JP2006301231A - プロジェクター - Google Patents

プロジェクター Download PDF

Info

Publication number
JP2006301231A
JP2006301231A JP2005121928A JP2005121928A JP2006301231A JP 2006301231 A JP2006301231 A JP 2006301231A JP 2005121928 A JP2005121928 A JP 2005121928A JP 2005121928 A JP2005121928 A JP 2005121928A JP 2006301231 A JP2006301231 A JP 2006301231A
Authority
JP
Japan
Prior art keywords
film
projector
light reflecting
reflective film
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005121928A
Other languages
English (en)
Inventor
Takahiro Okura
貴博 大蔵
Shoichi Takei
正一 武井
Nobumitsu Hamana
宣充 浜名
Hisao Aoki
久雄 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIYOUSERA OPT KK
Kyocera Chemical Corp
Original Assignee
KIYOUSERA OPT KK
Kyocera Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIYOUSERA OPT KK, Kyocera Chemical Corp filed Critical KIYOUSERA OPT KK
Priority to JP2005121928A priority Critical patent/JP2006301231A/ja
Priority to US11/718,383 priority patent/US20080252862A1/en
Priority to KR1020077011284A priority patent/KR20070090889A/ko
Priority to PCT/JP2005/020231 priority patent/WO2006049223A1/ja
Publication of JP2006301231A publication Critical patent/JP2006301231A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

【課題】軽量で安価な光反射鏡を用いて、高画質で鮮明な画像を得ることができるプロジェクターを提供することである。
【解決手段】画像を少なくとも3つの光反射鏡を介してスクリーンに投影してなるプロジェクターであって、前記3つの光反射鏡を光の進行方向に沿って順に第1、第2および第3の光反射鏡31,32,33としたとき、少なくとも第1および第2の光反射鏡31,32はプラスチック基材の表面に銀を含む反射膜を形成して構成され、かつ反射膜表面の光反射率が96%以上である。
【選択図】図1

