JP2006299341A - Method for manufacturing galvannealed steel sheet - Google Patents

Method for manufacturing galvannealed steel sheet Download PDF

Info

Publication number
JP2006299341A
JP2006299341A JP2005121831A JP2005121831A JP2006299341A JP 2006299341 A JP2006299341 A JP 2006299341A JP 2005121831 A JP2005121831 A JP 2005121831A JP 2005121831 A JP2005121831 A JP 2005121831A JP 2006299341 A JP2006299341 A JP 2006299341A
Authority
JP
Japan
Prior art keywords
plating
alloy layer
steel sheet
bath
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005121831A
Other languages
Japanese (ja)
Other versions
JP4551268B2 (en
Inventor
Kiyokazu Ishizuka
清和 石塚
Kazumi Nishimura
一実 西村
Ikuo Kikuchi
郁夫 菊池
Akihiro Miyasaka
明博 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005121831A priority Critical patent/JP4551268B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to BRPI0610540A priority patent/BRPI0610540B1/en
Priority to KR1020077024015A priority patent/KR20070112874A/en
Priority to PCT/JP2006/308369 priority patent/WO2006112515A1/en
Priority to CN200680013478A priority patent/CN100580130C/en
Priority to CA2605486A priority patent/CA2605486C/en
Priority to US11/911,916 priority patent/US20090162691A1/en
Priority to TW95114198A priority patent/TWI322193B/en
Publication of JP2006299341A publication Critical patent/JP2006299341A/en
Application granted granted Critical
Publication of JP4551268B2 publication Critical patent/JP4551268B2/en
Priority to US13/743,790 priority patent/US9334555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a galvannealed steel sheet having extremely adequate appearance. <P>SOLUTION: (1) The method for manufacturing the galvannealed steel sheet comprises the steps of: forming an Fe-Ni-Al-Zn alloy layer on an interface between the steel sheet and a galvanizing layer in a hot-dip galvanizing bath; and eliminating the Fe-Ni-Al-Zn alloy layer and simultaneously forming a Zn-Fe alloy layer having Ni and Al dispersed therein, by heat treatment. (2) The method for manufacturing the galvannealed steel sheet includes the steps of cleaning the surface of a steel sheet, pre-plating it with Ni into a coating weight of 0.05 to 1.0 g/m<SP>2</SP>, rapidly heating it to a sheet temperature of 430 to 500°C at a heating rate of 30°C/sec or higher in a non-oxidative or reducing atmosphere, hot-dipping it in a Zn plating bath containing 0.07 to 0.2 mass% Al, rapidly heating it to 470 to 600°C just above a wiping section at a heating rate of 30°C/sec or more, and cooling it without soaking it or cooling it after having soaked and held it for a period of less than 15 seconds, wherein an amount of pre-plated Ni (Yg/m<SP>2</SP>) and a concentration (X%) of Al in the Zn plating bath satisfy the relationship of Y≤15*X-1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、外観の極めて良好な合金化溶融亜鉛メッキ鋼板の製造方法に関する。     The present invention relates to a method for producing an alloyed hot-dip galvanized steel sheet having a very good appearance.

合金化溶融亜鉛メッキ鋼板は、塗膜密着性、塗装後の耐食性に優れた自動車あるいは建築用の鋼板として知られている。特に自動車外板用途として用いられる場合、合金化溶融亜鉛メッキの外観ムラは自動車塗装後もムラとして残る場合が多いため、極めて高度な外観品位が要求される。これらムラの多くは、メッキ原板の酸化膜のムラ、微量成分のムラといった上工程に起因する場合が多いが、その原因は特定しがたい場合がほとんどであり、抜本的な対策は困難な状況にあった。   An alloyed hot-dip galvanized steel sheet is known as a steel sheet for automobiles or buildings having excellent coating film adhesion and corrosion resistance after painting. In particular, when used as an automobile outer plate, the appearance unevenness of the alloyed hot dip galvanizing often remains as an unevenness after the automobile is painted, so that an extremely high appearance quality is required. Many of these irregularities are often caused by upper processes such as unevenness of the oxide film on the plating plate and unevenness of trace components, but the causes are often difficult to identify, and radical countermeasures are difficult. It was in.

ところで特許文献1には、Niプレメッキ法を利用した合金化溶融亜鉛メッキ鋼板の製造方法が開示されているが、この文献では、本発明が目的とする自動車外板用途としても耐えられるような極めて良好な外観を得るための指針は開示されていない。
特許第2783452号公報
By the way, Patent Document 1 discloses a method for producing an alloyed hot-dip galvanized steel sheet using the Ni pre-plating method. No guidelines for obtaining a good appearance are disclosed.
Japanese Patent No. 2784352

一般に合金化溶融亜鉛メッキ鋼板製造においては、溶融亜鉛メッキ浴内で、地鉄−メッキの界面にFe−Al−Znの合金層(いわゆるバリア層)を形成し、その後の加熱処理によって前記合金層を消失させるとともに、Alが分散したZn−Fe合金層を形成することによって製造される。ここで、Fe−Al−Zn合金層は、その後のZn−Fe合金化反応の制御や、メッキ密着性の確保の点で極めて重要な役割を担っている。   In general, in the production of alloyed hot dip galvanized steel sheets, an Fe—Al—Zn alloy layer (so-called barrier layer) is formed at the base metal-plating interface in a hot dip galvanizing bath, and the alloy layer is then heated. And a Zn—Fe alloy layer in which Al is dispersed is formed. Here, the Fe—Al—Zn alloy layer plays an extremely important role in controlling the subsequent Zn—Fe alloying reaction and ensuring plating adhesion.

