JP2007063642A - Method for improving remaining stress and coil for high-frequency induction heating - Google Patents

Method for improving remaining stress and coil for high-frequency induction heating Download PDF

Info

Publication number
JP2007063642A
JP2007063642A JP2005253522A JP2005253522A JP2007063642A JP 2007063642 A JP2007063642 A JP 2007063642A JP 2005253522 A JP2005253522 A JP 2005253522A JP 2005253522 A JP2005253522 A JP 2005253522A JP 2007063642 A JP2007063642 A JP 2007063642A
Authority
JP
Japan
Prior art keywords
heating coil
frequency induction
pipe
induction heating
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005253522A
Other languages
Japanese (ja)
Inventor
Takahiro Komuro
貴弘 小室
Minoru Masuda
増田  稔
Yutaka Yoshie
豊 吉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005253522A priority Critical patent/JP2007063642A/en
Publication of JP2007063642A publication Critical patent/JP2007063642A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for improving the remaining stress in a welded part and a coil for high-frequency induction heating which can efficiently apply to various pipings having different shapes and sizes. <P>SOLUTION: As the heating coil for improving the remaining stress in the piping 1 joining straight pipes 1a, 1b having different sizes at a welding part 2, two or more of the partial heating coils 10A, 10B having different diameters are used and these coils are combined and these are disposed at one side and the other side of the welding part 2, respectively so as to be possible to efficiently generate the temperature difference to the piping 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高周波誘導加熱による残留応力改善方法と高周波誘導加熱に使用するコイルに係り、特に、管部材の溶接接合部の熱処理に好適な残留応力改善方法と高周波誘導加熱コイルに関する。   The present invention relates to a residual stress improving method by high frequency induction heating and a coil used for high frequency induction heating, and more particularly to a residual stress improving method and a high frequency induction heating coil suitable for heat treatment of a welded joint portion of a pipe member.

溶接部には残留応力が生じるが、これを放置すると応力腐食割れが発生する虞があり、このための対策として、熱処理により残留応力を改善する方法が従来から種々提案されているが、その中で配管内面の引張残留応力を低減する方法については、高周波誘導加熱による応力改善法(IHSI:Induction Heating Stress Improvement)がある(例えば、特許文献1参照。)。   Residual stress is generated in the weld zone. If this is left untreated, stress corrosion cracking may occur, and as a countermeasure for this, various methods for improving the residual stress by heat treatment have been proposed. As a method for reducing the tensile residual stress on the inner surface of the pipe, there is a stress improvement method (IHSI: Induction Heating Stress Improvement) by high frequency induction heating (see, for example, Patent Document 1).

そして、この従来技術による応力改善法では、プラントに設置してある配管の中に冷却流体を流すと共に外面を高周波誘導加熱し、これにより配管の内面と外面に温度差を与え、内周面では引張応力により降伏させ、外周面では圧縮応力により降伏させた後、続く冷却過程における内外面の応力状態の逆転により、配管内面に圧縮応力を残留させるようにしたものであり、これにより既設配管溶接部位の配管内面の引張残留応力を低減して、応力腐食割れの防止が得られるようにしている。
特公昭53-38246号公報
And in this stress improvement method by this prior art, a cooling fluid is made to flow in the piping installed in the plant and the outer surface is heated by high frequency induction, thereby giving a temperature difference between the inner surface and the outer surface of the piping. After yielding by tensile stress and yielding by compressive stress on the outer peripheral surface, compressive stress remains on the inner surface of the pipe by reversing the stress state of the inner and outer surfaces in the subsequent cooling process. The tensile residual stress on the inner surface of the pipe at the site is reduced to prevent stress corrosion cracking.
Japanese Examined Patent Publication No. 53-38246

上記従来技術は、応力改善の対象となる配管に形状や寸法が異なったものが存在する点に配慮がされておらず、高周波誘導加熱コイルに多様性が要求されるので施工費用が高くなってしまうという問題があった。   The above prior art does not give consideration to the fact that there are pipes that have different shapes and dimensions for the stress improvement target, and the high frequency induction heating coil requires diversity, which increases the construction cost. There was a problem that.

高周波誘導加熱応力改善法では、配管の残留応力を改善する部分の外部に高周波誘導加熱用コイルを配し、これに高周波電流を流して配管に電流を誘導させ、その抵抗熱により加熱するものであり、従って、段付配管のようにコイル取付範囲内で配管外径が異なるものや、エルボ部のように中心軸が直線でない配管については、その都度、当該配管に専用のコイルを製作しなければならないため、施工費用が大きくなってしまうのである。   In the high-frequency induction heating stress improvement method, a high-frequency induction heating coil is arranged outside the part that improves the residual stress in the pipe, and a high-frequency current is passed through the pipe to induce a current in the pipe, which is heated by the resistance heat. Therefore, for pipes with different pipe outer diameters within the coil mounting range, such as stepped pipes, and pipes with a non-straight central axis, such as elbows, a dedicated coil must be manufactured for each pipe. Therefore, the construction cost will increase.

本発明は、上記従来の実状に鑑みてなされたもので、その目的は、形状や寸法の異なる種々の配管に効率良く適用することができるようにした残留応力改善方法と高周波誘導加熱用コイルを提供することにある。   The present invention has been made in view of the above-described conventional situation, and its object is to provide a residual stress improving method and a high-frequency induction heating coil that can be efficiently applied to various pipes having different shapes and dimensions. It is to provide.