Description

本発明は、高い反射率を有する光反射鏡を備えたプロジェクターに関する。
映像を投写するプロジェクターは、前面型プロジェクターと、背面型プロジェクターとに分類される。前面型プロジェクターは、反射型スクリーンを部屋の壁際に配置し、マイクロデバイスや投写レンズ等を含むプロジェクターユニットを部屋の中央部に配置して、投写レンズからスクリーンへ向かって変調光を投写し、スクリーンに画像等を表示する。観視者はスクリーンで反射した変調光を見る。一方、背面型プロジェクターは、マイクロデバイスや投写レンズ等を含むプロジェクターユニットがボックス型の筺体の内部に配置され、さらに透過型スクリーンが筺体の前面部に設けられているものである。観視者は筺体の外側からスクリーンを透過した変調光を見るようになっている。
近時、大画面、例えば対角70インチから100インチの画面を有する背面型プロジェクターが研究されている。このような大画面を有する背面型プロジェクターでは、投写レンズからスクリーンまでの距離を2m以上も長くとることが必要になり、筺体がかなり大きくなる。そこで、投写レンズとスクリーンとの間に光反射鏡を配置し、筺体の奥行きを小さくするようになっている。
特許文献1および2には、プロジェクターにおける小型化および広画角化を実現するためのプロジェクターが記載されている。このプロジェクターは、画像形成素子から光束を4つの反射鏡で反射させながら、スクリーンに画像を投写させている。
このように複数の光反射鏡を用いて像を投写する場合、反射面が凸面状や凹面状、あるいは平面状であっても、光反射鏡の反射率が低い場合には高画質で鮮明な画像を得ることができない。
反射率の高い反射鏡として、特許文献3には、特定の銀の反射層を備え、可視光領域で反射率が98%以上である反射鏡が記載されている。しかしながら、特許文献3において、反射率が98%以上である反射鏡はガラス基材を用いて得られたものである。ガラス基材を用いる場合は、軽量化が困難であり、かつ精密な表面研磨が必要であるためコストも高くなるという問題がある。
特開2002‐40326号公報 特開2003‐177320号公報 特開2003‐114313号公報
本発明の課題は、軽量で安価な光反射鏡を用いて、高画質で鮮明な画像を得ることができるプロジェクターを提供することである。
本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、プラスチック基材の表面に、銀を含む反射膜を被着させた光反射鏡において、反射膜表面の反射率を96%以上にすることに成功した。
すなわち、本発明のプロジェクターは、以下の構成からなる。
(1)画像を少なくとも3つの光反射鏡を介してスクリーンに投影してなるプロジェクターであって、前記3つの光反射鏡を光の進行方向に沿って順に第1、第2および第3の光反射鏡としたとき、少なくとも第1および第2の光反射鏡はプラスチック基材の表面に銀を含む反射膜を形成して構成され、かつ反射膜表面の光反射率が96%以上であることを特徴とするプロジェクター。
(2)前記第1、第2および第3の光反射鏡の形状が放物面形状、双曲面形状、円筒形状もしくは楕円形状からなる非球面ミラー、多項式により表現される自由曲面からなる自由曲面ミラー、球面ミラー、または平面ミラーである請求項1に記載のプロジェクター。
(3)少なくとも第1および第2の光反射鏡は、前記反射膜表面のPV値が0.5μm以下で、かつ鋭角な突起のない、なめらかな面である(1)または(2)に記載のプロジェクター。
(4)前記反射膜が、X線回折による(111)ピーク強度がその他のピーク強度の合計の20倍以上である(1)〜(3)のいずれかに記載のプロジェクター。
(5)前記反射膜の厚みが100〜200nmであることを特徴とする(1)〜(4)のいずれかに記載のプロジェクター。
(6)前記プラスチック基材が熱硬化性樹脂成形品からなる(1)〜(5)のいずれかに記載のプロジェクター。
(7)前記プラスチック基材は、不飽和ポリエステル樹脂7〜19質量%、熱可塑性樹脂6〜19質量%、無機充填剤70〜84質量%、強化繊維5質量%以下および硬化剤0.1〜3質量%からなる熱硬化性樹脂組成物を成形したものであることを特徴とする(1)〜(6)のいずれかに記載のプロジェクター。
(8)前記プラスチック基材の表面に、銀を含む反射膜を形成するに先立って、前記プラスチック基材の表面に密着性向上膜を形成することを特徴とする(1)〜(7)のいずれかに記載のプロジェクター。
(9)前記プラスチック基材の表面に、銀を含む反射膜を形成した後、反射膜の表面に反射増加膜を形成することを特徴とする(1)〜(8)のいずれかに記載のプロジェクター。
(10)前記反射増加膜が、2層以上の透明誘電体層からなる(9)に記載のプロジェクター。
(11)前記反射増加膜が、反射膜表面に、少なくとも高屈折率の透明誘電体層と低屈折率の透明誘電体層とを積層して形成されていることを特徴とする(9)または(10)に記載のプロジェクター。
なお、前記反射膜表面のPV値および表面状態は、非接触三次元輪郭測定機(例えば三鷹光機(株)製の商品名「NH−3SP」)により測定することができる。また、本発明において、銀を含む反射膜とは、純粋な銀の単結晶層に近い銀膜のほか、反射膜自体の反射率に影響しない範囲で銀と他の成分をも含む反射膜も含む概念である。
本発明のプロジェクターは、プラスチック基材の表面に銀を含む反射膜を形成して構成された光反射鏡を使用しているので、軽量で安価であり、かつ画像形成体(例えば画像形成素子)に近い少なくとも第1および第2の光反射鏡は光反射率が96%以上であるので、高画質で鮮明な画像を得ることができる
従って、本発明は、薄型の背面型プロジェクター、特に薄型で大画面の背面型プロジェクターに使用される非球面ミラーおよび平面ミラーとして使用するのに適している。
特に不飽和ポリエステル樹脂7〜19質量%、熱可塑性樹脂6〜19質量%、無機充填剤70〜84質量%、強化繊維5質量%以下および硬化剤0.1〜3質量%からなる熱硬化性樹脂組成物を成形して得られる本発明におけるプラスチック基材は、研磨などの後加工を要することなく、その表面のPV値を0.5μm以下とし、かつ鋭角な突起のない、なめらかな面となすことができ、これによってプラスチック基材の表面状態が殆どそのまま反映され再現される反射膜もPV値が0.5μm以下で、かつ鋭角な突起のない、なめらかな面となって反射率を96%以上の高いものとなすことができる。
図1は本発明のプロジェクターの一実施形態を示す概略図である。このプロジェクターは背面型プロジェクターであって、図1に示すように、画像形成素子Aから投写された画像の光束を、4つの光反射鏡、すなわち光の進行方向に沿って第1の光反射鏡31、第2の光反射鏡32、第3の光反射鏡33および第4の光反射鏡34を順に反射させ、最後に平面反射鏡35a,35bで反射させて、透過型スクリーン36に拡大投写されるように構成されている。
画像形成素子Aとしては、例えば液晶やDMD(Digital Micromirror Device、テキサツ・インスツルメンツ社製の商標)などが挙げられる。
第1、第2、第3および第4の各光反射鏡31,32,33,34は、形状が放物面形状、双曲面形状、円筒形状、楕円形状からなる非球面ミラー、多項式により表現される自由曲面からなる自由曲面ミラー、球面ミラー、および平面ミラーの中から適切なミラーが選択使用される。このうち、特に第1および第2の光反射鏡31,32は反射膜表面の光反射率が96%以上である。このように像を順次拡大していく過程で第1および第2の光反射鏡31,32の光反射率が96%以上と高いので、後続する光反射鏡33,34等の光反射率がこれよりも低い場合であっても、コントラストのある鮮明で高画質の画像をスクリーン36に投写することができる。
これに対して、第1および第2の光反射鏡31,32の光反射率が96%より低い場合には、たとえ後続する光反射鏡33,34等の光反射率が96%以上であっても、鮮明で高画質の画像を得ることができない。
本発明においては、第1および第2の光反射鏡31,32の光反射率が96%以上である限り、後続する光反射鏡33,34等の光反射率が96%以上であっても構わないし、96%未満であってもよい。なお、この実施形態では、第1、第2、第3および第4の光反射鏡31,32,33,34および平面反射鏡35a,35bを備えたプロジェクターを示したが、少なくとも3つの光反射鏡を備え、かつ画像形成素子Aに近い少なくとも第1、第2の光反射鏡が光反射率が96%以上であれば、鮮明で高画質の画像をスクリーン36に投写することができる。
光反射率が96%以上である上記光反射鏡は、プラスチック基材の表面に銀を含む反射膜を形成して構成される。
使用されるプラスチック基材は、その熱変形温度を考慮すると熱硬化性樹脂成形品が使用可能である。このような熱硬化性樹脂成形品としては、熱変形温度が130℃以上であれば特に限定されるものではなく、例えば不飽和ポリエステル、エポキシ樹脂、フェノール樹脂などの各種の熱硬化性樹脂が使用可能である。特に不飽和ポリエステル樹脂を使用するのが好ましい。
不飽和ポリエステル樹脂を使用する場合、熱硬化性樹脂組成物は、不飽和ポリエステル樹脂7〜19質量%、熱可塑性樹脂6〜19質量%、無機充填剤70〜84質量%、強化繊維5質量%以下および硬化剤0.1〜3質量%からなるのがよく、これを成形して所定形状の基材を得る。
