JP4533223B2 - How to make hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet separately in the same bath - Google Patents

How to make hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet separately in the same bath Download PDF

Info

Publication number
JP4533223B2
JP4533223B2 JP2005119466A JP2005119466A JP4533223B2 JP 4533223 B2 JP4533223 B2 JP 4533223B2 JP 2005119466 A JP2005119466 A JP 2005119466A JP 2005119466 A JP2005119466 A JP 2005119466A JP 4533223 B2 JP4533223 B2 JP 4533223B2
Authority
JP
Japan
Prior art keywords
hot
steel sheet
galvanized steel
plating
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005119466A
Other languages
Japanese (ja)
Other versions
JP2006299309A (en
Inventor
清和 石塚
一実 西村
郁夫 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005119466A priority Critical patent/JP4533223B2/en
Publication of JP2006299309A publication Critical patent/JP2006299309A/en
Application granted granted Critical
Publication of JP4533223B2 publication Critical patent/JP4533223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、プレNi法による溶融亜鉛メッキ鋼板および合金化溶融亜鉛メッキ鋼板の製造法に関し、詳しくは、溶融メッキ浴の浴調整することなしに同一浴にて溶融亜鉛メッキ鋼板と合金化溶融亜鉛メッキ鋼板を造り分ける方法に関する。   The present invention relates to a method for producing a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet by the pre-Ni method, and more specifically, hot-dip galvanized steel sheet and alloyed hot-dip zinc in the same bath without adjusting the bath of the hot-dip plating bath. The present invention relates to a method for separately producing plated steel sheets.

溶融亜鉛メッキ鋼板(以降「GI」と略す)、合金化溶融亜鉛メッキ鋼板(以降「GA」と略す)は、いずれも自動車、家電、建材等の用途に用いられ、通常は同一の製造設備で製造される。いずれの場合にも溶融亜鉛メッキ浴にはAlが添加される。
Alは地鉄界面にて合金層を形成し、GIの場合には加工性の劣るFe−Zn系の金属間化合物の生成を抑制し、GAにおいては合金化を制御するという重要な役割を担っている。
Hot-dip galvanized steel sheet (hereinafter abbreviated as “GI”) and alloyed hot-dip galvanized steel sheet (hereinafter abbreviated as “GA”) are both used for automobiles, home appliances, building materials, etc. Manufactured. In either case, Al is added to the hot dip galvanizing bath.
Al forms an alloy layer at the base iron interface, and in the case of GI, it plays an important role of suppressing the formation of Fe-Zn intermetallic compounds that are inferior in workability and controlling alloying in GA. ing.

ここで、GIを製造する場合は、通常Alは0.14%程度以上の濃度が用いられる。これは溶融亜鉛メッキ皮膜の密着性を確保するためである。一方GAの場合、通常Alは0.11%程度以下にされる。これはAlが高いと合金化が遅延しすぎるため、通板速度を落として合金化時間を稼ぐか、あるいは炉長を長大にする必要があって、製造コストの点で受け入れられないためである。   Here, when manufacturing GI, Al is normally used at a concentration of about 0.14% or more. This is to ensure adhesion of the hot dip galvanized film. On the other hand, in the case of GA, Al is usually about 0.11% or less. This is because when Al is high, alloying is too delayed, so it is necessary to increase the alloying time by lowering the plate passing speed, or to increase the furnace length, which is not acceptable in terms of manufacturing cost. .

このようにGI、GAでは最適Al濃度が異なるため、同一設備で造り分けようとするとその都度浴濃度調整が必要になる。すなわち、GI製造からGA製造に移行する場合、Al濃度を下げる必要がある。この場合には、浴を一部汲みだして置換する方法や、調整材や品質要求の厳格でない材料を通板して徐々にAlが低下するのを待つ方法などが取られるが、いずれも作業時間が必要であり製造コストの増大を招く。   As described above, since the optimum Al concentration differs between GI and GA, bath concentration adjustment is required each time an attempt is made to make the same equipment separately. That is, when shifting from GI manufacturing to GA manufacturing, it is necessary to lower the Al concentration. In this case, a method of pumping a part of the bath and replacing it, a method of passing through a conditioner or a material whose quality requirements are not strict, and waiting for a gradual decrease in Al are taken. Time is required and the manufacturing cost increases.