上記目的は、管部材溶接部の残留応力改善を、当該管部材の高周波誘導加熱により行うようにした残留応力改善方法において、前記残留応力改善のための高周波誘導加熱を、前記管部材溶接部の一方の側と他方の側で動作条件を変えて行なうことにより達成される。このとき、前記管部材は原子炉の配管であるようにしてもよい。   The object is to improve the residual stress of the pipe member welded portion by high-frequency induction heating of the pipe member, in which the high-frequency induction heating for improving the residual stress is performed on the pipe member welded portion. This is achieved by changing the operating conditions on one side and the other side. At this time, the pipe member may be a pipe of a nuclear reactor.

また、上記目的は、上記の残留応力改善方法において使用される高周波誘導加熱コイルであって、前記高周波誘導加熱コイルが、一方と他方で径を異にする2個以上の部分加熱コイルで構成されていることによっても達成され、前記高周波誘導加熱コイルが、一方と他方で巻回ピッチを異にする2個以上の部分加熱コイルで構成されていることによっても達成され、更には、前記高周波誘導加熱コイルが、可撓性を備えていて長さ方向の一方と他方で径と巻回ピッチの少なくとも一方でが変更できるコイルであることによっても達成される。   The object is a high-frequency induction heating coil used in the residual stress improving method, wherein the high-frequency induction heating coil is composed of two or more partial heating coils having different diameters on one side and the other side. The high-frequency induction heating coil is also configured by two or more partial heating coils having different winding pitches on one and the other, and further, the high-frequency induction The heating coil is also achieved by being a coil that is flexible and at least one of the diameter and the winding pitch can be changed on one side and the other side in the length direction.

本発明によれば、管部材に残存する引張残留応力を効率的に圧縮側に移行させることができるので、施工費用の増加を抑えて配管の応力腐食割れが防止でき、且つ、対象となった管部材に対する加熱用コイルの設置を容易に得ることができる。   According to the present invention, the tensile residual stress remaining in the pipe member can be efficiently transferred to the compression side, so that an increase in the construction cost can be suppressed and stress corrosion cracking of the pipe can be prevented, and has become a target. Installation of the heating coil to the tube member can be easily obtained.

以下、本発明による溶接部の残留応力改善方法と高周波誘導加熱用コイルについて説明するのであるが、ここで、まず、本発明の実施に使用される装置の一例について、図4と図5により説明する。   Hereinafter, the method for improving the residual stress of the welded portion and the high frequency induction heating coil according to the present invention will be described. First, an example of an apparatus used for carrying out the present invention will be described with reference to FIGS. To do.

この装置の場合、残留応力改善の処理対象は、図4に示すように、直管1aと直管1bを溶接部2で接合した配管1であり、この配管1に加熱コイル10を設定するようになっている。そして、この加熱コイル10は、図5の(a)図にも示したように、ここでは5ターンの銅の条体からなるコイル導体12で構成され、このコイル導体12にパイプ13が接合されていて、コイル導体12と共に加熱コイル10を構成している。   In the case of this apparatus, as shown in FIG. 4, the processing target for residual stress improvement is a pipe 1 in which a straight pipe 1 a and a straight pipe 1 b are joined by a welded portion 2, and a heating coil 10 is set in the pipe 1. It has become. As shown in FIG. 5 (a), the heating coil 10 is composed of a coil conductor 12 made of a copper strip of 5 turns, and a pipe 13 is joined to the coil conductor 12. The heating coil 10 is configured together with the coil conductor 12.

このとき、加熱コイル10は、特に図5の(b)図に詳細に示されているように、2個のリング部材4A、4Bと、4本の横部材5A、5B、5C、5Dからなる周方向取付治具を備え、これにより配管1に取付けられるようになっている。   At this time, the heating coil 10 is composed of two ring members 4A and 4B and four lateral members 5A, 5B, 5C and 5D, as particularly shown in detail in FIG. A circumferential mounting jig is provided so that it can be mounted on the pipe 1.

そして、まずリング部材4A、4Bは、加熱コイル10の長さ方向に離れ、加熱コイル10の両端に夫々位置するようにして、4本の横部材5A、5B、5C、5Dにより組立てられているが、このとき、これら横部材5A、5B、5C、5Dは、リング部材4A、4Bの周方向に略等間隔で配置されていて、これらの内側に加熱コイル10のコイル導体12が保持されるようになっている。   First, the ring members 4A and 4B are assembled by the four transverse members 5A, 5B, 5C, and 5D so as to be separated from each other in the length direction of the heating coil 10 and to be positioned at both ends of the heating coil 10, respectively. However, at this time, the transverse members 5A, 5B, 5C, and 5D are arranged at substantially equal intervals in the circumferential direction of the ring members 4A and 4B, and the coil conductor 12 of the heating coil 10 is held inside them. It is like that.