不飽和ポリエステル樹脂は、α,Β-不飽和二塩基酸またはその無水物からなる酸成分と多価アルコールとを重縮合して得られる不飽和ポリエステル(プレポリマー)と重合性単量体とを混合した液状樹脂であり、不飽和ポリエステルを65〜75質量%、重合性単量体を35〜25質量%の割合で含有する。
この不飽和ポリエステル樹脂に使用されるα,Β-不飽和二塩基酸またはその無水物としては、例えばマレイン酸、フマル酸、イタコン酸、シトラコン酸などの1種または2種以上の酸またはその無水物が挙げられ、特にマレイン酸またはその無水物またはフマル酸が好適に用いられる。また、多価アルコールとしては、例えばエチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ネオペンチルグリコールなどが挙げられ、これらは1種または2種以上を混合して使用することができる。
さらに、α,Β-不飽和二塩基酸またはその無水物、多価アルコールに、必要に応じて飽和二塩基酸またはその無水物を加えて重縮合してもよい。飽和二塩基酸またはその無水物としては、例えばフタル酸またはその無水物、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、アジピン酸、セバシン酸などが挙げられ、これらは1種または2種以上を混合して使用することができる。
また、上記多価アルコールの他に必要に応じて、1,3−プロパンジオール、1,3−プタンジオール、1,4−プタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、水素化ビスフェノールAなどの1種または2種以上を上記多価アルコールに混合して使用することができる。
不飽和ポリエステル樹脂に使用される重合性単量体としては、例えばスチレン、ビニルトルエン、ジビニルトルエン、p−メチルスチレン、メチルメタクリレート、ジアリルフタレート、ジアリルイソフタレート等が挙げられ、これらは1種または2種以上を混合して使用することができる。重合性単量体は、その所定量を不飽和ポリエステルと混合して不飽和ポリエステル樹脂に含有させるが、不飽和ポリエステルの調製時にその一部を添加することもできる。不飽和ポリエステル樹脂の配合量は、樹脂組成物中に7〜19質量%、好ましくは8〜13質量%である。
前記樹脂組成物に配合される熱可塑性樹脂としては、例えばスチレン系共重合体、ポリエチレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリメタクリル酸メチル、ポリメタクリル酸メチル系共重合体、変性ABS樹脂、ポリカプロラクトン、変性ポリウレタンなどが挙げられる。特に、ポリメタクリル酸メチル、ポリメタクリル酸メチル系共重合体のようなアクリル系樹脂(共重合体を含む)、ポリ酢酸ビニル、スチレン−酢酸ビニル共重合体のような酢酸ビニル系樹脂(共重合体を含む)が、分散性、低収縮性、剛性の点で好ましい。熱可塑性樹脂の配合量は、樹脂組成物中に6〜19質量%、好ましくは8〜12質量%である。
前記樹脂組成物に配合される無機充填剤としては、例えば炭酸カルシウム、マイカ、タルク、グラファイト、カーボンブラック、アスベスト、水酸化アルミニウムなどの公知の無機充填剤が挙げられる。無機充填剤は平均粒径が0.1〜60μmの範囲にあることが好ましく、その形状は破砕状であることが好ましい。無機充填剤の配合量は、樹脂組成物中に70〜84質量%である。
前記樹脂組成物に配合される強化繊維は、成形品の強度を高めることができる。使用される強化繊維としては、例えばガラス繊維、カーボン繊維(炭素繊維)、黒鉛繊維、アラミド繊維、炭化ケイ素繊維、アルミナ繊維、ボロン繊維、スチール繊維、アモルファス繊維、有機繊維などがあげられ、これらは1種または2種以上を組み合わせて使用することができる。
強化繊維は繊維長が1〜3mmで繊維径が5〜100μmであるのが好ましい。また、強化繊維の配合量は、樹脂組成物中に0〜5質量%であるのが好ましい。繊維長が長くなったり、配合量が5質量%を超えたりすると、後述するようにPV値が0.5μmを超え、鋭角な突起のない、なめらかな成形面を得ることが困難になる。
不飽和ポリエステル樹脂の硬化反応を開始させる硬化剤としては、例えばt−ブチルパーオキシベンゾエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシイソプロピルカーボネート、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサンなど有機過酸化物が挙げられる。硬化剤の配合量は、樹脂組成物中に0.1〜3質量%である。
さらに、前記熱硬化性樹脂組成物には、成形品を金型から容易に脱型できるように内部離型剤を配合してもよい。内部離型剤としては、例えばステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸アルミニウムなどの脂肪族金属塩が挙げられる。内部離型剤の配合量は、樹脂組成物中に0.1〜3質量%程度でよい。
また、前記熱硬化性樹脂組成物に、必要に応じて顔料などの着色剤、酸化マグネシウム、酸化カルシウムなどの増粘剤を配合してもよい。
本発明におけるプラスチック基材は、前記熱硬化性樹脂組成物を金型内に注入し、135〜180℃の温度で加熱硬化させて成形される。成形方法としては、射出成形(インジェクション成形)、トランスファー成形、圧縮成形などの、通常の熱硬化性樹脂の成形に用いられる方法が挙げられる。
前記熱硬化性樹脂組成物は、成形品表面の平滑性、寸法安定性を確保するうえで、成形時の成形収縮率が0.05〜−0.10%であるのが好ましい。成形収縮率は、常温の成形品と常温の金型の寸法を比較して、その割合を示した値であり、(金型寸法−成形品寸法)/金型寸法から算出される。
使用される金型は、成形品の反射膜形成面に対応する面が平滑であることが必要であり、具体的にはJIS B 0601−2001で規定される表面粗さRzが0.5μm以下、好ましくは0.4μm以下であるのがよい。
成形されたプラスチック基材は、PV値が0.5μm以下で、かつ鋭角な突起のない、なめらかな面である。このため、離型した成形品は、表面に平滑層(アンダーコート層等)を設けたり、研磨したりするなどの後加工を施すことなく、その表面に反射膜を直接形成することができると共に、プラスチック基材表面の影響を強く受ける反射膜の表面もPV値が0.5μm以下で、かつ鋭角な突起のない、なめらかな面となすことができる。
次に、得られたプラスチック基材の表面に、銀を含む反射膜を形成する。このとき、プラスチック基材の表面に、後述する方法によって銀を含む反射膜を直接形成してもよく、あるいは反射膜と基材との間に密着性向上膜を介在させてもよい。さらに、前記反射膜の表面に、2層以上の反射増加膜を形成してもよい。反射増加膜は、例えば、反射膜表面に、少なくとも高屈折率の第一透明誘電体層と低屈折率の第二透明誘電体層とをこの順に積層した膜が挙げられるが、積層順序は特に制限されない。第二透明誘電体層の表面には、さらに高屈折率または低屈折率の透明誘電体層を積層(例えば高屈折率および低屈折率の透明誘電体層を交互に積層)することができる。なお、反射増加膜は、経済性を考慮すると、5層以下であるのがよい。
以下、プラスチック基材の表面に、密着性向上膜、反射膜および反射増加膜をこの順に形成する場合について説明するが、反射膜のみの場合、密着性向上膜と反射膜とを形成する場合、反射膜と反射増加膜とを形成する場合についても同様にして適用可能である。
本発明の好ましい実施形態では、図2に示すように、プラスチック基材50の表面に、Cr、CrO、Cr23、Y23、LaTiO3,La2Ti38,SiO2,TiO2およびAl23から選ばれる少なくとも1種からなる密着性向上膜51と、銀を含む反射膜52と、Y23、MgF2、LaTiO3,La2Ti38,SiO2,TiO2およびAl23からなる群より選ばれる化合物から形成される第一透明誘電体層53および第二透明誘電体層54を含む反射増加膜とが前記基材50側からこの順に積層される。
密着性向上膜51は反射膜52とプラスチック基材50との密着性を高めると共に、水分がプラスチック基材50を透過して反射膜52に接触し反射膜52を腐食してしまうのを有効に防止する機能を有する。密着性向上膜51の厚さは密着性を考慮して10〜200nm、好ましくは30〜80nmが好ましい。密着性向上膜51の厚さが10nm未満では、密着性が劣化し易くなると共に、水分がプラスチック基材50を透過して反射膜52に接触するのを有効に防止するのが困難となってしまう。また、密着性向上膜51は密着性が良好である限りできるだけ薄いほうが望ましいことから、密着性向上膜51の厚さは200nm以下が好ましい。
また、密着性向上膜51は、ポーラスで無数の微小クラックのあるプラスチック基材50の表面をより平滑な表面状態にする機能をも有することが、後述する実施例におけるSEM写真から明らかとなった。このような機能が得られる理由は明らかではないが、密着性向上膜51を構成する成分とプラスチック基材50の表面との間で何らかの化学的または物理的相互作用が働いたのではないかと推測される。いずれにしても、プラスチック基材50の表面がより平滑な表面状態になることにより、反射膜の反射率をより一層向上させることができる。
銀からなる反射膜52は厚さが100〜200nm、好ましくは70〜130nmであるのが好ましい。反射膜52の厚さが100nm未満では、光が透過し易くなり反射率が低くなる。一方、反射膜52の厚さが200nmを超えても反射率が向上せず、また銀は材料コストがかかるため、反射膜52の厚さが不必要に厚いことは好ましくない。
