパターンの説明図である。図12は、補正用パターンの説明図である。テストパターンには、色別に4つの補正用パターンが形成される。各補正用パターンは、5種類の濃度の帯状パターンと、上罫線と、下罫線と、左罫線と、右罫線とにより構成されている。帯状パターンは、それぞれ一定の階調値の画像データから生成されたものであり、左の帯状パターンから順に階調値76(濃度30%)、102(濃度40%)、128(濃度50%)、153(濃度60%)及び179(濃度70%)となり、順に濃い濃度のパターンになっている。なお、これらの5種類の階調値(濃度)を「指令階調値(指令濃度)」と呼び、記号でSa(=76)、Sb(=102)、Sc(=128)、Sd(=153)、Se(=179)と表す。各帯状パターンは、先端印刷、通常印刷及び後端印刷により形成されるため、先端印刷領域のラスタラインと、通常印刷領域のラスタラインと、後端印刷領域のラスタラインとから構成されている。通常の印刷では通常印刷領域に数千個のラスタラインが形成されるが、補正用パターンの印刷では、通常印刷領域には8周期分のラスタラインが形成される。ここでは説明の簡略化のため図8の印刷によって補正用パターンが印刷されるものとして、帯状パターンが、先端印刷領域の30個のラスタライン、通常印刷領域の56個(7個×8周期)のラスタライン、及び、後端印刷領域の30個のラスタラインの計116個のラスタラインにより構成されるものとする。上罫線は、帯状パターンを構成する1番目のラスタライン(搬送方向最下流側のラスタライン)により形成される。下罫線は、帯状パターンを構成する最終ラスタライン(搬送方向最上流側のラスタライン)により形成される。
次に、検査者は、プリンタ1によって印刷されたテストパターンを、スキャナ150の原稿台ガラス152に置き、上蓋151を閉めて、テストパターンをスキャナ150にセットする。そして、コンピュータ110のスキャナドライバは、スキャナ150に補正用パターンを読み取らせる(S103)。以下、シアンの補正用パターンの読み取りについて、説明する(なお、他の色の補正用パターンの読み取りも同様に行なわれる)。
図13は、シアンの補正用パターンの読み取り範囲の説明図である。シアンの補正用パターンを囲む一点鎖線の範囲が、シアンの補正用パターンを読み取る際の読み取り範囲である。この範囲を特定するためのパラメータSX1、SY1、SW1及びSH1は、補正値取得プログラムによって予めスキャナドライバに設定されている。この範囲をスキャナ150に読み取らせれば、テストパターンが多少ずれてスキャナ150にセットされても、シアンの補正用パターンの全体を読み取ることができる。この処理により、図中の読み取り範囲の画像が、2880×2880dpiの解像度の長方形の画像データとして、コンピュータ110に読み取られる。
次に、コンピュータ110の補正値取得プログラムは、画像データに含まれる補正用パターンの傾きθを検出し(S104)、画像データに対して傾きθに応じた回転処理を行う(S105)。
図14Aは、傾き検出の際の画像データの説明図である。図14Bは、上罫線の位置の検出の説明図である。図14Cは、回転処理後の画像データの説明図である。補正値取得プログラムは、読み取られた画像データの中から、左からKX1の画素であって上からKH個の画素の画素データと、左からKX2の画素であって上からKH個の画素の画素データと、を取り出す。このとき取り出される画素の中に上罫線が含まれ右罫線及び左罫線が含まれないように、パラメータKX1、KX2、KHが予め定められている。そして、補正値取得プログラムは、上罫線の位置を検出するため、取り出されたKH個の画素データの階調値の重心位置KY1、KY2をそれぞれ求める。そして、補正値取得プログラムは、パラメータKX1、KX2と、重心位置KY1、KY2とに基づいて、次式により補正用パターンの傾きθを算出し、算出された傾きθに基づいて、画像データの回転処理を行う。
θ = tan−1{(KY2−KY1)/(KX2−KX1)}
次に、コンピュータ110の補正値取得プログラムは、画像データの中から不要な画素をトリミングする(S106)。
図15Aは、トリミングの際の画像データの説明図である。図15Bは、上罫線でのトリミング位置の説明図である。ステップS104での処理と同様に、補正値取得プログラムは、回転処理された画像データの中から、左からKX1の画素であって上からKH個の画素の画素データと、左からKX2の画素であって上からKH個の画素の画素データと、を取り出す。そして、補正値取得プログラムは、上罫線の位置を検出するため、取り出されたKH個の画素データの階調値の重心位置KY1、KY2をそれぞれ求め、2つの重心位置の平均値を算出する。そして、重心位置から列領域の幅の1/2だけ上側の位置において最も近い画素の境界をトリミング位置に決定する。なお、本実施形態では、画像データの解像度が2880dpiであり、列領域の幅は720dpiであるので、列領域の幅の1/2は2画素分の幅に相当する。そして、補正値取得プログラムは、決定されたトリミング位置よりも上側の画素を切り取り、トリミングを行なう。
図15Cは、下罫線でのトリミング位置の説明図である。上罫線側とほぼ同様に、補正値取得プログラムは、回転処理された画像データの中から、左からKX1の画素であって下からKH個の画素の画素データと、左からKX2の画素であって下からKH個の画素の画素データと、を取り出し、下罫線の重心位置を算出する。そして、重心位置から列領域の幅の1/2だけ下側の位置において最も近い画素の境界をトリミング位置に決定する。そして、補正値取得プログラムは、トリミング位置よりも下側の画素を切り取り、トリミングを行なう。
次に、コンピュータ110の補正値取得プログラムは、Y方向の画素数が116個(補正用パターンを構成するラスタラインの数と同数)になるように、トリミングされた画像データを解像度変換する(S107)。
図16は、解像度変換の説明図である。仮に、プリンタ1が720dpiの116個のラスタラインからなる補正用パターンを理想的に形成し、スキャナ150が補正用パターンを2880dpi(補正用パターンの4倍の解像度)で理想的に読み取れば、トリミング後の画像データのY方向の画素数は、464個(=116×4)になるはずである。しかし、実際には印刷時や読み取り時のズレの影響があって、画像データのY方向の画素数が464個にならないことがあり、ここでは、トリミング後の画像データのY方向の画素数は470個である。コンピュータ110の補正値取得プログラムは、この画像データに対して、116/470(=[補正用パターンを構成するラスタラインの数]/[トリミング後の画像データのY方向の画素数])の倍率で解像度変換(縮小処理)を行なう。ここでは解像度変換にバイキュービック法が用いられる。これにより、解像度変換後の画像データのY方向の画素数が116個になる。言い換えると、2880dpiの補正用パターンの画像データが、720dpiの補正用パターンの画像データに変換される。この結果、Y方向に並ぶ画素の数と列領域の数とが同数になり、X方向の画素列と列領域とが、一対一で対応することになる。例えば、一番上に位置するX方向の画素列は1番目の列領域に対応し、その下に位置する画素列は2番目の列領域に対応する。なお、この解像度変換ではY方向の画素数を116個にするのが目的なので、X方向の解像度変換(縮小処理)は行われなくても良い。
次に、コンピュータ110の補正値取得プログラムは、各列領域における5種類の帯状パターンのそれぞれの濃度を測定する(S108)。以下、1番目の列領域における階調値76(濃度30%)で形成された左側の帯状パターンの濃度の測定について説明する(なお、他の列領域における測定も同様に行なわれる。また、他の帯状パターンの濃度の測定も同様に行なわれる)。
図17Aは、左罫線の検出の際の画像データの説明図である。図17Bは、左罫線の位置の検出の説明図である。図17Cは、1番目の列領域の濃度30%の帯状パターンの濃度の測定範囲の説明図である。補正値取得プログラムは、解像度変換された画像データの中から、上からH2の画素であって、左からKX個の画素の画素データを取り出す。このとき取り出される画素の中に左罫線が含まれるように、パラメータKXが予め定められている。そして、補正値取得プログラムは、左罫線の位置を検出するため、取り出されたKX個の画素の画素データの階調値の重心位置を求める。この重心位置(左罫線の位置)からX2だけ右側に、幅W3の濃度30%の帯状パターンが存在していることは、補正用パターンの形状から既知になっている。そこで、補正値取得プログラムは、重心位置を基準にして、帯状パターンの左右W4の範囲を除いた点線の範囲の画素データを抽出し、この範囲の画素データの階調値の平均値を、1番目の列領域の濃度30%の測定値とする。なお、1番目の列領域の濃度30%の帯状パターンの濃度を測定する場合、図中の点線の範囲の1画素下の範囲の画素データを抽出する。このようにして、補正値取得プログラムは、5種類の帯状パターンの濃度を列領域毎にそれぞれ測定する。