このとき、これらリング部材4A、4Bには、図示のように、外周側から中心に向かってボルト6がネジこまれていて、これにより配管1に対して位置決めが行え、加熱コイル10を配管1の所定の位置に保持されることができるようになっている。   At this time, as shown in the figure, bolts 6 are screwed into the ring members 4A and 4B from the outer peripheral side toward the center, whereby positioning with respect to the pipe 1 can be performed, and the heating coil 10 is connected to the pipe 1 It can be held at a predetermined position.

図4に戻り、加熱コイル10のコイル導体12には、高周波発振器18からケーブル16を介して高周波電流が供給され、これにより配管1の表面に誘導電流が誘起され、ジュール熱による加熱が得られるようにする。このため、コイル導体12はケーブル16を介して高周波発振器18に接続されている。   Returning to FIG. 4, the coil conductor 12 of the heating coil 10 is supplied with a high-frequency current from the high-frequency oscillator 18 through the cable 16, thereby inducing an induced current on the surface of the pipe 1, thereby obtaining heating by Joule heat. Like that. For this reason, the coil conductor 12 is connected to the high-frequency oscillator 18 via the cable 16.

この高周波発振器18には、電源トランス19からケーブル21Aを介して電源電力が供給されるようになっているが、このとき加熱コイル10のパイプ13と高周波発振器18、それに電源トランス19には、冷却水循環装置17からホース15を介して夫々冷却水が供給され、温度上昇が抑えられるようになっている。   The high-frequency oscillator 18 is supplied with power from a power transformer 19 via a cable 21A. At this time, the pipe 13 of the heating coil 10, the high-frequency oscillator 18, and the power transformer 19 are cooled. Cooling water is supplied from the water circulation device 17 via the hose 15 so that the temperature rise is suppressed.

ここで、この高周波発振器18には、更に制御装置20がケーブル21Bを介して接続されている。そして、この制御装置20には、ケーブル21Cを介して熱電対22が接続されている。ここで、この熱電対22は、図示のように、配管1の外面で溶接部2の近傍に取付けてあり、溶接部2の表面の温度を測定する働きをする。   Here, a control device 20 is further connected to the high-frequency oscillator 18 via a cable 21B. And the thermocouple 22 is connected to this control apparatus 20 via the cable 21C. Here, this thermocouple 22 is attached in the vicinity of the welded portion 2 on the outer surface of the pipe 1 as shown in the figure, and functions to measure the temperature of the surface of the welded portion 2.

次に、この装置の動作について説明する。このときは、まず、ボルト6により、加熱コイル10を、図4に示す状態にする。つまり直管1aと直管1bの接合部である溶接部2が略中央になるようにして配管1に加熱コイル10を設置するのである。そして、この後、配管1内に冷却水を通流させて配管内面の温度上昇が抑えられるようした上で加熱コイル10に高周波電流を供給し、配管1に誘導電流が誘起され、配管1の材質がもつ電気抵抗により、その外表面に発熱が起きるようにする。   Next, the operation of this apparatus will be described. At this time, first, the heating coil 10 is brought into the state shown in FIG. That is, the heating coil 10 is installed in the pipe 1 so that the welded portion 2 that is a joint portion between the straight pipe 1a and the straight pipe 1b is substantially in the center. After that, cooling water is passed through the pipe 1 so that the temperature rise on the inner surface of the pipe is suppressed, and then a high frequency current is supplied to the heating coil 10 to induce an induced current in the pipe 1. Heat is generated on the outer surface due to the electrical resistance of the material.

このとき、熱処理対象となる配管1の外表面温度は熱電対22により測定されている。そこで制御装置20は、この外表面温度の測定結果に基づいて高周波発振器18の出力を制御し、これにより加熱コイル10に供給されている高周波電流値が制御され、配管1の外表面を熱処理に必要な所定の温度にするための動作が得られることになる。   At this time, the outer surface temperature of the pipe 1 to be heat-treated is measured by the thermocouple 22. Therefore, the control device 20 controls the output of the high-frequency oscillator 18 based on the measurement result of the outer surface temperature, thereby controlling the high-frequency current value supplied to the heating coil 10 and heat-treating the outer surface of the pipe 1. An operation for obtaining the required predetermined temperature is obtained.

ところで、このとき配管1内で溶接部2の近傍に発生している溶接残留応力は、配管1の円周上の位置によらず、ほぼ一定である。従って、全周にわたって配管1内面に圧縮残留応力を発生させるためには、配管1の外面と内面の温度差が周上の位置によらず常に一定になるように、配管1の全周にわたって均一に加熱する必要がある。   By the way, the welding residual stress generated in the vicinity of the welded portion 2 in the pipe 1 at this time is substantially constant regardless of the position on the circumference of the pipe 1. Therefore, in order to generate compressive residual stress on the inner surface of the pipe 1 over the entire circumference, the temperature difference between the outer surface and the inner surface of the pipe 1 is always constant regardless of the position on the circumference. Need to be heated.

しかも、このとき配管1の外面と内面の温度差が充分に確保され、配管1の内面に効率良く圧縮残留応力が発生できるようにするのが望ましいが、これらのためには、加熱コイル10の形状と寸法を配管1の形状と寸法に極力合わせる必要がある。   Moreover, at this time, it is desirable that a temperature difference between the outer surface and the inner surface of the pipe 1 is sufficiently ensured so that compressive residual stress can be efficiently generated on the inner surface of the pipe 1. It is necessary to match the shape and size to the shape and size of the pipe 1 as much as possible.