しかしながら、Fe−Al−Zn合金層はその生成速度が、メッキ原板の表層状態や、メッキ浴内の液流れ等によって敏感に影響を受けるとともに、Fe−Al−Zn合金層の厚みの微妙な差異がそのまま極めて敏感に合金化反応挙動に影響し、微小なメッキ外観ムラを誘発することになるため、外観の極めて良好な合金化溶融亜鉛メッキ鋼板を製造することは容易ではなかった。
そこで本発明は、外観の極めて良好な合金化溶融亜鉛メッキ鋼板の製造方法を提供することを目的とする。
However, the formation rate of the Fe-Al-Zn alloy layer is sensitively affected by the surface layer state of the plating original plate, the liquid flow in the plating bath, and the like, and there is a slight difference in the thickness of the Fe-Al-Zn alloy layer. However, it has an extremely sensitive influence on the alloying reaction behavior and induces minute plating appearance unevenness, so that it is not easy to produce an alloyed hot-dip galvanized steel sheet having a very good appearance.
Therefore, an object of the present invention is to provide a method for producing an alloyed hot-dip galvanized steel sheet having a very good appearance.

本発明者らが検討の結果、溶融亜鉛メッキ浴内で地鉄−メッキの界面に生成する合金層として、Fe−Al−Zn合金層に代えてFe−Ni−Al−Zn合金層を利用すると、メッキ原板の表層状態や、メッキ浴内の液流れ等による合金層生成挙動のバラツキが少なくなるとともに、また合金層の厚みがばらついても、その影響が後のZn−Fe合金化反応挙動には余り影響せず、結果として極めて良好な外観が得られることを見出し、本発明を完成するに至った。   As a result of the study by the present inventors, when an Fe-Ni-Al-Zn alloy layer is used in place of the Fe-Al-Zn alloy layer as an alloy layer generated at the interface between the base metal and the plating in the hot dip galvanizing bath, In addition, the variation of the alloy layer formation behavior due to the surface layer state of the plating original plate and the liquid flow in the plating bath is reduced, and even if the thickness of the alloy layer varies, the effect on the subsequent Zn-Fe alloying reaction behavior Found that a very good appearance was obtained as a result, and the present invention was completed.

すなわち、本発明の要旨とするところは次の通りである。
(1)溶融亜鉛メッキ浴内で、地鉄界面にFe−Ni−Al−Zn合金層を形成した後、加熱処理によって前記Fe−Ni−Al−Zn合金層を消失させるとともに、Ni,Alの分散したZn−Fe合金層を形成することを特徴とする合金化溶融亜鉛メッキ鋼板の製造方法。
(2)鋼板表面を清浄化後、0.05〜1.0g/m2 のNiプレメッキを施し、無酸化あるいは還元性雰囲気中で板温度430〜500℃に30℃/sec以上の昇温速度で急速加熱を行なった後、Al濃度0.07〜0.2質量%を含有するZnメッキ浴中で溶融メッキし、ワイピング直上で470〜600℃に30℃/sec以上の昇温速度で急速加熱を行い、均熱時間をとらずに冷却するか、または15秒未満の均熱保持の後に冷却する方法において、Niプレメッキ量(Yg/m2 )とZnメッキ浴中Al濃度(X%)が、Y≦15*X−1の関係を満たすことを特徴とする合金化溶融亜鉛メッキ鋼板の製造方法。
That is, the gist of the present invention is as follows.
(1) In a hot dip galvanizing bath, after forming a Fe-Ni-Al-Zn alloy layer at the interface between the iron and steel, the Fe-Ni-Al-Zn alloy layer is eliminated by heat treatment, and Ni, Al A method for producing an alloyed hot-dip galvanized steel sheet, comprising forming a dispersed Zn-Fe alloy layer.
(2) After cleaning the steel sheet surface, Ni pre-plating of 0.05 to 1.0 g / m 2 is performed, and the temperature rise rate is 30 ° C./sec or more at a plate temperature of 430 to 500 ° C. in a non-oxidizing or reducing atmosphere. After rapid heating with, hot dip plating in a Zn plating bath containing Al concentration of 0.07 to 0.2% by mass, and rapidly at 470 to 600 ° C. at a heating rate of 30 ° C./sec or more immediately above the wiping. Heating and cooling without taking soaking time, or cooling after soaking for less than 15 seconds, Ni pre-plating amount (Yg / m 2 ) and Al concentration in Zn plating bath (X%) Satisfying the relationship of Y ≦ 15 * X−1, a method for producing an alloyed hot-dip galvanized steel sheet.