図18は、シアンの5種類の帯状パターンの濃度の測定結果をまとめた測定値テーブルである。このように、コンピュータ110の補正値取得プログラムは、列領域毎に、5種類の帯状パターンの濃度の測定値を対応付けて、測定値テーブルを作成する。他の色についても、測定値テーブルが作成される。なお、以下の説明では、ある列領域について、階調値Sa〜Seの帯状パターンの測定値をそれぞれCa〜Ceとしている。
図19は、シアンの濃度30%、濃度40%及び濃度50%の帯状パターンの測定値のグラフである。各帯状パターンは、それぞれの指令階調値で一様に形成されたにもかかわらず、列領域毎に濃淡が生じている。この列領域毎の濃淡差が、印刷画像の濃度ムラの原因である。
濃度ムラをなくすためには、各帯状パターンの測定値が一定になることが望ましい。そこで、階調値Sb(濃度40%)の帯状パターンの測定値を一定にするための処理について検討する。ここでは、階調値Sbの帯状パターンの全列領域の測定値の平均値Cbtを、濃度40%の目標値と定める。この目標値Cbtよりも測定値が淡い列領域iでは、濃度の測定値が目標値Cbtに近づくためには、階調値を濃くする方へ補正すればよいと考えられる。一方、目標値Cbtよりも測定値が濃い列領域jでは、濃度の測定値が目標Cbtに近づくためには、階調値を淡くする方へ補正すればよいと考えられる。
そこで、コンピュータ110の補正値取得プログラムは、列領域に対応する補正値を算出する(S109)。ここでは、ある列領域における指令階調値Sbに対する補正値の算出について説明する。以下に説明するように、図19の列領域iの指令階調値Sb(濃度40%)に対する補正値は、階調値Sb及び階調値Sc(濃度50%)の測定値に基づいて算出される。一方、列領域jの指令階調値Sb(濃度40%)に対する補正値は、階調値Sb及び階調値Sa(濃度30%)の測定値に基づいて算出される。
図20Aは、列領域iにおける指令階調値Sbに対する目標指令階調値Sbtの説明図である。この列領域では、指令階調値Sbで形成された帯状パターンの濃度の測定値Cbは、目標値Cbtよりも小さい階調値を示す(この列領域では、濃度40%の帯状パターンの平均濃度よりも淡い)。仮に、プリンタドライバが、この列領域に目標値Cbtの濃度のパターンをプリンタに形成させるならば、次式(直線BCに基づく直線補間)により算出される目標指令階調値Sbtに基づいて指令すればよい。
Sbt=Sb+(Sc−Sb)×{(Cbt−Cb)/(Cc−Cb)}
図20Bは、列領域jにおける指令階調値Sbに対する目標指令階調値Sbtの説明図である。この列領域では、指令階調値Sbで形成された帯状パターンの濃度の測定値Cbは、目標値Cbtよりも大きい階調値を示す(この列領域では、濃度40%の帯状パターンの平均濃度よりも濃い)。仮に、プリンタドライバが、この列領域に目標値Cbtの濃度のパターンをプリンタに形成させるならば、次式(直線ABに基づく直線補間)により算出される目標指令階調値Sbtに基づいて指令すればよい。
Sbt=Sb−(Sb−Sa)×{(Cbt−Cb)/(Ca−Cb)}
このようにして目標指令階調値Sbtを算出した後、補正値取得プログラムは、次式により、この列領域における指令階調値Sbに対する補正値Hbを算出する。
Hb = (Sbt−Sb)/Sb
コンピュータ110の補正値取得プログラムは、列領域毎に、階調値Sb(濃度40%)に対する補正値Hbを算出する。また、同様に、補正値取得プログラムは、階調値Sc(濃度50%)に対する補正値Hcを、各列領域の測定値Ccと、測定値Cb又はCdとに基づいて、列領域毎に算出する。また、同様に、補正値取得プログラムは、階調値Sd(濃度60%)に対する補正値Hdを、各列領域の測定値Cdと、測定値Cc又はCeとに基づいて、列領域毎に算出する。また、他の色についても、列領域毎に、3つの補正値(Hb、Hc、Hd)を算出する。
ところで、通常印刷領域には、56個のラスタラインがあるが、7個のラスタライン毎に規則性がある。通常印刷領域の補正値の算出では、この規則性が考慮される。
補正値取得プログラムは、通常印刷領域の1番目の列領域(印刷領域全体の31番目の列領域)における補正値を算出するとき、前述の測定値Caには、通常印刷領域の1、8、15、22、29、36、43、50番目の8個の列領域の列領域の濃度30%の測定値の平均値が用いられる。同様に、通常印刷領域の1番目の列領域(印刷領域全体の31番目の列領域)における補正値を算出するとき、前述の測定値Cb〜Ceには、通常印刷領域の1、8、15、22、29、36、43、50番目の8個の列領域の列領域の各濃度の測定値の平均値がそれぞれ用いられる。そして、このような測定値Ca〜Ceに基づいて、前述の通りに、通常印刷領域の1番目の列領域の補正値(Hb、Hc、Hd)が算出される。このように、通常印刷領域の列領域の補正値は、7個おきの8個の列領域の各濃度の測定値の平均に基づいて、算出される。この結果、通常印刷領域では、1番目〜7番目の7個の列領域に対してだけ補正値が算出され、8番目〜56番目の列領域に対する補正値の算出は行なわれない。言い換えると、通常印刷領域の1番目〜7番目の7個の列領域に対する補正値が、8番目〜56番目の列領域に対する補正値にもなる。
次に、コンピュータ110の補正値取得プログラムは、補正値をプリンタ1のメモリ63に記憶する(S110)。
図21は、シアンの補正値テーブルの説明図である。補正値テーブルには、先端印刷領域用、通常印刷領域用、後端印刷領域用の3種類ある。各補正値テーブルには、3つの補正値(Hb、Hc、Hd)が、列領域毎に対応付けられている。例えば、各列領域のn番目のラスタラインには、3つの補正値(Hb_n、Hc_n、Hd_n)が対応付けられている。3つの補正値(Hb_n、Hc_n、Hd_n)は、それぞれ、指令階調値Sb(=102)、Sc(=128)及びSd(=153)に対応する。なお、他の色の補正値テーブルも同様である。
プリンタ1のメモリ63に補正値を記憶させた後、補正値取得処理は終了する。その後、プリンタ1とコンピュータ110との接続が外され、プリンタ1に対する他の検査を終えて、プリンタ1が工場から出荷される。プリンタ1には、プリンタドライバを記憶したCD−ROMも同梱される。
<ユーザー下での処理について>
図22は、ユーザー下で行なわれる処理のフロー図である。
プリンタ1を購入したユーザーは、所有するコンピュータ110(もちろん、プリンタ製造工場のコンピュータとは別のコンピュータ)に、プリンタ1を接続する(S201、S301)。なお、ユーザーのコンピュータ110には、スキャナ150は接続されていなくても良い。
次に、ユーザーは、同梱されているCD−ROMを記録再生装置140にセットし、プリンタドライバをインストールする(S202)。コンピュータにインストールされたプリンタドライバは、コンピュータ110に、プリンタ1に対して補正値の送信を要求する(S203)。プリンタ1は、要求に応じて、メモリ63に記憶されている補正値テーブルをコンピュータ110へ送信する(S302)。プリンタドライバは、プリンタ1から送られてくる補正値をメモリに記憶する(S204)。これにより、コンピュータ側に補正値テーブルが作成される。ここまでの処理を終えた後、プリンタドライバは、ユーザーからの印刷命令があるまで、待機状態になる(S205でNO)。
プリンタドライバは、ユーザーからの印刷命令を受けると(S205でYES)、補正値に基づいて印刷データを生成し(S206)、印刷データをプリンタ1に送信する。プリンタ1は、印刷データに従って、印刷処理を行う(S303)。
図23は、印刷データ生成処理のフロー図である。これらの処理は、プリンタドライバによって行われる。
まず、プリンタドライバは、解像度変換処理を行う(S211)。解像度変換処理は、アプリケーションプログラムから出力された画像データ(テキストデータ、イメージデータなど)を、紙に印刷する際の解像度に変換する処理である。例えば、紙に画像を印刷する際の解像度が720×720dpiに指定されている場合、アプリケーションプログラムから受け取った画像データを720×720dpiの解像度の画像データに変換する。なお、解像度変換処理後の画像データは、RGB色空間により表される256階調のデータ(RGBデータ)である。
