JP2006152410A - Method and device for heat treatment of tube - Google Patents

Method and device for heat treatment of tube Download PDF

Info

Publication number
JP2006152410A
JP2006152410A JP2004347967A JP2004347967A JP2006152410A JP 2006152410 A JP2006152410 A JP 2006152410A JP 2004347967 A JP2004347967 A JP 2004347967A JP 2004347967 A JP2004347967 A JP 2004347967A JP 2006152410 A JP2006152410 A JP 2006152410A
Authority
JP
Japan
Prior art keywords
pipe
piping
heating
heat treatment
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004347967A
Other languages
Japanese (ja)
Other versions
JP4491334B2 (en
Inventor
Noboru Saito
昇 齋藤
Nobuyoshi Yanagida
信義 柳田
Shoji Hayashi
章二 林
Satoshi Sugano
智 菅野
Kunio Enomoto
邦夫 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004347967A priority Critical patent/JP4491334B2/en
Priority to US11/290,468 priority patent/US20060113010A1/en
Publication of JP2006152410A publication Critical patent/JP2006152410A/en
Application granted granted Critical
Publication of JP4491334B2 publication Critical patent/JP4491334B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for heat treatment of a tube in which the residual stresses in a weld metal part and a weld heat-affected zone of an inner surface of an existing tube are converted into the compressive stresses, and the compressive stresses are generated in the inner surface of the existing pipe. <P>SOLUTION: In the method for heat treatment of the pipes to constitute a piping system, coolant is allowed to stay inside the pipe, and the outer surface of the pipe is heated at an arbitrary position. After generating the temperature distribution with less temperature difference in a tubular wall surface of the pipe at the heated portion, coolant is allowed to flow. By converting the residual stresses in the weld metal part and the weld heat-affected zone of the inner surface of the pipe into the compressive stresses, stress corrosion cracks generated from the weld metal part and the weld heat-affected zone can be suppressed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プラントの配管系を構成する配管の内面に存在する引張残留応力を圧縮残留応力に転換して応力腐食割れを抑制する方法に関わる。   The present invention relates to a method for suppressing stress corrosion cracking by converting a tensile residual stress existing on the inner surface of a pipe constituting a piping system of a plant into a compressive residual stress.

ステンレス鋼やニッケル基合金鋼の溶接部には、溶接熱によって結晶粒界にクローム炭化物が析出し、この結果、結晶粒界の極近傍にクローム欠乏層が形成され、このクローム欠乏層に鋭敏化(腐食に対し感受性が高くなる現象)が発生する。一方、プラントの配管系を構成する配管の溶接部近傍の表面には、一般に高い引張残留応力が生成されるので、材料が鋭敏化した状態で、厳しい腐食環境下で使用されると応力腐食割れを起こす。すなわち、材料の鋭敏化,高い引張残留応力、および腐食環境の三因子が重畳すると、応力腐食割れの危険性が高まる。   In the welds of stainless steel and nickel-base alloy steel, chrome carbide precipitates at the grain boundaries due to welding heat, resulting in the formation of a chrome-depleted layer in the immediate vicinity of the grain boundaries, making the chrome-depleted layer sensitized. (Phenomenon that becomes more sensitive to corrosion) occurs. On the other hand, generally high tensile residual stress is generated on the surface near the welded part of the pipes that make up the piping system of the plant. Therefore, stress corrosion cracking occurs when the material is sensitized and used in a severe corrosive environment. Wake up. That is, when the three factors of material sensitization, high tensile residual stress, and corrosive environment overlap, the risk of stress corrosion cracking increases.

この応力腐食割れの発生を抑制するために、腐食環境に曝される領域の引張残留応力の低減が対策の一つとして挙げられる。プラントの既設配管溶接部内面の引張残留応力を低減する方法として、特許公報第957324号(特許文献1)に記載されている「配管系の熱処理方法」や特開昭55−110729号公報(特許文献2)に記載されている「鋼管の残留応力改善方法」がある。前者は、プラントの配管系を組立てた後、配管系を構成する配管内に冷却剤を流動させつつ、配管を外面から加熱して配管の内面と配管の外面との間に温度差を発生させ、外面を圧縮降伏、内面を引張降伏させることにより配管内面の引張残留応力を低減する方法である。後者は、配管内に冷却剤の無い状態で、配管を加熱し、配管の管壁内の温度分布を一様にした後、配管内に冷却剤を供給することで、配管の内面と配管の外面との間に温度差を発生させ、内面を引張降伏させ、外面を圧縮降伏させることにより配管内面の引張残留応力を低減する方法である。   In order to suppress the occurrence of stress corrosion cracking, one of the countermeasures is to reduce the tensile residual stress in the area exposed to the corrosive environment. As a method of reducing the tensile residual stress on the inner surface of a welded part of an existing pipe in a plant, “Pipe system heat treatment method” described in Japanese Patent Publication No. 957324 (Patent Document 1) and Japanese Patent Application Laid-Open No. 55-110729 (Patent Publication). There is a “method for improving residual stress in steel pipes” described in literature 2). The former, after assembling the plant piping system, causes the temperature difference between the inner surface of the piping and the outer surface of the piping by heating the piping from the outer surface while flowing the coolant in the piping constituting the piping system. This is a method of reducing the tensile residual stress on the inner surface of the pipe by compressive yielding the outer surface and tensile yielding the inner surface. In the latter case, the pipe is heated in a state where there is no coolant in the pipe, the temperature distribution in the pipe wall of the pipe is made uniform, and then the coolant is supplied into the pipe so that the inner surface of the pipe and the pipe This is a method of reducing the tensile residual stress on the inner surface of the pipe by generating a temperature difference with the outer surface, tensile yielding the inner surface, and compressing yielding the outer surface.