また特許文献1には、浴に所定の濃度のNiを添加して、AlをNi−Al系のドロスとして回収することで、移行時間を短縮する方法が開示されているが、ドロス回収のための作業が必要になることには変わりがなく、また回収しきれなかったドロスによる品質欠陥も懸念される。   Patent Document 1 discloses a method of reducing the transition time by adding a predetermined concentration of Ni to a bath and recovering Al as Ni-Al-based dross. There is no change in the necessity of this work, and there is a concern about quality defects due to dross that could not be recovered.

一方、GA製造からGI製造に移行する場合、Alを追加添加すれば容易に短時間にAl濃度の増加が可能である。しかしながらこの場合、GA製造時に発生していたZnFe系のいわゆるボトムドロスがAlと反応し、FeAl系のいわゆるトップドロスが急増するという問題がある。このため、品質上からAl濃度も急激には増加することが困難であり、作業時間増加による製造コストの増大を招く。
以上のように、同一設備でGI、GAを製造する際、浴濃度調整を必要とせずに同一浴で造り分けることは、多大なるメリットがあるにもかかわらず実用には至っていない。
On the other hand, when shifting from GA production to GI production, if Al is additionally added, the Al concentration can be easily increased in a short time. However, in this case, there is a problem that the so-called bottom dross of ZnFe type generated at the time of GA production reacts with Al and the so-called top dross of FeAl type rapidly increases. For this reason, it is difficult to increase the Al concentration rapidly from the viewpoint of quality, resulting in an increase in manufacturing cost due to an increase in work time.
As described above, when manufacturing GI and GA with the same equipment, making them separately in the same bath without the need for adjusting the bath concentration has not been put into practical use in spite of the great merit.

ところで、本発明が対象とするプレNi法によるGIあるいはGAの製造方法が、特許文献2〜5に開示されている。これらはいずれもGIあるいはGAを単独で製造する際の指針が提示されてはいるが、本発明が目的とする、溶融メッキ浴の浴調整することなしに実質同一浴にてGIとGAを造り分ける方法に関する知見は開示されておらず、特に近年の外観や加工性における厳しい品質要求を満足しつつ、同一浴でGIとGAを造り分ける方法に関する知見はない。
特許第2978947号公報 特公昭46−19282号公報 特公昭61−9386号公報 特許第2517169号公報 特許第2783452号公報
By the way, the manufacturing method of GI or GA by the pre Ni method which this invention makes object is disclosed by patent documents 2-5. Although both of these provide guidelines for the production of GI or GA alone, the GI and GA can be produced in substantially the same bath without adjusting the bath of the hot dipped bath, which is the object of the present invention. The knowledge about the method of dividing is not disclosed, and there is no knowledge about the method of separately making GI and GA in the same bath while satisfying strict quality requirements in recent appearance and workability.
Japanese Patent No. 2978947 Japanese Patent Publication No.46-19282 Japanese Patent Publication No.61-9386 Japanese Patent No. 2517169 Japanese Patent No. 2784352

本発明は、プレNi法により、溶融メッキ浴の浴調整することなしに同一浴にて、品質の良好なGIとGAを造り分ける方法を提供することを目的とする。   An object of the present invention is to provide a method of separately producing GI and GA of good quality in the same bath without adjusting the bath of the hot dipping bath by the pre-Ni method.

本発明者らが検討の結果、プレNi法を用いて、前処理、浴Al濃度、プレNi付着量、合金化条件等を最適化すれば、浴調整することなしに同一浴にて、品質の良好なGIとGAを造り分けることが出来ることが判明した。   As a result of the study by the present inventors, if the pretreatment, bath Al concentration, pre-Ni deposition amount, alloying conditions, etc. are optimized using the pre-Ni method, the quality can be maintained in the same bath without adjusting the bath. It was found that good GI and GA can be made separately.