次に、プリンタドライバは、色変換処理を行う(S212)。色変換処理は、RGBデータをCMYK色空間により表されるCMYKデータに変換する処理である。この色変換処理は、RGBデータの階調値とCMYKデータの階調値とを対応づけたテーブル(色変換ルックアップテーブルLUT)をプリンタドライバが参照することによって行われる。この色変換処理により、各画素についてのRGBデータが、インク色に対応するCMYKデータに変換される。なお、色変換処理後のデータは、CMYK色空間により表される256階調のCMYKデータである。
次に、プリンタドライバは、濃度補正処理を行う(S213)。濃度補正処理は、各画素データの階調値を、その画素データの属する列領域の対応する補正値に基づいて補正する処理である。
図24は、シアンのn番目の列領域の濃度補正処理の説明図である。同図は、シアンのn番目の列領域に属する画素の画素データの階調値S_inを補正する様子を示している。なお、補正後の階調値はS_outである。
仮に補正前の画素データの階調値S_inが指令階調値Sbと同じであれば、プリンタドライバは、階調値S_inを目標指令階調値Sbtに補正すれば、その画素データの対応する単位領域に目標濃度Cbtの画像を形成することができる。つまり、補正前の画素データの階調値S_inが指令階調値Sbと同じであれば、指令階調値Sbに対応する補正値Hbを用いて、階調値S_in(=Sb)をSb×(1+Hb)に補正するのが良い。同様に、補正前の画素データの階調値Sが指令階調値Scと同じであれば、階調値S_in(=Sc)をSc×(1+Hc)に補正するのが良い。
これに対し、補正前の階調値S_inが指令階調値とは異なる場合、図に示すような直線補間によって、出力すべき階調値S_outが算出される。図中の直線補間では、各指令階調値(Sb、Sc、Sd)に対応する補正後の各階調値S_out(Sbt、Sct、Sdt)の間を直線補間している。但し、これに限られるものではない。例えば、各指令階調値に対応する各補正値(Hb、Hc、Hd)の間を直線補間して階調値S_inに対応する補正値Hを算出し、算出された補正値Hに基づいて補正後の階調値をS_in×(1+H)として算出しても良い。
先端印刷領域の1番目〜30番目の各列領域の画素データに対しては、プリンタドライバは、先端印刷領域用の補正値テーブルに記憶されている1番目〜30番目の各列領域に対応する補正値に基づいて、濃度補正処理を行う。例えば、先端印刷領域の1番目の列領域の画素データに対しては、プリンタドライバは、先端印刷用の補正値テーブルの1番目の列領域の補正値(Hb_1、Hc_1、Hd_1)に基づいて、濃度補正処理を行う。
同様に、通常印刷領域の1番目〜7番目の各列領域(印刷領域全体の31番目〜38番目の各列領域)の画素データに対しては、プリンタドライバは、通常印刷領域用の補正値テーブルに記憶されている1番目〜7番目の各列領域に対応する補正値に基づいて、濃度補正処理を行う。但し、通常印刷領域には数千個の列領域が存在するが、通常印刷領域用の補正値テーブルには、7個分の列領域に対応する補正値しか記憶されていない。そこで、通常印刷領域の8番目〜14番目の各列領域の画素データに対しては、プリンタドライバは、通常印刷領域用の補正値テーブルに記憶されている1番目〜7番目の各列領域に対応する補正値に基づいて、濃度補正処理を行う。このように、通常印刷領域の列領域に対しては、プリンタドライバは、7個の列領域毎に、1番目〜7番目の各列領域に対応する補正値を繰り返して用いる。通常印刷領域では7個の列領域毎に規則性があるため、濃度ムラの特性も同じ周期で繰り返されると考えられるため、同じ周期で補正値を繰り返し用いることにより、記憶すべき補正値のデータ量を削減している。
なお、補正用パターンの通常印刷領域の列領域は56個であったが、ユーザー下で印刷される印刷画像の通常印刷領域の列領域の数は、これよりも多く、数千個にも及ぶ。このような通常印刷領域の搬送方向上流側(紙の後端側)に30個の列領域からなる後端印刷領域が形成される。
後端印刷領域では先端印刷領域と同様に、後端印刷領域の1番目〜30番目の各列領域の画素データに対しては、プリンタドライバは、後端印刷領域用の補正値テーブルに記憶されている1番目〜30番目の各列領域に対応する補正値に基づいて、濃度補正処理を行う。
以上の濃度補正処理により、濃く視認されやすい列領域に対しては、その列領域に対応する画素の画素データ(CMYKデータ)の階調値が低くなるように補正される。逆に、淡く視認されやすい列領域に対しては、その列領域に対応する画素の画素データの階調値が高くなるように補正される。なお、他の色の他の列領域に対しても、プリンタドライバは、同様に補正処理を行う。
次に、プリンタドライバは、ハーフトーン処理を行う(S214)。ハーフトーン処理は、高階調数のデータを、プリンタが形成可能な階調数のデータに変換する処理である。例えば、ハーフトーン処理により、256階調を示すデータが、2階調を示す1ビットデータや4階調を示す2ビットデータに変換される。ハーフトーン処理では、ディザ法・γ補正・誤差拡散法などを利用して、プリンタがドットを分散して形成できるように画素データを作成する。プリンタドライバは、ハーフトーン処理を行うとき、ディザ法を行う場合にはディザテーブルを参照し、γ補正を行う場合にはガンマテーブルを参照し、誤差拡散法を行う場合は拡散された誤差を記憶するための誤差メモリを参照する。ハーフトーン処理されたデータは、前述のRGBデータと同等の解像度(例えば720×720dpi)を有している。
本実施形態では、プリンタドライバは、濃度補正処理によって補正された階調値の画素データに対して、ハーフトーン処理が行われることになる。この結果、濃く視認されやすい列領域では、その列領域の画素データの階調値が低くなるように補正されているので、その列領域のラスタラインを構成するドットのドット生成率が低くなる。逆に、淡く視認されやすい列領域では、ドット生成率が高くなる。
次に、プリンタドライバは、ラスタライズ処理を行う(S215)。ラスタライズ処理は、マトリクス状の画像データを、プリンタに転送すべきデータ順に変更する処理である。ラスタライズ処理されたデータは、印刷データに含まれる画素データとして、プリンタに出力される。
このようにして生成された印刷データに基づいてプリンタが印刷処理を行えば、図9Cに示すように、各列領域のラスタラインのドット生成率が変更され、列領域の画像片の濃度が補正されて、印刷画像全体の濃度ムラが抑制される。
以上の説明では、説明の簡略化のためノズル数や列領域の数(ラスタラインの数)を少なくしているが、実際には、ノズル数は180個であり、例えば先端印刷領域の列領域の数は360個になる。但し、補正値取得プログラムやプリンタドライバ等が行なう処理は、ほぼ同様である。
===本実施形態の処理の詳述===
<濃度の測定値の傾きについて>
図25Aは、スキャナが正常な場合の濃度30%の帯状パターンの各列領域の濃度の測定値のグラフである。スキャナが正常な場合、全ての列領域において、測定値の平均値Cbtの近傍に測定値が分布している。
図25Bは、スキャナが異常な場合の濃度30%の帯状パターンの各列領域の濃度の測定値のグラフである。例えば、スキャナ150の案内部材154(図5A参照)が斜めに取り付けられていたり、上蓋151の閉じ方が不十分で原稿5が浮いていたりすると、読取キャリッジ153の副走査方向の位置に応じて原稿5とラインセンサ158との光学的な距離が変動する。このような影響により、ラインセンサ158の出力結果が読取キャリッジ153の副走査方向の位置に応じて変化すると、列領域の位置に応じて測定値が変化し、測定値が全体的に傾くことがある。
以下、測定値のグラフが全体的に右肩下がりになるような場合の影響について説明する。
<濃度の測定値の傾きの影響について(1)>
このように測定値が列領域の位置に応じて傾くと、測定値に基づいて算出される補正値も列領域の位置に応じて傾くことになる。例えば、先端側の列領域では、実際の濃度よりも濃く測定されるため、階調値S_inを必要以上に低くする補正値が設定される。一方、後端側の列領域では、実際の濃度よりも淡く測定されるため、階調値S_inを必要以上に高くする補正値が設定される。
このように、列領域の位置に応じて補正値が傾く結果、濃度補正された印刷画像が、先端側から後端側に向かって徐々に濃くなるように印刷されてしまう。
<濃度の測定値の傾きの影響について(2)>
通常印刷領域では、前述したとおり、補正値を算出する際に用いられる測定値として、7個おきの8個の列領域(例えば、通常印刷領域の1、8、15、22、29、36、43、50番目の8個の列領域)の測定値の平均値が用いられる。