特許公報第957324号Patent Publication No. 957324 特開昭55−110729号公報Japanese Patent Laid-Open No. 55-110729

上記特許文献1の従来技術では、配管壁内に形成される温度の差が緩やかである。上記特許文献2の従来技術は、簡易な加熱装置で加熱でき、かつ、配管内面近傍で急峻な温度勾配を得ることが出来るという特徴があるが、管内面を冷却せず加熱するため、既設プラントの配管系に適用する場合には、配管系全体での冷却剤の出し入れが必要となる。   In the prior art of Patent Document 1, the temperature difference formed in the pipe wall is gradual. The conventional technology of Patent Document 2 has a feature that it can be heated with a simple heating device and a steep temperature gradient can be obtained in the vicinity of the inner surface of the pipe. When applying to this piping system, it is necessary to put in and out the coolant in the entire piping system.

本発明の目的は、既設配管溶接継手の配管において、簡便な方法で内面の応力腐食割れの発生を長期に抑制することにある。   An object of the present invention is to suppress the occurrence of stress corrosion cracks on the inner surface for a long period of time in a simple method in the pipe of an existing pipe welded joint.

上記目的を達成するための本発明の特徴は、プラントの配管系を構成する配管の熱処理方法において、前記配管の内部に冷却剤を停滞させた状態で、前記配管外面の任意の位置を加熱することにより、管壁内に緩やかな温度勾配を形成した後、管内の冷却剤を流動させることにより、当該加熱部の管壁温度勾配を配管内表面近傍で急峻な温度勾配を形成させるようにした熱処理方法と装置にある。配管を加熱した後、特に配管内面と配管の外面に温度差を発生させ、配管内面を急冷することにより、配管内面を引張降伏させ、配管外面を圧縮降伏させ、配管内外面の温度差がなくなったときには、配管内面の引張残留応力を低減させることとなる。   In order to achieve the above object, the present invention is characterized in that, in a heat treatment method for piping constituting a piping system of a plant, an arbitrary position on the outer surface of the piping is heated in a state where a coolant is stagnated in the piping. Thus, after forming a gentle temperature gradient in the tube wall, the coolant in the tube is flowed to form a steep temperature gradient in the vicinity of the inner surface of the pipe. Heat treatment method and apparatus. After the pipe is heated, a temperature difference is generated between the pipe inner surface and the outer surface of the pipe, and by rapidly cooling the inner surface of the pipe, the inner surface of the pipe is tensile yielded, the outer surface of the pipe is compressed and yielded, and the temperature difference between the inner and outer surfaces of the pipe is eliminated. When this occurs, the tensile residual stress on the inner surface of the pipe is reduced.

ここで、冷却剤は水を用いることが簡便で好ましい。また、配管系が原子炉を構成する配管である場合は、冷却剤は炉水を用いても良い。これにより冷却剤となる炉水を配管内に停滞させた状態で、配管内面近傍で急峻な温度勾配を形成し、内面の残留応力を圧縮応力に転換する熱処理方法を提供することができる。さらに、配管の加熱手段は、誘導加熱、及び直接通電加熱のいずれを用いても良い。   Here, it is preferable that water is used as the coolant because it is simple. Further, when the piping system is a piping constituting a nuclear reactor, the coolant may be reactor water. Thus, it is possible to provide a heat treatment method that forms a steep temperature gradient in the vicinity of the inner surface of the pipe and converts the residual stress on the inner surface into a compressive stress in a state in which the reactor water serving as the coolant is stagnated in the pipe. Furthermore, any of induction heating and direct current heating may be used as the pipe heating means.

以上に記載した配管の熱処理方法は、配管を加熱する手段である誘導加熱用の加熱コイルと、内面に圧縮残留応力を発生させる配管において配管外面と加熱コイルとの間に一定の隙間を保つためのスペーサーと、加熱コイルに取付けられ内部を冷却剤が循環できる配管と、加熱コイルに電流を供給するためのトランスと電源と、加熱コイルに取付けられた冷却剤循環用の配管に冷却剤を供給する冷却剤循環機構とから構成される熱処理装置と配管系に設けられる循環ポンプを用いるか、あるいは、配管を加熱する手段である直接通電加熱の端子と、直接通電加熱の端子に電流を供給するためのトランスと電源と、直接通電加熱の端子に取付けられた冷却剤循環用の配管に冷却剤を供給する冷却剤循環機構とから構成される熱処理装置と配管系に設けられる循環ポンプを用いることで達成できる。   The above-described heat treatment method for piping is to maintain a certain gap between the outer surface of the piping and the heating coil in the induction heating heating coil that is a means for heating the piping and the piping that generates compressive residual stress on the inner surface. The coolant is supplied to the spacer, the piping that is attached to the heating coil and allows the coolant to circulate inside, the transformer and power supply for supplying current to the heating coil, and the coolant circulation piping that is attached to the heating coil Use a heat treatment device composed of a coolant circulation mechanism and a circulation pump provided in the piping system, or supply current to the direct current heating terminal and the direct current heating terminal which are means for heating the piping. Heat treatment apparatus and piping system comprising: a transformer for power supply; and a coolant circulation mechanism for supplying coolant to a coolant circulation pipe attached to a terminal for direct current heating It can be achieved by using a circulation pump provided.

本発明によれば、プラントの配管系を組立てた後、配管系を構成する配管の内面に、特に溶接金属部位近傍に圧縮残留応力を発生させることができ、配管系の応力腐食割れを防止することができる。   According to the present invention, after the plant piping system is assembled, a compressive residual stress can be generated on the inner surface of the piping constituting the piping system, particularly in the vicinity of the weld metal part, thereby preventing stress corrosion cracking of the piping system. be able to.

本発明の第1の実施例を図1から図7を用いて説明する。   A first embodiment of the present invention will be described with reference to FIGS.