第一透明誘電体層53および第二透明誘電体層54は多層干渉層による高反射膜、すなわち反射増加膜を構成している。従って、これらの厚さはその屈折率および光の波長によって適宜決定される。また、第二透明誘電体層54の屈折率が第一透明誘電体層53の屈折率よりも大きい。例えば、第一透明誘電体層53にMgF2、第二透明誘電体層54にLa2Ti38を用いて可視光領域で最高の反射率とする場合、第一透明誘電体層53の厚さは73nm程度であり、第二透明誘電体層54の厚さは60nm程度となる。
なお、第一透明誘電体層53および第二透明誘電体層54からなる反射増加膜は反射膜52を保護する作用もなし、反射増加膜によって大気中に含まれる水分等が反射膜52に接触し、反射膜52に腐食等が発生するのを有効に防止することができる。
銀を含む反射膜52は、第一透明誘電体層53側の表面X線回折による(111)ピーク強度がその他のピーク強度の合計の20倍以上である。これは、結晶の配向性が高くかつ結晶密度が高く緻密であり、さらに反射膜の性質が均質であることを意味している。これにより、反射率低下の大きな原因となる光の膜内への吸収や散乱が抑制される。すなわち、光の吸収は、光のエネルギーが膜内で熱に変換されて失われることを意味しており、膜内に不純物等の欠陥があると生じる。
また、反射膜52は、原子間力顕微鏡(AFM)による観察によって測定される算術平均粗さが3nm(μmに換算すると0.003μmである)以下である。原子間力顕微鏡とは、探針を付けたカンチレバーを試料表面に近づけると、原子間力によってカンチレバーがたわむのを利用して、その変位をレーザー反射光で検知し、表面の凹凸をナノメーターオーダーで画像化することができる顕微鏡をいう。このような原子間力顕微鏡で測定される表面粗さが3nm以下であるということは、反射膜52が実質的に平坦であることを意味する。これにより、反射率低下の大きな原因となる層表面での光の散乱が抑制される。
従って、以上の点から、反射膜52は緻密で平坦であるため、光の散乱や吸収を抑制して高い反射率を実現していると考えられる。
また、第二透明誘電体層54は基材50と反対側の表面の算術平均粗さが5nm以下である。これにより、第二の透明誘電体層54は平坦であるため、反射膜52と共に、光の散乱や吸収を抑制して高い反射率の実現に寄与している。
次に、光反射鏡を作製する方法について説明する。図3はこの反射鏡を作製するのに使用する薄膜形成装置の概略を示している。以下の薄膜形成方法は、蒸発材料9および必要なら成膜条件を変えることにより、1つの薄膜形成装置で連続的にプラスチック基材50上に膜形成を行えるようにしたものである。
まず、プラスチック基材50の表面に密着性向上膜51を形成する場合について説明する。図3に示す薄膜形成装置におけるチャンバ11内の下部には蒸発材料9をボート1に収容保持した蒸発源20が配置されている。この蒸発源20に対向するように、チャンバ11内の上部には、基材50を保持するための基材保持部2が設けられている。密着性向上膜51を形成するための蒸発材料9としては、LaTiO3,La2Ti38,SiO2,TiO2,Al23を用いることができる。
基材保持部2は導電性材料からなっていて、高周波電力供給電源(RF)5からの高周波電力が、マッチング装置(MN)4および直流遮蔽フィルタとしてのコンデンサ7を介して印加されるようになっている。なお、コンデンサ7は、可変コンデンサを用いてマッチング回路の一部として機能させてもよい。さらに、基材保持部2には、直流電圧印加電源(DC)6の陰極側が、高周波遮蔽フィルタとしてのコイル8を介して接続されている。高周波電力供給電源5の基材保持部2とは反対側の端子は直流電圧印加電源6の陽極側と接続されていて、これらは接地されている。
ボート1は、例えば、それ自身が電気抵抗の高い材料からなっていて、例えば交流電源からなる加熱電源3からの電力供給を受けて、蒸発材料9を蒸発させるための熱を発生する。ボート1には、さらに、直流電圧印加電源6の陽極側が接続されている。
チャンバ11内の空間は、排気ダクト12および排気バルブ13を介して真空ポンプ14によって排気され、薄膜形成期間中において、所定の真空状態とされる。チャンバ11内に不活性ガス(例えばアルゴンガス等)および反応性ガス(例えば酸素ガス)を供給するために、チャンバ11には、流量制御装置(MFC)24およびガス供給配管25を介して、不活性ガス供給源21および反応性ガス供給源23が接続されている。不活性ガス供給源21からの供給/停止は、弁21aを開閉することによって行われる。反応性ガス供給源23からの供給/停止は、弁23aを開閉することによって行われる。
チャンバ11内の真空度は、真空度計15によって計測され、この真空度計15の出力に基づき、流量制御装置24は、マイクロコンピュータ等からなる制御装置30によって制御されるようになっている。これにより、不活性ガス供給源21および反応性ガス供給源23からのガス供給量は、チャンバ11内の真空度が所定値に保持されるように制御される。密着性向上膜51を得るためには、チャンバ11内の層形成時の真空度は1.0×10-2〜5.0×10-2Pa、好ましくは2.0×10-2〜3.0×10-2Paであるのがよい。このとき、酸素ガス濃度は約1.0×10-2〜3.0×10-2Paの範囲内で調整される。
プラスチック基材50の表面における薄膜の形成速度を計測するために、基材保持部2に関連して膜厚モニタ17が設けられている。この膜厚モニタ17の出力信号は、制御装置30に入力されていて、この制御装置30は、膜厚モニタ17の出力に基づいて加熱電源3の出力を制御するようになっている。こうして、薄膜の形成速度が所望の値となるように、ボート1への通電量が制御され、蒸発材料9の蒸発量が調整される。金属酸化膜である密着性向上膜51を得るためには、当該金属酸化膜の形成速度は5〜20Å/秒、好ましくは13〜18Å/秒であるのがよい。
高周波電力供給電源5は、例えば周波数10〜50MHzの高周波電源でよいが、一般的な13.56MHzに設定すればよく、放電電極としての基材保持部2の単位面積(cm2)当たり出力50〜800mW、好ましくは85〜170mWの高周波電力を基材保持部2に印加する。これに応じた高周波電界がチャンバ11内で形成されることによって、チャンバ11内ではガス供給配管25から供給されるガスおよび蒸発材料9から蒸発した蒸発物からなるプラズマが生成することになる。このプラズマ中のイオン化された粒子のうち、正に帯電したものは、直流電圧印加電源6から基材保持部2に印加された直流バイアスによって、基材50の表面へと引き寄せられる。直流電圧印加電源6からの印加電圧は100〜400V、好ましくは180〜230Vであるのがよい。
一方、プラズマ中の解離した電子は、直流電圧印加電源6の陽極側に接続されたボート1へと引き寄せられることになる。このとき、蒸発源20からは蒸発材料9が継続的に蒸発しているので、蒸発粒子と電子との衝突により、プラズマの足が蒸発源20に下りたような形状の発光体が蒸発源20の近傍に見られる。そして、蒸発源20の近傍に集まった電子は、接地され陽極側に接続されているボート1に吸い込まれ、ボート1上の蒸発材料9に衝突する。これによって、蒸発材料9は、ボート1による加熱と、電子の衝突とによってその蒸発が促進されることになる。すなわち、蒸発材料9への集中的な電子衝突によって低温で蒸発を促進させる効果(デポジションアシスト効果)が得られる。
図3に示されるように、チャンバ11は、直流電圧印加電源6および高周波電力供給電源5のいずれにも接続されておらず、また接地もされていない。すなわち、チャンバ11は、電気的に浮遊状態となっている。このため、基材保持部2とチャンバ11との間での高周波放電が起こることもなく、チャンバ11内のプラズマ中の荷電粒子がチャンバ11の内壁に引き寄せられることもない。従って、プラズマ中の陽イオン化した粒子またはプラスに荷電した粒子は、基材50の表面へと効率的に導かれ、プラズマ中の負の荷電粒子である電子は、ボート1上の蒸発材料9へと集中的に導かれることになる。これにより、良好な薄膜形成を実現できるとともに、電子ビームによる蒸発材料9の蒸発促進を効率的に行える。さらには、チャンバ11の内壁に蒸発材料が付着することを抑制することができる。
チャンバ11内においてプラズマが安定すると、蒸発材料9へのプラズマから電子ビームの照射によって、蒸発材料9はプラズマに吸上げられるように蒸発する。そこで、基材50に付着する蒸発材料9の付着速度を一定に保持するために、膜厚モニタ17の出力に基づき、制御装置30は、加熱電源3の出力を下げる。すなわち、ボート1への通電電流または通電電圧を下げる。これにより、蒸発速度が調節される。
プラズマから供給される電子ビームにより蒸発材料9の蒸発が促進されるので、ボート1の加熱電流値は低く抑えることができるから、比較的低い加熱温度で蒸発材料9の蒸発を継続して維持することができ、プラズマの作用を利用した蒸着による薄膜形成を行える。
この装置における薄膜形成の特徴は、不活性ガスのチャンバ11への供給方法にある。すなわち、薄膜形成の初期段階においては、ガス供給配管25から比較的大きな流量でチャンバ11へガスが供給され、蒸発材料9からの蒸発が活発になると、ガス供給配管25からのガス供給量が減少させられ、これにより、蒸発材料9からの蒸発が活発でない薄膜形成の初期段階においては、ガス供給配管25から供給される不活性ガスのプラズマがチャンバ11内に形成される。蒸発材料9からの蒸発が活発になると、ガス供給配管25からのガス供給量が減少し、蒸発材料9からの蒸発粒子が支配的となった組成のプラズマがチャンバ11内に形成されるに至る。