本発明によって、自動車外板等に使用できる極めて外観の良好な合金化溶融亜鉛メッキ鋼板の製造方法が得られる。   According to the present invention, a method for producing an alloyed hot-dip galvanized steel sheet having an extremely good appearance that can be used for an automobile outer plate or the like is obtained.

以下に本発明を詳細に説明する。
本発明に用いるメッキ原板は、いずれのものも使用できるが、本発明が主に自動車外板用途に要求されるような極めて良好な外観を得ることを目的とすることから、自動車外板用途として適用されることの多い極低炭素鋼板を用いることが有効である。
The present invention is described in detail below.
Any of the original plating plates used in the present invention can be used, but the present invention is intended to obtain an extremely good appearance that is mainly required for automotive outer plate applications. It is effective to use an ultra-low carbon steel plate that is often applied.

図1に、本発明における溶融亜鉛メッキ浴内で形成された合金層の状態を示す。図1は、溶融亜鉛メッキ浴引き上げ直後に急冷したサンプルの断面を埋め込み研磨し、EPMA分析によってメッキ深さ方向の元素(Ni,Al,Zn,Fe)分布を測定したものである。地鉄メッキ層界面にFe−Ni−Al−Znからなる合金層が形成されていることが分かる。なお、図2には比較として、同様の方法で観察した通常のFe−Al−Zn合金層を地鉄メッキ界面に有する場合を示す。   FIG. 1 shows the state of the alloy layer formed in the hot dip galvanizing bath in the present invention. FIG. 1 shows an element (Ni, Al, Zn, Fe) distribution in the plating depth direction measured by embedding and polishing a cross section of a rapidly cooled sample immediately after pulling up a hot dip galvanizing bath. It can be seen that an alloy layer made of Fe—Ni—Al—Zn is formed at the interface of the ground iron plating layer. For comparison, FIG. 2 shows a case where a normal Fe—Al—Zn alloy layer observed by the same method is provided at the interface of the ground iron plating.

次に図3には、本発明における加熱合金化処理後のメッキ深さ方向の元素(Ni,Al,Zn,Fe)分布を示す。図1で見られたような地鉄メッキ界面のFe−Ni−Al−Zn合金層は消失し、Ni,Alが分散した状態のZn−Fe合金層となっている。また図4には、比較として通常の図2の状態の合金層を有するものを加熱合金化処理後のメッキ深さ方向の元素(Ni,Al,Zn,Fe)分布を示したものである。   Next, FIG. 3 shows an element (Ni, Al, Zn, Fe) distribution in the plating depth direction after the heat alloying treatment in the present invention. As shown in FIG. 1, the Fe—Ni—Al—Zn alloy layer at the iron-plating interface disappears, and a Zn—Fe alloy layer in which Ni and Al are dispersed is formed. FIG. 4 shows, for comparison, the element (Ni, Al, Zn, Fe) distribution in the plating depth direction after the heat alloying treatment for the alloy layer having the normal state shown in FIG.

本発明においては、溶融Zn浴中で図1の状態を形成し、次いで加熱合金化処理によって図3の状態に変化させるものであるが、このような工程を経ることが通常の工程(すなわち、図2→図4の工程)を経る場合よりも、良好な外観の得られる理由は必ずしも明確ではないが、次の様な理由によると考えられる。
すなわち、図1の界面合金層を形成する過程は、浴中でのNi,Al,Zn、Feの晶出反応を経由すると考えられるが、ここにNiを含むことで、Niが結晶の核として作用することで、下地原板に多少のムラがあってもこれが隠蔽される効果があると推定される。また、Fe−Ni−Al−Zn合金層は、Fe−Al−Zn合金層に比較して、Zn−Fe合金化反応に対するバリア作用の合金層厚み依存性が少なく、合金層厚みのムラが合金化後のムラになりにくいと推定される。
In the present invention, the state shown in FIG. 1 is formed in a molten Zn bath, and then changed to the state shown in FIG. 3 by a heat alloying process. The reason why a good appearance is obtained is not necessarily clear as compared with the case of going through the steps of FIG. 2 to FIG. 4, but is considered to be due to the following reason.
That is, the process of forming the interface alloy layer in FIG. 1 is considered to pass through the crystallization reaction of Ni, Al, Zn, and Fe in the bath, but by including Ni here, Ni serves as the nucleus of the crystal. By acting, it is estimated that there is an effect of concealing even if there is some unevenness in the base original plate. In addition, the Fe—Ni—Al—Zn alloy layer is less dependent on the alloy layer thickness of the barrier action on the Zn—Fe alloying reaction than the Fe—Al—Zn alloy layer, and the unevenness of the alloy layer is an alloy. It is estimated that unevenness after conversion is unlikely.