図1は、沸騰水型原子力発電プラントに本発明を適用した場合の一実施例である。   FIG. 1 shows an embodiment when the present invention is applied to a boiling water nuclear power plant.

原子炉圧力容器1は、核燃料が装荷される炉心部2,蒸気分離乾燥機3および炉心部2を取囲む炉心シュラウド4を内蔵する。複数の制御棒5が、炉心部2内に挿入される。制御棒5の操作は、制御棒駆動制御器6によって、制御される制御棒駆動装置7によって行われる。   The reactor pressure vessel 1 contains a core part 2 loaded with nuclear fuel, a steam separation dryer 3 and a core shroud 4 surrounding the core part 2. A plurality of control rods 5 are inserted into the core portion 2. The operation of the control rod 5 is performed by a control rod drive device 7 controlled by a control rod drive controller 6.

原子炉圧力容器1内には、冷却水である軽水が、炉心部2の幾分上方まで満たされる。原子炉の運転時、配管8に設けられる循環ポンプ9を駆動することによって、原子炉圧力容器1内の冷却水は、再循環系配管8及びライザー管(配管8に接続)10を通ってジェットポンプ11内に到達する。ライザー管10の一端は、原子炉圧力容器1内に挿入されてジェットポンプ11の上端に達している。配管8に設けられたバルブ12は、開いている。ジェットポンプ11内に到達した冷却水は、下部プレナム13を通って炉心部2に達する。炉心部2を上昇しながら、冷却水は核燃料より熱を奪い蒸気となる。   The reactor pressure vessel 1 is filled with light water, which is cooling water, to some extent above the core 2. During operation of the reactor, the circulating pump 9 provided in the pipe 8 is driven, so that the cooling water in the reactor pressure vessel 1 is jetted through the recirculation system pipe 8 and the riser pipe (connected to the pipe 8) 10. It reaches into the pump 11. One end of the riser tube 10 is inserted into the reactor pressure vessel 1 and reaches the upper end of the jet pump 11. The valve 12 provided in the pipe 8 is open. The cooling water that has reached the inside of the jet pump 11 reaches the core 2 through the lower plenum 13. While rising up the core 2, the cooling water takes heat from the nuclear fuel and becomes steam.

この蒸気は、蒸気分離乾燥機3を通った後、タービン14に送られ、復水器15で凝縮される。タービン14が駆動され、それに連結される発電機16が回転する。復水器15で凝縮されて発生した水は、給水ポンプ17によって原子炉圧力容器1内に送られる。   The steam passes through the steam separator / dryer 3, is then sent to the turbine 14, and is condensed in the condenser 15. The turbine 14 is driven, and the generator 16 connected thereto rotates. The water generated by being condensed in the condenser 15 is sent into the reactor pressure vessel 1 by the feed water pump 17.

以上のように、配管8とライザー管10によって、沸騰水型原子力発電プラントの一つの配管系である再循環系配管が構成される。   As described above, the pipe 8 and the riser pipe 10 constitute a recirculation pipe that is one pipe system of the boiling water nuclear power plant.

配管8に巻き付けられた加熱コイル18の両端端部は、高周波発振器19に接続される。誘導加熱装置の一種である高周波加熱装置20は、加熱コイル18と高周波発振器19などによって構成される。   Both end portions of the heating coil 18 wound around the pipe 8 are connected to a high frequency oscillator 19. A high-frequency heating device 20 that is a kind of induction heating device includes a heating coil 18 and a high-frequency oscillator 19.

原子炉圧力容器1とジェットポンプ11の上端部を連絡する再循環系配管の組立てが終了した後、循環ポンプ9を駆動させ、再循環系配管内に冷却水を流入させておく。その後、循環ポンプ9を停止させ、配管8内部に冷却水が停滞した状態にする。次に、配管8が高周波加熱装置20の加熱コイル18によって配管外面から加熱される。このとき、配管8外面の温度は、配管8外面の応力が、圧縮降伏応力以上になる温度を越えるように調整する。一方、配管8内面の温度は、停滞する冷却水が沸騰を始めるため、100℃以上に上昇する。図示しない配管外面の温度測定手段(例えば、熱電対等)の出力値と、予め設定した加熱時間から配管壁面内の温度分布あるいは、配管内面温度を推定する。   After the assembly of the recirculation system piping that connects the reactor pressure vessel 1 and the upper end of the jet pump 11 is completed, the circulation pump 9 is driven, and cooling water is allowed to flow into the recirculation system piping. Thereafter, the circulation pump 9 is stopped, and the cooling water is stagnated in the pipe 8. Next, the pipe 8 is heated from the outer surface of the pipe by the heating coil 18 of the high-frequency heating device 20. At this time, the temperature of the outer surface of the pipe 8 is adjusted so as to exceed the temperature at which the stress of the outer surface of the pipe 8 becomes equal to or higher than the compressive yield stress. On the other hand, the temperature of the inner surface of the pipe 8 rises to 100 ° C. or higher because the stagnant cooling water starts boiling. The temperature distribution in the pipe wall surface or the pipe inner surface temperature is estimated from the output value of the temperature measuring means (for example, thermocouple) (not shown) and the preset heating time.

前記配管の壁面温度分布が所定の分布に、あるいは配管内面温度が所定の温度になったと判断されると、循環ポンプ9を駆動し、配管8及びライザー管10内に、原子炉圧力容器1内の冷却水を供給する。   When it is determined that the wall surface temperature distribution of the pipe has a predetermined distribution or the pipe inner surface temperature has reached a predetermined temperature, the circulation pump 9 is driven, and the pipe 8 and the riser pipe 10 are placed in the reactor pressure vessel 1. Supply cooling water.