図26A及び図26Bは、補正値の算出の際に用いられる測定値を順に並べたものである。図26Aはスキャナが正常な場合のグラフであり、図26Bはスキャナが異常な場合のグラフである。先端印刷領域及び後端印刷領域の測定値は、図25Aや図25Bの測定値と同じものであるが、通常印刷領域の7個の測定値は、それぞれ、7個おきの8個の列領域の測定値の平均値である。
ここで、先端印刷領域と通常印刷領域との境界について注目するため、先端印刷領域の30番目の列領域の濃度の測定値と、通常印刷領域の1番目の列領域(印刷全体の31番目の列領域)の濃度の測定値(平均値)とについて注目する。
先端印刷領域の補正値の算出の際には、先端印刷領域の濃度の測定値がそのまま用いられる。このため、スキャナに異常がある場合、実際の濃度よりも濃く測定された測定値が、補正値の算出の際にそのまま用いられる。
一方、通常印刷領域の補正値の算出の際には、7個おきの8個の列領域の平均値が用いられる。そして、通常印刷領域の1番目の列領域の濃度は実際の濃度よりも濃く測定されるものの、搬送方向上流側の列領域(例えば50番目の列領域)ほど、だんだん淡く測定される。このため、通常印刷領域の1、8、15、22、29、36、43、50番目の8個の列領域の測定値の平均値は、通常印刷領域の1番目の列領域の測定値よりも、低い値になる。
この結果、先端印刷領域の1番目〜30番目の列領域の濃度の測定値が連続的に傾いているのに、先端印刷領域の30番目の列領域の濃度の測定値と、通常印刷領域の1番目の列領域の濃度の測定値(平均値)と、の間で、測定値が不連続になる。
このように印刷領域の境界で測定値が不連続になると、測定値に基づいて算出される補正値も不連続になる。この結果、先端印刷領域の搬送方向最上流側の画像(先端印刷領域の30番目の列領域の画像片)が、通常印刷領域の画像に対して、濃くなっていることが目立ってしまう。
また、同様に、通常印刷領域の7番目の列領域の濃度の測定値(平均値)と、後端印刷領域の1番目の列領域の濃度の測定値(そのままの値)との間でも、測定値が不連続になる。この結果、後端印刷領域の搬送方向最下流側の画像(後端印刷領域の1番目の列領域の画像片)が、通常印刷領域の画像に対して、淡くなっていることが目立ってしまう。
図27は、先端印刷領域と通常印刷領域の境界の濃度、及び、通常印刷領域と後端印刷領域の境界の濃度の説明図である。説明の簡略化ため、この印刷画像の元になる画像データは、一様な濃度の画像であるものとする。(なお、図27では、説明の簡略化のため先端印刷領域の濃度は一定に描かれているが、前述の「濃度の測定値の傾きの影響について(1)」で説明した影響を考慮すると、先端印刷領域の中でも徐々に濃度が変化することになる。)
このように、スキャナの異常のため測定値が全体的に傾く場合、濃度補正処理が行われると、印刷領域の境界で濃淡差が目立ってしまう。
<濃度の測定値の傾きの影響について(3)>
図28は、通常印刷領域の1周期分の測定値(平均値)のグラフである。細線のグラフは、測定値に傾きがない場合であり、太線のグラフは、測定値に傾きがある場合である。ここでは、説明を分り易くするため、前述のグラフと比較して、測定値の傾きを大きくしている。
既に説明したとおり、通常印刷領域では、補正値を算出する際に用いられる測定値として、7個おきの8個の列領域の測定値の平均値が用いられる。ここで、通常印刷領域の1、8、15、22、29、36、43、50番目の8個の列領域の測定値の平均値と、通常印刷領域の7、14、21、28、35、42、49、56番目の8個の列領域の平均値とを比較すると、前者の方が後者よりも濃く測定され易い。つまり、通常印刷領域の1周期分の濃度の測定値(平均値)も、全体的に右肩下がりになる。このように測定値(平均値)が1周期内の列領域の位置に応じて傾くと、測定値に基づいて算出される補正値も列領域の位置に応じて傾くことになる。この結果、濃度補正処理を行って印刷を行うと、1周期分の列領域の中で、徐々に濃くなるように印刷されてしまう。
そして、通常印刷領域では、1周期分の列領域に対する補正値は、7個の列領域毎に繰り返し用いられる。このため、ある列領域の補正値として7番目の列領域の補正値を適用した後、搬送方向上流側に隣接する列領域の補正値として1番目の列領域の補正値を適用することになる。この結果、1周期の中で比較的濃い画像(7番目の列領域の補正値が適用される列領域の画像片)が、比較的淡い画像(1番目の列領域の補正値が適用される列領域の画像片)と隣接してしまい、濃淡差が目立ってしまう。しかも、このような濃淡差の目立つ部分が、1周期毎に発生することになる。
図29は、スキャナに異常がある場合に濃度補正処理を行ったときの通常印刷領域の濃度の説明図である。説明の簡略化ため、この印刷画像の元になる画像データは、一様な濃度の画像であるものとする。
ここでは説明の簡略化のためノズル数を減らして説明している結果、1周期分の7個分の列領域の幅は7/720インチと狭いため、かつ、1周期内の1番目の列領域と7番目の列領域とでは濃淡差が少ないため、1周期毎に発生する濃淡差が視認しにくいかも知れない。但し、実際にはノズル数が180個であり、1周期分の列領域の幅は179/720インチになり、また、1周期内の1番目の列領域と179番目の列領域とでは濃淡差が大きくなるため、1周期毎に発生する濃淡差が視認しやすい。
つまり、測定値が全体的に傾くと、濃度補正処理を行ったにもかかわらず、印刷画像の縞模様が目立ってしまう。
<測定値の修正について>
本実施形態では、測定値のグラフが傾くことによって生ずる悪影響を防止するため、測定値のグラフの傾きを修正し、修正された測定値に基づいて補正値を算出している。
図30Aは、修正処理前の測定値のグラフである。ここでの測定値は、図25Bのグラフと同じである。
補正値取得プログラムは、21番目〜106番目の列領域を演算対象範囲として、この範囲の列領域の濃度の測定値を取り出す。この演算対象範囲よりも搬送方向下流側に位置する1番目〜20番目の列領域を演算対象範囲から外した理由は、1番目〜20番目の列領域は補正用パターンの搬送方向下流側の余白の近傍に位置するため、この余白の影響を受けた状態で1番目〜20番目の列領域の画像が読み取られ、1番目〜20番目の列領域の濃度が淡く測定されているかも知れないためである。同様に、107番目〜126番目の列領域を演算対象範囲から外した理由も、107番目〜126番目の列領域は補正用パターンの搬送方向上流側の余白の近傍に位置するため、この余白の影響を受けた状態で107番目〜126番目の列領域の画像が読み取られ、107番目〜126番目の列領域の濃度が淡く測定されているかも知れないためである。一方、演算対象範囲には、先端印刷領域及び後端印刷領域の少なくとも一部が含まれている。これは、これらの印刷領域を考慮して測定値の傾きを求めるためである。
そして、補正値取得プログラムは、演算対象範囲内の列領域の濃度の測定値に基づいて、最小二乗法により近似直線を算出する。図30Aには、太線で近似直線が示されている。また、補正値取得プログラムは、演算対象範囲内の列領域の濃度の測定値に基づいて、平均値Cbt’を算出する。この平均値Cbt’が、前述の目標値Cbtになる。
次に、補正値取得プログラムは、列領域毎に、各列領域における近似直線の値と平均値Cbt’との差を算出し、この値をその列領域の修正値とする。なお、演算対象範囲外の列領域に対しても、近似直線を延長し、その列領域における延長線の値と平均値Cbt’との差を算出し、この値をその列領域の修正値とする。そして、補正値取得プログラムは、各列領域の測定値から修正値を引いて、各列領域の測定値を修正する。
図30Bは、修正処理後の測定値のグラフである。修正後の測定値のグラフは、全体的な傾きが解消されている。
そして、補正値取得プログラムは、この修正後の測定値に基づいて、補正値を算出し(S109)、算出された補正値をプリンタ1のメモリ63に記憶する(S110)。ユーザー下では、プリンタドライバが、修正後の測定値に基づいて算出された補正値に基づいて濃度補正処理を行って印刷データを生成し、この印刷データに基づいてプリンタが印刷を行う。
本実施形態では、修正後の測定値が列領域の位置にかかわらず平均値Cbt’近傍の値になるので、例えば一定濃度の画像が濃度補正処理されて印刷されても、印刷画像全体が一様な濃度になる。つまり、本実施形態では、濃度補正処理後の印刷画像全体が列領域の位置に応じて徐々に濃度変化する現象を抑制できる。
また、本実施形態では、先端印刷領域と通常印刷領域との境界において、境界付近の先端印刷領域の濃度の測定値も、境界付近の通常印刷領域の列領域の濃度の測定値(平均値)も、平均値Cbt’近傍の値になる。この結果、先端印刷領域と通常印刷領域との境界付近の列領域の測定値が連続的になる。同様に、通常印刷領域と後端印刷領域との境界付近の列領域の測定値が連続的になる。これにより、本実施形態では、1周期分の補正値に基づいて通常印刷領域の列領域の濃度を補正しても、図27のような印刷領域の境界での濃淡差が目立たない。