すなわち、本発明の要旨とするところは以下の通りである。
(1)冷延、焼鈍済みの極低炭素鋼板に脱脂、酸洗処理を行なった後、Niプレメッキを施し、無酸化あるいは還元性雰囲気中で板温度430〜500℃に30℃/sec以上の昇温速度で急速加熱を行なった後、Znメッキ浴中で溶融メッキする方法において、Znメッキ浴中のAl濃度は0.14〜0.2質量%とし、
1) 溶融亜鉛メッキ鋼板を製造する際は、Niプレメッキ量を0.05〜0.3g/mとし、溶融メッキ、ワイピング後に再加熱処理をしないかまたは450℃以下の加熱処理を行い、
2) 合金化溶融亜鉛メッキ鋼板を製造する際には、Niプレメッキ量を0.2〜2.0g
/mとし、溶融メッキ、ワイピング後に470〜600℃に30℃/sec以上の昇温速度で急速加熱を行い、均熱時間をとらずに冷却するか、または15秒未満の均熱保持の後に冷却する、
ことを特徴とする、同一溶融亜鉛メッキ浴にて溶融亜鉛メッキ鋼板と合金化溶融亜鉛メッ
キ鋼板を造り分ける方法
(2)合金化溶融亜鉛メッキ鋼板を製造する際には、Niプレメッキ量が0.2〜1.0g/m であることを特徴とする、前記(1)に記載の同一溶融亜鉛メッキ浴にて溶融亜鉛メッキ鋼板と合金化溶融亜鉛メッキ鋼板を造り分ける方法。
(3)冷延、焼鈍済みの極低炭素鋼板が、Nb及びTi添加極低炭素鋼板であることを特徴とする、前記(1)または(2)に記載の同一溶融亜鉛メッキ浴にて溶融亜鉛メッキ鋼板と合金化溶融亜鉛メッキ鋼板を造り分ける方法。
That is, the gist of the present invention is as follows.
(1) After degreasing and pickling treatment on a cold rolled and annealed ultra-low carbon steel plate, Ni pre-plating is performed, and a plate temperature of 430 to 500 ° C. in a non-oxidizing or reducing atmosphere is 30 ° C./sec or more. In the method of hot-plating in a Zn plating bath after rapid heating at a rate of temperature increase, the Al concentration in the Zn plating bath is 0.14 to 0.2% by mass,
1) When manufacturing a hot dip galvanized steel sheet, the Ni pre-plating amount is set to 0.05 to 0.3 g / m 2, and no reheating treatment is performed after hot dipping and wiping or a heat treatment at 450 ° C. or less is performed.
2) When producing galvannealed steel sheet, the amount of Ni pre-plating is 0.2-2.0 g.
/ m 2 , after hot dipping and wiping, rapidly heat to 470-600 ° C. at a temperature rising rate of 30 ° C./sec or more, and cool without taking a soaking time, or keep soaking for less than 15 seconds After cooling,
A method of separately producing a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet in the same hot-dip galvanizing bath .
(2) when producing the alloyed hot-dip galvanized steel sheet is characterized in that Ni Puremekki weight of 0.2 to 1.0 g / m 2, the same galvanizing bath according to (1) The method of making galvanized steel sheet and galvannealed steel sheet separately.
(3) The ultra-low carbon steel sheet that has been cold-rolled and annealed is an Nb- and Ti-added ultra-low carbon steel sheet, and is melted in the same hot-dip galvanizing bath as described in (1) or (2) above A method of making a galvanized steel sheet and an alloyed hot-dip galvanized steel sheet separately.

本発明のプレNi法により、溶融メッキ浴の浴調整することなしに同一浴にて、品質の良好なGIとGAを造り分けることが可能となる。この方法では、作業時間が短縮できるのみならず、浴調整に伴うドロスの増大がないため、ドロス起因の品質欠陥も大幅に削減することが出来る。   According to the pre-Ni method of the present invention, it is possible to separately produce GI and GA of good quality in the same bath without adjusting the bath of the hot dipping bath. In this method, not only the working time can be shortened, but also there is no increase in dross accompanying the bath adjustment, so that quality defects caused by dross can be greatly reduced.

以下に本発明を詳細に説明する。
本発明でのメッキ原板たる鋼板は、冷延、焼鈍済みの極低炭素鋼板を対象とする。
まず、鋼板表面の清浄化を行い、表面の汚れや酸化膜を除去する必要がある。この処理
が不十分であると、後のNiプレメッキが不均一となり、GI製造の場合に部分的に合金
化が進行して密着性が悪化したり、またGA製造の場合に外観ムラや合金化ムラが発生す
る場合がある。
The present invention is described in detail below.
The steel plate as the plating original plate in the present invention is a cold-rolled and annealed ultra-low carbon steel plate .
First, it is necessary to clean the surface of the steel sheet and remove the dirt and oxide film on the surface. If this treatment is inadequate, the subsequent Ni pre-plating will be non-uniform, and in the case of GI production, alloying will partly progress and adhesion will deteriorate, and in the case of GA production, appearance unevenness and alloying will occur. Unevenness may occur.