次に、前述のような本発明の図1→図3の状態を経る合金化溶融亜鉛メッキ鋼板製造方法についてより具体的に説明する。
本発明の地鉄メッキ界面合金層のAlは、溶融Znメッキ浴中から供給する。またNiは、溶融Znメッキ浴中からの供給も可能であるが、この場合には浴中に多量のNiを含有させる必要があって、Ni−Al系のドロスが大量発生するため好ましくない。この問題を避けるためには、Niは鋼板へのプレメッキとして供給することが望ましい。
Next, the method for producing an alloyed hot-dip galvanized steel sheet through the state of FIGS. 1 to 3 of the present invention as described above will be described more specifically.
Al of the iron-plating interface alloy layer of the present invention is supplied from a hot-dip Zn plating bath. Ni can also be supplied from a molten Zn plating bath, but in this case, it is necessary to contain a large amount of Ni in the bath, and a large amount of Ni-Al-based dross is generated, which is not preferable. In order to avoid this problem, it is desirable to supply Ni as a pre-plated steel sheet.

以下に、Niプレメッキを適用した場合での具体的方法について述べる。
本発明では、まず表面の清浄化が必要であるが、この方法については特に限定されず、アルカリ脱脂、ブラッシング処理、酸処理等の既知の方法を原板の汚れや酸化膜の状況にあわせて単独あるいは組み合わせて用いればよい。後述のNiメッキの均一性の観点から、アルカリ脱脂(例えばNaOH水溶液処理)と酸処理(例えば硫酸水溶液処理)をこの順で組み合わせて使用することが好ましい。
Hereinafter, a specific method when Ni pre-plating is applied will be described.
In the present invention, it is necessary to first clean the surface, but this method is not particularly limited, and known methods such as alkali degreasing, brushing treatment, acid treatment, etc. are used alone in accordance with the state of the original plate dirt and oxide film. Or they may be used in combination. From the viewpoint of uniformity of Ni plating described later, it is preferable to use alkaline degreasing (for example, NaOH aqueous solution treatment) and acid treatment (for example, sulfuric acid aqueous solution treatment) in this order.

本発明では、0.05〜1.0g/m2 のNiプレメッキを施す。下限未満ではこの後の溶融メッキの濡れ性が不十分であり、また上限を超えるとZn浴中で図1のような界面合金層が出来にくくなり、結果として良好な外観が得られにくい。
Niプレメッキ後に、無酸化あるいは還元性雰囲気中で板温度430〜500℃に30℃/sec以上の昇温速度で急速加熱を行なう。この処理は溶融メッキの濡れ性、またメッキ密着性を確保するために必要である。なお、昇温速度の上限は特に限定しない。
In the present invention, 0.05 to 1.0 g / m 2 of Ni pre-plating is performed. If it is less than the lower limit, the wettability of the subsequent hot dipping is insufficient, and if it exceeds the upper limit, it becomes difficult to form an interface alloy layer as shown in FIG. 1 in the Zn bath, and as a result, it is difficult to obtain a good appearance.
After the Ni pre-plating, rapid heating is performed at a temperature increase rate of 30 ° C./sec or more at a plate temperature of 430 to 500 ° C. in a non-oxidizing or reducing atmosphere. This treatment is necessary in order to ensure wettability of the molten plating and plating adhesion. In addition, the upper limit of a temperature increase rate is not specifically limited.

溶融亜鉛メッキ浴は、Al:0.07〜0.2%と不可避的不純物と残部Znからなる浴を用いる。Alが下限未満では図1のような界面合金層が出来にくくなり、結果として良好な外観が得られにくい。また上限を超えると合金化反応が遅延するため好ましくない。
なお、図1のような界面合金層を形成するための条件は、プレNi付着量と浴中Al濃度の双方に依存する。極低炭素鋼板を用いて、Niプレメッキ量を各種変更し、460℃に50℃/secの昇温速度で急速加熱したのち、各種濃度のAlを含有する455℃の溶融亜鉛メッキ浴に浸漬し、3sec 後取り出して急速冷却して、地鉄メッキ界面にFe−Ni−Al−Zn合金層があるかどうかを検証した結果を図5に示す。
As the hot dip galvanizing bath, a bath comprising Al: 0.07 to 0.2%, inevitable impurities, and the balance Zn is used. When Al is less than the lower limit, it becomes difficult to form an interface alloy layer as shown in FIG. 1, and as a result, it is difficult to obtain a good appearance. If the upper limit is exceeded, the alloying reaction is delayed, which is not preferable.
The conditions for forming the interface alloy layer as shown in FIG. 1 depend on both the pre-Ni adhesion amount and the Al concentration in the bath. Using an ultra-low carbon steel sheet, the Ni pre-plating amount was changed in various ways, rapidly heated to 460 ° C. at a heating rate of 50 ° C./sec, and then immersed in a 455 ° C. hot dip galvanizing bath containing various concentrations of Al. FIG. 5 shows the result of verifying whether there is an Fe—Ni—Al—Zn alloy layer at the ground iron plating interface after taking out after 3 seconds and rapidly cooling.