このようにして、薄膜形成の初期段階に不活性ガスをチャンバ11に導入することにより、チャンバ11内に安定したプラズマを速やかに形成することができる。これによって、プラズマの作用を利用した薄膜形成を初期段階から行うことができるので、良好な密着性の薄膜である密着性向上膜51を基材50の表面に形成することができる。
図4は、薄膜形成のより具体的なプロセスを説明するための図である。この図には、薄膜を基材50の表面に形成する場合に、不活性ガス供給源21から不活性ガスをチャンバ11内に供給しながら薄膜形成を行うプロセスの一例が記載されている。具体的には、図4(a)はガス供給量の時間変化を示し、図4(b)はチャンバ11内の真空度の時間変化を示し、図4(c)はボート1の加熱電流値の時間変化を示している。
薄膜形成処理の開始前の期間T1には、制御装置30は、排気バルブ13を開き、真空ポンプ14によりチャンバ11内の雰囲気が排気されて、チャンバ11内の真空度が例えば約10-3Paに保持される。この状態から、制御装置30は、時刻t10に弁21a,23aを開いて、不活性ガス供給源21および反応性ガス供給源23からのガスの供給を開始させる。制御装置30は、時刻t10に弁21a,23aを開いて、不活性ガス供給源21および反応性ガス供給源23からのガスの供給を開始させる。このガス供給が開始された後には、制御装置30は、真空度計15の出力信号をモニタすることによって、チャンバ11内の真空度を、例えば2×10-2Paに保持するように流量制御装置24を制御する。
これによって、ボート1への通電が開始されて蒸発材料9が加熱される期間T2には、高周波電力供給電源5から印加される高周波電界によって、チャンバ11内でプラズマが生成される。このプラズマ中のイオン化された不活性ガスの原子や分子は、直流電圧印加電源6から基材保持部2に与えられている直流バイアスによって、基材50へと導かれる。この不活性ガスの原子や分子が基材50に衝突することによって、期間T2中に基材50の望ましくない昇温が生じる場合には、基材50の下方にシャッタ18を設けて、基材50に向かう不活性ガスを阻止すればよい。
期間T2には、制御装置30は加熱電源3を制御して、ボート1への通電を開始する。これに伴って、ボート1への加熱電流値が上昇し、期間T2の終期には、例えば150Aに達するようにする。チャンバ11内におけるプラズマが安定する時刻t11において、制御装置30の制御下にある駆動装置(図示せず)によってシャッタ18が開かれ、これにより、薄膜の形成が開始される。蒸発材料9の蒸発により、蒸発粒子がプラズマ中へと導かれることになるから、一定の流量でガス供給配管25からチャンバ11内にガスを供給すれば、チャンバ11内の真空度が下がる。
ところが、制御装置30は、チャンバ11内の真空度が一定値(例えば2×10-2Pa)に保持されるように流量制御装置24を制御して、ガス供給配管25を介するガス供給量を調整する。その結果、蒸発材料9からの蒸発量の増大に伴って、参照符号Aで示すように、チャンバ11への不活性ガス導入量が減少していく。従って、薄膜形成が行われている期間T3の初期においては、プラズマの組成は、不活性ガスに支配されているが、このプラズマの組成は、速やかに蒸発材料9の蒸発物によって支配された組成へと変化していく。密着性向上膜51を得るためには、蒸発材料9からの蒸発量の増大に伴って、参照符号Aで示すように、チャンバ11への不活性ガス導入量が減少していくため、参照符号Cで示すような時間変化を示すように制御される。また、蒸発材料9からの蒸発量の増大に伴って、チャンバ11への酸素ガス導入量は増加することになる。
一方、プラズマからの電子の供給によって、蒸発材料9からの蒸発が促進されるので、膜厚モニタ17の出力に基づくフィードバック制御によって、加熱電源3からボート1に供給される電流が参照符号Bで示すように減少することになる。例えば約2〜3秒の期間を経て、電流値は150Aから80Aへと低下する。このため、蒸発材料9は、通常の蒸着やイオンプレーティングにおけるよりも低温状態でその蒸発が進行することになるから、蒸発源20からの輻射熱によって基材50が過度に昇温されることがない。
以上のように、この実施形態によれば、チャンバ11に不活性ガスを導入した状態で薄膜形成を開始することにより、薄膜形成の初期段階からチャンバ11内に良好なプラズマを生成させることができる。これにより、蒸発材料は初期段階からプラズマの作用を受けながら基材50に効率的に導かれる。その結果、密着性の良好なLaTiO3,La2Ti38,SiO2,TiO2およびAl23から選ばれる少なくとも1種からなる密着性向上膜51を効率よく形成することができる。
密着性向上膜51の形成後、蒸発源20のボート1に蒸発材料9として銀材料を収容保持させ、密着性向上膜51の形成と同様にして、基材50上の密着性向上膜51の表面に銀層を形成させ、反射膜52を得る。このとき、酸素ガス等の反応性ガスを供給するための反応性ガス供給源23は使用されない。また、銀の反射膜52を得る場合、チャンバ11内の真空度は1.0×10-2〜5.0×10-2Pa、好ましくは2.5×10-2〜3.5×10-2Paであるのがよく、反射膜52の形成速度は10〜20Å/秒、好ましくは15〜18Å/秒であるのがよい。
銀の反射膜52を形成した後、蒸発材料9としてMgF2またはSiO2をボート1に収容保持させ、密着性向上膜51の形成と同様にして、反射膜52の表面にMgF2またはSiO2からなる第一の透明誘電体層53を形成する。
ついで、蒸発材料9としてLaTiO3,La2Ti38,SiO2,TiO2,Al23を使用して、密着性向上膜51の形成と同様にして、第一透明誘電体層銀層53の表面にLaTiO3,La2Ti38,SiO2,TiO2およびAl23から選ばれる少なくとも1種からなる第二透明誘電体層54を形成する。
ボート1への各蒸発材料9の供給には、例えばコート材料供給器(図示せず)からボート1に密着性向上膜51、反射膜52、第一および第二の透明誘電体層53,54の各材料をこの順に供給し、それぞれ所定の成膜条件にて順次蒸発を行わせ、基板50の表面に連続的に膜形成を行わせてもよい。
これらの薄膜形成の間、基材50は60℃以下に保持されている。従って、プラスチック基材50の表面に前記した各膜(層)51〜54を形成するのに好適である。例えばポリカーボネートの耐熱温度は120〜130℃、ポリメタクリル酸メチルの耐熱温度は80℃程度であるので、これらのプラスチック基材50に対して各膜(層)51〜54を順次積層形成することができる。
このように、この薄膜形成方法によれば、チャンバ11内へプラズマを形成するためのガスが供給されるので、薄膜形成初期においてチャンバ11内に速やかにプラズマを生成することができる。これによって、薄膜形成の初期段階から、プラズマの作用を利用した各膜(層)51〜54の作製が可能となり、密着性および耐久性に優れた反射鏡を得ることができる。
また、チャンバ11内へのガス供給量は、薄膜形成初期に多く、その後は少なくするため、チャンバ11内に供給された不活性ガスの原子や分子が基材50に衝突することによる基材50の温度上昇を抑制することができる。
さらに、直流印加電圧電源6から印加される直流電界により、プラズマ中のプラスに帯電した粒子または陽イオン化した粒子は、基材50方向へと加速されて飛来し、基材50と衝突し、基材50表面に堆積する。これによって、被膜の形成がなされることになる。一方、負の電荷をもつ電子は、陽極側となるボート1へと加速されて、ボート1上の蒸発材料9に集中的に衝突して、蒸発材料9に蒸発のためのエネルギーを与える。こうして、熱エネルギーに代わる高いエネルギーを得た蒸発材料9は、低温でも容易に蒸発して、チャンバ11内のプラズマ形成領域へと蒸発していく。すなわち、チャンバ11内に形成されたプラズマ中の電子が蒸発材料9へと導かれ、これによって材料の蒸発を促進する、いわゆるデポジションアシスト効果が得られるため、抵抗加熱等による蒸発材料9の加熱エネルギーを格段に低減することができる。その結果、プラスチック基材50の温度上昇を抑制することができるので、より低温状態での薄膜形成が可能になる。
蒸発材料9からの蒸発量は、加熱手段に与えるエネルギーおよび直流電圧印加電源6の出力を前記範囲内に制御することによって調整される。また、蒸発材料9の粒子の基材50への衝突エネルギーは、直流電圧印加電源6の出力を前記範囲内に制御することによって調整される。これにより、蒸着物質には、基材50表面への単なる堆積でなく、基材50表面に形成された蒸着物質層の原子または分子配列を安定な状態に再配列させるのに充分なエネルギーを与えることができる。さらに、蒸着物質の粒子に、基材50内に浸透して順応させるのに充分なエネルギーも与えることができる。
このため、本発明では、平坦で膜内欠陥が殆どなく、緻密で密着性に優れた膜51〜54が得られ、反射膜52の場合は殆ど純粋な銀の単結晶層に近い銀膜となる。
本発明では、基材の形状は特に制限されない。従って、例えば図5に示すような複雑な形状のプラスチック基材55を用いて、その表面に前記した膜51〜54の層構成からなる銀の反射膜56を直接形成することができる。本発明は非球面ミラーなどを作製するのに好適である。
本発明における銀を含む反射膜は、結晶の配向性が良好(一方向に揃っている)な単結晶質のものとなっているので、以下のような利点がある。