そこで、以下、本発明の実施形態について説明すると、まず、図1は、互いに径の異なる直管1cと直管1dを溶接部2で接合した配管1が処理対象の場合の一実施形態であり、これに応じて、この実施形態では、加熱用のコイルとして、2個以上の部分加熱コイル10A、10Bを用い、これらを溶接部2の両側に配置したものである。   Therefore, hereinafter, an embodiment of the present invention will be described. First, FIG. 1 is an embodiment in which a pipe 1 in which a straight pipe 1c and a straight pipe 1d having different diameters are joined by a welded portion 2 is a processing target. Accordingly, in this embodiment, two or more partial heating coils 10 </ b> A and 10 </ b> B are used as heating coils, and these are arranged on both sides of the welded portion 2.

このとき、直管1cと直管1dは、内径は同じであるが、直管1cの径をD1、直管1dの径をD2とすると、図示のように、これらは、D1<D2の関係にある。そこで、これに合わせて、この実施形態では、部分加熱コイル10Aの内径をDAとし、部分加熱コイル10Bの内径をDBとして、これらについてDA<DBの関係になるようにしたものである。   At this time, the straight pipe 1c and the straight pipe 1d have the same inner diameter, but when the diameter of the straight pipe 1c is D1 and the diameter of the straight pipe 1d is D2, as shown in the drawing, these have a relationship of D1 <D2. It is in. Accordingly, in accordance with this, in this embodiment, the inner diameter of the partial heating coil 10A is DA, and the inner diameter of the partial heating coil 10B is DB, so that the relationship of DA <DB is established.

ここで、2個以上の部分加熱コイル10A、10Bは、図示は省略してあるが、それぞれ図4と図5で説明した加熱コイル10と同じく、何れもボルト6を独立に備えていて、これにより、部分加熱コイル10Aは溶接部2から直管1c側に設定され、部分加熱コイル10Bは溶接部2から直管1d側に設定されている。   Here, the two or more partial heating coils 10A and 10B are not shown in the figure, but each has the bolt 6 independently as in the heating coil 10 described in FIGS. Thus, the partial heating coil 10A is set on the straight pipe 1c side from the welded portion 2, and the partial heating coil 10B is set on the straight pipe 1d side from the welded portion 2.

このとき、部分加熱コイル10Aと部分加熱コイル10Bのコイル導体12は直列に接続されていて、これに高周波発振器18から高周波電流が供給される。また、このときパイプ13も同じく直列に接続された上で冷却水循環装置17から冷却水が循環されるようになっている。   At this time, the coil conductors 12 of the partial heating coil 10 </ b> A and the partial heating coil 10 </ b> B are connected in series, and a high frequency current is supplied to the coil conductor 12 from the high frequency oscillator 18. At this time, the pipe 13 is also connected in series, and the cooling water is circulated from the cooling water circulation device 17.

そこで、いま、部分加熱コイル10Aと部分加熱コイル10Bに高周波発振器18から高周波電流が供給されたとすると、この場合、部分加熱コイル10Aの径は直管1cの径に合わせて決められ、部分加熱コイル10Bの径は直管1dの径に合わせて決められているので、これらは位置関係が何れも等しくなっている。   Therefore, if a high frequency current is supplied from the high frequency oscillator 18 to the partial heating coil 10A and the partial heating coil 10B, the diameter of the partial heating coil 10A is determined in accordance with the diameter of the straight pipe 1c. Since the diameter of 10B is determined in accordance with the diameter of the straight pipe 1d, these have the same positional relationship.

従って、この場合、直管1cの部分と直管1dの部分で誘導加熱の動作条件が変えられるので、直管1cの部分と直管1dの部分で径が異なっていても、均一な加熱が得られ、且つ、直管1cの部分と直管1dの部分の何れでもコイルと処理対象の間の距離が広がる虞がなくなるので、この結果、溶接部2の全体で均一な加熱が得られ、且つ電力損失が低減されるので、配管1に効率良く圧縮残留応力を発生させることができる。   Therefore, in this case, since the operating condition of induction heating can be changed between the straight pipe 1c and the straight pipe 1d, even if the diameters of the straight pipe 1c and the straight pipe 1d are different, uniform heating can be achieved. Since there is no possibility that the distance between the coil and the object to be processed increases in any of the straight pipe 1c portion and the straight pipe 1d portion, as a result, uniform heating is obtained in the entire welded portion 2, And since a power loss is reduced, a compressive residual stress can be efficiently generated in the piping 1.

なお、図4と図5で説明した装置では、処理対象である配管1が同じ径で同じ材質の直管1aと直管1bを溶接部2で接合したものであり、従って、この場合は、加熱コイル10として、図示のように、コイル導体12が同一の径で同一のヒッチで巻回されたものであっても特に問題がなかったのである。   In the apparatus described with reference to FIGS. 4 and 5, the pipe 1 to be processed is the same diameter and the same material made by joining the straight pipe 1 a and the straight pipe 1 b with the welded portion 2. Therefore, in this case, As shown in the figure, there was no particular problem even when the coil conductor 12 was wound with the same diameter and the same hitch as the heating coil 10.