清浄化処理としては、アルカリ水溶液による脱脂処理と酸水溶液による酸洗処理をこの順で実施することが必要である。アルカリ水溶液による脱脂処理としては、スプレー、浸漬、電解等いずれも使用可能であり、ブラシ等の機械的脱脂との併用も可能である。
酸洗処理としては、硫酸、塩酸等の水溶液を用いて、スプレー、浸漬、電解等いずれも使用可能である。酸洗処理の後は水洗して乾燥することなく次のNiプレメッキを行なうことが望ましい。
As the cleaning treatment, it is necessary to carry out a degreasing treatment with an alkaline aqueous solution and a pickling treatment with an acid aqueous solution in this order. As the degreasing treatment with an alkaline aqueous solution, any of spraying, dipping, electrolysis and the like can be used, and it can be used in combination with mechanical degreasing such as a brush.
As the pickling treatment, any of spraying, dipping, electrolysis and the like can be used using an aqueous solution of sulfuric acid, hydrochloric acid or the like. After the pickling treatment, it is desirable to perform the next Ni pre-plating without washing and drying.

本発明では、GI、GAそれぞれで、Niプレメッキ量の範囲を相違させる必要がある
。まず、GI製造においては、Niプレメッキ量は0.05〜0.3g/mとする。下限未満では、メッキの濡れ性が不足しメッキ外観が異常となり、上限を超えると地鉄メッキ界面で一部合金化が進行し、メッキ密着性や、外観の均一性が失われる。
また、Niプレメッキ量の好ましい範囲は、原板の種類やその表面状態、また前述の表面清浄化処理の条件等によって微妙に異なる。冷延、焼鈍済みの極低炭素鋼板においては、地鉄メッキ界面での合金化がより進行しやすいため、Niプレメッキ量の上限は0.3g/mである。
In the present invention, it is necessary to make the range of the Ni pre-plating amount different between GI and GA. First, in GI production, the Ni pre-plating amount is set to 0.05 to 0.3 g / m 2 . If it is less than the lower limit, the wettability of the plating is insufficient and the appearance of the plating becomes abnormal. If the upper limit is exceeded, partial alloying proceeds at the interface of the ground metal plating, resulting in loss of plating adhesion and appearance uniformity.
Further, the preferable range of the Ni pre-plating amount is slightly different depending on the type of the original plate, its surface condition, the above-mentioned surface cleaning treatment conditions, and the like. In an ultra-low carbon steel sheet that has been cold-rolled and annealed, alloying at the iron-plating interface is more likely to proceed, so the upper limit of the Ni pre-plating amount is 0.3 g / m 2 .

次にGA製造においては、Niプレメッキ量を0.2〜2.0g/m2 とする。下限未満では合金化が不足し、上限を超えるとメッキ密着性が悪化するためである。この場合もNiプレメッキ量の好ましい範囲は、原板の種類やその表面状態、また前述の表面清浄化処理の条件等によって微妙に異なり、冷延、焼鈍済みの極低炭素鋼板においては0.2〜1.0g/m2 が望ましい。これは後の溶融亜鉛メッキ浴のAl濃度にもよるが、1.0g/m2 を超えると合金化後のΓ層が増大する傾向にあり、メッキ密着性が劣化するためである。 Next, in the GA production, the Ni pre-plating amount is set to 0.2 to 2.0 g / m 2 . If it is less than the lower limit, alloying is insufficient, and if it exceeds the upper limit, plating adhesion deteriorates. Also in this case, the preferable range of the Ni pre-plating amount is slightly different depending on the type of the original plate and the surface state thereof, the conditions for the surface cleaning treatment described above, and the like in the cold rolled and annealed ultra-low carbon steel plate. 1.0 g / m 2 is desirable. This depends on the Al concentration in the hot dip galvanizing bath later, but if it exceeds 1.0 g / m 2 , the Γ layer after alloying tends to increase and the plating adhesion deteriorates.

Niプレメッキの条件は特に限定されず、硫酸浴、watt浴等、公知の方法によってめっきすればよい。
Niプレメッキ後に、無酸化あるいは還元性雰囲気中で板温度430〜500℃に30℃/sec以上の昇温速度で急速加熱を行なう。この処理は溶融メッキの濡れ性、またメッキ密着性を確保するために必要である。なお、昇温速度の上限は特に限定しない。
The conditions for Ni pre-plating are not particularly limited, and plating may be performed by a known method such as a sulfuric acid bath or a watt bath.
After the Ni pre-plating, rapid heating is performed at a temperature increase rate of 30 ° C./sec or more at a plate temperature of 430 to 500 ° C. in a non-oxidizing or reducing atmosphere. This treatment is necessary in order to ensure wettability of the molten plating and plating adhesion. In addition, the upper limit of a temperature increase rate is not specifically limited.