このように、配管8の外面から加熱を行い、配管8の内外面の温度差が少ない状態を作り、次に、配管8の内面を冷却することによって、配管内面近傍で急峻な温度勾配を形成し、配管8内面を引張降伏させることとなる。   In this way, heating is performed from the outer surface of the pipe 8 to create a state in which the temperature difference between the inner and outer surfaces of the pipe 8 is small, and then the inner surface of the pipe 8 is cooled to form a steep temperature gradient near the inner surface of the pipe 8. Then, the inner surface of the pipe 8 is tensile yielded.

その後、加熱コイル18の加熱を停止し、温度が下がると、配管8内面に圧縮残留応力が発生し、配管外面には引張残留応力が発生する。   Thereafter, when the heating of the heating coil 18 is stopped and the temperature is lowered, compressive residual stress is generated on the inner surface of the pipe 8 and tensile residual stress is generated on the outer surface of the pipe.

本発明によれば、再循環系配管の組立て後、配管の熱処理を行うことができ、再循環系配管の必要な部位の内面に圧縮残留応力を発生させることができる。   According to the present invention, after the recirculation system pipe is assembled, the pipe can be heat-treated, and a compressive residual stress can be generated on the inner surface of a necessary part of the recirculation system pipe.

また、原子炉圧力容器1内の冷却水を再循環系配管内に供給できるので、再循環系配管内に冷却水を供給するための装置を新たに設ける必要がない。   Moreover, since the cooling water in the reactor pressure vessel 1 can be supplied into the recirculation system pipe, it is not necessary to newly provide a device for supplying the cooling water into the recirculation system pipe.

図2に示す実施例は、配管21aと配管21bの溶接した配管において、溶接部22近傍の配管内面に圧縮残留応力を発生させるものである。   The embodiment shown in FIG. 2 generates compressive residual stress on the inner surface of the pipe in the vicinity of the welded portion 22 in the pipe welded to the pipe 21a and the pipe 21b.

配管21には、スペーサー23及びホルダー24を介して加熱コイル25が螺旋状に取付けられる。加熱コイル25の端部26aと端部26bには、電源27で発生する誘導電流がトランス28よりケーブル29a,29bを介して供給される。   A heating coil 25 is spirally attached to the pipe 21 via a spacer 23 and a holder 24. An induced current generated by the power source 27 is supplied from the transformer 28 to the ends 26a and 26b of the heating coil 25 via the cables 29a and 29b.

さらに、加熱コイル25には、冷却水循環ポンプ30よりホース31a,31bを介して、加熱コイル25の端部26aと端部26bから冷却水が供給される構造になっている。   Further, the cooling water is supplied to the heating coil 25 from the end portion 26a and the end portion 26b of the heating coil 25 from the cooling water circulation pump 30 via the hoses 31a and 31b.

配管外面の溶接金属部位に、溶接部表面の温度を測定するための熱電対32を取付ける。熱電対32はケーブル33を介して熱起電力による電圧を制御装置34に送る。   A thermocouple 32 for measuring the temperature of the surface of the welded portion is attached to the weld metal portion on the outer surface of the pipe. The thermocouple 32 sends a voltage due to the thermoelectromotive force to the control device 34 via the cable 33.

なお、配管21の内部には、図示しない供給系により冷却水が供給されるようになっている。   Note that cooling water is supplied into the pipe 21 from a supply system (not shown).

次に、配管に装着する部品である加熱コイル25、および加熱コイル25を支持するスペーサー23,ホルダー24について順次説明する。   Next, the heating coil 25 that is a component to be mounted on the pipe, the spacer 23 that supports the heating coil 25, and the holder 24 will be described in order.

図3に加熱コイル25の支持状態を示す。加熱コイル25はパイプ状の銅管を用いている。加熱コイル25はホルダー24により支持されるようになっている。   FIG. 3 shows a support state of the heating coil 25. The heating coil 25 uses a pipe-shaped copper tube. The heating coil 25 is supported by the holder 24.

図4に配管21の中心軸を法線とするような平面で仮想的に切ったときの断面を示す。加熱コイル25は、図示しないホルダー24により保持され、絶縁体であるスペーサー
23を介して、配管1に設置される。
FIG. 4 shows a cross section when virtually cut by a plane having the central axis of the pipe 21 as a normal line. The heating coil 25 is held by a holder 24 (not shown), and is installed in the pipe 1 via a spacer 23 that is an insulator.

図5に、加熱コイル25を配管に設置するために分離した状態を示す。加熱コイル25は半円弧状に分離できるようになっており、接続部となる図示しない上下のホルダー24で電気的な接続と冷却剤の流路の接続ができるようになっている。そのため、設置に際しては、スペーサーを管表面に合わせて取付けるのみで配管表面と加熱コイルの間の隙間を適切にとることが可能となる。   FIG. 5 shows a state where the heating coil 25 is separated for installation in the pipe. The heating coil 25 can be separated into a semicircular arc shape, and an electrical connection and a coolant flow path can be connected by upper and lower holders 24 (not shown) serving as connection portions. Therefore, at the time of installation, it is possible to appropriately take a gap between the pipe surface and the heating coil only by attaching the spacer to the pipe surface.

図6に、接続部となる上下のホルダー24の断面構造を示す。加熱コイル25の端部は、ホルダー24に接続されている。ホルダー24の上部には、冷却剤の流路となる出入口
35が設けられている。この出入口35を耐熱ホース等で接続することにより、冷却剤の回路を構成することができる。
FIG. 6 shows a cross-sectional structure of the upper and lower holders 24 serving as connection portions. The end of the heating coil 25 is connected to the holder 24. At the upper part of the holder 24, an entrance / exit 35 serving as a coolant flow path is provided. By connecting the entrance / exit 35 with a heat-resistant hose or the like, a coolant circuit can be configured.