また、本実施形態では、通常印刷領域の1周期分の測定値(平均値)が、いずれも平均値Cbt’近傍の値になる。この結果、1周期内の1番目の列領域の濃度の測定値も、7番目の列領域の濃度の測定値も、いずれも平均値Cbt’近傍の値になり、連続的なる。これにより、本実施形態では、1周期分の補正値を繰り返して用いても、図29のような1周期毎の濃淡差が目立たない。
===その他の実施の形態===
一実施形態としてのプリンタ1や印刷システム100を説明したが、上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることは言うまでもない。
例えば、前述のプリンタ1は、スキャナ150とは別体であった。しかし、プリンタとスキャナが一体になっている複合機であっても良い。
また、前述の実施形態では、プリンタ1の製造時の検査工程においてテストパターンを印刷して補正値テーブルを作成しているが、これに限られるものではない。例えば、プリンタ1を購入したユーザーが、プリンタ1にテストパターンを印刷させ、テストパターンをスキャナ150で読み取って、補正値テーブルを作成しても良い。この場合、プリンタドライバに補正値取得プログラムが含まれていても良い。
また、前述の実施形態では、1つのラスタラインを1つのノズルで形成しているが、これに限られるものではない。例えば、1つのラスタラインを2つのノズルで形成しても良い。
===まとめ===
(1)前述の実施形態では、補正値取得処理において、まず、テストパターンの印刷が行われる(図10、S102)。テストパターンの印刷では、ドット形成処理(図6、S003)が繰り返し行われ、補正用パターン(パターンの一例)が紙(媒体の一例)に形成される。この補正用パターンは、搬送方向に並ぶ複数の列領域に形成された複数のラスタライン(ドット列の一例)から構成される。
次に、補正用パターンがスキャナ150で読み取られ(S103、図13)、必要に応じて回転処理(S105)やトリミング(S106)や解像度変換(S107)が行われた後、各列領域の濃度が測定される(S108)。
ここで、スキャナ150に異常があると、読取キャリッジ153の副走査方向の位置に応じてラインセンサ158の出力結果が変化し、この結果、列領域の位置に応じて測定値が変化してしまう(図25B参照)。仮に、このような測定値に基づいて補正値を算出すると、プリンタの特性に応じた補正値にならず、このような補正値を用いて濃度補正処理(S213)を行っても印刷画像の画質は向上しない(図27、図29参照)。
そこで、本実施形態では、補正値取得プログラムは、演算対象範囲の列領域の測定結果(複数の列領域の濃度の測定結果の少なくとも一部の一例)に基づいて、各列領域に応じた修正値を算出している。具体的には、補正値取得プログラムは、近似直線演算対象範囲の列領域の測定結果に基づいて近似直線及び平均値Cbt’を求め(図30A参照)、各列領域における近似直線の値と平均値Cbt’との差を算出し、この値をその列領域の修正値としている。そして、補正値取得プログラムは、各列領域の濃度の測定値を修正値に基づいて修正する(図30B)。
これにより、スキャナ150に異常があったとしても、スキャナ150の正常時の測定値(図25A)とほぼ同じような、プリンタの特性を反映した濃度ムラを測定できる。
(2)前述の実施形態では、1番目〜116番目の列領域の測定値のうち、21番目〜106番目の列領域が演算対象範囲とされており、補正用パターンの搬送方向下流側の端部となる1番目〜20番目の列領域は演算対象範囲から外されている。また、同様に、補正用パターンの搬送方向上流側の端部となる107番目〜116番目の列領域も演算対象範囲から外されている。これは、補正用パターンの端部は余白の近傍に位置するため、補正用パターンの端部の列領域の濃度を測定する際に余白の影響を受け、実際の濃度よりも淡く測定されているかも知れないためである。
(3)前述の実施形態では、補正値取得プログラムは、近似直線演算対象範囲の列領域の測定結果に基づいて近似直線及び平均値Cbt’を求め(図30A参照)、各列領域における近似直線の値と平均値Cbt’との差を算出し、この値をその列領域の修正値としている。これにより、測定値が全体的に傾いても、その傾きを修正することができる。
但し、修正値の算出方法は、これに限られるものではない。例えば、直線で近似するのではなく、2次曲線で近似しても良い。
(4)前述の実施形態では、近似直線を最小二乗法に基づいて算出している。これにより、測定値の傾きの傾向を把握することができる。但し、近似直線の算出方法は、これに限られるものではない。最小二乗法では測定値と近似直線との差の二乗の総和が最小となるような近似直線が算出されるが、これに代わり、例えば、測定値と近似直線との差の総和が最小となるような近似直線を算出しても良い。
(5)前述の実施形態では、補正用パターンが、先端印刷(第1印刷の一例)により形成される先端印刷領域のドット列(第1ドット列の一例)と、通常印刷(第1印刷の一例)により形成される通常印刷領域のドット列(第2ドット列の一例)とを有する場合、演算対象範囲には、先端印刷領域の列領域の濃度の測定値、及び通常印刷領域の列領域の濃度の測定値が含まれることが望ましい。これにより、近似直線を算出する際に、先端印刷領域の列領域の濃度の測定値が反映される。
(6)前述の構成要素を全て含む濃度測定方法によれば、全ての効果を奏するので、望ましい。但し、必ずしも全ての構成要素を含む必要性はない。要するに、プリンタの特性を反映した濃度むらを測定できる構成であれば良い。
(7)前述の実施形態では、補正値取得プログラムは、列領域の濃度の測定値を修正し、修正された測定値に基づいて、列領域に対応する補正値を算出している。そして、ユーザー下で印刷画像を紙(媒体の一例)に形成する際に、プリンタドライバが補正値に基づいて濃度補正処理(S213)を行って印刷データを生成することにより、プリンタ1が、印刷画像を構成するラスタラインを、そのラスタラインの形成されるべき列領域に対応する補正値に基づいて形成する。これにより、スキャナ150に異常があったとしても、濃度ムラのない印刷画像を形成することができる。
ところで、補正値を列領域ではなくノズルに対応付けることも技術的には可能である。しかし、同じノズルにより形成された画像片であっても、濃度が異なる場合がある。例えばノズル♯3により形成されたドット列であっても、隣接するドット列がノズル♯1で形成される場合とノズル♯4で形成される場合とで、ノズル♯3により形成されたドット列の濃度が異なることがある。このため、ノズル♯3に特定の補正値を対応付けて、ノズル♯3により形成されるラスタラインに対応する画素データの階調値をノズル♯3に対応する補正値に基づいて補正しても、濃度ムラを抑制できるとは限らないのである。このため、本実施形態では、列領域に対応付けて補正値を設定しているのである。
(8)前述の実施形態では、補正値取得プログラムは、通常印刷領域の7個の列領域に対応する補正値をそれぞれ算出する(図21参照)。そして、ユーザー下で印刷画像を形成する際に、プリンタドライバは、7個の列領域に対応する補正値を繰り返して用い、通常印刷領域の数千個もの列領域の画素データの階調値を補正し、補正された階調値に基づいてハーフトーン処理を行って印刷データを生成する。
仮にスキャナ150に異常があった場合において、測定値を修正せずに求めた補正値を繰り返して用いると、図29のように、繰返し周期毎の濃淡差が目立ってしまう。一方、本実施形態では、このような縞模様の発生を抑制することができる。
(9)前述の通常印刷では、7・Dの搬送量(所定の搬送量の一例)が繰り返されて、印刷画像が紙(媒体の一例)に形成される。このような通常印刷に先立って、補正値取得プログラムは、例えば、通常印刷領域の1番目の列領域に対応する補正値を、通常印刷領域の1、8、15、22、29、36、43、50番目の8個の列領域の測定値の平均値に基づいて、算出する。このように、通常印刷領域のn番目の列領域に対応する補正値は、通常印刷領域のn番目の列領域の濃度の測定値と、その列領域から搬送量7・Dの整数倍だけ離れた別の列領域の濃度とに基づいて、算出される。
このような方法で補正値を算出する場合において、測定値を修正せずに求めた補正値に基づいて濃度補正処理を行うと、例えば通常印刷領域の1番目の列領域と、この列領域と隣接する先端印刷領域の30番目の列領域との間で、補正値が不連続になり(図26B参照)、図27に示されるように境界で濃淡差が目立ってしまうことがある。一方、本実施形態では、このような濃淡差の発生を抑制することができる。