次に、図2は、夫々異なった材質の直管1eと直管1fを溶接部2で接合した配管1が処理対象の場合の一実施形態である。そして、この場合も、加熱用のコイルとして、2個の部分加熱コイル10C、10Dを用い、これらを溶接部2の両側に配置したものであるが、この実施形態では、部分加熱コイル10Cと部分加熱コイル10Dの径は同じであるが、コイル導体12のピッチ(隣り合う導体の間隔)Pを変え、ターン数(巻回数)が部分加熱コイル10Cと部分加熱コイル10Dで異なったものになるようにしたものである。   Next, FIG. 2 shows an embodiment in which a pipe 1 in which a straight pipe 1e and a straight pipe 1f made of different materials are joined by a welded portion 2 is a processing target. In this case as well, two partial heating coils 10C and 10D are used as heating coils, and these are arranged on both sides of the welded portion 2, but in this embodiment, the partial heating coil 10C and the partial coil are arranged. Although the diameter of the heating coil 10D is the same, the pitch (interval between adjacent conductors) P of the coil conductor 12 is changed so that the number of turns (number of turns) is different between the partial heating coil 10C and the partial heating coil 10D. It is a thing.

ここで、まず、直管1eの材質はステンレス鋼で直管1fは炭素鋼であるとする。次に、部分加熱コイル10CのピッチはP1で部分加熱コイル10DのピッチをP2とし、P1<P2の関係になるようにし、これにより、図示のように、部分加熱コイル10Cのターン数は全体で3になり、部分加熱コイル10Dのターン数は2になっているものである。   Here, first, it is assumed that the straight pipe 1e is made of stainless steel and the straight pipe 1f is carbon steel. Next, the pitch of the partial heating coil 10C is P1, the pitch of the partial heating coil 10D is P2, and P1 <P2, so that the number of turns of the partial heating coil 10C is as a whole as shown in the figure. 3 and the number of turns of the partial heating coil 10D is 2.

一般に、高周波誘導加熱の場合、加熱条件が対象部材の材質により変化し、対象部材がステンレス鋼の場合と炭素鋼の場合、炭素鋼の方が早く温度上昇する傾向がある。一方、加熱コイルにより対象部材の単位長当りに誘導される電力は、当該コイルのピッチPが狭いほと多くなるので、ピッチPを変えることにより温度上昇がコントロールできる。   In general, in the case of high-frequency induction heating, the heating condition varies depending on the material of the target member, and when the target member is stainless steel and carbon steel, the temperature of carbon steel tends to rise faster. On the other hand, since the electric power induced per unit length of the target member by the heating coil increases as the pitch P of the coil is narrower, the temperature rise can be controlled by changing the pitch P.

そこで、この図2に示されているステンレス鋼の直管1eと炭素鋼の直管1fが溶接部2で接合されている配管1の場合、そのまま同じ動作条件で高周波誘導加熱を行うと、炭素鋼の直管1f側が早く温度上昇して均一な加熱が得られない。   Therefore, in the case of the pipe 1 in which the stainless steel straight pipe 1e and the carbon steel straight pipe 1f shown in FIG. The temperature of the straight pipe 1f side of steel rises quickly, and uniform heating cannot be obtained.

そこで、この実施形態では、炭素鋼の直管1f側に配置される部分加熱コイル10DのピッチP2を、ステンレス鋼の直管1e側の部分加熱コイル10CのピッチP1よりも大きくし、これにより誘導加熱の動作条件がステンレス鋼の直管1e側と炭素鋼の直管1f側とで異なったものになるようにし、炭素鋼の直管1f側の温度上昇を緩やかし、加熱が均一化されるようにしたものであり、従って、この実施形態によっても、配管1に効率良く圧縮残留応力を発生させることができる。   Therefore, in this embodiment, the pitch P2 of the partial heating coil 10D arranged on the carbon steel straight pipe 1f side is made larger than the pitch P1 of the partial heating coil 10C on the stainless steel straight pipe 1e side, thereby induction. The operating condition of heating is different between the straight pipe 1e side of the stainless steel and the straight pipe 1f side of the carbon steel, the temperature rise on the straight pipe 1f side of the carbon steel is moderated, and the heating is made uniform. Therefore, according to this embodiment, the compressive residual stress can be efficiently generated in the pipe 1.

このとき、加熱コイルの径を変えても、対象部材の単位長当りに誘導される電力が制御されるので、コイルのピッチの変更に代えて、図1の実施形態と同じく、直管1e側と直管1fとで径が異なった加熱コイルを適用しても、夫々に応じて誘導加熱の動作条件を変えることができ、同様な効果を得ることができる。   At this time, since the electric power induced per unit length of the target member is controlled even if the diameter of the heating coil is changed, instead of changing the coil pitch, the straight pipe 1e side is changed as in the embodiment of FIG. Even if heating coils having different diameters are applied to the straight pipe 1f, the induction heating operation conditions can be changed in accordance with the heating coils, and similar effects can be obtained.