次にこの装置を用いた熱処理施工の手順について説明する。図2において、装置を図示される状態に準備した後に、溶接部22で接合されている配管21aと配管21bの内部に図示しない循環ポンプにより冷却水を満たす。制御装置34は、冷却水循環ポンプ30を起動して加熱コイル25への冷却水の供給を開始する。次に加熱コイル25に電流を流す。加熱コイル25を流れる電流により、配管には誘導電流が誘起され、配管の発熱が起きる。配管外面の温度は熱電対32により測定され、制御装置34に送られる。制御装置34は、熱電対32の出力と、予め設定した加熱時間から配管の管壁面の温度分布あるいは、管内面温度を推定する。   Next, the procedure for heat treatment using this apparatus will be described. In FIG. 2, after preparing the apparatus in the state shown in the figure, the cooling water is filled in the pipes 21a and 21b joined by the welded portion 22 by a circulation pump (not shown). The control device 34 starts the cooling water circulation pump 30 and starts supplying cooling water to the heating coil 25. Next, a current is passed through the heating coil 25. Due to the current flowing through the heating coil 25, an induction current is induced in the pipe, and the pipe generates heat. The temperature of the outer surface of the pipe is measured by the thermocouple 32 and sent to the control device 34. The controller 34 estimates the temperature distribution on the pipe wall surface of the pipe or the pipe inner surface temperature from the output of the thermocouple 32 and a preset heating time.

前記配管の管壁面の温度分布あるいは、管内面温度が所定の値になったと判断されると、制御装置34は、図示しない循環ポンプを駆動し、配管内の冷却水を流動させる。所定の温度勾配が得られた後、加熱コイル25への電流供給を停止する。   When it is determined that the temperature distribution on the pipe wall surface of the pipe or the pipe inner surface temperature has reached a predetermined value, the control device 34 drives a circulation pump (not shown) to flow the cooling water in the pipe. After the predetermined temperature gradient is obtained, the current supply to the heating coil 25 is stopped.

図7に示す実施例は、図2に示す実施例の配管加熱手段を直接通電加熱としたものである。   In the embodiment shown in FIG. 7, the pipe heating means of the embodiment shown in FIG.

配管21には、直接通電加熱用のリング状端子36a,36bが取付けられる。リング状端子の端部37a,37bには、電源38で発生する電流がトランス39よりケーブル29a,29bを介して供給される。   Ring-shaped terminals 36 a and 36 b for direct current heating are attached to the pipe 21. Current generated by the power source 38 is supplied from the transformer 39 to the end portions 37a and 37b of the ring-shaped terminals via the cables 29a and 29b.

さらに、リング状端子36a,36bには、冷却水循環ポンプ30よりホース31a,31bを介して、リング状端子の端部37a,37bから冷却水が供給される構造になっている。   Furthermore, the cooling water is supplied to the ring-shaped terminals 36a and 36b from the end portions 37a and 37b of the ring-shaped terminals via the hoses 31a and 31b from the cooling water circulation pump 30.

配管外面の溶接金属部位に、溶接部表面の温度を測定するための熱電対32を取付ける。熱電対32はケーブル33を介して熱起電力による電圧を制御装置34に送る。   A thermocouple 32 for measuring the temperature of the surface of the welded portion is attached to the weld metal portion on the outer surface of the pipe. The thermocouple 32 sends a voltage due to the thermoelectromotive force to the control device 34 via the cable 33.

なお、配管21の内部には、図示しない供給系により冷却水が供給されるようになっている。   Note that cooling water is supplied into the pipe 21 from a supply system (not shown).

次にこの装置を用いた熱処理施工の手順について説明する。図7において、装置を図示される状態に準備した後に、溶接部22で接合されている配管21aと配管21bの内部を冷却水で満たす。制御装置34は、冷却水循環ポンプ30を起動してリング状端子36a,36bへの冷却水の供給を開始する。次にリング状端子36a,36bに電流を流す。リング状端子36a,36bに挟まれた配管21は通電加熱され、配管の発熱が起きる。配管表面の温度は熱電対32により測定され、制御装置34に送られる。制御装置34は、熱電対32の出力と、予め設定した加熱時間から配管の管壁面の温度分布あるいは、管内面温度を推定する。   Next, the procedure for heat treatment using this apparatus will be described. In FIG. 7, after preparing the apparatus in the state shown in the figure, the inside of the pipe 21 a and the pipe 21 b joined by the weld portion 22 is filled with cooling water. The control device 34 starts the cooling water circulation pump 30 and starts supplying the cooling water to the ring terminals 36a and 36b. Next, a current is passed through the ring terminals 36a and 36b. The piping 21 sandwiched between the ring-shaped terminals 36a and 36b is energized and heated, and the piping generates heat. The temperature of the pipe surface is measured by the thermocouple 32 and sent to the control device 34. The controller 34 estimates the temperature distribution on the pipe wall surface of the pipe or the pipe inner surface temperature from the output of the thermocouple 32 and a preset heating time.

前記配管の管壁面の温度分布あるいは、管内面温度が所定の値になったと判断されると、制御装置34は、図示しない循環ポンプを駆動し、配管内の冷却水を流動させる。所定の温度勾配が得られた後、リング状端子36a,36bへの電流供給を停止する。   When it is determined that the temperature distribution on the pipe wall surface of the pipe or the pipe inner surface temperature has reached a predetermined value, the control device 34 drives a circulation pump (not shown) to flow the cooling water in the pipe. After a predetermined temperature gradient is obtained, current supply to the ring-shaped terminals 36a and 36b is stopped.

ここで前述した実施例において、配管内面に圧縮残留応力が発生する理由を以下に説明する。   The reason why the compressive residual stress is generated on the inner surface of the pipe in the embodiment described above will be described below.