(10)前述の実施形態では、通常印刷領域のある列領域に対応する補正値は、その列領域の画素データの階調値の補正だけでなく、その列領域から搬送量7・Dの整数倍だけ離れた別の列領域の画素データの階調値の補正に用いられる。
これにより、記憶すべき補正値の数を減らすことができる。
(11)特に、通常印刷領域では数千個の列領域が存在するが、規則性を利用すれば、記憶すべき補正値の数を激減させることができる。
(12)ユーザー下で印刷画像を形成するときには、通常印刷領域には数千個の列領域があるが、補正用パターンを印刷するときには8周期分の列領域(56個の列領域)があるだけである。これにより、補正用パターンの搬送方向の長さを短くできるので、例えば、図13に示されるように、複数の補正用パターンを搬送方向に並べて形成することができる。
(13)前述の構成要素を全て含む印刷方法によれば、全ての効果を奏するので、望ましい。但し、必ずしも全ての構成要素を含む必要性はない。要するに、補正用パターンの読み取りにスキャナ150の特性が反映されても、プリンタの濃度ムラを補正できる構成であれば良い。
(14)なお、前述の実施形態には、測定方法や印刷方法だけではなく、補正値算出方法の開示があることは言うまでもない。
(15)また、前述の実施形態には、補正値を記憶するメモリを備えるプリンタ(印刷装置の一例)の製造方法の開示があることも言うまでもない。このようなプリンタの製造方法によれば、スキャナ150の異常があっても、個々のプリンタの特性に応じた補正値を記憶したプリンタを製造できる。
印刷システム100の構成を説明する図である。 プリンタ1の全体構成のブロック図である。 図3Aは、プリンタ1の全体構成の概略図である。また、図3Bは、プリンタ1の全体構成の横断面図である。 ヘッド41の下面におけるノズルの配列を示す説明図である。 図5Aは、スキャナ150の縦断面図である。図5Bは、上蓋151を外した状態のスキャナ150の上面図である。 印刷時の処理のフロー図である。 図7A及び図7Bは、通常印刷の説明図である。図7Aは、パスn〜パスn+3におけるヘッドの位置とドットの形成の様子を示し、図7Bは、パスn〜パスn+4におけるヘッドの位置とドットの形成の様子を示している。 先端印刷及び後端印刷の説明図である。 図9Aは、理想的にドットが形成されたときの様子の説明図である。図9Bは、ノズルの加工精度のばらつきの影響の説明図である。図9Cは、本実施形態の印刷方法によりドットが形成されたときの様子の説明図である。 プリンタの製造後の検査工程で行われる補正値取得処理のフロー図である。 テストパターンの説明図である。 補正用パターンの説明図である。 シアンの補正用パターンの読み取り範囲の説明図である。 図14Aは、傾き検出の際の画像データの説明図である。図14Bは、上罫線の位置の検出の説明図である。図14Cは、回転処理後の画像データの説明図である。 図15Aは、トリミングの際の画像データの説明図である。図15Bは、上罫線でのトリミング位置の説明図である。図15Cは、下罫線でのトリミング位置の説明図である。 解像度変換の説明図である。 図17Aは、左罫線の検出の際の画像データの説明図である。図17Bは、左罫線の位置の検出の説明図である。図17Cは、1番目の列領域の濃度30%の帯状パターンの濃度の測定範囲の説明図である。 シアンの5種類の帯状パターンの濃度の測定結果をまとめた測定値テーブルである。 シアンの濃度30%、濃度40%及び濃度50%の帯状パターンの測定値のグラフである。 図20Aは、列領域iにおける指令階調値Sbに対する目標指令階調値Sbtの説明図である。図20Bは、列領域jにおける指令階調値Sbに対する目標指令階調値Sbtの説明図である。 シアンの補正値テーブルの説明図である。 ユーザー下で行なわれる処理のフロー図である。 印刷データ生成処理のフロー図である。 シアンのn番目の列領域の濃度補正処理の説明図である。 図25Aは、スキャナが正常な場合の測定値のグラフである。図25Bは、スキャナが異常な場合の測定値のグラフである。 図26A及び図26Bは、補正値の算出の際に用いられる測定値を順に並べたものである。図26Aはスキャナが正常な場合のグラフであり、図26Bはスキャナが異常な場合のグラフである。 先端印刷領域と通常印刷領域の境界の濃度、及び、通常印刷領域と後端印刷領域の境界の濃度の説明図である。 通常印刷領域の1周期分の測定値(平均値)のグラフである。 スキャナに異常がある場合に濃度補正処理を行ったときの通常印刷領域の濃度の説明図である。 図30Aは、修正処理前の測定値のグラフである。図30Bは、修正処理後の測定値のグラフである。
符号の説明
1 プリンタ、5 原稿、
20 搬送ユニット、21 給紙ローラ、22 搬送モータ(PFモータ)、
23 搬送ローラ、24 プラテン、25 排紙ローラ、
30 キャリッジユニット、31 キャリッジ、
32 キャリッジモータ(CRモータ)、
40 ヘッドユニット、41 ヘッド、
50 検出器群、51 リニア式エンコーダ、52 ロータリー式エンコーダ、
53 紙検出センサ、54 光学センサ、
60 コントローラ、61 インターフェース部、62 CPU、
63 メモリ、64 ユニット制御回路、
100 印刷システム、110 コンピュータ、
120 表示装置、130 入力装置、
140 記録再生装置、150 スキャナ、
151 上蓋、152 原稿台ガラス、153 読取キャリッジ、154 案内部材、
155 移動機構、157 露光ランプ、158 ラインセンサ、159 光学系

Claims (15)

  1. 移動方向に移動する複数のノズルからインクを吐出して移動方向に沿う列領域にドット列を形成することにより、前記移動方向と交差する方向に並ぶ複数の前記列領域に形成された複数の前記ドット列から構成されるパターンを媒体に形成し、
    前記パターンをスキャナで読み取り、
    読み取られた前記パターンの各前記列領域の濃度をそれぞれ測定し、
    複数の前記列領域の濃度の測定結果の少なくとも一部に基づいて、各前記列領域に応じた修正値をそれぞれ算出し、
    各前記列領域の濃度の測定値を前記修正値に基づいてそれぞれ修正する
    ことを特徴とする濃度測定方法。
  2. 請求項1に記載の濃度測定方法であって、
    前記測定結果のうち、前記パターンの端部の前記列領域の測定結果を除いたものに基づいて、各前記列領域に応じた修正値をそれぞれ算出することを特徴とする濃度測定方法。
  3. 請求項1又は2に記載の濃度測定方法であって、
    前記測定結果の少なくとも一部から近似直線と平均値とを求め、
    各前記列領域における近似直線の値と平均値との差に応じて、各前記列領域に応じた前記修正値を算出する
    ことを特徴とする濃度測定方法。
  4. 請求項3に記載の濃度測定方法であって、
    前記近似直線を最小二乗法に基づいて算出することを特徴とする濃度測定方法。
  5. 請求項1〜4のいずれかに記載の濃度測定方法であって、
    前記パターンが、第1印刷により形成される第1ドット列と、前記第1印刷とは異なる第2印刷により形成される第2ドット列とを有する場合、
    前記測定結果の少なくとも一部には、前記第1ドット列の形成されるべき前記列領域の濃度の測定値、及び前記第2ドット列の形成されるべき前記列領域の濃度の測定値が含まれる
    ことを特徴とする濃度測定方法。
  6. 移動方向に移動する複数のノズルからインクを吐出して移動方向に沿う列領域にドット列を形成することにより、前記移動方向と交差する方向に並ぶ複数の前記列領域に形成された複数の前記ドット列から構成されるパターンを媒体に形成し、
    前記パターンをスキャナで読み取り、
    読み取られた前記パターンの各前記列領域の濃度をそれぞれ測定し、
    複数の前記列領域の濃度の測定結果の少なくとも一部に基づいて、各前記列領域に応じた修正値をそれぞれ算出し、
    各前記列領域の濃度の測定値を前記修正値に基づいてそれぞれ修正する
    ことを特徴とする濃度測定方法であって、
    前記測定結果のうち、前記パターンの端部の前記列領域の測定結果を除いたものに基づいて、各前記列領域に応じた修正値をそれぞれ算出し、
    前記測定結果の少なくとも一部から近似直線と平均値とを求め、各前記列領域における近似直線の値と平均値との差に応じて、各前記列領域に応じた前記修正値を算出し、
    前記近似直線を最小二乗法に基づいて算出し、
    前記パターンが、第1印刷により形成される第1ドット列と、前記第1印刷とは異なる第2印刷により形成される第2ドット列とを有する場合、