従って、これら図1と図2の実施形態によれば、加熱コイル10が2個以上の部分加熱コイル10A、10B、又は2個以上の部分加熱コイル10C、10Dで構成されているので、部分加熱コイル10A、10B、10C、10Dなどに径やピッチの異なるものを用意しておき、それらを組合わせて使用することにより、高周波誘導加熱の対象範囲内で配管1の外径が異なっていたりした場合でも、そのまま対応することができる。   Therefore, according to the embodiment of FIGS. 1 and 2, the heating coil 10 is composed of two or more partial heating coils 10A and 10B, or two or more partial heating coils 10C and 10D. By preparing coils 10A, 10B, 10C, 10D, etc. having different diameters and pitches, and using them in combination, the outer diameter of the pipe 1 is different within the target range of high frequency induction heating. Even in this case, it can be handled as it is.

そして、この結果、上記実施形態によれば、高周波誘導加熱の対象範囲内で配管1の外径が異なっていたりした場合でも、その都度、当該配管に専用のコイルを製作する必要が無くなるので、施工費用を抑えることができる。   And as a result, according to the embodiment, even when the outer diameter of the pipe 1 is different within the target range of the high frequency induction heating, it is not necessary to manufacture a dedicated coil for the pipe each time. Construction costs can be reduced.

ところで、以上の図1と図2により説明した実施形態では、冷却水を通流させるため、何れもコイル導体12にパイプ13を接合しているが、このとき図3の実施形態に示すように、コイル導体12に代えて矩形の銅管120を用いるようにしてもよい。   By the way, in the embodiment described with reference to FIGS. 1 and 2, the pipe 13 is joined to the coil conductor 12 in order to allow the cooling water to flow. At this time, as shown in the embodiment of FIG. Instead of the coil conductor 12, a rectangular copper tube 120 may be used.

図1と図2に示した加熱コイルの場合、銅の帯板からなるコイル導体12にパイプ13を接合しなければならないので、比較的製作が困難であったが、この図3の実施形態の場合、コイル導体が銅管120になっていて、中に通路23があるので、この通路23を冷却水の通路とすることができ、この場合、比較的容易に製作することができる。   In the case of the heating coil shown in FIGS. 1 and 2, since the pipe 13 has to be joined to the coil conductor 12 made of a copper strip, it is relatively difficult to manufacture. However, in the embodiment of FIG. In this case, since the coil conductor is a copper tube 120 and there is a passage 23 therein, this passage 23 can be used as a cooling water passage, and in this case, it can be manufactured relatively easily.

また、以上の実施形態では、加熱コイルが水冷されるようになっているが、これに代えて、送風機等を用い、コイル全体を空冷するようにしても同様の冷却を行うことができ、この実施形態の場合、施工費用が低減されると共に、軽量化が図れるので、施工時の作業性も向上する。   In the above embodiment, the heating coil is water-cooled. Alternatively, a similar cooling can be performed by using a blower or the like to air-cool the entire coil. In the case of the embodiment, the construction cost is reduced and the weight can be reduced, so that the workability during construction is also improved.

更に、この空冷による実施形態の場合、加熱コイル自体の剛性を低くすることができるので、任意に形状変更が可能なフレキシブルな加熱コイルを得ることができる。すなわち、この場合、高周波誘導加熱コイルが、可撓性を備えていて長さ方向の一方と他方で径と巻回ピッチの少なくとも一方が変更できるコイルで構成することができる。   Furthermore, in the case of this air-cooled embodiment, the rigidity of the heating coil itself can be reduced, so that a flexible heating coil that can be arbitrarily changed in shape can be obtained. That is, in this case, the high-frequency induction heating coil can be configured by a coil that is flexible and can change at least one of the diameter and the winding pitch between one and the other in the length direction.

従って、この実施形態によれば、高周波誘導加熱の対象範囲内で配管1の外径が異なっていた場合でも、加熱コイル自体の形状変更により、複数の加熱コイルを用いることなく対応することができる。   Therefore, according to this embodiment, even when the outer diameter of the pipe 1 is different within the target range of the high frequency induction heating, it is possible to cope with the change in the shape of the heating coil itself without using a plurality of heating coils. .

なお、このとき、要はコイルに必要な可撓性が与えられれば良く、従って、必ずしもずしも空冷が必要要件というわけではない。   At this time, it is only necessary to provide the coil with the necessary flexibility, and therefore air cooling is not necessarily a necessary requirement.

本発明による高周波誘導加熱用コイルの第1の実施形態を示す模式図である。It is a schematic diagram which shows 1st Embodiment of the coil for high frequency induction heating by this invention. 本発明による高周波誘導加熱コイルの第2の実施形態を示す模式図である。It is a schematic diagram which shows 2nd Embodiment of the high frequency induction heating coil by this invention. 本発明による高周波誘導加熱コイルの第3の実施形態を示す模式図である。It is a schematic diagram which shows 3rd Embodiment of the high frequency induction heating coil by this invention. 本発明による溶接部の残留応力改善方法の実施に使用される装置の一例を示すブロック構成図である。It is a block block diagram which shows an example of the apparatus used for implementation of the residual stress improvement method of the welding part by this invention. 本発明に係る加熱コイルの一実施形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the heating coil which concerns on this invention.