配管内の冷却水を流動させない状態で、配管を加熱すると、配管内に停滞する冷却水が沸騰を始めるため、配管内面の温度は、冷却水の沸騰温度である100℃以上に上昇し、配管壁内の温度分布は図8に示す曲線Aのような傾向になる。Toは配管外面の温度とする。曲線Aに示すような温度分布を形成した後、配管内の冷却水を流動させると、配管内面は急激に冷却され、冷却水温度に近づき、配管壁内の温度分布は図8に示す曲線Bのようになる。また、時間の経過による配管内外面の温度変化を図解的に示すと、図9に示すようになる。なお、従来の内面を冷却しながら外面を加熱する方法による管壁内の温度分布の一例を対比のため、図8において曲線Cで、温度・時間の関係を図9において2点鎖線で示してある。   When the piping is heated without flowing the cooling water in the piping, the cooling water stagnating in the piping starts to boil, so the temperature of the inner surface of the piping rises to 100 ° C or more, which is the boiling temperature of the cooling water, The temperature distribution in the wall tends to be a curve A shown in FIG. To is the temperature of the outer surface of the pipe. When the cooling water in the pipe is flowed after forming the temperature distribution as shown by the curve A, the inner surface of the pipe is rapidly cooled and approaches the cooling water temperature, and the temperature distribution in the pipe wall is the curve B shown in FIG. become that way. Moreover, when the temperature change of the pipe inner and outer surface over time is schematically shown, it is as shown in FIG. In order to compare an example of the temperature distribution in the tube wall by the conventional method of heating the outer surface while cooling the inner surface, the curve C in FIG. 8 and the relationship between temperature and time are shown by a two-dot chain line in FIG. is there.

曲線Bで示される本発明による温度勾配に基づいて、図10に示すように配管内面には大きな引張応力σiを、配管外面には圧縮応力σoを生じ、引張応力σiが材料の降伏強度を越えれば、該配管外面は引張降伏することになり、常温まで冷却すると図11に示すように配管内面には圧縮応力σriを、配管外面には引張応力σroが残留することになる。   Based on the temperature gradient according to the present invention shown by the curve B, as shown in FIG. 10, a large tensile stress σi is generated on the inner surface of the pipe and a compressive stress σo is generated on the outer surface of the pipe, so that the tensile stress σi exceeds the yield strength of the material. For example, the outer surface of the pipe will yield tensile, and when cooled to room temperature, compressive stress σri remains on the inner surface of the pipe and tensile stress σro remains on the outer surface of the pipe as shown in FIG.

図12は応力と歪の関係を示している。配管内面と配管外面の温度差が小さければ、配管の内面と配管の外面ともに降伏応力を越えずに、図12において、配管外面では0D2、配管内面では0D1の直線上に応力−歪関係は存在し、加熱を中止すれば、配管の内外面ともに0に戻り、残留応力は変化しない。一方、配管内面と配管外面の温度差が十分大きければ、配管の半径方向の応力分布は図10に示すようになり、配管の内面では引張側降伏応力σy、配管の外面では圧縮側降伏応力−σyを越える。そのときの管壁面内の応力を図12において、それぞれB1,B2とする。この時点で加熱を停止すると、配管の内面ではB1,E1の過程をたどり、配管全体が雰囲気温度まで低下すればC1点に達する。一方、配管の外面は、B2,E2の過程をたどり、C2点に達する。このため、配管の内面には正の歪が付与されることで圧縮残留応力が、配管の外面には負の歪が付与されることで引張残留応力が生じる。   FIG. 12 shows the relationship between stress and strain. If the temperature difference between the inner surface of the pipe and the outer surface of the pipe is small, the yield stress does not exceed the inner surface of the pipe and the outer surface of the pipe. In FIG. If the heating is stopped, both the inner and outer surfaces of the pipe return to 0, and the residual stress does not change. On the other hand, if the temperature difference between the pipe inner surface and the pipe outer surface is sufficiently large, the stress distribution in the radial direction of the pipe is as shown in FIG. 10, and the tensile yield stress σy on the inner surface of the pipe and the compressive yield stress on the outer surface of the pipe − It exceeds σy. The stress in the pipe wall surface at that time is set to B1 and B2 in FIG. When heating is stopped at this point, the process of B1 and E1 is followed on the inner surface of the pipe, and if the entire pipe is lowered to the ambient temperature, the point C1 is reached. On the other hand, the outer surface of the pipe follows the process of B2 and E2 and reaches point C2. For this reason, compressive residual stress is generated by applying positive strain to the inner surface of the pipe, and tensile residual stress is generated by applying negative strain to the outer surface of the pipe.

上述の図12の応力−歪関係は残留応力が存在しない場合であるが、内外表面に引張残留応力存在する場合に関しても、同様な考え方が成立し、配管の内面と配管の外面の温度差によって発生する応力が元々の引張残留応力に重畳すると考えれば良い。したがって、配管の内外表面を降伏させるためには、初期残留応力が存在しない場合に比べて、温度差は少なくて良い。   The above-described stress-strain relationship in FIG. 12 is when there is no residual stress, but the same concept holds true when there is tensile residual stress on the inner and outer surfaces, depending on the temperature difference between the inner surface of the pipe and the outer surface of the pipe. It may be considered that the generated stress is superimposed on the original tensile residual stress. Therefore, in order to yield the inner and outer surfaces of the pipe, the temperature difference may be small as compared with the case where there is no initial residual stress.