溶融亜鉛メッキ浴は、Al:0.14〜0.2%と不可避的不純物と残部Znからなる浴を用いる。Alが下限未満ではGI製造の際に品質不良となり、上限を超えるとGA製造における合金化が著しく遅延する。特にP等を添加した鋼板は合金化が遅いため、GAの製造が不可能となる。Al:0.14〜0.2%の範囲であれば、GIとGAが同一浴で製造可能である。
ここで同一浴というのは、GIからGA、あるいはGAからGIに切り替える際に積極的に浴濃度調整を行なう必要がないことを言い、時間の経過によって結果的に浴濃度が変動した場合であっても、その間、浴濃度調整を行なっていなければ同一浴とする。
As the hot dip galvanizing bath, a bath composed of Al: 0.14 to 0.2%, unavoidable impurities, and the balance Zn is used. If Al is less than the lower limit, quality will be poor during GI production, and if it exceeds the upper limit, alloying in GA production will be significantly delayed. In particular, steel sheets to which P or the like is added are slow to alloy, making it impossible to produce GA. If it is in the range of Al: 0.14 to 0.2%, GI and GA can be produced in the same bath.
Here, the same bath means that there is no need to positively adjust the bath concentration when switching from GI to GA, or from GA to GI, and the bath concentration changes as a result of the passage of time. However, in the meantime, if the bath concentration is not adjusted, the same bath is used.

メッキ後、ワイピングで目付けを調整した後、GA製造の場合は合金化処理を行う。なお、GI製造の場合は合金化処理は当然行なわないが、設備上の制約(炉の制御性)で加熱せざるを得ない場合は、450℃までならば品質には影響が出ない。GAの合金化処理では、高度なメッキ密着性を確保するため、470〜600℃に30℃/sec以上の昇温速度で急速加熱を行い、均熱時間をとらずに冷却するか、または15秒未満の均熱保持の後に冷却することが必要である。なお、昇温速度の上限は特に限定しない。   After plating, after adjusting the basis weight by wiping, alloying is performed in the case of GA production. In the case of GI production, the alloying treatment is naturally not performed. However, when heating is unavoidable due to equipment restrictions (furnace controllability), the quality is not affected at temperatures up to 450 ° C. In the alloying process of GA, in order to ensure high plating adhesion, rapid heating is performed at a temperature increase rate of 30 ° C./sec or more to 470 to 600 ° C., and cooling is performed without taking a soaking time, or 15 It is necessary to cool after soaking for less than a second. In addition, the upper limit of a temperature increase rate is not specifically limited.

以下に実施例によって本発明を詳細に説明する。
表1に試験に用いた原板の成分を示す。ここではいずれも冷延、焼鈍済みの材料を用いた。Niプレメッキの前処理として、表2あるいは表3に示す条件によって処理を行なった後、表4に示すメッキ浴にて電気メッキ(浴温60℃、電流密度30A/dm2 )にてNiプレメッキを行なった。
Hereinafter, the present invention will be described in detail by way of examples.
Table 1 shows the components of the original plate used in the test. Here, cold-rolled and annealed materials were used. As a pretreatment Ni Puremekki, after performing the processing by the conditions shown in Table 2 or Table 3, electroplating (bath temperature 60 ° C., a current density of 30A / dm 2) at the plating bath shown in Table 4. Ni Puremekki at I did it.

その後、3%H2 +N2 の雰囲気中で50℃/secの昇温速度にて450℃まで加熱し、ただちに450℃に保温した溶融Znメッキ浴に浸漬し3sec 保持の後、ワイピングして目付けを調整した。GIの場合は合金化処理なしで、またGAの場合はワイピング直上で所定の昇温速度と温度、均熱時間にて合金化した。冷却は2℃/secの徐冷を10sec 行なった後、20℃/secで急冷した。GI、GAともに0.5%の調質圧延を行なった。 After that, it is heated to 450 ° C. in a 3% H 2 + N 2 atmosphere at a heating rate of 50 ° C./sec, immediately immersed in a molten Zn plating bath kept at 450 ° C., held for 3 sec, and then wiped to form. Adjusted. In the case of GI, alloying was not performed, and in the case of GA, alloying was performed immediately above the wiping at a predetermined heating rate, temperature, and soaking time. The cooling was performed by slow cooling at 2 ° C./sec for 10 seconds and then rapidly cooling at 20 ° C./sec. Both GI and GA were temper rolled at 0.5%.

表5にサンプル製造条件を示す。実施例1〜4、6〜9および比較例1〜5では、メッキ浴中のAl濃度を0.16%とした。また実施例11、12、14ではAl濃度を0.14%とした。また実施例15〜18および比較例6ではAl濃度を0.2%とした。また比較例7ではAl濃度は0.11%、比較例9,10では0.25%とした。 Table 5 shows sample manufacturing conditions. In Examples 1 to 4, 6 to 9, and Comparative Examples 1 to 5, the Al concentration in the plating bath was set to 0.16%. In Examples 11 , 12, and 14, the Al concentration was 0.14%. In Examples 15 to 18 and Comparative Example 6, the Al concentration was 0.2%. In Comparative Example 7, the Al concentration was 0.11%, and in Comparative Examples 9 and 10, 0.25%.

それぞれのサンプルにて性能評価を行なった結果も合わせて表5に示す。性能評価は下記のように行なった。
(1) メッキ外観(GI、GA共通):目視観察し、不メッキ等の欠陥が一切ないものを 「○」、あるものを「△」、甚だしいものを「×」と評価した。また、メッキ時点ではムラが目認できないほど微小なものであっても、塗装後に浮き出ることもあるため、自動車用のトリカチオン化成処理(日本ペイント (株) 製SD5000)、カチオン電着塗装 (日本ペイント (株) 製PN120M:20μm)を施し、その外観も同様に評価した。塗装なし、塗装後の評価のうち悪いほうのものをメッキ外観評価として表5に示した。
(2) 密着性(GI評価):ボール径1/2インチ、張り出し5mmのボールインパクト試験を行った。5段階評価を行い、評点5(剥離なし)を「○」、評点3〜4を「△」、評点1〜2を「×」と評価した。
The results of performance evaluation for each sample are also shown in Table 5. The performance evaluation was performed as follows.
(1) Plating appearance (common to GI and GA): Visually observed and evaluated as “◯” for those with no defects such as non-plating, “△” for certain, and “×” for severe. In addition, even if the unevenness is so small that it is not noticeable at the time of plating, it may come out after coating, so trication conversion treatment for automobiles (SD5000 manufactured by Nippon Paint Co., Ltd.), cationic electrodeposition coating (Nippon Paint) Co., Ltd. PN120M: 20 μm) was applied and the appearance was similarly evaluated. Table 5 shows the evaluation of plating appearance, which is the worse of the evaluations without coating and after coating.
(2) Adhesion (GI evaluation): A ball impact test was conducted with a ball diameter of 1/2 inch and an overhang of 5 mm. Five-point evaluation was performed, and the rating 5 (no peeling) was evaluated as “◯”, the scores 3 to 4 as “Δ”, and the scores 1 and 2 as “x”.

(3) 合金化度(GA評価):メッキ層を塩酸溶解して、湿式化学分析によりメッキ層中のFe%を求めた。Fe%が9〜12%が得られた場合を「○」、それ以外は「×」とした。
(4) 密着性(GA評価):防錆油を塗油したサンプルにて、絞り比2.2の条件にて40mmφの円筒プレス(絞り抜き)を行い、その側面をテープ剥離して黒化度によって評価した。黒化度0〜20%未満を「○」、20〜30%未満を「△」、30%以上を「×」と評価した。
(3) Degree of alloying (GA evaluation): The plating layer was dissolved in hydrochloric acid, and the Fe% in the plating layer was determined by wet chemical analysis. The case where 9% to 12% of Fe% was obtained was indicated by “◯”, and otherwise “x”.
(4) Adhesion (GA evaluation): Using a sample coated with rust-preventive oil, a 40 mmφ cylindrical press (drawing out) was performed under the condition of a drawing ratio of 2.2, and the side surface was taped off and blackened. Rated by degree. The degree of blackening of 0 to less than 20% was evaluated as “◯”, the degree of less than 20 to 30% was evaluated as “Δ”, and 30% or more was evaluated as “x”.

Figure 0004533223
Figure 0004533223

Figure 0004533223
Figure 0004533223

Figure 0004533223
Figure 0004533223

Figure 0004533223
Figure 0004533223

Figure 0004533223
Figure 0004533223

以上の様に、本発明の範囲内のものは優れた特性が得られ、浴調整なしの同一浴にてGIとGAが製造できた。   As described above, those within the scope of the present invention have excellent characteristics, and GI and GA can be produced in the same bath without bath adjustment.

本発明は、同一設備にてGIとGAを作り分ける場合に極めて有効である。特にインダ
クションヒーターのような熱制御性の良い合金化炉を持つラインにおいては、GIとGAを交互に製造することさえ可能となり、製造チャンス制約がなくなり作業時間を短縮できる。さらには、現状行なわれている浴調整に伴うドロスの増大がないため、ドロス起因の品質欠陥も大幅に削減することが出来る。このように産業上極めて有用である。
The present invention is extremely effective when GI and GA are separately produced in the same equipment. Particularly in line with the thermal control of a good alloying furnace such as an induction heater, even possible and will be produced GI and GA alternately, you can shorten the manufacturing chance constraints eliminates the working time. Furthermore, since there is no increase in dross accompanying current bath adjustment, quality defects due to dross can be greatly reduced. Thus, it is very useful industrially.

Claims (3)

冷延、焼鈍済みの極低炭素鋼板に脱脂、酸洗処理を行なった後、Niプレメッキを施し、無酸化あるいは還元性雰囲気中で板温度430〜500℃に30℃/sec以上の昇温速度で急速加熱を行なった後、Znメッキ浴中で溶融メッキする方法において、Znメッキ浴中のAl濃度は0.14〜0.2質量%とし、
1) 溶融亜鉛メッキ鋼板を製造する際は、Niプレメッキ量を0.05〜0.3g/mとし、溶融メッキ、ワイピング後に再加熱処理をしないか、または450℃以下の加熱処理を行い、
2) 合金化溶融亜鉛メッキ鋼板を製造する際には、Niプレメッキ量を0.2〜2.0g
/mとし、溶融メッキ、ワイピング後に470〜600℃に30℃/sec以上の昇温速度で急速加熱を行い、均熱時間をとらずに冷却するか、または15秒未満の均熱保持の後に冷却する、
ことを特徴とする、同一溶融亜鉛メッキ浴にて溶融亜鉛メッキ鋼板と合金化溶融亜鉛メッ
キ鋼板を造り分ける方法。
After degreasing and pickling treatment on a cold rolled and annealed ultra low carbon steel plate, Ni pre-plating is performed, and the temperature rise rate is 30 ° C./sec or more at a plate temperature of 430 to 500 ° C. in a non-oxidizing or reducing atmosphere. In the method of performing hot plating in a Zn plating bath after rapid heating in step 1, the Al concentration in the Zn plating bath is 0.14 to 0.2% by mass,
1) when producing the galvanized steel sheet, the Ni Puremekki amount with 0.05~ 0.3 g / m 2, subjected to hot-dip plating, or not a reheating treatment after wiping, or 450 ° C. or less heat treatment ,
2) When producing galvannealed steel sheet, the amount of Ni pre-plating is 0.2-2.0 g.
/ m 2 , after hot dipping and wiping, rapidly heat to 470-600 ° C. at a temperature rising rate of 30 ° C./sec or more, and cool without taking a soaking time, or keep soaking for less than 15 seconds After cooling,
A method of separately producing a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet in the same hot-dip galvanizing bath.
合金化溶融亜鉛メッキ鋼板を製造する際には、Niプレメッキ量が0.2〜1.0g
/mであることを特徴とする、請求項1に記載の同一溶融亜鉛メッキ浴にて溶融亜鉛メッキ鋼板と合金化溶融亜鉛メッキ鋼板を造り分ける方法。
When producing alloyed hot-dip galvanized steel sheet, the Ni pre-plating amount is 0.2 to 1.0 g.
characterized in that it is a / m 2, a method of dividing build galvanized steel sheets and alloyed hot-dip galvanized steel sheets under the same galvanizing bath according to claim 1.
冷延、焼鈍済みの極低炭素鋼板が、Nb及びTi添加極低炭素鋼板であることを特徴とする、請求項1または2に記載の同一溶融亜鉛メッキ浴にて溶融亜鉛メッキ鋼板と合金化溶融亜鉛メッキ鋼板を造り分ける方法。   The cold-rolled and annealed ultra-low carbon steel sheet is an Nb- and Ti-added ultra-low carbon steel sheet and alloyed with a hot-dip galvanized steel sheet in the same hot-dip galvanizing bath according to claim 1 or 2. A method for making hot-dip galvanized steel sheets.
JP2005119466A 2005-04-18 2005-04-18 How to make hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet separately in the same bath Active JP4533223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005119466A JP4533223B2 (en) 2005-04-18 2005-04-18 How to make hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet separately in the same bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005119466A JP4533223B2 (en) 2005-04-18 2005-04-18 How to make hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet separately in the same bath

Publications (2)

Publication Number Publication Date
JP2006299309A JP2006299309A (en) 2006-11-02
JP4533223B2 true JP4533223B2 (en) 2010-09-01

Family

ID=37467960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005119466A Active JP4533223B2 (en) 2005-04-18 2005-04-18 How to make hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet separately in the same bath

Country Status (1)

Country Link
JP (1) JP4533223B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104368660A (en) * 2014-10-18 2015-02-25 江苏江南冷轧薄板有限公司 Continuous galvanizing flat knurling process

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855290B2 (en) * 2007-02-09 2012-01-18 新日本製鐵株式会社 Hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
CN104195485B (en) * 2014-06-12 2017-01-18 丹阳市腾黄钢管镀锌有限责任公司 On-line automatic pretreatment process for steel pipe hot-dip galvanizing
WO2018060779A1 (en) * 2016-09-30 2018-04-05 Tata Steel Limited A coated steel and a method of coating a steel substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2517169B2 (en) * 1990-10-09 1996-07-24 新日本製鐵株式会社 Method for producing hot dip galvanized steel sheet
JP2783452B2 (en) * 1990-10-09 1998-08-06 新日本製鐵株式会社 Manufacturing method of galvannealed steel sheet
JPH111755A (en) * 1997-06-06 1999-01-06 Nippon Steel Corp Galvanized steel sheet and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2517169B2 (en) * 1990-10-09 1996-07-24 新日本製鐵株式会社 Method for producing hot dip galvanized steel sheet
JP2783452B2 (en) * 1990-10-09 1998-08-06 新日本製鐵株式会社 Manufacturing method of galvannealed steel sheet
JPH111755A (en) * 1997-06-06 1999-01-06 Nippon Steel Corp Galvanized steel sheet and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104368660A (en) * 2014-10-18 2015-02-25 江苏江南冷轧薄板有限公司 Continuous galvanizing flat knurling process
CN104368660B (en) * 2014-10-18 2016-02-10 江苏江南冷轧薄板有限公司 The smooth embossed technology of a kind of continuous zinc coating

Also Published As

Publication number Publication date
JP2006299309A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4551268B2 (en) Method for producing alloyed hot-dip galvanized steel sheet
JP5796142B2 (en) Hot dipping method for steel sheet
JP4582707B2 (en) Hot-dip galvanizing method without generation of non-plating defects
JP5020526B2 (en) Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, workability, and paintability and method for producing the same
CN110777319A (en) Plating solution for highly corrosion-resistant highly formable hot-formed steel, hot-formed steel sheet, hot-dip plating production process, hot-stamped part, and application
JP4987510B2 (en) Alloyed hot-dip galvanized steel sheet with excellent paint sharpness and press formability and method for producing the same
RU2766611C1 (en) Method of producing a steel strip with improved adhesion of hot-dipped metal coatings
JP2006299290A (en) Hot-dip galvanized steel sheet superior in spot weldability, paintability and processability, and manufacturing method therefor
JP2017186663A (en) Alloyed hot-dip galvanized steel sheet for hot stamp
JP2006299340A (en) Method for manufacturing high-strength and high-ductility galvannealed steel sheet
JP4882446B2 (en) Hot-dip galvanized steel sheet and method for producing galvannealed steel sheet
JP4970231B2 (en) Hot-dip galvanized steel and its manufacturing method
JP3758549B2 (en) Hot pressing method
JP4533223B2 (en) How to make hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet separately in the same bath
JP6916129B2 (en) Galvanized steel sheet for hot stamping and its manufacturing method
KR101707981B1 (en) Method for manufacturing galvanized steel sheet
JP4816068B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating adhesion
JP4325442B2 (en) Method for producing hot dip galvanized steel
CN108642425B (en) Al-Si-Ti alloy coated steel plate for hot stamping and production method thereof
JP2619550B2 (en) Manufacturing method of galvannealed steel sheet
JP2010248602A (en) Plated steel sheet for hot press and hot press molded article
JP5533730B2 (en) Method for producing galvannealed steel sheet
JP4855290B2 (en) Hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
JP5206114B2 (en) Alloyed hot-dip galvanized steel sheet with excellent workability, plating adhesion, corrosion resistance, and appearance quality
CN112639153A (en) Hot-dip plated steel sheet having excellent corrosion resistance and workability, and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100611

R151 Written notification of patent or utility model registration

Ref document number: 4533223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350