図5において、「○」で示したものが、Fe−Ni−Al−Zn合金層が確認されたものであるが、浴Alが低下すると、適正なNiプレメッキ量の上限も低下する傾向が観察された。図中で点線で示した直線(Niプレメッキ量をYg/m2 、Znメッキ浴中Al濃度をX%とすると、Y=15*X−1の関係になる)以下の領域が、本発明において好適な領域である。 In FIG. 5, “○” indicates that the Fe—Ni—Al—Zn alloy layer has been confirmed, but when the bath Al decreases, the upper limit of the appropriate Ni pre-plating amount tends to decrease. It was. In the present invention, the region below the straight line indicated by the dotted line in the figure (the relationship of Y = 15 * X-1 is established when the Ni pre-plating amount is Yg / m 2 and the Al concentration in the Zn plating bath is X%) This is a suitable area.

本発明においては、メッキ後、ワイピング後に470〜600℃に30℃/sec以上の昇温速度で急速加熱を行い、均熱時間をとらずに冷却するか、または15秒未満の均熱保持の後に冷却することで合金化処理を行うことが望ましい。この規定は良好な外観を得るとともに適正な合金化度とメッキ密着性を確保する上で重要である。なお、急速加熱における昇温速度の上限は特に限定しない。   In the present invention, after plating, after wiping, rapid heating is performed at a heating rate of 30 ° C./sec or more at 470 to 600 ° C., and cooling is performed without taking a soaking time, or soaking is maintained for less than 15 seconds. It is desirable to perform an alloying process by cooling later. This rule is important for obtaining a good appearance and ensuring an appropriate degree of alloying and plating adhesion. In addition, the upper limit of the temperature increase rate in rapid heating is not specifically limited.

以下に実施例によって本発明を詳細に説明する。
(実施例1〜7および比較例1〜3:Niプレメッキ法)
表1に示した冷延、焼鈍済みの原板を用い、表2に示す前処理の後、表3に示すメッキ浴で電気メッキ(浴温60℃、電流密度30A/dm2 )にてNiプレメッキを行なった。その後、3%H2 +N2 の雰囲気中で50℃/secの昇温速度にて460℃まで加熱し、ただちに455℃に保温した溶融Znメッキ浴に浸漬し3sec 保持の後、ワイピングして目付けを調整した。目付けは60g/m2 とした。その後、所定の条件で加熱合金化処理を行った。加熱後の冷却は、2℃/secの徐冷を10sec 行なった後、20℃/secで急冷した。その後0.5%の調質圧延を行なった。なお、界面合金層の観察用のサンプルは、溶融Znメッキ浴に浸漬し3sec 保持の後急冷したものを用いた。
Hereinafter, the present invention will be described in detail by way of examples.
(Examples 1-7 and Comparative Examples 1-3: Ni pre-plating method)
Using the cold-rolled and annealed original plate shown in Table 1, after the pretreatment shown in Table 2, Ni pre-plating by electroplating (bath temperature 60 ° C., current density 30 A / dm 2 ) in the plating bath shown in Table 3 Was done. After that, it is heated to 460 ° C. in a 3% H 2 + N 2 atmosphere at a heating rate of 50 ° C./sec. Adjusted. The basis weight was 60 g / m 2 . Thereafter, a heat alloying treatment was performed under predetermined conditions. Cooling after heating was performed by slow cooling at 2 ° C./sec for 10 seconds and then rapidly cooling at 20 ° C./sec. Thereafter, 0.5% temper rolling was performed. A sample for observing the interface alloy layer was immersed in a molten Zn plating bath, held for 3 seconds, and then rapidly cooled.

(比較例4:ゼンジミア法)
表1の原板1と同一成分、同一板厚の冷延済み、未焼鈍材を原板とし、表2に示す前処理のうちアルカリ脱脂処理のみを行った後、10%水素雰囲気中にて800℃×30sec の焼鈍、還元処理を行った後、460℃まで冷却し、455℃に保温した溶融Znメッキ浴に浸漬し3sec 保持の後、ワイピングして目付けを調整した。目付けは60g/m2 とした。その後、所定の条件で加熱合金化処理を行った。加熱後の冷却は、2℃/secの徐冷を10sec 行なった後、20℃/secで急冷した。その後0.5%の調質圧延を行なった。なお、界面合金層の観察用のサンプルは、溶融Znメッキ浴に浸漬し3sec 保持の後急冷したものを用いた。
(Comparative Example 4: Sendzimir method)
Cold-rolled and unannealed material of the same composition and thickness as the original plate 1 in Table 1 is used as an original plate, and after only the alkaline degreasing treatment in the pretreatment shown in Table 2, it is 800 ° C. in a 10% hydrogen atmosphere. After performing annealing and reduction treatment for × 30 sec, it was cooled to 460 ° C., immersed in a molten Zn plating bath kept at 455 ° C., held for 3 sec, and then wiped to adjust the basis weight. The basis weight was 60 g / m 2 . Thereafter, a heat alloying treatment was performed under predetermined conditions. Cooling after heating was performed by slow cooling at 2 ° C./sec for 10 seconds and then rapidly cooling at 20 ° C./sec. Thereafter, 0.5% temper rolling was performed. A sample for observing the interface alloy layer was immersed in a molten Zn plating bath, held for 3 seconds, and then rapidly cooled.