    前記測定結果の少なくとも一部には、前記第1ドット列の形成されるべき前記列領域の濃度の測定値、及び前記第2ドット列の形成されるべき前記列領域の濃度の測定値が含まれる
    ことを特徴とする濃度測定方法。
  7. 移動方向に移動する複数のノズルからインクを吐出して移動方向に沿う列領域にドット列を形成することにより、前記移動方向と交差する方向に並ぶ複数の前記列領域に形成された複数の前記ドット列から構成されるパターンを媒体に形成し、
    前記パターンをスキャナで読み取り、
    読み取られた前記パターンの各前記列領域の濃度をそれぞれ測定し、
    複数の前記列領域の濃度の測定結果の少なくとも一部に基づいて、各前記列領域に応じた修正値をそれぞれ算出し、
    各前記列領域の濃度の測定値を前記修正値に基づいてそれぞれ修正し、
    修正された各前記測定値に基づいて、前記列領域に対応する補正値を算出し、
    印刷画像を媒体に形成する際に、前記印刷画像を構成するドット列を、そのドット列の形成されるべき前記列領域に対応する前記補正値に基づいて形成する
    ことを特徴とする印刷方法。
  8. 請求項7に記載の印刷方法であって、
    所定数の前記列領域に対応する前記補正値をそれぞれ算出し、
    前記印刷画像を前記媒体に形成する際に、前記印刷画像を構成する前記所定数の列領域毎に前記補正値を繰り返し用いて、前記ドット列を形成する
    ことを特徴とする印刷方法。
  9. 請求項7又は8に記載の印刷方法であって、
    前記印刷画像を前記媒体に形成する際に、前記ドット列を形成するドット形成処理と、所定の搬送量の搬送処理とが繰り返され、
    ある列領域に対応する前記補正値が、その列領域の濃度の測定値と、その列領域から前記搬送量の整数倍だけ離れた別の列領域の濃度の測定値とに基づいて、算出される
    ことを特徴とする印刷方法。
  10. 請求項9に記載の印刷方法であって、
    前記印刷画像を前記媒体に形成する際に、ある列領域に対応する補正値が、その列領域に形成されるべきドット列の形成と、前記その列領域から前記搬送量の整数倍だけ離れた別の列領域に形成されるべきドット列の形成とに用いられることを特徴とする印刷方法。
  11. 請求項9又は10に記載の印刷方法であって、
    前記ある列領域は、通常印刷領域に位置することを特徴とする印刷方法。
  12. 請求項7〜11のいずれかに記載の印刷方法であって、
    前記パターンの前記通常印刷領域は、前記印刷画像の前記通常印刷領域よりも少ないことを特徴とする印刷方法。
  13. 移動方向に移動する複数のノズルからインクを吐出して移動方向に沿う列領域にドット列を形成することにより、前記移動方向と交差する方向に並ぶ複数の前記列領域に形成された複数の前記ドット列から構成されるパターンを媒体に形成し、
    前記パターンをスキャナで読み取り、
    読み取られた前記パターンの各前記列領域の濃度をそれぞれ測定し、
    複数の前記列領域の濃度の測定結果の少なくとも一部に基づいて、各前記列領域に応じた修正値をそれぞれ算出し、
    各前記列領域の濃度の測定値を前記修正値に基づいてそれぞれ修正し、
    修正された各前記測定値に基づいて、前記列領域に対応する補正値を算出し、
    印刷画像を媒体に形成する際に、前記印刷画像を構成するドット列を、そのドット列の形成されるべき前記列領域に対応する前記補正値に基づいて形成する
    ことを特徴とする印刷方法であって、
    所定数の前記列領域に対応する前記補正値をそれぞれ算出し、前記印刷画像を前記媒体に形成する際に、前記印刷画像を構成する前記所定数の列領域毎に前記補正値を繰り返し用いて、前記ドット列を形成し、
    前記印刷画像を前記媒体に形成する際に、前記ドット列を形成するドット形成処理と、所定の搬送量の搬送処理とが繰り返され、ある列領域に対応する前記補正値が、その列領域の濃度の測定値と、その列領域から前記搬送量の整数倍だけ離れた別の列領域の濃度の測定値とに基づいて、算出され、
    前記印刷画像を前記媒体に形成する際に、ある列領域に対応する補正値が、その列領域に形成されるべきドット列の形成と、前記その列領域から前記搬送量の整数倍だけ離れた別の列領域に形成されるべきドット列の形成とに用いられ、
    前記ある列領域は、通常印刷領域に位置し、
    前記パターンの前記通常印刷領域は、前記印刷画像の前記通常印刷領域よりも少ない
    ことを特徴とする印刷方法。
  14. 移動方向に移動する複数のノズルからインクを吐出して移動方向に沿う列領域にドット列を形成することにより、前記移動方向と交差する方向に並ぶ複数の前記列領域に形成された複数の前記ドット列から構成されるパターンを媒体に形成し、
    前記パターンをスキャナで読み取り、
    読み取られた前記パターンの各前記列領域の濃度をそれぞれ測定し、
    複数の前記列領域の濃度の測定結果の少なくとも一部に基づいて、各前記列領域に応じた修正値をそれぞれ算出し、
    各前記列領域の濃度の測定値を前記修正値に基づいてそれぞれ修正し、
    修正された各前記測定値に基づいて、前記列領域に対応する補正値を算出する
    ことを特徴とする補正値算出方法。
  15. メモリを備える印刷装置を準備し、
    前記印刷装置を用いて、移動方向に移動する複数のノズルからインクを吐出して移動方向に沿う列領域にドット列を形成することにより、前記移動方向と交差する方向に並ぶ複数の前記列領域に形成された複数の前記ドット列から構成されるパターンを媒体に形成し、
    前記パターンをスキャナで読み取り、
    読み取られた前記パターンの各前記列領域の濃度をそれぞれ測定し、
    複数の前記列領域の濃度の測定結果の少なくとも一部に基づいて、各前記列領域に応じた修正値をそれぞれ算出し、
    各前記列領域の濃度の測定値を前記修正値に基づいてそれぞれ修正し、
    修正された各前記測定値に基づいて、前記列領域に対応する補正値を算出し、
    前記補正値を前記メモリに記憶する
    ことを特徴とする印刷装置の製造方法。

JP2005133699A 2005-04-28 2005-04-28 濃度測定方法、印刷方法、補正値算出方法及び印刷装置製造方法 Expired - Fee Related JP4735027B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005133699A JP4735027B2 (ja) 2005-04-28 2005-04-28 濃度測定方法、印刷方法、補正値算出方法及び印刷装置製造方法
US11/412,936 US7715069B2 (en) 2005-04-28 2006-04-28 Method for measuring density, printing method, method of calculating correction value, method of manufacturing printing apparatus and method for obtaining correction value
US12/716,339 US20100157342A1 (en) 2005-04-28 2010-03-03 Method for measuring density, printing method, method of calculating correction value, method of manufacturing printing apparatus and method for obtaining correction value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005133699A JP4735027B2 (ja) 2005-04-28 2005-04-28 濃度測定方法、印刷方法、補正値算出方法及び印刷装置製造方法

Publications (2)

Publication Number Publication Date
JP2006305954A true JP2006305954A (ja) 2006-11-09
JP4735027B2 JP4735027B2 (ja) 2011-07-27

Family

ID=37473385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005133699A Expired - Fee Related JP4735027B2 (ja) 2005-04-28 2005-04-28 濃度測定方法、印刷方法、補正値算出方法及び印刷装置製造方法