符号の説明Explanation of symbols

1:配管(残留応力改善の処理対象)
1a、1b、1c、1d、1e、1f:直管
2:溶接部
4A、4B:リング部材
5A、5B、5C、5D:横部材
6:ボルト
10:加熱コイル
10A、10B、10C、10D:部分加熱コイル
12:コイル導体
13:パイプ(冷却水通流用)
15:ホース(冷却水循環用)
16:ケーブル(電源用)
17:冷却水循環装置
18:高周波発振器
19:電源トランス
20:制御装置
21A、21B、21C:ケーブル
22:熱電対(温度計測用)
23:通路(冷却水通流用)
120:銅管(矩形の銅管)
1: Piping (target for residual stress improvement)
1a, 1b, 1c, 1d, 1e, 1f: straight pipe 2: welded portion 4A, 4B: ring member 5A, 5B, 5C, 5D: transverse member 6: bolt 10: heating coil 10A, 10B, 10C, 10D: part Heating coil 12: Coil conductor 13: Pipe (for cooling water flow)
15: Hose (for cooling water circulation)
16: Cable (for power supply)
17: Cooling water circulation device 18: High frequency oscillator 19: Power transformer 20: Control devices 21A, 21B, 21C: Cable 22: Thermocouple (for temperature measurement)
23: Passage (for cooling water flow)
120: Copper tube (rectangular copper tube)

Claims (5)

管部材溶接部の残留応力改善を、当該管部材の高周波誘導加熱により行うようにした残留応力改善方法において、
前記残留応力改善のための高周波誘導加熱を、前記管部材溶接部の一方の側と他方の側で動作条件を変えて行なうことを特徴とする残留応力改善方法。
In the residual stress improvement method in which the residual stress improvement of the pipe member weld is performed by high frequency induction heating of the pipe member,
A method for improving residual stress, comprising performing high-frequency induction heating for improving the residual stress by changing operating conditions on one side and the other side of the welded portion of the pipe member.
請求項1に記載の残留応力改善方法において、
前記管部材は原子炉の配管であることを特徴とする残留応力改善方法。
In the residual stress improvement method of Claim 1,
The method for improving residual stress, wherein the pipe member is a piping of a nuclear reactor.
請求項1に記載の残留応力改善方法において使用される高周波誘導加熱コイルであって、
前記高周波誘導加熱コイルが、一方と他方で径を異にする2個以上の部分加熱コイルで構成されていることを特徴とする高周波誘導加熱コイル。
A high-frequency induction heating coil used in the method for improving residual stress according to claim 1,
The high-frequency induction heating coil is composed of two or more partial heating coils having different diameters on one side and the other side.
請求項1に記載の残留応力改善方法において使用される高周波誘導加熱コイルであって、
前記高周波誘導加熱コイルが、一方と他方で巻回ピッチを異にする2個以上の部分加熱コイルで構成されていることを特徴とする高周波誘導加熱コイル。
A high-frequency induction heating coil used in the method for improving residual stress according to claim 1,
The high frequency induction heating coil is composed of two or more partial heating coils having different winding pitches on one side and the other side.
請求項1に記載の残留応力改善方法において使用される高周波誘導加熱コイルであって、
前記高周波誘導加熱コイルが、可撓性を備えていて長さ方向の一方と他方で径と巻回ピッチの少なくとも一方が変更できるコイルで構成されていることを特徴とする高周波誘導加熱コイル。
A high-frequency induction heating coil used in the method for improving residual stress according to claim 1,
The high-frequency induction heating coil is a high-frequency induction heating coil that is flexible and includes at least one of a diameter and a winding pitch that can be changed between one and the other in the length direction.
JP2005253522A 2005-09-01 2005-09-01 Method for improving remaining stress and coil for high-frequency induction heating Pending JP2007063642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005253522A JP2007063642A (en) 2005-09-01 2005-09-01 Method for improving remaining stress and coil for high-frequency induction heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005253522A JP2007063642A (en) 2005-09-01 2005-09-01 Method for improving remaining stress and coil for high-frequency induction heating

Publications (1)

Publication Number Publication Date
JP2007063642A true JP2007063642A (en) 2007-03-15

Family

ID=37926170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005253522A Pending JP2007063642A (en) 2005-09-01 2005-09-01 Method for improving remaining stress and coil for high-frequency induction heating

Country Status (1)

Country Link
JP (1) JP2007063642A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012065608A1 (en) 2010-11-19 2012-05-24 Andreas Nebelung Device and method for inductively heating metal components during welding, using a cooled flexible induction element
WO2012079720A1 (en) * 2010-12-16 2012-06-21 Tesi S.R.L. Device for the localized heating of parts of coated metal pipes and of parts of their protective coating
CN104404216A (en) * 2014-10-31 2015-03-11 东方电气集团东方锅炉股份有限公司 Local heat treatment technology for welding cylindrical shell
US9662337B2 (en) 2010-07-09 2017-05-30 Abbvie B.V. Bisaryl (thio)morpholine derivatives as S1P modulators
US9670220B2 (en) 2010-07-09 2017-06-06 Abbvie B.V. Fused heterocyclic derivatives as S1P modulators
US9951084B2 (en) 2010-07-09 2018-04-24 Abb Vie B.V. Spiro-cyclic amine derivatives as S1P modulators
KR20200043802A (en) * 2018-10-18 2020-04-28 한국수력원자력 주식회사 Pipe heat treatment apparatus
CN113597036A (en) * 2021-07-30 2021-11-02 重庆长安新能源汽车科技有限公司 Low-cost uniform heating device for motor heat jacket
CN113597035A (en) * 2021-07-30 2021-11-02 重庆长安新能源汽车科技有限公司 Efficient uniform heating device for motor heat jacket
US11535632B2 (en) 2019-10-31 2022-12-27 ESCAPE Bio, Inc. Solid forms of an S1P-receptor modulator