実施例1〜7、比較例1〜3、比較例4のいずれも表4に示すように溶融亜鉛メッキ浴濃度、Niプレメッキ量を調整した。評価基準は次の通りで、評価結果は併せて表4に示す。
a)溶融亜鉛メッキ後の地鉄メッキ界面合金層:サンプル断面を埋め込み研磨し、EPMA分析によって合金層の状態を調べた。Fe−Ni−Al−Zn合金層があるものを 「○」、それ以外を「×」とした。
b)メッキ外観(目視):サンプルに斜めから蛍光灯の光をあて、微小なメッキムラの有無を観察した。ムラなしを「○」、ややムラありを「△」、ムラが大のものを「×」と評価した。
c)メッキ外観(SEM観察):500倍の倍率で20視野観察を行い、調質圧延で潰されて平滑化している部分の面積率を求め、面積率の平均値と最大値との差、または平均値と最小値との差のうち、大きい方が10%未満を「○」、10%以上20%以下を「△」、20%超を「×」とした。
d)合金化度:メッキ層を塩酸溶解し、化学分析により各成分量を求めメッキ層のFe%を算出した。Fe9〜12%のものを「○」、それ以外を「×」とした。
e)メッキ密着性:防錆油を塗油したサンプルにて、絞り比2.2の条件にて40mmφの円筒プレス(絞り抜き)を行い、その側面をテープ剥離して黒化度によって評価した。黒化度0〜20%未満を「○」、20〜30%未満を「△」、30%以上を「×」と評価した。
In each of Examples 1 to 7, Comparative Examples 1 to 3, and Comparative Example 4, the hot dip galvanizing bath concentration and the Ni pre-plating amount were adjusted as shown in Table 4. The evaluation criteria are as follows, and the evaluation results are also shown in Table 4.
a) Base metal plating interface alloy layer after hot dip galvanization: The sample cross section was embedded and polished, and the state of the alloy layer was examined by EPMA analysis. “○” indicates that the Fe—Ni—Al—Zn alloy layer is present, and “×” indicates the other.
b) Appearance of plating (visual observation): Light from a fluorescent lamp was obliquely applied to the sample, and the presence or absence of minute plating unevenness was observed. The evaluation was “◯” for no unevenness, “Δ” for slight unevenness, and “X” for large unevenness.
c) Plating appearance (SEM observation): 20 fields of view are observed at a magnification of 500 times, the area ratio of the portion that is crushed and smoothed by temper rolling is obtained, and the difference between the average value and the maximum value of the area ratio, Alternatively, among the differences between the average value and the minimum value, the larger one was defined as “◯” when less than 10%, “Δ” when 10% or more and 20% or less, and “×” when more than 20%.
d) Degree of alloying: The plating layer was dissolved in hydrochloric acid, the amount of each component was determined by chemical analysis, and Fe% of the plating layer was calculated. Fe of 9 to 12% were indicated by “◯”, and other cases were indicated by “X”.
e) Plating adhesion: Using a sample coated with rust preventive oil, a 40 mmφ cylindrical press (drawing) was performed under the condition of a drawing ratio of 2.2, and the side surface was peeled off and evaluated by the degree of blackening. . The degree of blackening of 0 to less than 20% was evaluated as “◯”, the degree of less than 20 to 30% was evaluated as “Δ”, and 30% or more was evaluated as “x”.

表4において、比較例1で「※」印を付したものは、顕著な不メッキが発生したため、界面合金層の特定が困難であった。
表4から明らかなように、本発明の範囲内のものは優れた特性が得られた。
In Table 4, those marked with “*” in Comparative Example 1 were markedly unplated, and it was difficult to identify the interface alloy layer.
As is clear from Table 4, excellent characteristics were obtained in the scope of the present invention.

本発明によって、自動車外板等にも適用可能な、外観の極めて良好な合金化溶融亜鉛メッキ鋼板の製造方法が得られるため、その利用価値は多大である。   According to the present invention, a method for producing an alloyed hot-dip galvanized steel sheet having a very good appearance that can be applied to an automobile outer plate or the like can be obtained, and its utility value is great.

本発明に関わる溶融Znメッキ浴中で生成したメッキ−地鉄界面合金層を示す解析結果である。It is an analysis result which shows the metal-platinum interface alloy layer produced | generated in the hot-dip Zn plating bath concerning this invention. 従来法における溶融Znメッキ浴中で生成したメッキ−地鉄界面合金層を示す解析結果である。It is an analysis result which shows the plating-base metal interface alloy layer produced | generated in the hot-dip Zn plating bath in the conventional method. 本発明に関わる合金化溶融亜鉛メッキ層構造を示す解析結果である。It is an analysis result which shows the alloying hot-dip galvanization layer structure in connection with this invention. 従来法における合金化溶融亜鉛メッキ層構造を示す解析結果である。It is an analysis result which shows the alloying hot-dip galvanization layer structure in a conventional method. 本発明における、浴中Al濃度とNiプレメッキ付着量の好ましい範囲を示す図である。It is a figure which shows the preferable range of Al density | concentration in a bath and Ni preplating adhesion amount in this invention.