(1)波長が420〜700nmでの広い波長帯域(略可視光領域)での光の反射率が96%以上と高い。
(2)光の入射角が10〜50°の範囲において反射率の変化量が0.5%以下と小さい。
(3)プラスチック基材等との密着性に優れる。
(4)密着性に優れることから、腐蝕が少なく耐久性が飛躍的に改善される。
このようにして、表面粗さが非常に小さく実質的に平坦で、しかも結晶の配向性がきわめて良好な単結晶質である銀を含む反射膜を前記したプラスチック基材50の表面に蒸着される。このとき、反射膜の表面は、プラスチック基材50の表面状態を殆どそのまま反映され再現したものになるが、本発明におけるプラスチック基材50は、PV値が0.5μm以下で、かつ鋭角な突起のない、なめらかな面であるので、反射膜の有する高い反射率を損なうことがなく、反射率が96%以上となる。
以下、参考例を挙げて本発明における光反射鏡を説明するが、本発明における光反射鏡は以下の参考例に記載のものに限定されるものではない。
[参考例]
下記に示す各成分を表1に示す割合で混合し、ニーダーにて常温で混練して熱硬化性樹脂組成物を得た。
不飽和ポリエステル樹脂:日本ユピカ(株)製の商品名「ユピカ7123」
熱可塑性樹脂:日本ユピカ(株)製の商品名「A−25」
無機充填材:日東粉化工業(株)製の商品名「NS−200」
硬化剤(A):日本油脂(株)製の商品名「パーヘキサHC」
硬化剤(B):日本油脂(株)製の商品名「パーブチルZ」
離型剤:旭電化工業(株)製の商品名「エフコ・ケムZNS−P」
Figure 2006301231
得られた熱硬化性樹脂組成物を圧縮成形用金型に投入し、50tトランスファ成形機(王子機械(株)製)にて圧縮成形を行い、厚さ2mmのプラスチック基材を得た。成形条件は、以下の通りである。
成形温度:165℃
形締圧力:150kgf/cm2
注入圧力:50kgf/cm2
硬化時間:3分
ついで、脱型したプラスチック基材の表面に加工を施すことなく、下記(i)〜(iv)の順に各層を直接積層し、光反射鏡を作製した。
(i) 密着性向上膜51:チタン酸ランタンLaTiO3(厚さ40nm)
(ii) 反射膜52:銀Ag(厚さ100nm)
(iii) 第一透明誘電体層53:フッ化マグネシウムMgF2(厚さ73nm)
(iv) 第二透明誘電体層54:チタン酸ランタンLa2Ti38(厚さ60nm)
各層の作製条件は以下の通りである。
(I)密着性向上膜51
蒸発材料9:Y23(純度99%)
チャンバ11内への導入ガス:Arガスおよび酸素ガス
高周波電力供給電源5からの基材保持部2への印加電力:周波数13.56MHzで85mW/cm2(基材保持部2の単位面積当たりの印加電力)
直流印加電源6:陰極側を基材保持部2に接続し、陽極側をボート1に接続
直流印加電源6から基材保持部2への印加電圧:230V
チャンバ11:接地されていない電気的に浮遊状態
23層の形成速度:15Å/秒以下
(A)Y23層形成の初期段階(図3の期間T2)
チャンバ11内の真空度:2×10-2Paで一定
加熱電源3からボート1への通電電流:350A(T2終期)
(B)Y23層の形成段階(図3の期間T3)
チャンバ11内の真空度:2×10-2Paで一定
加熱電源3からボート1への通電電流:230A(T3終期)
かくして厚さ40nmのY23層を基材50表面に作製することができた。この薄膜作製の全期間を通じて基板50の表面温度は40℃未満に保持されていた。
加熱電源3からボート1への通電電流:230A(T3終期)
かくして厚さ40nmのLaTiO3層を基材50表面に作製することができた。この薄膜作製の全期間を通じて基板50の表面温度は40℃未満に保持されていた。
(II) 反射膜52
蒸発材料9:銀(純度99.9%)
チャンバ11内への導入ガス:アルゴンガス
高周波電力供給電源5からの基材保持部2への印加電力:周波数13.56MHzで85mW/cm2(基材保持部2の単位面積当たりの印加電力)
直流印加電源6:陰極側を基材保持部2に接続し、陽極側をボート1に接続
直流印加電源6から基材保持部2への印加電圧:230V
チャンバ11:接地されていない電気的に浮遊状態
反射膜の形成速度:5〜18Å/秒
(a)反射膜形成の初期段階(図3の期間T2)
チャンバ11内の真空度:2×10-2Paで一定
加熱電源3からボート1への通電電流:280A(T2終期)
(b)反射膜の形成段階(図3の期間T3)
チャンバ11内の真空度:2×10-2Paで一定
加熱電源3からボート1への通電電流:約210A(T3終期)
かくして厚さ110nmの反射膜をY23層の表面に作製することができた。この反射膜作製の全期間を通じて基板50の表面温度は、40℃で反応するサーモシールが僅かに反応したことから、40〜45℃程度に保持されていた。
(III) 第一透明誘電体層53
蒸発材料9:フッ化マグネシウムMgF2(純度99.9%)
チャンバ11内への導入ガス:Arガス
高周波電力供給電源5からの基材保持部2への印加電力:周波数13.56MHzで85mW/cm2(基材保持部2の単位面積当たりの印加電力)
直流印加電源6:陰極側を基材保持部2に接続し、陽極側をボート1に接続
直流印加電源6から基材保持部2への印加電圧:230V
チャンバ11:接地されていない電気的に浮遊状態
MgF2層の形成速度:15Å/秒以下
(A)MgF2層形成の初期段階(図3の期間T2)
チャンバ11内の真空度:2×10-2Paで一定
加熱電源3からボート1への通電電流:350A(T2終期)
(B)MgF2層の形成段階(図3の期間T3)
チャンバ11内の真空度:2×10-2Paで一定
加熱電源3からボート1への通電電流:230A(T3終期)
かくして厚さ54nmのMgF2層を反射膜の表面に作製することができた。このMgF2層作製の全期間を通じて基板50の表面温度は、40℃以上で反応するサーモシールが反応しなかったことから40℃未満に保持されていた。
引き続き、
蒸発材料9:酸化イットリウムY23(純度99%)
チャンバ11内への導入ガス:Arガスおよび酸素ガス
高周波電力供給電源5からの基材保持部2への印加電力:周波数13.56MHzで85mW/cm2(基材保持部2の単位面積当たりの印加電力)
直流印加電源6:陰極側を基材保持部2に接続し、陽極側をボート1に接続
直流印加電源6から基材保持部2への印加電圧:230V
チャンバ11:接地されていない電気的に浮遊状態
23層の形成速度:15Å/秒以下
(A)Y23層形成の初期段階(図3の期間T2)
チャンバ11内の真空度:2×10-2Paで一定
加熱電源3からボート1への通電電流:350A(T2終期)
(B)Y23層の形成段階(図3の期間T3)
チャンバ11内の真空度:2×10-2Paで一定
加熱電源3からボート1への通電電流:230A(T3終期)
かくして厚さ20nmのLaTiO3層を基材50表面に作製することができた。この薄膜作製の全期間を通じて基板50の表面温度は40℃未満に保持されていた。
(IV) 第二透明誘電体層54
前記2層に代えてLa2Ti38を使用した他は前記(I)と同様にして、Y23層の表面に厚さ50nmのLa2Ti38層を作製した。このLa2Ti38層作製の全期間を通じて基板50の表面温度は、40℃以上で反応するサーモシールが反応しなかったことから40℃未満に保持されていた。
参考例で得た光反射鏡について、以下の評価試験を行った。
1.表面状態
反射膜表面の表面状態およびPV値を非接触三次元輪郭測定機(三鷹光機(株)製の商品名「NH−3SP」)により測定した。その結果を図6に示す。図6は対物レンズの倍率100倍で測定された反射膜表面の三次元形状を示している。図6から、反射膜の表面は、鋭角な突起のない、なめらかな面であることがわかる。また、同図から測定される高さ(厚み)方向の最大値は0.21μm、最小値は−0.20μmであるので、PV値は約0.4μmとなる。
2.X線回折による(111)ピーク強度
X線回折装置(理学電気社製のRINT1400V型)を用い、X線出力50kV‐200mA、測定範囲2θ=10°〜100°、発光スリット−散乱スリット−受光スリット:1°−1°−0.3mmにて測定した。その結果、参考例の反射膜52は、(111)ピーク強度がその他のピーク強度の合計の約23倍であった。
3.反射率
(1)可視光領域での反射率測定
可視光領域(波長:約350〜750nm)での反射率を光度計((株)日立製作所製の分光光度計U−4000)にて測定した。その結果、反射率は98%であった。
なお、密着性向上膜51としてCr、CrO、Cr23、Y23、La2Ti38,SiO2,TiO2およびAl23のいずれかを用いた場合、第一透明誘電体層53としてSiO2、23を用いた場合、および第二透明誘電体層54としてLaTiO3,SiO2,TiO2およびAl23のいずれかを用いた場合、いずれも上記参考例と同様な特性を有する反射鏡が得られた。
本発明のプロジェクターの一実施形態を示す概略図である。 光反射鏡の一例を示す断面図である。 光反射鏡を製造するための薄膜形成装置の一例を示す概念図である。 薄膜形成のプロセスを示す説明図である。 光反射鏡の適用例を示す斜視図である。 参考例で得た反射膜の表面状態を三次元表示したグラフである。
符号の説明
A:画像形成素子、31:第1の光反射鏡、32:第2の光反射鏡、33:第3の光反射鏡、34:第4の光反射鏡、35a:平面反射鏡、35b:平面反射鏡、36:透過型スクリーン、50:プラスチック基材、51:密着性向上膜、52:反射膜、53:第一透明誘電体層、54:第二透明誘電体層