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9951084B2 (en) 2010-07-09 2018-04-24 Abb Vie B.V. Spiro-cyclic amine derivatives as S1P modulators
US11427598B2 (en) 2010-07-09 2022-08-30 AbbVie Deutschland GmbH & Co. KG Spiro-cyclic amine derivatives as S1P modulators
US10807991B2 (en) 2010-07-09 2020-10-20 Abbvie B.V. Spiro-cyclic amine derivatives as S1P modulators
US10179791B2 (en) 2010-07-09 2019-01-15 Abbvie B.V. Spiro-cyclic amine derivatives as S1P modulators
US9662337B2 (en) 2010-07-09 2017-05-30 Abbvie B.V. Bisaryl (thio)morpholine derivatives as S1P modulators
US9670220B2 (en) 2010-07-09 2017-06-06 Abbvie B.V. Fused heterocyclic derivatives as S1P modulators
WO2012065608A1 (en) 2010-11-19 2012-05-24 Andreas Nebelung Device and method for inductively heating metal components during welding, using a cooled flexible induction element
US9326330B2 (en) * 2010-12-16 2016-04-26 Tesi Spa Device for the localized heating of parts of coated metal pipes and of parts of their protective coating
US20130248519A1 (en) * 2010-12-16 2013-09-26 Tesi Spa Device for the localized heating of parts of coated metal pipes and of parts of their protective coating
WO2012079720A1 (en) * 2010-12-16 2012-06-21 Tesi S.R.L. Device for the localized heating of parts of coated metal pipes and of parts of their protective coating
CN104404216A (en) * 2014-10-31 2015-03-11 东方电气集团东方锅炉股份有限公司 Local heat treatment technology for welding cylindrical shell
KR20200043802A (en) * 2018-10-18 2020-04-28 한국수력원자력 주식회사 Pipe heat treatment apparatus
KR102108448B1 (en) 2018-10-18 2020-05-07 한국수력원자력 주식회사 Pipe heat treatment apparatus
US11535632B2 (en) 2019-10-31 2022-12-27 ESCAPE Bio, Inc. Solid forms of an S1P-receptor modulator
CN113597036A (en) * 2021-07-30 2021-11-02 重庆长安新能源汽车科技有限公司 Low-cost uniform heating device for motor heat jacket
CN113597035A (en) * 2021-07-30 2021-11-02 重庆长安新能源汽车科技有限公司 Efficient uniform heating device for motor heat jacket
CN113597036B (en) * 2021-07-30 2023-05-23 重庆长安新能源汽车科技有限公司 Low-cost uniform heating device for motor hot jacket
CN113597035B (en) * 2021-07-30 2023-05-26 重庆长安新能源汽车科技有限公司 Efficient uniform heating device for motor hot jacket

Similar Documents

Publication Publication Date Title
JP2007063642A (en) Method for improving remaining stress and coil for high-frequency induction heating
US10285221B2 (en) Induction heating coil, induction heating device, and heating method
US4505763A (en) Heat-treating method of weld portion of piping system and heating coil for the heat treatment
CN111534680B (en) Heating temperature equalizing method for local induction heat treatment after welding of thick-wall pressure-bearing equipment
JP2882962B2 (en) High frequency bolt heater
EP1978112B1 (en) Systems and methods for providing localized heat treatment of gas turbine components
BRPI0821702B1 (en) METHOD FOR CONTROL OF A CROSS-SECTION HEATING PROFILE, LONGITUDINAL WAY, INDUCED IN ELECTRICALLY CONDUCTING WORKPIECE WITHOUT FARADAY FLOW CONCENTRATORS OR RINGS, AND, ELECTRICALLY CONDUCENTLY ELECTRIC CONDUCT HEATING EQUIPMENT FLOW OR FARADAY RINGS
CN112725572B (en) Main and auxiliary induction heating local heat treatment method
JP7362061B2 (en) Induction heating method and induction heating device
JP2004211187A (en) Method and apparatus for heat treatment of piping system
JP4928908B2 (en) Fluid heating device using induction heating
JP5473127B2 (en) Induction heating coil
JP6111033B2 (en) Heating coil
JP2006152410A (en) Method and device for heat treatment of tube
JP4890159B2 (en) Molten salt piping and heat treatment method
US4786772A (en) Induction heating coil for heat-treating metallic tubes
JP2004331999A (en) Method and apparatus for heat-treating pipe
JP5096065B2 (en) High frequency induction heating coil and high frequency induction heating method
JP4187635B2 (en) High frequency induction heating coil
US20210315066A1 (en) Repair Device
CN111979400A (en) High-temperature heating surface welded junction and fin weld seam postweld heat treatment device and manufacturing method
JPS6237516B2 (en)
JP5089109B2 (en) Induction tempering method of crankshaft and induction induction apparatus used in this method
JP2009174037A (en) High-frequency heating coil of induction heater
JP2020020038A (en) Heat treatment process for metal and heat treatment apparatus therefor