Claims (2)

溶融亜鉛メッキ浴内で、地鉄界面にFe−Ni−Al−Zn合金層を形成した後、加熱処理によって前記Fe−Ni−Al−Zn合金層を消失させるとともに、Ni,Alの分散したZn−Fe合金層を形成することを特徴とする合金化溶融亜鉛メッキ鋼板の製造方法。   After forming the Fe—Ni—Al—Zn alloy layer at the base iron interface in the hot dip galvanizing bath, the Fe—Ni—Al—Zn alloy layer disappears by heat treatment, and Ni and Al dispersed Zn -A method for producing an alloyed hot-dip galvanized steel sheet, wherein an Fe alloy layer is formed. 鋼板表面を清浄化後、0.05〜1.0g/m2 のNiプレメッキを施し、無酸化あるいは還元性雰囲気中で板温度430〜500℃に30℃/sec以上の昇温速度で急速加熱を行なった後、Al濃度0.07〜0.2質量%を含有するZnメッキ浴中で溶融メッキし、ワイピング直上で470〜600℃に30℃/sec以上の昇温速度で急速加熱を行い、均熱時間をとらずに冷却するか、または15秒未満の均熱保持の後に冷却する方法において、Niプレメッキ量(Yg/m2 )とZnメッキ浴中Al濃度(X%)が、Y≦15*X−1の関係を満たすことを特徴とする合金化溶融亜鉛メッキ鋼板の製造方法。
After cleaning the steel plate surface, 0.05-1.0 g / m 2 Ni pre-plating is applied, and rapid heating is performed at a plate temperature of 430-500 ° C. at a heating rate of 30 ° C./sec or more in a non-oxidizing or reducing atmosphere. Then, hot dip plating is performed in a Zn plating bath containing an Al concentration of 0.07 to 0.2% by mass, and rapid heating is performed immediately above the wiping at 470 to 600 ° C. at a heating rate of 30 ° C./sec or more. In the method of cooling without taking soaking time, or cooling after keeping soaking for less than 15 seconds, the amount of Ni pre-plating (Yg / m 2 ) and the Al concentration (X%) in the Zn plating bath is Y The manufacturing method of the galvannealed steel plate characterized by satisfy | filling the relationship of <= 15 * X-1.
JP2005121831A 2005-04-20 2005-04-20 Method for producing alloyed hot-dip galvanized steel sheet Active JP4551268B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2005121831A JP4551268B2 (en) 2005-04-20 2005-04-20 Method for producing alloyed hot-dip galvanized steel sheet
KR1020077024015A KR20070112874A (en) 2005-04-20 2006-04-14 Galvannealed sheet steel and process for production thereof
PCT/JP2006/308369 WO2006112515A1 (en) 2005-04-20 2006-04-14 Galvannealed sheet steel and process for production thereof
CN200680013478A CN100580130C (en) 2005-04-20 2006-04-14 Alloyed hot dip galvanizing sheet steel and process for production thereof
BRPI0610540A BRPI0610540B1 (en) 2005-04-20 2006-04-14 Annealed steel sheet production method after hot dip galvanization
CA2605486A CA2605486C (en) 2005-04-20 2006-04-14 Hot dip galvannealed steel sheet and method of production of the same
US11/911,916 US20090162691A1 (en) 2005-04-20 2006-04-14 Hot dip galvannealed steel sheet and method for producing the same
TW95114198A TWI322193B (en) 2005-04-20 2006-04-20 A galvannealed steel sheet and a method of production the same
US13/743,790 US9334555B2 (en) 2005-04-20 2013-01-17 Hot dip galvannealed steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005121831A JP4551268B2 (en) 2005-04-20 2005-04-20 Method for producing alloyed hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2006299341A true JP2006299341A (en) 2006-11-02
JP4551268B2 JP4551268B2 (en) 2010-09-22

Family

ID=37467991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005121831A Active JP4551268B2 (en) 2005-04-20 2005-04-20 Method for producing alloyed hot-dip galvanized steel sheet

Country Status (2)