Claims (11)

  1. 画像を少なくとも3つの光反射鏡を介してスクリーンに投影してなるプロジェクターであって、前記3つの光反射鏡を光の進行方向に沿って順に第1、第2および第3の光反射鏡としたとき、少なくとも第1および第2の光反射鏡はプラスチック基材の表面に銀を含む反射膜を形成して構成され、かつ反射膜表面の光反射率が96%以上であることを特徴とするプロジェクター。
  2. 前記第1、第2および第3の光反射鏡の形状が、放物面形状、双曲面形状、円筒形状もしくは楕円形状からなる非球面ミラー、多項式により表現される自由曲面からなる自由曲面ミラー、球面ミラー、または平面ミラーである請求項1に記載のプロジェクター。
  3. 少なくとも第1および第2の光反射鏡は、前記反射膜表面のPV値が0.5μm以下で、かつ鋭角な突起のない、なめらかな面である請求項1または2に記載のプロジェクター。
  4. 前記反射膜が、X線回折による(111)ピーク強度がその他のピーク強度の合計の20倍以上である請求項1〜3のいずれかに記載のプロジェクター。
  5. 前記反射膜の厚みが100〜200nmである請求項1〜4のいずれかに記載のプロジェクター。
  6. 前記プラスチック基材が熱硬化性樹脂成形品からなる請求項1〜5のいずれかに記載のプロジェクター。
  7. 前記プラスチック基材は、不飽和ポリエステル樹脂7〜19質量%、熱可塑性樹脂6〜19質量%、無機充填剤70〜84質量%、強化繊維5質量%以下および硬化剤0.1〜3質量%からなる熱硬化性樹脂組成物を成形したものである請求項1〜6のいずれかに記載のプロジェクター。
  8. 前記プラスチック基材の表面に、銀を含む反射膜を形成するに先立って、前記プラスチック基材の表面に密着性向上膜を形成することを特徴とする請求項項1〜7のいずれかに記載のプロジェクター。
  9. 前記プラスチック基材の表面に、銀を含む反射膜を形成した後、反射膜の表面に反射増加膜を形成することを特徴とする請求項1〜8のいずれかに記載のプロジェクター。
  10. 前記反射増加膜が、2層以上の透明誘電体層からなる請求項9に記載のプロジェクター。
  11. 前記反射増加膜が、反射膜表面に、少なくとも高屈折率の透明誘電体層と低屈折率の透明誘電体層とを積層して形成されていることを特徴とする請求項9または10に記載のプロジェクター。
JP2005121928A 2004-11-02 2005-04-20 プロジェクター Pending JP2006301231A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005121928A JP2006301231A (ja) 2005-04-20 2005-04-20 プロジェクター
US11/718,383 US20080252862A1 (en) 2004-11-02 2005-11-02 Light Reflector, Method for Manufacturing the Same and Projector
KR1020077011284A KR20070090889A (ko) 2004-11-02 2005-11-02 광반사경, 그 제조 방법 및 프로젝터
PCT/JP2005/020231 WO2006049223A1 (ja) 2004-11-02 2005-11-02 光反射鏡とその製造方法およびプロジェクター

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005121928A JP2006301231A (ja) 2005-04-20 2005-04-20 プロジェクター

Publications (1)

Publication Number Publication Date
JP2006301231A true JP2006301231A (ja) 2006-11-02

Family

ID=37469602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005121928A Pending JP2006301231A (ja) 2004-11-02 2005-04-20 プロジェクター

Country Status (1)

Country Link
JP (1) JP2006301231A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066750A (ja) * 2008-08-12 2010-03-25 Seiko Epson Corp スクリーンの製造方法及びスクリーン
JP2010097190A (ja) * 2008-09-16 2010-04-30 Seiko Epson Corp スクリーン及びスクリーンの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066750A (ja) * 2008-08-12 2010-03-25 Seiko Epson Corp スクリーンの製造方法及びスクリーン
JP2010097190A (ja) * 2008-09-16 2010-04-30 Seiko Epson Corp スクリーン及びスクリーンの製造方法

Similar Documents

Publication Publication Date Title
WO2006049223A1 (ja) 光反射鏡とその製造方法およびプロジェクター
CN101084457A (zh) 光反射镜及其制造方法以及投影机
JP5114995B2 (ja) 耐熱遮光フィルムとその製造方法、及びそれを用いた絞り又は光量調整装置
JP4178190B2 (ja) 多層膜を有する光学素子およびその製造方法
WO2010018639A1 (ja) 蒸着装置及び薄膜デバイスの製造方法
JP2010204380A (ja) 光反射鏡及びその製造方法
JP2007248562A (ja) 光学物品およびその製造方法
TWI308105B (en) Laminated polyester film and specular reflecting film
JP2006301231A (ja) プロジェクター
JP5092520B2 (ja) 耐熱遮光フィルムとその製造方法、及びそれを用いた絞り又は光量調整装置
JP2006171059A (ja) 光反射鏡、その製造方法およびプロジェクター
JP2006301232A (ja) 光反射鏡、その製造方法およびプロジェクター
WO2010001763A1 (ja) 光学部材及びグリッド偏光フィルム
JP2006515827A (ja) 透過性ジルコニウム酸化物−タンタル及び/又はタンタル酸化物被膜
JP2010257714A (ja) 車両用灯具、車両用灯具のレンズ、および、その製造方法
JP2006515827A5 (ja)
JP2009179866A (ja) 紫外波長域用反射防止膜の製造方法
JP2014221543A (ja) ガスバリア性フィルム
JP5442375B2 (ja) 光学素子の製造方法
US20220317337A1 (en) Antireflection structure and manufacturing method thereof
JP2007046081A (ja) 透明ガスバリア膜の製造方法およびそれにより得られる透明ガスバリア膜
JP2020076996A (ja) モスアイ転写型及びモスアイ転写型の製造方法
JP2003114313A (ja) 反射鏡およびこれを用いた映像プロジェクタ装置
JP2008032757A (ja) レーザ損傷抑制膜を有する光学素子
JP5206112B2 (ja) イオンプレーティング用蒸発源材料の原料粉末、イオンプレーティング用蒸発源材料及びその製造方法、ガスバリア性シートの製造方法