沸騰水型原子力発電プラントに本発明による配管の熱処理方法を適用した場合の説明図である。It is explanatory drawing at the time of applying the heat processing method of piping by this invention to a boiling water nuclear power plant. 本発明による配管の熱処理方法の第1の実施例を示す説明図である。It is explanatory drawing which shows the 1st Example of the heat processing method of piping by this invention. 加熱コイルの取付け構造を示す説明図である。It is explanatory drawing which shows the attachment structure of a heating coil. 本発明による第1の実施例の加熱装置を配管に取付けた例を示す説明図である。It is explanatory drawing which shows the example which attached the heating apparatus of the 1st Example by this invention to piping. 本発明による第1の実施例の加熱装置を2分割することにより配管から取外した状態を示す説明図である。It is explanatory drawing which shows the state removed from piping by dividing into 2 the heating apparatus of 1st Example by this invention. ホルダーの断面構造を示す説明図である。It is explanatory drawing which shows the cross-section of a holder. 本発明による配管の熱処理方法の第2の実施例を示す説明図である。It is explanatory drawing which shows the 2nd Example of the heat processing method of piping by this invention. 管壁内に生じる温度勾配を図解的に示した説明図である。It is explanatory drawing which showed the temperature gradient which arises in a pipe wall graphically. 温度と時間の関係を図解的に示した説明図である。It is explanatory drawing which showed the relationship between temperature and time schematically. 冷却材の流動を開始し、配管内外面に温度差が生じた場合の管壁内の応力分布を示す説明図である。It is explanatory drawing which shows the stress distribution in a pipe wall when the flow of a coolant is started and a temperature difference arises in the pipe inner and outer surfaces. 本発明の熱処理を施した後の管壁内の応力分布を示す説明図である。It is explanatory drawing which shows the stress distribution in the pipe wall after performing the heat processing of this invention. 応力−歪関係を示す説明図である。It is explanatory drawing which shows stress-strain relationship.

符号の説明Explanation of symbols

1…原子炉圧力容器、2…炉心部、3…蒸気分離乾燥機、4…炉心シュラウド、5…制御棒、6…制御棒駆動制御器、7…制御棒駆動装置、8,21…配管、9…循環ポンプ、10…ライザー管、11…ジェットポンプ、12…バルブ、13…下部プレナム、14…タービン、15…復水器、16…発電機、17…給水ポンプ、18…加熱コイル、19…高周波発振器、20…高周波加熱装置、22…溶接部、23…スペーサー、24…ホルダー、25…加熱コイル、26…加熱コイル端部、27,38…電源、28,39…トランス、29,33…ケーブル、30…冷却水循環ポンプ、31…ホース、32…熱電対、
34…制御装置、35…冷却剤出入口、36…直接通電加熱用のリング状端子、37…リング状端子の端部、A…冷却剤流動前の温度分布、B…冷却剤流動後の温度分布、C…従来法による温度分布。
DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel, 2 ... Core part, 3 ... Steam separation dryer, 4 ... Core shroud, 5 ... Control rod, 6 ... Control rod drive controller, 7 ... Control rod drive device, 8, 21 ... Piping, DESCRIPTION OF SYMBOLS 9 ... Circulation pump, 10 ... Riser pipe, 11 ... Jet pump, 12 ... Valve, 13 ... Lower plenum, 14 ... Turbine, 15 ... Condenser, 16 ... Generator, 17 ... Feed water pump, 18 ... Heating coil, 19 DESCRIPTION OF SYMBOLS ... High frequency oscillator, 20 ... High frequency heating device, 22 ... Welding part, 23 ... Spacer, 24 ... Holder, 25 ... Heating coil, 26 ... Heating coil end, 27, 38 ... Power supply, 28, 39 ... Transformer, 29, 33 ... Cable, 30 ... Cooling water circulation pump, 31 ... Hose, 32 ... Thermocouple,
34 ... Control device, 35 ... Coolant inlet / outlet, 36 ... Ring-shaped terminal for direct current heating, 37 ... End of ring-shaped terminal, A ... Temperature distribution before coolant flow, B ... Temperature distribution after coolant flow C: Temperature distribution according to the conventional method.

Claims (7)

プラントを構成する配管の熱処理方法において、
前記配管内に冷却剤を滞留させ、前記冷却剤が停留した状態で前記配管を加熱し、前記加熱後に冷却剤を流動させることを特徴とする配管の熱処理方法。
In the heat treatment method for the pipes constituting the plant,
A heat treatment method for a pipe, characterized in that a coolant is retained in the pipe, the pipe is heated in a state where the coolant is stopped, and the coolant is flowed after the heating.
請求項1に記載した配管の熱処理方法において、前記冷却剤として水を用いることを特徴とする配管の熱処理方法。   The pipe heat treatment method according to claim 1, wherein water is used as the coolant. 請求項1に記載された配管の熱処理方法において、
前記加熱は前記配管の内面が100℃以上とすることを特徴とする配管の熱処理方法。
In the heat processing method of piping described in Claim 1,
The heat treatment method for piping, wherein an inner surface of the piping is 100 ° C. or higher.
請求項1に記載した配管の熱処理方法において、配管は原子炉を構成する配管系であり、冷却剤が炉水であることを特徴とする配管の熱処理方法。   2. The heat treatment method for piping according to claim 1, wherein the piping is a piping system constituting a nuclear reactor, and the coolant is reactor water. 請求項1に記載した配管の熱処理方法において、配管の加熱手段が誘導加熱または直接通電加熱であることを特徴とする配管の熱処理方法。   2. The pipe heat treatment method according to claim 1, wherein the pipe heating means is induction heating or direct current heating. プラントを構成する配管の溶接補修方法であって、
配管を溶接する工程と、少なくとも溶接補修された部位の配管内の水を停滞させる工程と、前記溶接補修された部位を加熱する工程と、前記加熱を継続した配管内の水を流通させる工程と、を有することを特徴とする配管の溶接補修方法。
A welding repair method for piping constituting a plant,
A step of welding the pipe, a step of stagnating water in the pipe of at least the weld repaired portion, a step of heating the weld repaired portion, and a step of circulating the water in the pipe that has continued the heating; And a welding repair method for piping.
循環装置を有し、Crを含有する配管の熱処理装置であって、
誘導加熱用の加熱コイルと、前記配管の外面と前記加熱コイルとの間に一定の隙間を保つためのスペーサーと、前記加熱コイルに電流を供給するためのトランス及び電源と、を有することを特徴とする配管の熱処理装置。
A heat treatment device for piping having a circulation device and containing Cr,
It has a heating coil for induction heating, a spacer for maintaining a certain gap between the outer surface of the pipe and the heating coil, and a transformer and a power source for supplying current to the heating coil. Heat treatment equipment for piping.
JP2004347967A 2004-12-01 2004-12-01 Piping heat treatment method and apparatus Active JP4491334B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004347967A JP4491334B2 (en) 2004-12-01 2004-12-01 Piping heat treatment method and apparatus
US11/290,468 US20060113010A1 (en) 2004-12-01 2005-12-01 Heat treatment method and device for piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004347967A JP4491334B2 (en) 2004-12-01 2004-12-01 Piping heat treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2006152410A true JP2006152410A (en) 2006-06-15
JP4491334B2 JP4491334B2 (en) 2010-06-30