Country Link
JP (1) JP4551268B2 (en)
CN (1) CN100580130C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280859A (en) * 2008-05-21 2009-12-03 Nippon Steel Corp Hot dip galvannealed steel sheet having excellent workability, plating adhesion, corrosion resistance and appearance quality
JP2014201767A (en) * 2013-04-02 2014-10-27 新日鐵住金株式会社 Hot-dip galvanized steel sheet excellent in chipping resistance
EP2520686A4 (en) * 2009-12-29 2017-08-30 Posco Zinc-plated steel sheet for hot pressing having outstanding surface characteristics, hot-pressed moulded parts obtained using the same, and a production method for the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120041544A (en) * 2010-10-21 2012-05-02 주식회사 포스코 Galvanized steel sheet having excellent coatability, coating adhesion and spot weldability and method for manufacturing the same
CN104981346B (en) * 2013-02-12 2017-07-18 塔塔钢铁艾默伊登有限责任公司 Coating steel substrate suitable for galvanizing by dipping
BR112015027009A2 (en) * 2013-05-01 2017-07-25 Nippon Steel & Sumitomo Metal Corp galvanized steel sheet and method to produce the same
EP2993245B1 (en) 2013-05-01 2018-08-01 Nippon Steel & Sumitomo Metal Corporation High-strength low-specific gravity steel sheet having superior spot weldability
TWI502099B (en) * 2013-05-20 2015-10-01 Nippon Steel & Sumitomo Metal Corp Alloyed molten galvanized steel sheet and manufacturing method thereof
CN105112914A (en) * 2015-08-31 2015-12-02 中国钢研科技集团有限公司 Continuous hot-dip galvanizing device and continuous hot-dip galvanizing method
JP6687175B1 (en) * 2018-05-16 2020-04-22 日本製鉄株式会社 Plated steel
CN110318015B (en) * 2019-08-16 2020-09-29 东北大学 Hot galvanizing method for obtaining color coating on flat steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147953A (en) * 1990-10-09 1992-05-21 Nippon Steel Corp Production of galvannealed steel sheet
JPH0525600A (en) * 1991-07-17 1993-02-02 Nippon Steel Corp Manufacture of hot dip galvanized steel sheet by pre-ni alloy plating and alloying method
JPH073417A (en) * 1993-06-18 1995-01-06 Nippon Steel Corp Highly corrosion resistant galvannealed steel sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147953A (en) * 1990-10-09 1992-05-21 Nippon Steel Corp Production of galvannealed steel sheet
JPH0525600A (en) * 1991-07-17 1993-02-02 Nippon Steel Corp Manufacture of hot dip galvanized steel sheet by pre-ni alloy plating and alloying method
JPH073417A (en) * 1993-06-18 1995-01-06 Nippon Steel Corp Highly corrosion resistant galvannealed steel sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280859A (en) * 2008-05-21 2009-12-03 Nippon Steel Corp Hot dip galvannealed steel sheet having excellent workability, plating adhesion, corrosion resistance and appearance quality
EP2520686A4 (en) * 2009-12-29 2017-08-30 Posco Zinc-plated steel sheet for hot pressing having outstanding surface characteristics, hot-pressed moulded parts obtained using the same, and a production method for the same
US9945020B2 (en) 2009-12-29 2018-04-17 Posco Zinc-plated steel sheet for hot pressing having outstanding surface characteristics, hot-pressed moulded parts obtained using the same, and a production method for the same
US11952652B2 (en) 2009-12-29 2024-04-09 Posco Co., Ltd Zinc-plated steel sheet for hot pressing having outstanding surface characteristics, hot-pressed moulded parts obtained using the same, and a production method for the same
JP2014201767A (en) * 2013-04-02 2014-10-27 新日鐵住金株式会社 Hot-dip galvanized steel sheet excellent in chipping resistance

Also Published As

Publication number Publication date
JP4551268B2 (en) 2010-09-22
CN100580130C (en) 2010-01-13
CN101163811A (en) 2008-04-16

Similar Documents

Publication Publication Date Title
JP4551268B2 (en) Method for producing alloyed hot-dip galvanized steel sheet
TWI425116B (en) Corrosion resistance of the molten Zn-Al-Mg-Si-Cr alloy plating steel
CA2605486C (en) Hot dip galvannealed steel sheet and method of production of the same
JP5020526B2 (en) Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, workability, and paintability and method for producing the same
JP2007297686A (en) Hot dip galvannealed steel sheet manufacturing method, and hot dip galvannealed steel sheet
JP4987510B2 (en) Alloyed hot-dip galvanized steel sheet with excellent paint sharpness and press formability and method for producing the same
CN1460128A (en) Alloyed zinc dip galvanized steel sheet and mfg. method thereof
JP4720618B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4816068B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating adhesion
JP4325442B2 (en) Method for producing hot dip galvanized steel
JP5044924B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP4533223B2 (en) How to make hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet separately in the same bath
JP2004027263A (en) Hot dip galvanized steel sheet having excellent surface appearance and method of producing the same
CN114901853B (en) Zn-Al-Mg-based hot dip alloy steel product excellent in corrosion resistance of working part and method for producing same
JP3931859B2 (en) Galvanized steel for hot forming and hot forming method
JP4826486B2 (en) Method for producing galvannealed steel sheet
JP5533730B2 (en) Method for producing galvannealed steel sheet
JP2005097741A (en) Method for manufacturing galvannealed steel sheet and galvannealed steel sheet
JP4855290B2 (en) Hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
JP3016122B2 (en) Galvannealed steel sheet with excellent paintability and its manufacturing method
KR102602054B1 (en) Method for manufacturing steel strip with improved bonding of hot dip galvanizing
KR20110018701A (en) Galvanized steel sheet having excellent coating adhesion and spot weldability and method for manufacturing the same
JP2004346375A (en) Galvanized steel plate, and method for manufacturing the same
JP4848738B2 (en) Method for producing galvannealed steel sheet
JP4166412B2 (en) Method for producing hot-dip galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100709

R151 Written notification of patent or utility model registration

Ref document number: 4551268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350