Country Status (1)

Country Link
JP (1) JP4735027B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102334A1 (ja) * 2010-02-18 2011-08-25 キヤノン株式会社 画像形成装置、画像形成方法及びプログラム
JP2016112814A (ja) * 2014-12-16 2016-06-23 富士ゼロックス株式会社 画像形成装置及びプログラム
US9649853B2 (en) 2015-07-10 2017-05-16 Canon Kabushiki Kaisha Image processing apparatus and method for processing image
JP2021142733A (ja) * 2020-03-13 2021-09-24 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227218A (ja) * 1995-02-21 1996-09-03 Ricoh Co Ltd 画像形成装置
JPH09230643A (ja) * 1996-02-28 1997-09-05 Minolta Co Ltd 画像形成装置
JPH1115217A (ja) * 1997-06-27 1999-01-22 Fuji Xerox Co Ltd 画像形成装置
JPH11295037A (ja) * 1998-04-14 1999-10-29 Minolta Co Ltd 画像形成装置
JP2001105579A (ja) * 1999-10-05 2001-04-17 Canon Inc 記録システム、及び記録装置の出力特性補正方法
JP2002059626A (ja) * 2000-08-17 2002-02-26 Ricoh Co Ltd 画像形成装置
JP2005067036A (ja) * 2003-08-25 2005-03-17 Konica Minolta Medical & Graphic Inc 画像記録装置、画像記録方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227218A (ja) * 1995-02-21 1996-09-03 Ricoh Co Ltd 画像形成装置
JPH09230643A (ja) * 1996-02-28 1997-09-05 Minolta Co Ltd 画像形成装置
JPH1115217A (ja) * 1997-06-27 1999-01-22 Fuji Xerox Co Ltd 画像形成装置
JPH11295037A (ja) * 1998-04-14 1999-10-29 Minolta Co Ltd 画像形成装置
JP2001105579A (ja) * 1999-10-05 2001-04-17 Canon Inc 記録システム、及び記録装置の出力特性補正方法
JP2002059626A (ja) * 2000-08-17 2002-02-26 Ricoh Co Ltd 画像形成装置
JP2005067036A (ja) * 2003-08-25 2005-03-17 Konica Minolta Medical & Graphic Inc 画像記録装置、画像記録方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102334A1 (ja) * 2010-02-18 2011-08-25 キヤノン株式会社 画像形成装置、画像形成方法及びプログラム
US8373902B2 (en) 2010-02-18 2013-02-12 Canon Kabushiki Kaisha Image forming apparatus, image forming method, and program
US8830524B2 (en) 2010-02-18 2014-09-09 Canon Kabushiki Kaisha Image forming apparatus, image forming method, and program
JP5665840B2 (ja) * 2010-02-18 2015-02-04 キヤノン株式会社 画像形成装置、画像形成方法及びプログラム
JP2016112814A (ja) * 2014-12-16 2016-06-23 富士ゼロックス株式会社 画像形成装置及びプログラム
US9649853B2 (en) 2015-07-10 2017-05-16 Canon Kabushiki Kaisha Image processing apparatus and method for processing image
JP2021142733A (ja) * 2020-03-13 2021-09-24 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
JP7467170B2 (ja) 2020-03-13 2024-04-15 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム

Also Published As

Publication number Publication date
JP4735027B2 (ja) 2011-07-27

Similar Documents

Publication Publication Date Title
US7726765B2 (en) Printing method, storage medium, medium, printing apparatus, method for detecting end of image, method for detecting carrying unevenness of medium, and device for detecting carrying unevenness of medium
JP2008155376A (ja) 印刷方法、プログラム及び印刷システム
JP4770258B2 (ja) 補正値の設定方法、及び、補正値の設定装置
US20100157342A1 (en) Method for measuring density, printing method, method of calculating correction value, method of manufacturing printing apparatus and method for obtaining correction value
JP4735027B2 (ja) 濃度測定方法、印刷方法、補正値算出方法及び印刷装置製造方法
JP4655749B2 (ja) 補正値取得方法、印刷方法及び印刷装置製造方法
JP4635818B2 (ja) 画像の濃度補正の実行可否の判定方法
JP2009226803A (ja) 濃度補正方法
JP2006305963A (ja) 画像処理、補正値取得方法、印刷装置製造方法及び印刷方法
JP2007168153A (ja) 印刷方法
JP2008060922A (ja) 測定濃度値修正方法、印刷方法、補正値算出方法、及び、印刷装置の製造方法
JP2008055725A (ja) 印刷方法
JP2006346938A (ja) 印刷装置、コンピュータプログラム、印刷システム、及び、印刷方法
JP2007001141A (ja) 印刷方法および印刷装置製造方法
JP2008080642A (ja) 印刷方法
JP2006305960A (ja) 画像の濃度補正効果の確認方法、及び印刷装置
JP2008055728A (ja) テストパターンの印刷方法、補正値の取得方法、補正値の取得装置
JP2009226802A (ja) 補正値取得方法、及び、液体噴射装置
JP2006305964A (ja) 印刷方法及び印刷装置製造方法
JP2008093851A (ja) 補正値の設定方法、補正値設定システム、及び、プログラム
JP2008080678A (ja) 補正値取得方法及び印刷方法
JP2008055768A (ja) 補正値算出方法、印刷方法、及び、印刷装置の製造方法
JP2008060739A (ja) 補正値取得方法及び印刷方法
JP2006309624A (ja) 印刷方法、プログラム及び印刷制御装置
JP2008049549A (ja) テストパターンの印刷方法、補正値の取得方法、補正値の取得装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees