JP2006292531A - Method for surface treatment of heat transfer tube of steam generator - Google Patents

Method for surface treatment of heat transfer tube of steam generator Download PDF

Info

Publication number
JP2006292531A
JP2006292531A JP2005113062A JP2005113062A JP2006292531A JP 2006292531 A JP2006292531 A JP 2006292531A JP 2005113062 A JP2005113062 A JP 2005113062A JP 2005113062 A JP2005113062 A JP 2005113062A JP 2006292531 A JP2006292531 A JP 2006292531A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
surface treatment
steam generator
treatment liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005113062A
Other languages
Japanese (ja)
Inventor
Masato Kanetome
正人 金留
Kazutoyo Murata
和豊 村田
Setsuo Tokunaga
節男 徳永
Toshiyuki Mizutani
敏行 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005113062A priority Critical patent/JP2006292531A/en
Publication of JP2006292531A publication Critical patent/JP2006292531A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for surface treatment a of a heat transfer tube of a steam generator capable of executing a treatment for inhibiting elution of Ni from a heat transfer tube of a steam generator by using an inexpensive apparatus of a very simple constitution at reduced costs and man-hours for treatment work. <P>SOLUTION: The method for surface treatment of a heat transfer tube of a steam generator made of a Ni-Cr-Fe system alloy comprises the steps of assembling a heat transfer tube in the interior of a steam generator and circulating a surface treatment liquid in the heat transfer tube via a heat-temperature fluid outlet chamber and a high-temperature liquid inlet chamber to form a surface coating on the inner surface of the heat transfer tube. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、原子力発電設備の蒸気発生器用伝熱管に適用され、Ni−Cr−Fe系合金からなる蒸気発生器用伝熱管の表面処理方法に関する。   The present invention relates to a surface treatment method for a heat transfer tube for a steam generator, which is applied to a heat transfer tube for a steam generator of a nuclear power generation facility and is made of a Ni—Cr—Fe alloy.

原子力発電設備の蒸気発生器は、3000本程度の熱交換用の伝熱管をU字状に曲げて蒸気発生器本体内に組み付け、該伝熱管内を原子炉からの高温水(加熱流体)を通流させて給水と熱交換し、該給水から蒸気タービン駆動用の蒸気を発生させるように構成されている。
かかる伝熱管は、通常、高Niの(Ni含有量の多い)Ni−Cr−Fe系合金が使用されているが、原子炉との間を循環する高温水中で、該高温水と接触している伝熱管内面から合金中の主成分であるNiの溶解が生じることがある。
The steam generator of the nuclear power generation facility has about 3000 heat exchange tubes for heat exchange bent in a U shape and assembled in the steam generator body, and the inside of the heat transfer tubes is filled with high-temperature water (heating fluid) from the reactor. The steam is exchanged to exchange heat with the feed water, and steam for driving the steam turbine is generated from the feed water.
Such a heat transfer tube is usually made of a high Ni (high Ni content) Ni-Cr-Fe alloy, but in high temperature water circulating between the reactors, it comes into contact with the high temperature water. In some cases, Ni which is a main component in the alloy is dissolved from the inner surface of the heat transfer tube.

前記のようなNiの溶解を防止するための、蒸気発生器用伝熱管内面の表面処理方法の1つとして、特許文献1(特開平5−195191号公報)の技術が提供されている。
かかる技術においては、Cr6+イオンを0.5グラム/リットル以上添加した濃度10〜40%で40℃以上の硝酸液中に0.1時間以上浸漬処理した後、
10-2〜10-4torrの真空中において、所定温度範囲で所定時間熱処理することによって、Ni等の伝熱管内への溶出を抑制している。
特開平5−195191号
As one of the surface treatment methods for the inner surface of a heat transfer tube for a steam generator for preventing the dissolution of Ni as described above, the technique of Patent Document 1 (Japanese Patent Laid-Open No. 5-195191) is provided.
In such a technique, after immersion treatment in a nitric acid solution at 40 ° C. or higher at a concentration of 10 to 40% with Cr 6+ ions added at 0.5 g / liter or more,
In a vacuum of 10 −2 to 10 −4 torr, elution of Ni or the like into the heat transfer tube is suppressed by performing heat treatment for a predetermined time in a predetermined temperature range.
JP-A-5-195191

前記のように、特許文献1(特開平5−195191号公報)にて提供されている技術では、高NiのNi−Cr−Fe系合金製の蒸気発生器用伝熱管において、原子炉との間を循環する高温水中で伝熱管内面からNiの溶解が生じるのを抑制するため、該伝熱管硝酸液中に0.1時間以上浸漬処理した後、真空中において、所定温度範囲で所定時間熱処理を施している。
しかしながら、前記従来技術にあっては、前記伝熱管のNi溶出防止処理を、硝酸液槽中での浸漬処理と熱処理炉中での熱処理とを組み合わせて行うように構成されており、浸漬処理と熱処理を別途行っていたため、装置が複雑かつ大型となって装置コストが上昇するとともに、硝酸液槽中での浸漬処理と熱処理炉中での熱処理との2工程の処理を組み合わせて行うために、Ni溶出防止処理に多くの工数を要し、処理作業コストも上昇するという不具合があった。
As described above, in the technique provided in Patent Document 1 (Japanese Patent Laid-Open No. 5-195191), in a heat transfer tube for a steam generator made of a high Ni Ni—Cr—Fe alloy, In order to suppress the dissolution of Ni from the inner surface of the heat transfer tube in the high-temperature water circulating through the heat transfer tube, after being immersed in the heat transfer tube nitric acid solution for 0.1 hour or more, heat treatment is performed in a predetermined temperature range for a predetermined time in a vacuum. Has been given.
However, in the prior art, the Ni elution prevention treatment of the heat transfer tube is configured to be performed by combining immersion treatment in a nitric acid bath and heat treatment in a heat treatment furnace. Since the heat treatment was performed separately, the device was complicated and large, and the device cost was increased. In order to combine the two-step treatment of the immersion treatment in the nitric acid bath and the heat treatment in the heat treatment furnace, There was a problem that a large amount of man-hours was required for the Ni elution prevention treatment, and the processing work cost also increased.

本発明はこのような実状に鑑みてなされたものであって、その目的は、蒸気発生器用伝熱管からのNi溶出防止処理を、きわめて簡単な構成かつ低コストの装置で以って、少ない処理工数でかつ処理作業コストを低減して行い得る蒸気発生器用伝熱管の表面処理方法を提供することにある。   The present invention has been made in view of such a situation, and the object thereof is to reduce the Ni elution prevention treatment from the heat transfer tube for the steam generator with a very simple configuration and low cost apparatus. An object of the present invention is to provide a method for treating the surface of a heat transfer tube for a steam generator, which can be carried out with reduced man-hours and reduced processing costs.

前記従来技術の有する課題を解決するために、本発明は、Ni−Cr−Fe系合金(通常、30〜80%Ni、10〜40%Cr、および残りがFeの組成であり、具体的には、例えば、600合金の70%Ni、15%Cr、残りがFeの組成、あるいは690合金の60%Ni、30%Cr、残りがFeの組成などが挙げられる。)からなる蒸気発生器用伝熱管の表面処理方法であって、前記伝熱管を蒸気発生器本体内に組み付け、表面処理液を前記蒸気発生器の高温流体出入口室を介して前記伝熱管内に通流させて、前記伝熱管内面に表面被膜を形成している。
前記表面処理液としては、硝フッ酸水溶液、硝酸水溶液、クエン酸水溶液等を用い、かかる表面処理液をポンプによって伝熱管内を循環させるのが好ましい。
ここで、本発明における「伝熱管」とは、伝熱細管単独、及び以下の実施形態に示すように前記伝熱細管を複数本束にした伝熱管束の双方を含む。
In order to solve the problems of the prior art, the present invention relates to a Ni—Cr—Fe based alloy (usually 30 to 80% Ni, 10 to 40% Cr, and the balance is Fe. Is a composition of 70% Ni, 15% Cr of the 600 alloy and the balance of Fe, or a composition of 60% Ni, 30% Cr of the 690 alloy and the remainder of Fe, etc.). A surface treatment method for a heat tube, wherein the heat transfer tube is assembled in a steam generator body, and the surface treatment liquid is passed through the heat transfer tube through a high-temperature fluid inlet / outlet chamber of the steam generator, thereby the heat transfer tube. A surface coating is formed on the inner surface.
As the surface treatment liquid, a nitric hydrofluoric acid aqueous solution, a nitric acid aqueous solution, a citric acid aqueous solution, or the like is preferably used, and the surface treatment liquid is circulated in the heat transfer tube by a pump.
Here, the “heat transfer tube” in the present invention includes both a heat transfer thin tube and a heat transfer tube bundle in which a plurality of the heat transfer thin tubes are bundled as shown in the following embodiments.

前記発明に加えて、好ましくは次のように構成する。
(1)前記蒸気発生器本体内に、所定温度に加温した加温空気を供給して前記伝熱管を加温し、前記伝熱管内に表面処理液を通流させる。
(2)前記蒸気発生器本体内に、所定温度に加温した純水を供給して前記伝熱管を加温し、前記伝熱管内に表面処理液を通流させる。
In addition to the above invention, the following configuration is preferable.
(1) Heated air heated to a predetermined temperature is supplied into the steam generator body to heat the heat transfer tube, and a surface treatment liquid is caused to flow through the heat transfer tube.
(2) Pure water heated to a predetermined temperature is supplied into the steam generator body to heat the heat transfer tube, and a surface treatment liquid is passed through the heat transfer tube.

また、本発明は、Ni−Cr−Fe系合金からなる蒸気発生器用伝熱管の表面処理方法であって、前記伝熱管を蒸気発生器本体から取り外した前記伝熱管単体の状態で、表面処理液を前記伝熱管内を通流させて、前記伝熱管内面に表面被膜を形成する。   Further, the present invention is a surface treatment method for a heat generator tube for a steam generator made of a Ni—Cr—Fe-based alloy, wherein the heat transfer tube is removed from the steam generator body, and the surface treatment liquid is in a state of the heat transfer tube alone. Is passed through the heat transfer tube to form a surface coating on the inner surface of the heat transfer tube.

また、前記発明に加えて、好ましくは次のように構成する。
(1)前記伝熱管単体の状態で、前記伝熱管をヒーターで加温して所定温度に保持し、前記伝熱管内に表面処理液を通流させる。この場合、前記ヒーターは、伝熱管の複数本毎に束ねて巻回するのが好ましい。
(2)前記伝熱管を単体の状態で、該伝熱管を恒温層内に収納して所定温度に保持し、前記伝熱管内に表面処理液を通流させる。この場合、前記恒温層としては所定温度に加温された水を用い、この恒温水内に前記伝熱管を浸漬するのが好ましい。
In addition to the above invention, the following configuration is preferable.
(1) the heat transfer tube in a single state, the heat transfer tube was warmed with a heater maintained at a predetermined temperature to flow through a surface treatment liquid to the heat transfer tube. In this case, the heater is preferably wound around a plurality of heat transfer tubes.
(2) With the heat transfer tube as a single unit, the heat transfer tube is housed in a constant temperature layer and maintained at a predetermined temperature, and a surface treatment liquid is passed through the heat transfer tube. In this case, it is preferable to use water heated to a predetermined temperature as the constant temperature layer and immerse the heat transfer tube in the constant temperature water.

また、本発明は、Ni−Cr−Fe系合金からなる蒸気発生器用伝熱管の表面処理方法であって、U字状に形成された前記伝熱管を単体の状態で、前記表面処理液の入口及び出口を上方に向けて立て、前記伝熱管の前記入口から表面処理液を注入し、前記伝熱管の内面を前記表面処理液に所定時間浸漬することにより、前記伝熱管内面に表面被膜を形成している。   The present invention is also a surface treatment method for a heat transfer tube for a steam generator made of a Ni-Cr-Fe alloy, wherein the heat transfer tube formed in a U-shape is in a single state, and the inlet of the surface treatment liquid is provided. And a surface coating is formed on the inner surface of the heat transfer tube by injecting a surface treatment liquid from the inlet of the heat transfer tube and immersing the inner surface of the heat transfer tube in the surface treatment solution for a predetermined time. is doing.

前記発明に加えて、好ましくは次のように構成する。
即ち、内部に加温された温水が収容されている温水槽内に前記伝熱管を浸漬し、前記伝熱管を所定温度に保持し、前記伝熱管内面を表面処理液に所定時間浸漬させる。
また本発明は、蒸気発生器から取り外した複数本の伝熱細管からなる伝熱管束の開口部の一方に入口ダクトを接続するとともに他方に出口ダクトを接続し、前記伝熱管束に同時に表面処理を施す方法も含む。
In addition to the above invention, the following configuration is preferable.
That is, the heat transfer tube is immersed in a hot water tank in which warm water heated inside is stored, the heat transfer tube is maintained at a predetermined temperature, and the inner surface of the heat transfer tube is immersed in a surface treatment liquid for a predetermined time.
Further, the present invention provides an inlet duct connected to one of the openings of the heat transfer tube bundle made up of a plurality of heat transfer thin tubes removed from the steam generator, and an outlet duct connected to the other, and the surface treatment is simultaneously performed on the heat transfer tube bundle. The method of applying is also included.

本発明によれば、伝熱管を蒸気発生器本体内に組み付けたままの状態で、所定の濃度に調製した表面処理液を、表面処理液循環用の管路に設けたポンプを用いて伝熱管内を通流させ、前記伝熱管内面に表面被膜を形成することによって、実際の運転時において前記伝熱管内面からのNiの伝熱管内加熱流体中への溶出を抑制できる。   According to the present invention, with the heat transfer tube assembled in the steam generator body, the surface treatment liquid prepared to a predetermined concentration is transferred using the pump provided in the pipe for circulating the surface treatment liquid. By flowing through the tube and forming a surface coating on the inner surface of the heat transfer tube, it is possible to suppress elution of Ni from the inner surface of the heat transfer tube into the heating fluid in the heat transfer tube during actual operation.

従って本発明によれば、伝熱管を蒸気発生器本体内に組み付けたまま、所定の濃度に調製した表面処理液を、ポンプを用いて一回の操作で複数本の伝熱細管からなる伝熱管内を通流させるという、きわめて簡単な操作でかつ少ない作業工数で、伝熱管内面からのNiの溶出防止処理を行うことができ、作業コストを低減できる。即ち、複数本の伝熱細管からなる伝熱管の処理を同時に行うことが可能となる。
また、伝熱管を蒸気発生器本体内に組み付けた状態で、蒸気発生器本体の高温流体出入口ノズルをそのまま利用し、表面処理液循環用の管及び循環用ポンプを設置するのみで、表面処理液を伝熱管に通流させることができるので、従来技術のように、格別な浸漬処理槽が不要となり、従来技術に比べて装置が簡単かつ小型になるとともに、装置コストを大幅に低減できる。
Therefore, according to the present invention, a heat treatment tube comprising a plurality of heat transfer thin tubes is prepared by a single operation using a pump with a surface treatment liquid prepared at a predetermined concentration while the heat transfer tube is assembled in the steam generator body. The elution prevention treatment of Ni from the inner surface of the heat transfer tube can be performed with a very simple operation and a small number of work steps of flowing through the tube, and the work cost can be reduced. That is, it becomes possible to simultaneously perform processing of a heat transfer tube composed of a plurality of heat transfer thin tubes.
In addition, with the heat transfer tube assembled in the steam generator body, the high temperature fluid inlet / outlet nozzle of the steam generator body is used as it is, and the surface treatment liquid circulation pipe and circulation pump are installed, Can be made to flow through the heat transfer tube, so that no special immersion bath is required as in the prior art, and the apparatus is simpler and smaller than the prior art, and the apparatus cost can be greatly reduced.

また、前記発明に加えて、前記蒸気発生器本体内に、蒸気発生器本体のノズルを介して所定温度に加温した加温空気を供給して前記伝熱管を加温し、前記伝熱管内に表面処理液を通流させるように構成し、あるいは前記蒸気発生器本体内に、所定温度に加温した純水を蒸気発生器本体のノズルを介して供給して前記伝熱管を加温し、前記伝熱管内に表面処理液を通流させるように構成すれば、前記加温空気あるいは所定温度に加温した純水によって、伝熱管が外面側から加熱されて高温に保持された状態で、前記伝熱管内に表面処理液を通流させることが可能であり、蒸気発生器そのものを利用する為、別途熱処理炉が不要となる。また、常温時よりも伝熱管内面における表面被膜の形成時間を短縮できるとともに、表面処理の作業工数を低減できる。   Further, in addition to the invention, in the steam generator main body, heated air heated to a predetermined temperature is supplied through a nozzle of the steam generator main body to heat the heat transfer tube, The surface treatment liquid is allowed to flow through, or pure water heated to a predetermined temperature is supplied into the steam generator body through a nozzle of the steam generator body to heat the heat transfer tube. If the surface treatment liquid is made to flow through the heat transfer tube, the heat transfer tube is heated from the outer surface side and maintained at a high temperature by the heated air or pure water heated to a predetermined temperature. Since the surface treatment liquid can be passed through the heat transfer tube and the steam generator itself is used, a separate heat treatment furnace is not required. In addition, the time for forming the surface coating on the inner surface of the heat transfer tube can be shortened and the number of man-hours for surface treatment can be reduced as compared with normal temperature.

また、本発明によれば、前記伝熱管を蒸気発生器本体から取り外し、前記伝熱管単体の状態で、表面処理液を前記伝熱管内に通流させて前記伝熱管内面に表面被膜を形成するので、伝熱管単体の状態で、所定の濃度に調製した表面処理液をポンプを用いて一回の操作で伝熱管内を通流させるという、きわめて簡単な操作でかつ少ない作業工数で、伝熱管内面からのNiの溶出防止処理を行うことができ、作業コストを低減できる。また、本発明は伝熱管単体で表面処理をする為、表面処理を実施する場所を自由に選択できる。   Further, according to the present invention, the heat transfer tube is removed from the steam generator body, and the surface treatment liquid is passed through the heat transfer tube in a state of the heat transfer tube alone to form a surface coating on the inner surface of the heat transfer tube. Therefore, in a state of a heat transfer tube alone, the surface treatment liquid prepared to a predetermined concentration is made to flow through the heat transfer tube with a single operation using a pump, with a very simple operation and less work man-hours. Ni elution prevention treatment from the inner surface can be performed, and the operation cost can be reduced. In addition, since the present invention performs the surface treatment with a single heat transfer tube, the place where the surface treatment is performed can be freely selected.

また、前記発明に加えて、前記伝熱管単体の状態で、前記伝熱管をヒーターで加温して所定温度に保持し、前記伝熱管内に表面処理液を通流させるように構成すれば、前記ヒーターによって、前記伝熱管が外面側から加熱されて高温に保持された状態で、前記伝熱管内に表面処理液を通流させることが可能となり、常温時よりも伝熱管内面における表面被膜の形成時間が短縮されて、表面処理の作業工数の低減化が図れる。   Further, in addition to the invention, in the state of the heat transfer tube alone, the heat transfer tube is heated with a heater and maintained at a predetermined temperature, and a surface treatment liquid is allowed to flow through the heat transfer tube. With the heater, the heat transfer tube is heated from the outer surface side and kept at a high temperature, so that the surface treatment liquid can be passed through the heat transfer tube, and the surface coating on the inner surface of the heat transfer tube can be made more than at normal temperature. The formation time can be shortened, and the number of man-hours for surface treatment can be reduced.

また、前記発明に加えて、前記伝熱管単体の状態で、所定温度に保持された恒温層内に収納して前記伝熱管を所定温度に保持し、前記伝熱管内に表面処理液を通流させるように構成すれば、目標とする一定温度に管理された恒温層内に単体の伝熱管全体を収納して、伝熱管の外面側から一様に加熱し高温に保持するので、伝熱管の温度を常時目標の高温に保持した状態で、前記伝熱管内に表面処理液を通流させることが可能となり、表面被膜の形成時間を最小限まで短縮できて、表面処理の作業工数のさらなる低減を実現できる。   Further, in addition to the invention, the heat transfer tube alone is housed in a constant temperature layer maintained at a predetermined temperature to hold the heat transfer tube at a predetermined temperature, and the surface treatment liquid is passed through the heat transfer tube. If configured so that the entire heat transfer tube is housed in a constant temperature layer controlled at a target constant temperature and is uniformly heated from the outer surface side of the heat transfer tube and kept at a high temperature, the heat transfer tube It is possible to allow the surface treatment liquid to flow through the heat transfer tube while keeping the temperature at the target high temperature at all times, and the time required for surface coating can be reduced to a minimum, further reducing the man-hours for surface treatment. Can be realized.

また、本発明によれば、前記伝熱管を、表面処理液入口及び出口を上方に向けて立てて、前記伝熱管の入口から表面処理液を注入し、前記伝熱管の内面を表面処理液に所定時間浸漬して前記伝熱管内面に表面被膜を形成するので、表面処理液を立てられた伝熱管内に流し込み一定時間保持するのみで、伝熱管内面に表面被膜を形成でき、表面処理液循環用のポンプや配管が不要となる。   Further, according to the present invention, the heat transfer tube is erected with the surface treatment liquid inlet and outlet facing upward, the surface treatment liquid is injected from the inlet of the heat transfer tube, and the inner surface of the heat transfer tube is used as the surface treatment liquid. Since the surface coating is formed on the inner surface of the heat transfer tube by dipping for a predetermined time, the surface coating can be formed on the inner surface of the heat transfer tube by simply pouring the surface treatment liquid into the standing heat transfer tube and holding it for a certain period of time. Pumps and piping are not required.

また、前記発明に加えて、内部に加温された温水が収容された温水槽内に前記伝熱管を浸漬して、前記伝熱管を所定温度に保持し、前記伝熱管内に表面処理液を通流させるように構成すれば、高温に保持された温水槽内に単体の伝熱管全体を収納して、前記伝熱管の温度を常時高温に保持した状態で、前記伝熱管内に表面処理液を流し込み一定時間保持することが可能となり、前記各発明よりも簡単な手段で表面被膜の形成時間を短縮できる。   Further, in addition to the above invention, the heat transfer tube is immersed in a hot water tank in which warm water heated inside is stored, the heat transfer tube is maintained at a predetermined temperature, and a surface treatment liquid is placed in the heat transfer tube. If configured to flow, the entire heat transfer tube is housed in a hot water tank held at a high temperature, and the surface treatment liquid is kept in the heat transfer tube in a state where the temperature of the heat transfer tube is always kept high. Can be poured for a certain period of time, and the time required for forming the surface coating can be shortened by means simpler than those of the inventions described above.

以下、本発明を図示の実施の形態に基づいて詳細に説明する。
ここで、以下の実施の形態において、「伝熱管」とは、伝熱細管単独、及び前記伝熱細管を複数本束にした伝熱管束の双方を含む。
図1は本発明の第1実施形態に係る蒸気発生器用伝熱管の表面処理方法を示す要部断面図である。
図1において、100は蒸気発生器、1は蒸気発生器100の蒸気発生器本体を構成するシェル、120はシェル1の下部内周に固定された管板、2は下端部を管板120に支持された伝熱管である。これら伝熱管2は高NiのNi−Cr−Fe系合金からなり、下端部が開放されたU字状の曲管に形成され、各伝熱管2の下端部が前記管板120にロウ付け等によって固定されている。
4は高温流体(高温水)が導入される高温流体入口室、5は高温流体出口室であり、これら高温流体入口室4と高温流体出口室5とは仕切板04で仕切られている。10は高温流体入口室4に高温流体を導入するための高温流体入口ノズル、11は高温流体出口室5からの高温流体を導出するための高温流体出口ノズルである。
Hereinafter, the present invention will be described in detail based on illustrated embodiments.
Here, in the following embodiments, the “heat transfer tube” includes both a heat transfer thin tube and a heat transfer tube bundle in which a plurality of the heat transfer thin tubes are bundled.
FIG. 1 is a cross-sectional view of an essential part showing a surface treatment method for a heat transfer tube for a steam generator according to a first embodiment of the present invention.
In FIG. 1, 100 is a steam generator, 1 is a shell constituting the steam generator body of the steam generator 100, 120 is a tube plate fixed to the lower inner periphery of the shell 1, and 2 is a tube plate 120 having a lower end portion. It is a supported heat transfer tube. These heat transfer tubes 2 are made of a Ni-Cr-Fe alloy of high Ni, and are formed into U-shaped bent tubes whose lower ends are opened, and the lower ends of the heat transfer tubes 2 are brazed to the tube plate 120, etc. It is fixed by.
Reference numeral 4 denotes a high-temperature fluid inlet chamber into which high-temperature fluid (high-temperature water) is introduced. Reference numeral 5 denotes a high-temperature fluid outlet chamber. The high-temperature fluid inlet chamber 4 and the high-temperature fluid outlet chamber 5 are partitioned by a partition plate 04. Reference numeral 10 denotes a high-temperature fluid inlet nozzle for introducing a high-temperature fluid into the high-temperature fluid inlet chamber 4, and 11 denotes a high-temperature fluid outlet nozzle for deriving high-temperature fluid from the high-temperature fluid outlet chamber 5.

3は前記伝熱管2の中間部の複数箇所を支持する管支持板、9は前記シェル1の内周に固定されたラッパー筒であり、該ラッパー筒9により各管支持板3の外周部が支持されている。01は前記シェル1のダウンカマー、6はシェル1内部の上方部位に形成された蒸気室、7はダウンカマー01に給水を導入するための給水入口ノズル、8は蒸気室6内の蒸気を導出するための蒸気出口ノズルである。   3 is a tube support plate for supporting a plurality of locations in the intermediate portion of the heat transfer tube 2, and 9 is a wrapper cylinder fixed to the inner periphery of the shell 1, and the outer periphery of each tube support plate 3 is formed by the wrapper cylinder 9. It is supported. 01 is a downcomer of the shell 1, 6 is a steam chamber formed in the upper part inside the shell 1, 7 is a water supply inlet nozzle for introducing water to the downcommer 01, and 8 is a steam outlet in the steam chamber 6. This is a steam outlet nozzle.

このように構成された蒸気発生器100の運転時においては、図示しない原子炉で生成された高温流体(高温水)が高温流体入口ノズル10から高温流体入口室4に導入され、高温流体入口室4に開口する伝熱管2に入り、伝熱管2内を通流する間に給水入口ノズル7からダウンカマー01に導入された給水と熱交換し、該給水を加熱して蒸気を発生せしめている。
かかる熱交換によって降温された高温流体は、前記伝熱管2内から高温流体出口室5に流出し、高温流体出口ノズル11を通って原子炉に戻されている。一方、前記高温流体との熱交換により給水から発生した蒸気は蒸気室6に溜められた後、蒸気出口ノズル8を通って図示しない蒸気タービンに送られ、膨張仕事を行い動力を発生せしめている。
During the operation of the steam generator 100 configured as described above, a high-temperature fluid (high-temperature water) generated in a nuclear reactor (not shown) is introduced from the high-temperature fluid inlet nozzle 10 into the high-temperature fluid inlet chamber 4, and the high-temperature fluid inlet chamber. While entering the heat transfer pipe 2 opened to 4 and flowing through the heat transfer pipe 2, heat is exchanged with the feed water introduced from the feed water inlet nozzle 7 to the downcomer 01, and the feed water is heated to generate steam. .
The high-temperature fluid lowered in temperature by such heat exchange flows out from the heat transfer tube 2 into the high-temperature fluid outlet chamber 5 and returns to the nuclear reactor through the high-temperature fluid outlet nozzle 11. On the other hand, the steam generated from the feed water by heat exchange with the high-temperature fluid is stored in the steam chamber 6 and then sent to the steam turbine (not shown) through the steam outlet nozzle 8 to perform expansion work and generate power. .

本発明は、以上のように構成された蒸気発生器用伝熱管2の表面処理方法に係るものである。
本発明の第1実施形態では、伝熱管2をシェル(蒸気発生器本体)1内に組み付けたままの状態、つまり蒸気発生器100の組立状態で、蒸気発生器100の高温流体入口ノズル10及び高温流体出口ノズル11を利用して、処理液ポンプ12が介装された処理液管13の入口フランジ13aを高温流体入口ノズル10に接続し、処理液管13の出口フランジ13bを高温流体出口ノズル11に接続し、処理液ポンプ12によって表面処理液を伝熱管2に通流させるように構成している。
The present invention relates to a surface treatment method for the heat transfer tube 2 for a steam generator configured as described above.
In the first embodiment of the present invention, the heat transfer tube 2 is still assembled in the shell (steam generator body) 1, that is, in the assembled state of the steam generator 100, the high-temperature fluid inlet nozzle 10 of the steam generator 100 and The high temperature fluid outlet nozzle 11 is used to connect the inlet flange 13a of the processing liquid pipe 13 in which the processing liquid pump 12 is interposed to the high temperature fluid inlet nozzle 10, and the outlet flange 13b of the processing liquid pipe 13 is connected to the high temperature fluid outlet nozzle. The surface treatment liquid is made to flow through the heat transfer tube 2 by the treatment liquid pump 12.

前記表面処理液としては、硝フッ酸水溶液、硝酸水溶液、クエン酸水溶液等が用いられ、好ましくは、0.1〜5重量%のフッ酸水溶液と3〜30重量%の硝酸水溶液にて調製した硝フッ酸水溶液、5〜50重量%の硝酸水溶液、5〜20重量%のクエン酸水溶液(あるいはクエン酸アンモン水溶液、以下同じ)を用いる。これら所定の濃度に調製した表面処理液は、前記処理液ポンプ12によって、処理液管13から高温流体入口室4を経て多数の伝熱管2内に入り、伝熱管2内を通流する間に伝熱管2の内面に表面被膜が形成される。即ち、表面処理液は、伝熱管2内面に表面被膜を形成しつつ、処理液ポンプ12→処理液管13→高温流体入口室4→伝熱管2内→高温流体出口室5→処理液管13→処理液ポンプ12の経路を循環するようになっている。なお、本発明の第1実施形態では、まず最初に伝熱管2の内面を硝フッ酸水溶液にて処理し、使用上好ましくない腐食した酸化皮膜であるスケールを溶解させた後、硝酸水溶液処理してCrを濃縮させた酸化表面被膜を形成させる。Crを濃縮させた表面皮膜を形成させることにより、Ni(ニッケル)の流出が抑制される。硝フッ酸処理工程としては、0.1〜5重量%HF、3〜30%重量HNO3で調製した硝フッ酸水溶液を用いて、室温〜100℃にて30〜120分間の処理が好適に挙げられる。また、前記硝酸処理工程としては、5〜50%HNO3水溶液を用いて、室温〜100℃にて30〜120分間の処理条件が挙げられる。また、別に、まず最初にクエン酸水溶液にて流通処理し、スケールを除去した後、硝酸水溶液により表面皮膜を形成させてもよい。 As the surface treatment liquid, nitric hydrofluoric acid aqueous solution, nitric acid aqueous solution, citric acid aqueous solution and the like are used, preferably prepared with 0.1 to 5% by weight hydrofluoric acid aqueous solution and 3 to 30% by weight nitric acid aqueous solution. A nitric hydrofluoric acid aqueous solution, a 5 to 50% by weight nitric acid aqueous solution, and a 5 to 20% by weight citric acid aqueous solution (or an ammonium citrate aqueous solution, hereinafter the same) are used. The surface treatment liquid prepared to have a predetermined concentration enters the heat transfer tubes 2 from the treatment solution pipe 13 through the high temperature fluid inlet chamber 4 and flows through the heat transfer tubes 2 by the treatment liquid pump 12. A surface coating is formed on the inner surface of the heat transfer tube 2. That is, the surface treatment liquid forms a surface coating on the inner surface of the heat transfer tube 2, while the treatment liquid pump 12 → the treatment liquid pipe 13 → the high temperature fluid inlet chamber 4 → the heat transfer pipe 2 → the high temperature fluid outlet chamber 5 → the treatment liquid pipe 13. → Circulates the path of the processing liquid pump 12. In the first embodiment of the present invention, first, the inner surface of the heat transfer tube 2 is treated with a nitric hydrofluoric acid aqueous solution to dissolve a scale which is an undesired corroded oxide film, and then treated with a nitric acid aqueous solution. Thus, an oxidized surface film in which Cr is concentrated is formed. By forming a surface film in which Cr is concentrated, the outflow of Ni (nickel) is suppressed. As the nitric hydrofluoric acid treatment step, a nitric hydrofluoric acid aqueous solution prepared with 0.1 to 5% by weight HF and 3 to 30% by weight HNO 3 is preferably used at room temperature to 100 ° C. for 30 to 120 minutes. Can be mentioned. Further, as the nitric acid treatment step, with 5 to 50% HNO 3 aqueous solution, it includes treatment conditions 30 to 120 minutes at room temperature to 100 ° C.. Alternatively, first, the surface film may be formed by using a nitric acid aqueous solution after first flowing through a citric acid aqueous solution and removing the scale.

このように第1実施形態によれば、伝熱管2をシェル(蒸気発生器本体)1内に組み付けたままの状態で、所定の濃度に調製した表面処理液を、表面処理液循環用の管路である処理液管13に設けた処理液ポンプ12を用いて伝熱管2内を通流させ、伝熱管2内面に表面処理により表面被膜を形成することによって、実際の運転時における伝熱管2内面からのNiの伝熱管内加熱流体中への溶出を抑制できる。本発明は、伝熱管を蒸気発生器本体に組み付けて伝熱管内の表面処理をする方法であるので、新品の伝熱管の洗浄に対し適用可能である方法であることは勿論のこと、実機の運転を止めて第1実施形態により伝熱管内の表面処理を行うことも可能である。   As described above, according to the first embodiment, the surface treatment liquid prepared to a predetermined concentration with the heat transfer tube 2 assembled in the shell (steam generator body) 1 is used as a tube for circulating the surface treatment liquid. The heat transfer tube 2 is made to flow through the heat transfer tube 2 using a treatment liquid pump 12 provided in the treatment liquid tube 13, and a surface coating is formed on the inner surface of the heat transfer tube 2 by surface treatment, so that the heat transfer tube 2 during actual operation is formed. The elution of Ni from the inner surface into the heating fluid in the heat transfer tube can be suppressed. Since the present invention is a method of assembling the heat transfer tube to the steam generator main body and subjecting the surface of the heat transfer tube to a surface treatment, it is of course applicable to cleaning of a new heat transfer tube. It is also possible to stop the operation and perform the surface treatment in the heat transfer tube according to the first embodiment.

したがって、第1実施形態によれば、伝熱管2を蒸気発生器本体内に組み付けたまま、所定の濃度に調製した表面処理液を、処理液ポンプ12を用いて一回の操作で複数本の伝熱細管からなる伝熱管2内を通流させるという、きわめて簡単な操作でかつ少ない作業工数で、伝熱管2内面からのNiの溶出防止処理を行うことができ、作業コストを低減できる。
また、前記のように、伝熱管2をシェル(蒸気発生器本体)1内に組み付けた状態で、シェル(蒸気発生器本体)1の高温流体出入口10,11のノズルをそのまま利用し、表面処理液循環用の処理液管13及び処理液循環用の処理液ポンプ12を設置するのみで表面処理液を伝熱管2に通流させることができるので、従来技術のような格別な浸漬処理槽や熱処理炉が不要となり、かかる従来技術に比べて装置が簡単かつ小型になる。
Therefore, according to the first embodiment, a plurality of surface treatment liquids prepared to a predetermined concentration with the heat transfer tube 2 being assembled in the steam generator main body by a single operation using the treatment liquid pump 12. The elution prevention treatment of Ni from the inner surface of the heat transfer tube 2 can be performed with a very simple operation and with a small number of work steps of flowing through the heat transfer tube 2 formed of a heat transfer thin tube, and the work cost can be reduced.
Further, as described above, with the heat transfer tube 2 assembled in the shell (steam generator body) 1, the nozzles of the high-temperature fluid inlets 10 and 11 of the shell (steam generator body) 1 are used as they are, and the surface treatment is performed. Since the surface treatment liquid can be passed through the heat transfer pipe 2 simply by installing the treatment liquid pipe 13 for the circulation of the liquid and the treatment liquid pump 12 for the circulation of the treatment liquid, A heat treatment furnace is not required, and the apparatus is simpler and smaller than the prior art.

図2は本発明の第2実施形態を示す図1に対応した要部断面図である。
この第2実施形態においては、前記第1実施形態に加えて、シェル(蒸気発生器本体)1の上部における給水入口ノズル7を利用して、空気供給装置15から所定温度に加温された加温空気が通流する空気管14の入口フランジ14aを給水入口ノズル7に接続し、空気供給装置15から所定温度に加温した加温空気をダウンカマー01内に供給して伝熱管2を加温し(加温空気の温度は、室温より高い温度から100℃以下の温度範囲で表面処理をすることが好ましい。)、前記第1実施形態と同様に、伝熱管2内に表面処理液を通流させるように構成している。
前記第1実際形態と同一の部材は同一の符号で示し、説明を省略する。
FIG. 2 is a cross-sectional view of an essential part corresponding to FIG. 1 showing a second embodiment of the present invention.
In the second embodiment, in addition to the first embodiment, a heating water heated to a predetermined temperature from the air supply device 15 using the feed water inlet nozzle 7 in the upper part of the shell (steam generator body) 1 is used. The inlet flange 14a of the air pipe 14 through which the warm air flows is connected to the feed water inlet nozzle 7, and the heated air heated to a predetermined temperature is supplied from the air supply device 15 into the downcomer 01 to add the heat transfer pipe 2. (The temperature of the heated air is preferably surface-treated in a temperature range from higher than room temperature to 100 ° C.), and the surface treatment liquid is put into the heat transfer tube 2 as in the first embodiment. It is configured to allow flow.
The same members as those in the first actual embodiment are denoted by the same reference numerals, and the description thereof is omitted.

かかる第2実施形態によれば、所定温度に加温した加温空気によって、伝熱管2が外面側から加熱され、高温に保持された状態で、伝熱管2内に表面処理液を通流させることが可能となり、前記第1実施形態のような常温時よりも伝熱管2内面における表面被膜の形成時間を短縮できるとともに、表面処理の作業工数を低減できる。
その他の構成及び手順は前記第1実施形態(図1)と同様である。
According to the second embodiment, the heat treatment tube 2 is heated from the outer surface side by the heated air heated to a predetermined temperature, and the surface treatment liquid is allowed to flow through the heat transfer tube 2 while being kept at a high temperature. As a result, the time for forming the surface coating on the inner surface of the heat transfer tube 2 can be shortened and the number of man-hours for the surface treatment can be reduced as compared with the normal temperature as in the first embodiment.
Other configurations and procedures are the same as those in the first embodiment (FIG. 1).

図3は本発明の第3実施形態を示す図1に対応した要部断面図である。
この第3実施形態においては、前記第1実施形態に加えて、シェル(蒸気発生器本体)1の上部における給水入口7のフランジを利用して、純水タンク19から純水ポンプ18により所定温度に加温された純水を供給するための純水管17の入口フランジ17aを給水入口ノズル7に接続し、純水ポンプ18により、所定温度に加温した純水を水室01内に供給して伝熱管2を加温し、前記第1実施形態と同様に、伝熱管2内に表面処理液を通流させるように構成している。該加温水の加熱により、室温より高い温度から100℃以下の温度範囲で表面処理をすることが好ましい。
なお、前記第1実際形態と同一の部材は同一の符号で示し、説明を省略する。
FIG. 3 is a cross-sectional view of an essential part corresponding to FIG. 1 showing a third embodiment of the present invention.
In the third embodiment, in addition to the first embodiment, a predetermined temperature is supplied from a pure water tank 19 to a pure water pump 18 by using a flange of the water supply inlet 7 at the upper part of the shell (steam generator body) 1. An inlet flange 17a of a pure water pipe 17 for supplying pure water heated to is connected to the water supply inlet nozzle 7, and pure water heated to a predetermined temperature is supplied into the water chamber 01 by a pure water pump 18. Then, the heat transfer tube 2 is heated, and the surface treatment liquid is allowed to flow through the heat transfer tube 2 as in the first embodiment. It is preferable to perform the surface treatment in a temperature range from a temperature higher than room temperature to 100 ° C. or less by heating the heated water.
The same members as those in the first actual embodiment are denoted by the same reference numerals, and description thereof is omitted.

かかる第3実施形態によれば、所定温度に加温した純水によって伝熱管2が外面側から加熱され、高温に保持された状態で、伝熱管2内に表面処理液を通流させることが可能となり、前記第1実施形態のような常温時よりも伝熱管2内面における表面被膜の形成時間を短縮できるとともに、表面処理の作業工数を低減できる。
その他の構成及び手順は前記第1実施形態(図1)と同様である。
According to the third embodiment, the heat treatment tube 2 is heated from the outer surface side by pure water heated to a predetermined temperature, and the surface treatment liquid is allowed to flow through the heat transfer tube 2 while being kept at a high temperature. As a result, the time required for forming the surface coating on the inner surface of the heat transfer tube 2 can be shortened and the number of man-hours for the surface treatment can be reduced as compared with the normal temperature as in the first embodiment.
Other configurations and procedures are the same as those in the first embodiment (FIG. 1).

図4は、本発明の第4実施形態に係る伝熱管単体の表面処理方法を示す要部側面図である。
この第4実施形態においては、図4に示すように、伝熱管2を蒸気発生器100のシェル1内に組み込む前、あるいは蒸気発生器100から取り外した伝熱管2単体の状態で、伝熱管2入口側に入口ダクト23を接続し、伝熱管2出口側に出口ダクト24を接続し、さらにこれら入口ダクト23と出口ダクト24との間を、処理液ポンプ12が介装された処理液管13で接続している。図4に示すように、ダクト23,24に安定して伝熱管2を接続するため、固定板121を設けてもよい。
FIG. 4 is a side view of an essential part showing a surface treatment method for a single heat transfer tube according to a fourth embodiment of the present invention.
In the fourth embodiment, as shown in FIG. 4, before the heat transfer tube 2 is assembled in the shell 1 of the steam generator 100 or in a state of the heat transfer tube 2 alone removed from the steam generator 100, the heat transfer tube 2. An inlet duct 23 is connected to the inlet side, an outlet duct 24 is connected to the outlet side of the heat transfer tube 2, and a processing liquid pipe 13 having a processing liquid pump 12 interposed between the inlet duct 23 and the outlet duct 24. Connected with. As shown in FIG. 4, a fixing plate 121 may be provided in order to connect the heat transfer tube 2 stably to the ducts 23 and 24.

そして、この第4実施形態において、表面処理液は、処理液ポンプ12によって、処理液管13から入口ダクト23を経て多数の伝熱管2内に入り、該伝熱管2内を通流する間に伝熱管2内面に該表面処理液の表面被膜を形成している。即ち、表面処理液は伝熱管2内面に表面被膜を形成しつつ、処理液ポンプ12→処理液管13→入口ダクト23→伝熱管2内→出口ダクト24→処理液管13→処理液ポンプ12の経路を循環するようになっている。なお、第4実施形態の表面処理方法の前には、前記硝フッ酸処理を行っている。
本実施形態も第1実施形態と同様な表面処理液、スケール除去してから、クロム含有量の多い表面皮膜を形成する表面処理工程を適用することができる。
In the fourth embodiment, the surface treatment liquid enters the heat transfer tubes 2 from the treatment solution pipe 13 through the inlet duct 23 and flows through the heat transfer tubes 2 by the treatment liquid pump 12. A surface coating of the surface treatment liquid is formed on the inner surface of the heat transfer tube 2. That is, the surface treatment liquid forms a surface film on the inner surface of the heat transfer tube 2, and the treatment liquid pump 12 → the treatment liquid pipe 13 → the inlet duct 23 → the heat transfer pipe 2 → the outlet duct 24 → the treatment liquid pipe 13 → the treatment liquid pump 12. It is designed to circulate through the route. Note that the nitric hydrofluoric acid treatment is performed before the surface treatment method of the fourth embodiment.
In this embodiment, the same surface treatment liquid and scale as in the first embodiment can be applied, and then a surface treatment process for forming a surface film with a high chromium content can be applied.

このように第4実施形態によれば、伝熱管2を蒸気発生器100から取り外した、伝熱管2単体の状態で、表面処理液を伝熱管2内を通流させて伝熱管2内面にクロム含有量の多い表面被膜を形成するので、伝熱管単体の状態で、所定の濃度に調製した表面処理液を処理液ポンプ12を用いて一回の操作で複数の伝熱管2内を通流させる事も可能という、きわめて簡単な操作でかつ少ない作業工数で、伝熱管2内面からのNiの溶出防止処理を行うことができ、作業コストを低減できる。
さらにかかる第4実施形態によれば、所望の本数の伝熱管の表面処理が可能となる。
As described above, according to the fourth embodiment, in the state of the heat transfer tube 2 alone with the heat transfer tube 2 removed from the steam generator 100, the surface treatment liquid is allowed to flow through the heat transfer tube 2 and chromium is applied to the inner surface of the heat transfer tube 2. Since a surface coating with a high content is formed, the surface treatment liquid adjusted to a predetermined concentration is caused to flow through the plurality of heat transfer tubes 2 by a single operation using the treatment solution pump 12 in the state of the heat transfer tube alone. It is possible to perform the elution prevention treatment of Ni from the inner surface of the heat transfer tube 2 with an extremely simple operation and a small number of work steps, and the work cost can be reduced.
Furthermore, according to this 4th Embodiment, the surface treatment of a desired number of heat exchanger tubes is attained.

図5は本発明の第5実施形態を示す図4に対応した要部側面図である。
この第5実施形態においては、前記第4実施形態に加えて、伝熱管2の外周にヒーター25を巻回し、ヒーター25により伝熱管2を加温して所定温度に保持し、前記第4実施形態と同様な手順で、伝熱管2内に表面処理液を通流させるように構成している。ヒーター25はケーブル27を介して電源26に接続されている。なお、前記第4実際形態と同一の部材は同一の符号で示し、説明を省略する。
かかる第5実施形態によれば、ヒーター25によって、伝熱管2が外面側から加温されて高温に保持された状態で、伝熱管2内に表面処理液を通流させることが可能となり、前記第4実施形態の常温時よりも伝熱管2内面における表面被膜の形成時間を短縮できるとともに、表面処理の作業工数を低減できる。該ヒーター25の加熱により、室温より高い温度から100℃以下の温度範囲で表面処理をすることが好ましい。
その他の構成及び手順は前記第4実施形態(図4)と同様である。
FIG. 5 is a side view of an essential part corresponding to FIG. 4 showing a fifth embodiment of the present invention.
In the fifth embodiment, in addition to the fourth embodiment, a heater 25 is wound around the outer periphery of the heat transfer tube 2, and the heat transfer tube 2 is heated by the heater 25 and maintained at a predetermined temperature. The surface treatment liquid is made to flow through the heat transfer tube 2 in the same procedure as the embodiment. The heater 25 is connected to a power source 26 via a cable 27. The same members as those in the fourth actual embodiment are denoted by the same reference numerals, and description thereof is omitted.
According to the fifth embodiment, the surface treatment liquid can be caused to flow through the heat transfer tube 2 while the heat transfer tube 2 is heated from the outer surface side and maintained at a high temperature by the heater 25. The time for forming the surface coating on the inner surface of the heat transfer tube 2 can be shortened and the number of man-hours for the surface treatment can be reduced as compared with the normal temperature of the fourth embodiment. It is preferable to perform the surface treatment by heating the heater 25 in a temperature range from higher than room temperature to 100 ° C. or less.
Other configurations and procedures are the same as those in the fourth embodiment (FIG. 4).

図6は本発明の第6実施形態に係る伝熱管単体の表面処理方法を示す要部側面図である。
この第6実施形態においては、前記第4実施形態と同様に、前記伝熱管2を蒸気発生器100のシェル1内に組み込む前、あるいは蒸気発生器100から取り外した伝熱管2単体の状態で、伝熱管2の入口側に入口ダクト23を接続し、伝熱管2の出口側に出口ダクト24を接続し、さらにこれら入口ダクト23と出口ダクト24との間を、処理液ポンプ12が介装された処理液管13で接続している。
さらにこの第6実施形態においては、前記のような第4実施形態と同様な伝熱管2の表面処理用組立体を、所定温度に加温流体(恒温層)28が収容された恒温槽025内に横置きに収納して、恒温槽025内を所定温度に保持し、伝熱管2内に表面処理液を通流させている。
29は温度制御装置であり、前記加温流体28への加熱量あるいは冷却量を調整して、加温流体(恒温層)28の温度を目標温度に制御している。なお、前記第4実際形態と同一の部材は同一の符号で示し、説明を省略する。該加温流体の加熱により、室温より高い温度から100℃以下の温度範囲で表面処理をすることが好ましい。
FIG. 6 is a side view of an essential part showing a surface treatment method for a single heat transfer tube according to a sixth embodiment of the present invention.
In the sixth embodiment, as in the fourth embodiment, before the heat transfer tube 2 is incorporated into the shell 1 of the steam generator 100 or in a state of the heat transfer tube 2 alone removed from the steam generator 100, An inlet duct 23 is connected to the inlet side of the heat transfer tube 2, an outlet duct 24 is connected to the outlet side of the heat transfer tube 2, and a treatment liquid pump 12 is interposed between the inlet duct 23 and the outlet duct 24. The treatment liquid pipe 13 is connected.
Further, in the sixth embodiment, the surface treatment assembly of the heat transfer tube 2 similar to that in the fourth embodiment as described above is placed in a thermostatic chamber 025 in which a heating fluid (a thermostatic layer) 28 is accommodated at a predetermined temperature. The thermostat 025 is kept at a predetermined temperature, and the surface treatment liquid is passed through the heat transfer tube 2.
Reference numeral 29 denotes a temperature control device, which controls the temperature of the heated fluid (constant temperature layer) 28 to a target temperature by adjusting the amount of heating or cooling to the heated fluid 28. The same members as those in the fourth actual embodiment are denoted by the same reference numerals, and description thereof is omitted. It is preferable to perform the surface treatment in a temperature range from a temperature higher than room temperature to 100 ° C. or less by heating the heated fluid.

かかる第6実施形態によれば、目標とする一定温度に管理された加温流体(恒温層)28内に伝熱管2の表面処理用組立体を収納して、伝熱管2を外面側から一様に加熱し高温に保持するので、伝熱管2の温度を常時目標の高温に保持した状態で、伝熱管2内に表面処理液を通流させることが可能となり、表面被膜の形成時間を最小限まで短縮できるとともに、前記第4〜第5実施形態よりも表面処理の作業工数がさらに低減できる。   According to the sixth embodiment, the assembly for surface treatment of the heat transfer tube 2 is accommodated in the heated fluid (constant temperature layer) 28 controlled to a target constant temperature, and the heat transfer tube 2 is moved from the outer surface side. Since the heat treatment tube 2 is heated and kept at a high temperature, it is possible to allow the surface treatment liquid to flow through the heat transfer tube 2 while keeping the temperature of the heat transfer tube 2 at the target high temperature at all times, thereby minimizing the formation time of the surface coating. It can be shortened to the limit, and the man-hours for surface treatment can be further reduced as compared with the fourth to fifth embodiments.

図7は本発明の第7実施形態に係る伝熱管単体の表面処理方法を示す要部側面図である。
この第7実施形態においては、U字状に形成された前記伝熱管2を単体の状態で、表面処理液の入口及び出口を上方に向けて立て、注入口31を有する表面処理液の入口室30より伝熱管2内に表面処理液を注入して満たし、伝熱管2の内面を前記表面処理液に所定時間浸漬することにより、該伝熱管2内面に表面処理液の表面被膜を形成するように構成されている。なお、第7実施形態の表面処理方法の前には、前記スケール除去の為の硝フッ酸処理やクエン酸処理を行うこともある。
かかる第7実施形態によれば、複数のチューブを一纏めにできる部材である前記固定板121に伝熱管2を取り付けることにより、複数の伝熱細管からなる伝熱管2を一つの処理液の注入口で一度に表面処理をする事ができる。また、図7に示される様に複数の伝熱細管を一纏めにできる固定板121にR部の径の小さいU字状の伝熱細管を内側から連結していくと、小スペースで以って伝熱管2を一度に表面処理することができる。
FIG. 7 is a side view of an essential part showing a surface treatment method for a single heat transfer tube according to a seventh embodiment of the present invention.
In the seventh embodiment, the heat transfer tube 2 formed in a U-shape is in a single state, the inlet and outlet of the surface treatment liquid are faced upward, and the inlet chamber of the surface treatment liquid having an inlet 31 is provided. The surface treatment liquid is injected and filled in the heat transfer tube 2 from 30 and the inner surface of the heat transfer tube 2 is immersed in the surface treatment liquid for a predetermined time so as to form a surface coating of the surface treatment liquid on the inner surface of the heat transfer tube 2. It is configured. Before the surface treatment method of the seventh embodiment, nitric hydrofluoric acid treatment or citric acid treatment for scale removal may be performed.
According to the seventh embodiment, by attaching the heat transfer tube 2 to the fixed plate 121 which is a member capable of bringing together a plurality of tubes, the heat transfer tube 2 composed of a plurality of heat transfer thin tubes is connected to an inlet for one treatment liquid. Can be surface treated at once. Further, as shown in FIG. 7, when a U-shaped heat transfer thin tube having a small diameter of the R portion is connected from the inside to a fixed plate 121 that can bundle a plurality of heat transfer thin tubes together, a small space can be used. The heat transfer tube 2 can be surface-treated at a time.

また、かかる第7実施形態によれば、前記伝熱管2を、表面処理液入口及び出口を上方に向けて立てて、注入口31及び入口室30を通して伝熱管2の入口から表面処理液を注入し、伝熱管2の内面を表面処理液に所定時間浸漬して伝熱管2内面に表面被膜を形成するので、表面処理液を、立てられた伝熱管2内に重力によって流し込み一定時間保持するのみで、伝熱管2内面に表面被膜を形成でき、表面処理液循環用の処理液ポンプや処理液管が不要となる。   In addition, according to the seventh embodiment, the heat transfer tube 2 is placed with the surface treatment liquid inlet and outlet facing upward, and the surface treatment liquid is injected from the inlet of the heat transfer tube 2 through the inlet 31 and the inlet chamber 30. Since the inner surface of the heat transfer tube 2 is immersed in the surface treatment liquid for a predetermined time to form a surface coating on the inner surface of the heat transfer tube 2, the surface treatment liquid is poured into the standing heat transfer tube 2 by gravity and held for a certain period of time. Thus, a surface coating can be formed on the inner surface of the heat transfer tube 2, and a processing liquid pump and a processing liquid pipe for circulating the surface processing liquid become unnecessary.

図8は本発明の第8実施形態を示す図6対応図である。
この第8実施形態においては、前記第7実施形態と同様に、U字状に形成された伝熱管2を単体の状態で、内部に加温された温水34が収容された温水槽33内に伝熱管2を浸漬して表面処理液の入口及び出口を上方に向けて立てて、温水34によって伝熱管2を所定温度に昇温して保持し、複数の伝熱細管を一纏めにできる固定板121に取り付けられた表面処理液の注入口31及び入口室30を通して伝熱管2内に表面処理液を注入し、伝熱管2の内面を表面処理液に所定時間浸漬することにより、伝熱管2内面にクロム含有量の多い表面被膜を形成するように構成されている。前記伝熱管2の反対側の開口部は図8のように複数の伝熱細管を一纏めにできる固定板121に固定すると、より安定に表面処理が行える。また、該加温水の加熱により、室温より高い温度から100℃以下の温度範囲で表面処理をすることが好ましい。
尚、前記第7実際形態と同一の部材は同一の符号で示し、説明を省略する。
FIG. 8 is a view corresponding to FIG. 6 showing an eighth embodiment of the present invention.
In the eighth embodiment, similarly to the seventh embodiment, the heat transfer tube 2 formed in a U-shape is in a single state and is placed in a hot water tank 33 in which warm water 34 heated inside is accommodated. A fixed plate that immerses the heat transfer tube 2 so that the inlet and outlet of the surface treatment liquid face upward, and heats the heat transfer tube 2 to a predetermined temperature by hot water 34 and holds the heat transfer tube 2 together. The inner surface of the heat transfer tube 2 is injected by injecting the surface treatment solution into the heat transfer tube 2 through the inlet 31 and the inlet chamber 30 of the surface treatment solution attached to 121 and immersing the inner surface of the heat transfer tube 2 in the surface treatment solution for a predetermined time. A surface film having a high chromium content is formed. When the opening on the opposite side of the heat transfer tube 2 is fixed to a fixing plate 121 that can bundle a plurality of heat transfer thin tubes as shown in FIG. 8, surface treatment can be performed more stably. Moreover, it is preferable to perform the surface treatment in a temperature range from higher than room temperature to 100 ° C. or less by heating the heated water.
The same members as those in the seventh actual embodiment are denoted by the same reference numerals, and the description thereof is omitted.

かかる第8実施形態によれば、高温に保持された温水槽33内に単体の伝熱管全体を収納して、伝熱管2の温度を常時高温に保持した状態で、伝熱管2内に表面処理液を流し込み一定時間保持することが可能となり、簡単な手段で前記各実施形態よりも表面被膜の形成時間を短縮できる。
その他の構成及び手順は前記第7実施形態(図7)と同様である。
According to the eighth embodiment, the entire heat transfer tube is housed in the hot water tank 33 held at a high temperature, and the surface of the heat transfer tube 2 is surface-treated while the temperature of the heat transfer tube 2 is always kept high. It is possible to pour the liquid and hold it for a certain period of time, and the time for forming the surface film can be shortened by simple means compared to the above embodiments.
Other configurations and procedures are the same as those in the seventh embodiment (FIG. 7).

以上、本発明の実施の形態につき述べたが、本発明は既述の実施の形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変更が可能である。   While the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made based on the technical idea of the present invention.

本発明の第1実施形態に係る蒸気発生器用伝熱管の表面処理方法を示す要部断面図である。FIG. 2 is a cross-sectional view of a main part showing a surface treatment method for a heat transfer tube for a steam generator according to a first embodiment of the present invention. 本発明の第2実施形態を示す図1に対応した要部断面図である。It is principal part sectional drawing corresponding to FIG. 1 which shows 2nd Embodiment of this invention. 本発明の第3実施形態を示す図1に対応した要部断面図である。It is principal part sectional drawing corresponding to FIG. 1 which shows 3rd Embodiment of this invention. 本発明の第4実施形態に係る伝熱管単体の表面処理方法を示す要部側面図である。It is a principal part side view which shows the surface treatment method of the heat exchanger tube single-piece | unit which concerns on 4th Embodiment of this invention. 本発明の第5実施形態を示す図4に対応した要部側面図である。It is a principal part side view corresponding to FIG. 4 which shows 5th Embodiment of this invention. 本発明の第6実施形態に係る伝熱管単体の表面処理方法を示す要部側面図である。It is a principal part side view which shows the surface treatment method of the heat exchanger tube single-piece | unit which concerns on 6th Embodiment of this invention. 本発明の第7実施形態を示す図4に対応した要部側面図である。It is a principal part side view corresponding to FIG. 4 which shows 7th Embodiment of this invention. 本発明の第8実施形態を示す図6に対応した要部側面図である。It is a principal part side view corresponding to FIG. 6 which shows 8th Embodiment of this invention.

符号の説明Explanation of symbols

100 蒸気発生器
01 ダウンカマー
2 伝熱管
3 管支持板
04 仕切板
4 高温流体入口室
5 高温流体出口室
6 蒸気室
7 給水入口ノズル
8 給水出口ノズル
9 外筒
10 高温流体入口ノズル
11 高温流体出口ノズル
12 処理液ポンプ
120 管板
121 固定板
13 処理液管
14 空気管
15 空気供給装置
17 純水管
18 純水ポンプ
19 純水タンク
23 入口ダクト
24 出口ダクト
25 ヒーター
025 恒温槽
26 電源
27 ケーブル
28 加温流体
29 温度制御装置
30 入口室
31 注入口
33 温水槽
34 加温流体
DESCRIPTION OF SYMBOLS 100 Steam generator 01 Downcomer 2 Heat transfer tube 3 Tube support plate 04 Partition plate 4 Hot fluid inlet chamber 5 Hot fluid outlet chamber 6 Steam chamber 7 Feed water inlet nozzle 8 Feed water outlet nozzle 9 Outer cylinder 10 Hot fluid inlet nozzle 11 Hot fluid outlet Nozzle 12 Treatment liquid pump 120 Tube plate 121 Fixed plate 13 Treatment liquid pipe 14 Air tube 15 Air supply device 17 Pure water pipe 18 Pure water pump 19 Pure water tank 23 Inlet duct 24 Outlet duct 25 Heater 025 Constant temperature bath 26 Power supply 27 Cable 28 Addition Warm fluid 29 Temperature controller 30 Inlet chamber 31 Inlet 33 Hot water tank 34 Heated fluid

Claims (9)

Ni−Cr−Fe系合金からなる蒸気発生器用伝熱管の表面処理方法であって、前記伝熱管を蒸気発生器本体内に組み付け、表面処理液を前記蒸気発生器の高温流体出入口室を介して前記伝熱管内に通流させて、前記伝熱管内面に表面被膜を形成することを特徴とする蒸気発生器用伝熱管の表面処理方法。   A surface treatment method for a steam generator heat transfer tube made of a Ni-Cr-Fe alloy, wherein the heat transfer tube is assembled in a steam generator body, and a surface treatment liquid is passed through a high-temperature fluid inlet / outlet chamber of the steam generator. A surface treatment method for a heat transfer tube for a steam generator, wherein a surface coating is formed on the inner surface of the heat transfer tube by flowing through the heat transfer tube. 前記蒸気発生器本体内に、所定温度に加温した加温空気を供給して前記伝熱管を加温し、前記伝熱管内に表面処理液を通流させることを特徴とする請求項1に記載の蒸気発生器用伝熱管の表面処理方法。   The heated air is heated to a predetermined temperature in the steam generator body to heat the heat transfer tube, and a surface treatment liquid is allowed to flow through the heat transfer tube. The surface treatment method of the heat exchanger tube for steam generators as described. 前記蒸気発生器本体内に、所定温度に加温した純水を供給して前記伝熱管を加温し、前記伝熱管内に表面処理液を通流させることを特徴とする請求項1に記載の蒸気発生器用伝熱管の表面処理方法。   The pure water heated to a predetermined temperature is supplied into the steam generator body to heat the heat transfer tube, and a surface treatment liquid is allowed to flow through the heat transfer tube. Surface treatment method for heat transfer tubes for steam generators. Ni−Cr−Fe系合金からなる蒸気発生器用伝熱管の表面処理方法であって、前記伝熱管を蒸気発生器本体から取り外した前記伝熱管単体の状態で、表面処理液を前記伝熱管内を通流させて、前記伝熱管内面に表面被膜を形成することを特徴とする蒸気発生器用伝熱管の表面処理方法。   A method for surface treatment of a heat transfer tube for a steam generator made of a Ni-Cr-Fe alloy, wherein the heat transfer tube is removed from the steam generator body, and the surface treatment liquid is passed through the heat transfer tube in the state of the heat transfer tube alone. A surface treatment method for a heat transfer tube for a steam generator, characterized in that a surface coating is formed on the inner surface of the heat transfer tube by flowing. 前記伝熱管を単体の状態で、前記伝熱管をヒーターで加温して所定温度に保持し、前記伝熱管内に表面処理液を通流させることを特徴とする請求項4に記載の蒸気発生器用伝熱管の表面処理方法。   The steam generation according to claim 4, wherein the heat transfer tube is heated to a predetermined temperature by heating the heat transfer tube with a heater, and a surface treatment liquid is allowed to flow through the heat transfer tube. Surface treatment method for heat transfer tubes for equipment. 前記伝熱管を単体の状態で、前記伝熱管を恒温層内に収納して所定温度に保持し、前記伝熱管内に表面処理液を通流させることを特徴とする請求項4に記載の蒸気発生器用伝熱管の表面処理方法。   5. The steam according to claim 4, wherein the heat transfer tube is contained in a single state, the heat transfer tube is housed in a constant temperature layer and maintained at a predetermined temperature, and a surface treatment liquid is allowed to flow through the heat transfer tube. Surface treatment method for heat transfer tubes for generators. Ni−Cr−Fe系合金からなる蒸気発生器用伝熱管の表面処理方法であって、U字状に形成された前記伝熱管を単体の状態で、前記表面処理液の入口及び出口を上方に向けて立て、前記伝熱管の前記入口から表面処理液を注入し、前記伝熱管の内面を前記表面処理液に浸漬することにより、前記伝熱管内面に表面被膜を形成することを特徴とする蒸気発生器用伝熱管の表面処理方法。   A surface treatment method for a heat transfer tube for a steam generator made of a Ni-Cr-Fe alloy, wherein the heat transfer tube formed in a U-shape is in a single state, and the inlet and outlet of the surface treatment liquid are directed upward. And generating a surface coating on the inner surface of the heat transfer tube by injecting a surface treatment solution from the inlet of the heat transfer tube and immersing the inner surface of the heat transfer tube in the surface treatment solution. Surface treatment method for heat transfer tubes for equipment. 内部に加温された温水が収容されている温水槽内に前記伝熱管を浸漬し、前記伝熱管を保持し、前記伝熱管内面を表面処理液に浸漬させることを特徴とする請求項7に記載の蒸気発生器用伝熱管の表面処理方法。   The heat transfer tube is immersed in a hot water tank in which warm water heated inside is stored, the heat transfer tube is held, and the inner surface of the heat transfer tube is immersed in a surface treatment liquid. The surface treatment method of the heat exchanger tube for steam generators as described. 蒸気発生器から取り外した状態の複数本の伝熱細管からなる伝熱管束の開口部の一方に入口ダクトを接続するとともに他方に出口ダクトを接続し、前記伝熱管束を同時に表面処理を施すことを特徴とする請求項4ないし請求項6のいずれかに記載の蒸気発生器用伝熱管の表面処理方法。   An inlet duct is connected to one of the openings of the heat transfer tube bundle consisting of a plurality of heat transfer thin tubes removed from the steam generator, and an outlet duct is connected to the other, and the heat transfer tube bundle is subjected to surface treatment at the same time. A surface treatment method for a heat transfer tube for a steam generator according to any one of claims 4 to 6.
JP2005113062A 2005-04-11 2005-04-11 Method for surface treatment of heat transfer tube of steam generator Withdrawn JP2006292531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005113062A JP2006292531A (en) 2005-04-11 2005-04-11 Method for surface treatment of heat transfer tube of steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005113062A JP2006292531A (en) 2005-04-11 2005-04-11 Method for surface treatment of heat transfer tube of steam generator

Publications (1)

Publication Number Publication Date
JP2006292531A true JP2006292531A (en) 2006-10-26

Family

ID=37413257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005113062A Withdrawn JP2006292531A (en) 2005-04-11 2005-04-11 Method for surface treatment of heat transfer tube of steam generator

Country Status (1)

Country Link
JP (1) JP2006292531A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109034A (en) * 2012-11-30 2014-06-12 Mitsubishi Heavy Ind Ltd Surface treatment method of structural member
JP2019502106A (en) * 2015-11-24 2019-01-24 フラマトムFramatome Steam generator and corresponding manufacturing and use method
JP2020144138A (en) * 2020-05-14 2020-09-10 フラマトムFramatome Steam generator, and manufacturing method and use method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109034A (en) * 2012-11-30 2014-06-12 Mitsubishi Heavy Ind Ltd Surface treatment method of structural member
JP2019502106A (en) * 2015-11-24 2019-01-24 フラマトムFramatome Steam generator and corresponding manufacturing and use method
JP2020144138A (en) * 2020-05-14 2020-09-10 フラマトムFramatome Steam generator, and manufacturing method and use method therefor

Similar Documents

Publication Publication Date Title
TWI355003B (en)
JP6773463B2 (en) Chemical decontamination method for pressurized water nuclear power plant
CN109643588A (en) Filled on nuclear reactor-under let out the threeway electric hybrid module of system stream
JP2010043956A (en) Method of operating nuclear plant
JP2006292531A (en) Method for surface treatment of heat transfer tube of steam generator
JP2009216577A (en) Chemical decontamination method and chemical decontamination device
US20090183694A1 (en) System and method for crevice cleaning in steam generators
JP2006152410A (en) Method and device for heat treatment of tube
US20100136215A1 (en) Method for forming ferrite film onto surface of structural member composing plant, ferrite film formation apparatus and quartz crystal electrode apparatus
JP4847888B2 (en) Method for improving piping residual stress and high-frequency heating device for nuclear power plant
JPH0118974B2 (en)
JP5377147B2 (en) Method of forming nickel ferrite film on carbon steel member
RU2542329C1 (en) Method for intra-loop passivation of steel surfaces of nuclear reactor
JP3987128B2 (en) Heat exchange controller heat valve
ES2351718B2 (en) BWR REACTOR PROTECTION METHOD AGAINST CORROSION DURING HYDOSTATIC PRESSURE TEST.
JP7132162B2 (en) Corrosion suppression method for carbon steel piping
JP2001083284A (en) Heat-transfer pipe for feedwater heater, feedwater using such heat-transfer pipe and method for manufacturing such hear-transfer pipe
CN105928417B (en) A kind of heat medium water pipeline corrosion protection system and method
JP4901691B2 (en) Chemical decontamination method
JP5976335B2 (en) Surface treatment method for structures
KR101826882B1 (en) System for coating of water-cooled heat exchanger
ES2892949T3 (en) Suppression of radionuclide deposition on components of nuclear power plants
JP7165393B2 (en) Method for surface treatment of stainless steel cooling pipe for beer server, and method for assembling beer server
JPS63227724A (en) Method for improving residual stress of stainless steel pipe or the like
JP7314755B2 (en) Boiler chemical cleaning method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701