Family

ID=36566286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004347967A Active JP4491334B2 (en) 2004-12-01 2004-12-01 Piping heat treatment method and apparatus

Country Status (2)

Country Link
US (1) US20060113010A1 (en)
JP (1) JP4491334B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7559251B2 (en) * 2006-06-26 2009-07-14 Bo-Young Lee Apparatus for forming thermal fatigue cracks
US20090000708A1 (en) * 2007-06-29 2009-01-01 Gm Global Technology Operations, Inc. Method for manufacture of complex heat treated tubular structure
KR100920102B1 (en) * 2008-10-31 2009-10-01 한국항공대학교산학협력단 Apparatus for forming a longitudinal thermal-fatigue crack
TW201643169A (en) 2010-07-09 2016-12-16 艾伯維股份有限公司 Spiro-piperidine derivatives as S1P modulators
TW201206893A (en) 2010-07-09 2012-02-16 Abbott Healthcare Products Bv Bisaryl (thio) morpholine derivatives as S1P modulators
TWI522361B (en) 2010-07-09 2016-02-21 艾伯維公司 Fused heterocyclic derivatives as s1p modulators
IT1403263B1 (en) 2010-12-16 2013-10-17 Tesi Srl DEVICE FOR LOCALIZED HEATING OF PARTS OF COATED METAL PIPES AND PARTS OF THEIR PROTECTIVE COATING
US20120217227A1 (en) * 2011-02-28 2012-08-30 General Electric Company Method of introducing compressive stress in a welded joint
DE102011054718B4 (en) * 2011-10-21 2014-02-13 Hitachi Power Europe Gmbh Method for generating a voltage reduction in erected tube walls of a steam generator
CN110681966A (en) * 2019-10-18 2020-01-14 中国电建集团山东电力建设第一工程有限公司 Pipeline welding heating device, welding device and method
JP2022553802A (en) 2019-10-31 2022-12-26 エスケープ・バイオ・インコーポレイテッド Solid Forms of S1P Receptor Modulators
CN115194476B (en) * 2022-08-12 2023-12-15 南昌航空大学 Flexible self-adaptive large slenderness ratio pipeline intelligent repairing device and use method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338246B2 (en) * 1975-11-07 1978-10-14
JP2004211187A (en) * 2003-01-08 2004-07-29 Hitachi Ltd Method and apparatus for heat treatment of piping system
JP2004331999A (en) * 2003-04-30 2004-11-25 Hitachi Ltd Method and apparatus for heat-treating pipe

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229235A (en) * 1977-10-25 1980-10-21 Hitachi, Ltd. Heat-treating method for pipes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338246B2 (en) * 1975-11-07 1978-10-14
JP2004211187A (en) * 2003-01-08 2004-07-29 Hitachi Ltd Method and apparatus for heat treatment of piping system
JP2004331999A (en) * 2003-04-30 2004-11-25 Hitachi Ltd Method and apparatus for heat-treating pipe

Also Published As

Publication number Publication date
JP4491334B2 (en) 2010-06-30
US20060113010A1 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
US20060113010A1 (en) Heat treatment method and device for piping
US4229235A (en) Heat-treating method for pipes
JP4759302B2 (en) Heat treatment method and apparatus
US4505763A (en) Heat-treating method of weld portion of piping system and heating coil for the heat treatment
JP4448791B2 (en) Method and apparatus for improving residual stress in piping
JP3649223B2 (en) Heat treatment method and heat treatment apparatus for piping system
JP2007063642A (en) Method for improving remaining stress and coil for high-frequency induction heating
JP4847888B2 (en) Method for improving piping residual stress and high-frequency heating device for nuclear power plant
US4807801A (en) Method of ameliorating the residual stresses in metallic duplex tubes and the like and apparatus therefor
JP2013527882A (en) Heater tube treatment for reactor primary cooling system pressurizer.
JPH045730B2 (en)
US20090141850A1 (en) Pressurized water reactor pressurizer heater sheath
JP2004331999A (en) Method and apparatus for heat-treating pipe
US4772336A (en) Method of improving residual stress in circumferential weld zone
JP2005195522A (en) Heat treatment device in piping system
JP2008189983A (en) Method for reducing residual stress in small diameter piping
JPH0429095A (en) Method for preserving neutron flux monitor housing and heat treating device thereof
JP2005111513A (en) Method for reluxing residual tensile stress, and welding apparatus
JPH02173218A (en) Method and apparatus for improving residual stress at welded part for penetrated piping in vessel
JP3675463B2 (en) Heat treatment method for piping system
JPS63227724A (en) Method for improving residual stress of stainless steel pipe or the like
JPH0571674A (en) Method of forming metal pipe joint
Tanabe et al. Experimental Study on Critical Heat Flux in Three Pin Bundle With Wire Spacer for Boiling Water Reactor
JP2006083438A (en) Method for improving residual stress by high-frequency induction heating, and high-frequency induction coil
JP2010076000A (en) Residual stress improving device for piping

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4491334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4